

1

CHAPTER I

INTRODUCTION

A. Background of the Study

“Timetabling is the allocation, of subject to constraints, of given resources to satisfy

as nearly as possible a set of desirable objectives.”[1] Real timetabling problems have many

forms like educational timetabling (course, exam, and project presentations), employee

timetabling, personnel scheduling, timetabling of sports events, transport scheduling, etc.

[2,3]

Educational Timetabling Problems include finding the exact time allocation within a

limited period (e.g. week), of a number of events (courses, exams, project presentation) and

also assign to them a number of resources (a teacher, a room, etc.) in such a way that a

number of constraints (in other words, restrictions) are satisfied [2 – 5]. Constraints involve,

among others, overlapping of events with common participants, capacity of rooms, and

student and teacher workload.

The University of the Philippines – Manila, like most universities, still implements

the manual timetabling. In order to simplify the task course scheduling – which is a primary

task of each college secretary – scheduling processes were distributed to the heads of each

2

department on each college. In doing so, the course scheduling problem is now divided into

several subproblems of timetabling.

Each department head will then consult his department, and (knowing what courses

they will be offering or are allowed to be offered) will decide on: number of sections for each

course; slots allotted for each section in each course; number of meetings per week, lecture

hours, and laboratory hours, and exam hours; and the instructors/lecturers which will be

teaching each course, then provide a tentative schedule for the semester. The Office of the

College Secretary, will then combine and resolve conflicts which may arise from the

proposed schedules of all the departments in their jurisdiction.

B. Statement of the Problem

As simple as it may seem, the timetabling problem is well known to be

Nondeterministic Polynomial-complete (NP-complete) combinatorial problem [5, 6, 7],

which means that it is difficult to find the best solution to the problem. Its difficulty increases

exponentially whenever more scheduling parameters are added. “At present, science has no

analytical solution method for all problems, due to the immense search of spaces of real

problem cases of this category other than exhaustive search, which however cannot be

applied but only to toy problems, due to immense search spaces or real problem cases”. [2]

3

“Large-scale timetable, such as university timetables,” in the College of Arts and

Sciences, University of the Philippines Manila, “may need great effort and many hours of

work spent, by a qualified person or a team, in order to produce high quality timetables with

optimal constraint satisfaction and optimization of the timetable’s objectives at the same

time” [2]. Hence, dealing with such by hand whenever a new semester starts does not benefit

our educational institutions, since aside from not guaranteeing quality timetables, it also

involves huge expenses in resources – entails more time, effort and paper works.

C. Objectives

This project endeavored to propose a better approach to solving the timetabling

problem, with the College of Arts and Sciences of the University of the Philippines – Manila

as the pilot setting of the system. The College of Arts and Sciences Scheduler (CASS), aims

to provide optimized set of schedule each semester from which eligible users can choose

from.

CASS, the scheduler, has the following as its users with their respective

functionalities:

(1) An Instructor / Lecturer will be able to

a. Input scheduling parameters (preferred courses, preferred rooms,

time of unavailability);

b. View implemented schedule; and

4

c. Change Password

(2) The Department Chairman will be able to

a. Input scheduling parameters of his department (the subjects to be

taught; the number of meetings; lecture hours, laboratory hours,

and exam hours; the number of sections for each subject; the

instructor/s or lecturer/s capable of handling each subject; check

and verify the entries made by the each instructor or lecturer);

b. Update courses, subjects, and faculty of his department

c. View implemented schedule

d. Change Password

(3) The Office of the College Secretary (OCS) Personnel (which will also be the

system administrator) on the other hand, will be able to

a. Input scheduling parameters (the rooms to be used; slots to be

allotted for each subject – slots; the subjects to be taught for

courses outside CAS);

b. Generate Optimal Schedule;

c. Accept Generated Schedule;

d. View Implemented schedule;

e. Add or dissolve a subject;

f. Update users, rooms

g. Change Password

5

D. Significance of the Study

Every Educational institution faces the problem of timetabling or scheduling. When

done manually, timetabling requires so much time and effort especially if there is a limited

amount of resources (rooms, instructors, etc.). Taking these into consideration, a system –

CASScheduler – was developed to provide an optimal solution and guide the OCS to generate

schedule in a minimal time. An optimal solution can allocate resources efficiently and this

would be beneficial to the College of Arts and Sciences of the University of the Philippines

Manila.

Starting from the gathering of data, which has been made more efficient through the

use of technology, to the presentation of results and solutions, the system was designed to

greatly reduce the overhead for manual timetabling. Also, instructors need not worry

anymore with their schedules – they can now easily allot time for teaching and time for other

works they do. Department Chairs won’t have to be troubled anymore about having to

schedule classes to same courses and year level on the same timeslot.

Moreover, since CASScheduler has made use of Non-dominated Sorting Genetic

Algorith II, it arrives to an optimal or set of optimal solutions in a shorter time compared to

the manual way. Furthermore, everything that has to be considered (like room assignments,

demand for subjects, assignment of instructors, etc) can be taken into account

simultaneously.

6

E. Scope and Limitation

The system will encompass the class (course) and final exam scheduling process,

from the gathering of input data from the instructors and/or lecturers, department heads and

OCS personnel, to the processing of input and generation of solutions itself, until the

presentation and delivery of the set of viable solutions to the parties involved. The system

will be able to process and generate results for the scheduling of undergraduate classes

(courses) and final exams within the UP Manila College of Arts and Sciences, wherein

evaluation of the solutions will be patterned after the criteria and considerations taken by

experienced personnel from the said college, as well as general standards obtained from

research.

The system would not know prior to the processing of data, if there could always be a

solution (or even a partial one). CASScheduler is just a support system, and the decision of

which among the solutions generated will be implemented still lies within the eligible

personnel (an OCS Personnel), and choosing which among the solutions is best is outside the

scope of the system. Furthermore, changes of schedule outside those entered by the

department chairs and implemented by the OCS is not part of the system.

7

F. Assumptions

Since the system is just concerned about optimizing a schedule based on a given sets

of inputs, the following are assumed:

1. Before making a run of the algorithm (through the system), all the entries are

considered final.

2. All the inputs are correct – there are no format errors. The system will provide the

user an input format and it is assumed that users will adhere to that format.

3. Any other arrangements to be made between any user of the system (department

head-to-instructor, college-to-department, etc.), are made prior to the scheduling

proper.

4. It is also assumed that during final examinations period, all instructors are available,

or if not, he may be able to provide a proctor in place of himself.

5. Restriction of rooms applies both to course and exam scheduling.

6. At least one instructor is assigned to teach a course being offered.

7. Department Chairs and instructors can only input scheduling parameters prior to the

scheduling proper. If a schedule has already been accepted and implemented, they can

only view and not modify whatever they have inputted previously.

8. Moreover, it is assumed that users of the system are well-trained and knows how to

use the system effectively.

8

CHAPTER II

REVIEW OF RELATED LITERATURE

Several universities have tried to solve the timetabling problem which they always

experience whenever a semester or school year starts. Some may have just stick to their old

way of solving it, while others may have devised some ways to easy the mundane and

arduous task of scheduling.

Schedule-EZ [8], is a tool that has been developed to assist chairs and secretaries of

various departments to facilitate the mundane, error prone and time consuming task of

faculty scheduling. It is a powerful database driven tool that was created with simplicity and

specifics in mind. The program entirely written in Visual Basic, with MS-Access as the

database and export capabilities to MS-Excel, was used by various departments in Northwest

Missouri State University in 2003. It has been proven to be an effective tool for department

chairs and secretaries. Schedule-EZ is merely an automation of the timetabling process which

consists of three main components – the control panel, the daily schedule, and the entire

week view. “The control Panel allows the user to customize the program to suit a

department’s need. Department faculty names, classroom, and courses offered are stored …

this customization will personalize the program for ease of use later when the user begins

scheduling…The daily schedule is the main part of the program … where the faculty names,

courses offered by the department and the room locations appear in a drop down menu… the

9

interesting feature that is available is the validate button”. This implies that it is still the user

who schedules and not the system. After completing the scheduling the validate button,

when pressed checks to see if scheduling conflicts exists.

QUICK Scheduler [9] which was used at Texas Tech University (TTU) back in 2005

is a web-based application that aimed to help students and academic advisors with the

scheduling process. The user will input the courses he is about to take in a certain semester

and the scheduler will select sections and courses that do not conflict with other classes or

with other specified activities (such as their work outside school, basketball, practice, or

family commitments, etc.). The final output is a one-page graphic schedule , showing

activities the student has entered as well as his sleep time, study time, and class time. QUICK

Scheduler also emphasizes the importance of allocating sufficient sleep and study time A

backtracking algorithm was used for producing the results (schedule) [10]. “If an acceptable

schedule is not found on the first try, the student or advisor can change one or more courses

or other criteria and submit again. This can be repeatedly done until the optimal schedule is

found” [10]. Again, this shows an implementation of a mere human way of solving the

timetabling problem, even if backtracking algorithm was used.

To simplify the highly constrained timetabling problem, Swansea’s TISSUE

examinations scheduling system [11, 12] divide it into two phases – first finding a feasible

solution, then optimizing secondary constraints.

10

Tabu search has been applied successfully by Boufflet and N`egre to generate

examinations timetables at the University of Technology of Compi`egne [13], Their tabu list

contains the seven most recent moves. If the current neighbourhood does not contain an

improved solution, the aspiration function may select one from the tabu list.

Formulating course scheduling as an assignment problem, Hertz developed and

applied the TATI tabu algorithm [14], which he later adapted for a more complex and

constrained real-life course scheduling problem [15]. The length of a lecture is not fixed in

advance and there are ten different types of moves (e.g. moving a lecture to another day,

changing the duration of the lecture etc). When the schedule of a particular lecture in a

particular day is changed it may be moved to another period (possibly in another day).

However, for a given number of iterations it is tabu to move the lecture to a period in the

original day.

Corne, Ross and Fang found an intelligent mutation operator to be more successful

than two-parent crossover [16]. Their system, GATT, is now being used successfully to

timetable courses at the University of Edinburgh and several other institutions.

Paechter, Cumming et al have developed “Neeps and Tatties”, a system which is

being used to schedule courses at Napier University’s Computer Science department. Its

genetic algorithm encodes timetables as an ordering of events, which must be input to a

special program which uses the order to produce a timetable [17]. This necessitates a

11

different sort of recombination operator, which takes elements of the order from each parent

to produce a new ordering.

The Automated Scheduling And Planning group at the University of Nottingham,

has developed genetic algorithms for examinations scheduling which employ a large degree

of heuristic knowledge, both to seed the initial population, and to improve the standard

genetic operators [18 – 20].

Fernades, Calldeira, et al introduced an new operator, “Bad Genes Mutation, which

greatly improved the evolutionary algorithm’s speed. The algorithm was tested on a large

high school called D.F.L. using the 1996/1997 school year timetables [21].

UTTSExam is the exam scheduling portion of University Timetable Scheduler

(UTTS) software, an automated university timetabling program developed in the National

University of Singapore (NUS), which when completed, the program is expected to

automatically schedule both the course and examination timetables for all the faculties in the

entire university that employ the modular academic course structure. While the exam

scheduling portion of UTTS reached the deployment stage and was used to generate the

2001/2002 academic year in NUS the other portion – the course scheduling – is currently still

under development [22]. UTTSExam also made use of artificial intelligence technology. It

used the Combined Method [23] for solving Constraint Satisfaction Optimization Problem

(CSOP) [24]. It also made use of Genetic Algorithm [25] with Tabu Search Post

Optimization [26].

12

An advanced genetic algorithm, which made use of the indirect representation in

encoding a timetable solution, was developed and used by Karzalis, Petridis and Fragkou in

solving the timetabling problem and was applied to the Technological Educational Institute

of Serres in Greece for which the solutions were compared to that of the man made. A similar

algorithm has been proposed in [27] where the non-evolutionary heuristic algorithm is

proposed for exam timetabling problems.

Perzina designed an optimization model for solving the university timetabling

problem that is capable of dealing with individual timetables of every student. A parallel self-

adaptive genetic algorithm with self-adaptation of all its parameters was proposed. This

algorithm was applied for solving the real university timetabling problem at Silesian

University of Czech Republic, and has shown to be effective. An enrollment optimization

algorithm when dealing with individual timetables of students was also proposed, which

when implemented, has significantly decreased the number of student clash constraints [5].

Kov, aiming to produce “high quality timetables”, presented methods for solving

university timetabling exam problems on his doctorate thesis last November 2003. In the

course of his thesis, he developed a variant of NSGA for exam timetabling, which employs

elitism. He also introduced the idea of a trajectory-based multiobjective approach which

enables the search process to move along defined trajectories. [28].

13

NSGA-II algorithm was used as the core of the course scheduling system (CSS)

presented on March 2006, by Gagno et al [29] of the University of the Philippines, Diliman,

in partial fulfillment of their bachelor’s degree. “The team has demonstrated that the CSS

project is capable of generating feasible solutions to the course scheduling problem, given a

set of courses, resources and constraints to be observed. It is able to reduce the overhead for

time, labor and paper by a great scale”.

 Also on June 2006, NSGA-II-UCTO: NSGA-II as University Class Timetable

Optimizer developed by Datta et al [30] as a multiobjective EA-based university class

timetable optimizer in solving class timetabling problems of the Indian Institute of

Technology Kanpur. With the use of NSGA-II-UCTO, a number of trade-off solutions, had

been obtained very easily. “Moreover, much better results, than the manually prepared one,

have been obtained using NSGA-II-UCTO”. [31]

14

CHAPTER III

THEORETICAL FRAMEWORK

A. The University Timetabling Problem

Timetabling, as described by de Werra, is the activity of scheduling a set of meetings

or events in such a way that certain requirements and constraints are satisfied [32].

Timetabling problems include: educational timetabling, sports timetabling, employee

timetabling, transport timetabling and others [3].

The university timetabling problem can be described as follows. There are q events

e1, ..., eq, a potential set of timeslots or p periods 1, ... ,p , m rooms r1, ..., rm which the events

can occur, and a potential set of agents (or professors) tasked to handle each event ei. Each

room rj has a capacity capj, expressed in terms of number of available seats. There are also g

groups of courses, called curricula, such that any two courses of a curriculum have students

in common.

For course scheduling, each event (in this case each course) ci consists of li lectures to

be scheduled in distinct time periods, and it is attended by si students. As for the exam

scheduling, each event (in this case each exam) ei is also scheduled in time periods (which

15

does not necessarily be distinct all the time), but is attended by ∑si students from all li

lectures

A given constraint for a scheduling problem can be classified either as a hard

constraint or a soft constraint. A hard constraint must be absolutely met by a candidate

solution in order to be feasible. An example is the Room Occupancy, where two distinct

lectures cannot take place in the same room in the same period. On the other hand, it is not

imperative that a solution satisfies a given soft constraint – they are desirable but not

essential. However, these constraints evaluate the quality of a candidate solution. In short,

they give a quantitative measure of the desirability of a generated schedule. An example of

soft constraint is, the number of students that attend a course must be less or equal than the

number of seats of all the rooms that host its lectures. The number and variety of constraints

(hard or soft) existing in educational timetabling problems makes it impossible to list all of

them [3]. An effective timetabling in academic institution is crucial for the satisfaction of

educational requirements and efficient utilization of human and space resources [33].

B. Operations Research

Also termed Operational research, or simply OR is an interdisciplinary science.

Scientific methods like mathematical modeling, statistics, and algorithms to decision making

are deployed in complex real world problems which are concerned with coordination and

execution of the operations within an organization. The nature of organization is essentially

16

(1)

immaterial. The eventual intention behind using this science is to elicit a best possible

solution to a problem scientifically, which improves or optimizes the performance of the

organization [33].

Some of the primary tools used by operations researchers are statistics, optimization,

stochastics, queueing theory, game theory, graph theory, and simulation. Because of the

computational nature of these fields OR also has ties to computer science, and operations

researchers regularly use custom-written or off-the-shelf software [33]

Areas of application include road traffic management, design and layout of computer

chips, constructing a telecommunications network, scheduling, etc. [33].

C. Multi-objective Optimization

The general multi objective optimization problem was described by Landa et al as

follows:

Minimize or Maximize

where x is a solution, S is the set of feasible solutions, k is the number of objectives in the

problem, F(x) is the image of x in the k-objective space and each fi(x) i = 1,…,k represents

one (minimization or maximization) objective.

17

In many problems, the aim is to obtain the optimal arrangement of a group of discrete

entities in such a way that the additional requirements and constraints (if they exist) are

satisfied [34, 35].

Steuer described the three ways of combining the search and the decision-making

processes [36] – the first decision that has to be made when dealing with a multi-objective

optimization problem – and these are summarized as follows. In the a priori approach,

decision making is done before the search. The preferences for each objective are set by the

decision-makers and then, one or various solutions satisfying these preferences have to be

found. The inverse is done in the a posteriori approach. Various solutions are found and

then, the decision-makers select the most adequate. The solutions presented should represent

a trade-off between the various objectives. In the last approach, the decision-makers

intervene during the search in order to guide it towards promising solutions by adjusting the

preferences in the process – a decision-making with Interactive search.

Another important decision is how to evaluate the quality of solutions, because the

conflicting and incommensurable nature of some of the criteria makes this process more

complex. There are several alternatives listed as follows: [37]

(1) Combine the objectives. This is one of the “classical” methods to evaluate the

solution fitness in multi-objective optimization. It refers to converting the multi-

objective problem into a single-objective one by combining the various criteria into a

18

single scalar value. The most common way of doing this is by setting weights to each

criterion and adds them all together using an aggregating function.

(2) Alternating the objectives. This is another “classical” approach. It refers to

optimizing one criterion at a time while imposing constraints on the others. The

difficulty here is on how to establish the ordering in which the criteria should be

optimized, because this can have an effect on the success of the search.

(3) Pareto-based evaluation. In this approach, a vector containing all the objective

values represents the solution Fitness and the concept of dominance is used to

establish preference between solutions [36]. A solution x is said to be non-inferior or

non-dominated if there is no other solution that is better than x in all the criteria.

Suppose two distinct vectors V = (v1, v2,…, vk) and U = (u1, u2,…, uk) containing the

objective values of two solutions for a k-objective minimization problem, then:

– V strictly dominates U if vi < ui, for i = 1, 2, . . . , k.

– V loosely dominates U if vi ≤ ui, for i = 1, 2, . . . , k and vi < ui, for at least

one i.

– V and U are incomparable if neither V (strictly or loosely) dominates U nor

U (strictly or loosely) dominates V .

Minimization is considered here mainly because most of the scheduling problems are

of this type (minimize processing time, minimize soft constraints violation, minimize

19

schedule length, etc.), but the above definition is altered in the obvious way for the case of

maximization problems.

Landa et al noted that “using strict or loose dominance can have an effect on how the

search is performed. This is because if a solution x1 is strictly dominated, it means that it is

outperformed by the other solution x2 in all criteria. But, if the solution x1 is loosely

dominated it means that it is outperformed in some of the criteria but it is as good as x2 in at

least one of them. Then, finding a new solution that strictly dominates the current one may be

more difficult than finding a solution that loosely dominates it” [3].

The aim in Pareto optimization is to find a set of compromise solutions that represent

a good approximation to the Pareto optimal front [36, 39]. The Pareto optimal front is the set

of all non-dominated solutions in the multi-objective space [36]. Pareto optimization refers to

finding the Pareto optimal front or a set that represents a good approximation to that front.

Pareto optimization is appealing because in most multi-objective optimization problems there

is no such single-best solution and it is also very difficult to establish preferences among the

criteria before the search. It has expressed that even if the conflicting nature of the criteria is

not proved, Pareto-based metaheuristics would be able to find the ideal solution that is the

best in all criteria [38].

20

D. Approaches to the University Timetabling Problem

A large number of diverse methods have been already proposed in the literature for

solving timetabling problems. These methods come from a number of scientific disciplines

like Operations Research, Artificial Intelligence, and Computational Intelligence [27, 39 –

43] and can be divided into four categories.

Sequential Methods treat timetabling problems as graph problems. After ordering the

events with the use of domain-specific heuristics, they assign the events sequentially. Events

are assigned into valid timeslots in such a way that no constraints are violated for each

timeslot [44]. In 1967, Welsh and Powell [45] pointed out the similarity between timetabling

problem and the one of colouring the vertices of a graph. Here, the vertices are taken to be

equivalent to courses and the arcs between them represent conflicts. Colouring the graph

amounts to placing courses in appropriate periods. The algorithm they present is similar to

Broder’s [46]. They order the vertices according to degree and attempt to colour the graph

without using an upper limit on the number of colours. Since 1967 Welsh and Powell’s

observation has led to many timetabling algorithms based on graph colouring. Matula,

Marble and Isaacson [47] in 1972 presented a smallest degree last recursive sequential

algorithm. They also presented an interchange which involves looking for a colour swap in

vertices adjacent to the one which is currently trying to be coloured when the normal method

would introduce a new colour, adding limited search ability to the algorithm. A graph

colouring algorithm is an integral part the system presented by Burke and Elliman [48] who

have presented graph colouring and room allocation algorithm and show how the two can be

21

combined to provide the basis of a flexible and widely applicable timetabling system, and in

some details, discussed how several common timetabling features can be handled within the

system.

In the Cluster Method, problems are divided into a number of event sets. Each set is

defined with the intention that it satisfies all hard constraints. These sets are then assigned to

real timeslot, satisfying the soft constraints as well [49].

Another method, models the timetabling problem as a set of variables (events).

Values or resources (such as teachers and rooms) have to be assigned to these events in order

to satisfy a number of constraints. This method is referred to as Constraint Based Method

[50]. E. Burke et al proposed an approach using case based heuristic selection concerning

both university course time tabling and university exam timetabling, motivated by the goal of

developing timetabling systems that are fundamentally more general than the current state of

the art. Heuristic that worked well in previous similar situations are memorized in a case base

and are retrieved for solving the problem in hand. It has been shown that case based

reasoning can act effectively as an intelligent approach to learn which heuristics work well

for particular timetabling problem [51]. Petrovic, Yang, Dror, Burke, MacCarthy, and Qu

[52, 53] among others are those which proposed constraint based approach in solving

timetabling problems.

The last method, such as genetic algorithms (GAs), simulated annealing, tabu search,

and other heuristic approaches, is called Meta-Heuristics Methods. This method is mostly

22

inspired by nature, and such applies nature-like processes to solutions, in order to evolve

them towards optimality [39 – 41, 54, 55].

Simulated annealing has been successfully applied to the timetabling problem in

Swansea’s TISSUE examinations scheduling system [11, 12].

E. Multi-objective Genetic Algorithm

The basic principles of Genetic Algorithm (GA) were first proposed by Holland in

1970’s. “Genetic algorithms are computerized search and optimization methods that work

very similar to the principles of natural evolution”. [56] These are based on Darwin's

survival-of-the-fittest principles. Genetic algorithms are the most popular type of

evolutionary algorithms. These algorithms encode a potential solution to a specific problem

on a simple chromosome-like data structure. In GA’s, evolution starts from a population of

completely random individuals and happens in generations. In each generation, the fitness

and constraint values of the whole population are evaluated, multiple individuals are

stochastically selected from the current population (based on their fitness and constraint

values), modified (mutated or recombined) to form a new population, which becomes current

in the next iteration of the algorithm [56].

Professor Kalyanmoy Deb stated on a short course introduction of GA that “GA's

intelligent search procedure finds the best and fittest design solutions, which are otherwise

23

difficult to find using other techniques.” He also added that “GAs are attractive in

engineering design and applications because they are easy to use and they are likely to find

the globally best design or solution, which is superior to any other design or solution.” Aside

from some of the GA applications – which include planning, job shop scheduling, pattern

recognition, classification problems, neural network design, operations research and the like

– GAs are also suitable for multi-objective optimal design problems, involving multiple

objectives.

Voss et al. describe a metaheuristic as “an iterative master process that guides and

modifies the operations of subordinate heuristics to efficiently produce high quality

solutions” [57]. Many metaheuristics that were first applied to solve single-objective

optimization problems have also been extended to multi-objective variants. Among these,

multi-objective evolutionary algorithms have received particular attention because some

researchers argue that these methods are well suited to deal with multi-objective optimization

problems [54, 58].

Evolutionary algorithms refer to any population-based metaheuristic optimization

algorithm that uses mechanisms inspired by biological evolution, such as inheritance,

reproduction, mutation, crossover, natural selection and survival of the fittest. Candidate

solutions are termed individuals in a population, and the cost function determines the fitness

of a solution set. Evolution of the population then takes place after the repeated application of

the above operators [59].

24

Over the years, there have been several approaches used to deal with problems having

various objectives. A strategy, which generates the set of compromise solutions in a single

execution of the algorithm – rather performing several searches using different preferences

each time – has attracted the interest of researchers for investigating the application of Pareto

optimization techniques to multi-objective scheduling problems [60 – 64]. The potential of

multi-objective or multi-criterion algorithms (MOAs) in optimization problems has been

explored by modern researches. These algorithms, which considers several (and at times

conflicting) objectives simultaneously, are capable of generating multiple nearly optimal

solutions and are powerful than traditional genetic algorithms since the former can

implement the latter using just a single objective.

Though relatively young, research using MOA’s show promising results for

optimization and scheduling problems. Since the principal reason why a problem has a multi-

objective formulation is because it is not possible to have a single solution which

simultaneously optimizes all objectives, an algorithm that gives a large number of alternative

solutions lying on or near the Pareto-optimal front is of great practical value.

F. The Non-Dominated Sorting Genetic Algorithm II

One of the first multi-objective algorithms was the Non-Dominated Sorting Genetic

Algorithm II (NSGA-II). It incorporates the multi-objective approach in using genetic

algorithms (GA’s), which involves several generations having processes of evaluation,

25

stochastic selection and modification a population of completely random individuals, and in

each generation, the fittest of the solutions are kept in a mating pool until the solutions

converge to the Pareto-optimal front.

NSGA-II was proven, by Deb et al, to be faster than other multi-objective

evolutionary algorithms, with time complexity of O(mN2) where m is the number of

objectives and N is the population size. NSGA-II, being a multi-objective genetic algorithm,

is able to discern the fitness of a solution over an assortment of (sometimes conflicting)

objectives, instead of using a singular fitness function characterized by weights and variables.

It is also able to rank and generate a set of Pareto-optimal solutions, giving the user the best

possible alternatives [65].

Simulation results on five difficult test problems show that the proposed fast, non-

dominated NSGA-II is able to find much better spread of solutions in all problems compared

to PAES (Pareto Archived Evolution Strategy)-another elitist multi-objective EA which pays

special attention towards creating a diverse Pareto-optimal front [65].

G. Definition of Terms

1. Chromosome – used to refer to a potential solution. It contains all of the

necessary information needed to describe one solution.

2. Clone – when a duplicate of a chromosome is created;

26

3. Crossover – a reproduction operator that create one or more new

chromosomes by mixing their solutions.

4. Elitism – (or an elitist strategy) is a mechanism which ensures that the

chromosome/s of the most highly fit member/s of the population are passed on

to the next generation without being altered; ensures that the maximum fitness

of the population can never reduce from one generation to the next.

5. Evolution – process of change which is assured given a reproductive

Population in which there are varieties of Individuals, with some varieties

being heritable, of which some varieties differ in fitness

6. Fitness – a value assigned to an Individual which reflects how well the

individual solves the task in hand.

7. Fitness Function – a measure of the quality of a particular chromosome.

chromosomes that are better solutions will have better fitness values than

those that are less optimal solutions.

8. Gene – a subsection of a chromosome which (usually) encodes the value of a

single parameter.

9. Generation – refers to one round of the Genetic Algorithm Cycle. New

chromosomes are created and old ones are removed to make room for them.

10. Individual – a single member of a population.

11. Mutation – any modification made to the population or to a single

Chromosome

12. Parent – an individual which takes part in reproduction to generate one or

more other individuals, known as Offspring, or children.

27

13. Penalty – a part of the fitness function, it penalizes illegal or undesirable

actions of the chromosome in the solution space.

14. Population – the collection of available chromosomes that encode the

problem solutions. There is normally a limit on the size of the population, and

those chromosomes that do poorly are eliminated to make room for better

performing chromosomes.

15. Reproduction – the creation of a new Individual from two Parents (sexual

reproduction). Asexual reproduction is the creation of a new individual from a

single parent.

28

CHAPTER IV

DESIGN AND IMPLEMENTATION

Two-level architecture for CASS will be implemented. The highest level is a

PHP/HTML user interface level that presents information to, and collects information from,

the user. At the next level, a C program translates this information into a linear program

(through the use of data structures as arrays of integers), which will then be solved with the

help of the core of the system – the NSGA Engine, which will also be implemented in C. All

of the data to be used throughout the levels will be stored and retrieved by a MySQL

database. This architecture is shown below (in Figure 1).

Figure 1: System Architecture, CAS Scheduler

29

A. The Algorithm

The genetic algorithm, can be summarized in the flowchart illustrated in Figure 2.

The first step is to generate the initial population. Each member of this population will be

encoded as a string (binary or not) – sometimes referred to as “genotype” or alternatively, a

“chromosome” – of length L. These strings are then evaluated and are each assigned a fitness

value.

Figure 2: Flowchart of the Genetic Algorithm

30

 In order to make use of the NSGA2 Engine designed by Deb et al in [65], the

information gathered from all the users of the system (which are stored in MySQL database)

will be translated and placed into a data structure of arrays of integers (and/or strings). These

data structures will then serve as the encoded “chromosomes”. Each chromosome is divided

into n sets, representing either the n sections (for course scheduling) or the n subjects (having

final examination) to be scheduled. Each sets is divided into three parts – representing the

timeslot, the room and the instructor, lecturer or proctor assigned to a section or an exam.

In figure 3, set 0 (colored blue in a), represents a section scheduled in timeslot 1, held

at room 3 by instructor 4. The same thing goes to all the other sets (i.e. from set 1 to 3). As

for the examination scheduling, set 3 (colored pink in b), represent a course with final exam

scheduled during timeslot 1 at room 1. Again, same thing goes for all the other sets.

134 | 123 | 111 | 142 13 | 21 | 12 | 11

0 1 2 3 0 1 2 3

(a) Course Scheduling (b) Exam Scheduling

Figure 3: Representation

The evaluation function (objective function), is the measure of performance with

respect to a particular set of parameters. The evaluation of a string i is independent of other

strings. On the other hand, in the fitness function, a sting i is always defined with respect

other members of the current population. The fitness function transforms the evaluation

31

function – the measure of performance – into an allocation of reproductive opportunities. It

can also be assigned based on a string’s rank in the population or by sampling method of

tournament selection.

CASScheduler makes use of several evaluation functions. A solution is feasible if it is

devoid of conflicts within rooms, instructors, lecturers or proctors, and timeslots. If in case at

least one of these conflicts arises, a penalty will be given to a particular candidate solution.

There is a Room Conflict if two or more sections are assigned to a same room i, at a

certain timeslot j, or at overlapping timeslots. For all rooms R, there should be no conflict

within any of timeslots T.

Figure 4: Room Conflict

32

On the other hand, an Instructor Conflict (also called Faculty conflict or Proctor

Conflict) arises if an instructor is assigned to teach two distinct sections at overlapping

timeslots. Additional penalty will be given if two ore more sections are assigned to an

Instructor i at timeslot j.. Each of the I instructors are checked, to see if there is at least one

conflict in the assignments of instructors to each section for all the timeslots T.

Figure 5: Instructor Conflict

Last among the hard constraints deals with timeslot compatibility; this will ensure

that the lecture and laboratory hours (and examination hours, in the cas of exam scheduling),

and the number of meetings of each section are met by the timeslot to be assigned to it. A

penalty would be given if Timeslot Conflict arise – if at least one of the necessary

requirements of a section i is not met.

33

Figure 6: Timeslot Conflict

Fitness functions (the soft constraints) are minimization functions, which will be used

to ensure the quality of the solution. A corresponding penalty will be added to fitness value

whenever a soft constraint is violated. CASS focuses on three main fitness functions. First, a

solution must conform with all policies implemented in the College of Arts and Sciences. As

illustrated in Figures 7 and 8, a solution must have minimal (or better if no) invalid room

assignments. Laboratory subjects must be designated to corresponding laboratory rooms, and

subjects of lecture type must be held at lecture rooms (shown in Figure 8). And as is depicted

in Figure 9, subjects must be held on their respective departments’ rooms.

34

Figure 7: Incompatible Room to Subject Assignment

Figure 8: Restricted Room Assignment

Each candidate solution will also be evaluated in such a way that it will satisfy most

of the instructors’ preferences. A corresponding penalty if an instructor is assigned to any

subject not among his expertise (shown in Figure 9), if any of the instructors time preferences

35

is not met (Figure 10), and if an instructor will have a load greater than the maximum (Figure

11).

Figure 9: Teaching Expertise

36

Figure 10: Time Preference

Figure 11: Workload

37

Last among the set of fitness functions implemented in CASS is such, that a candidate

solution can also be “student-friendly” – that no two subjects taken by students of a certain

course and a certain year level clashes, as depicted in Figure 12; and student demand for each

subject must be satisfied, as shown in Figure 13. Doing so will enable each student to take all

the subjects required in his curriculum for that semester; and the allocation of enough space

for a student demand for each subject will minimize the addition of slots for the coming

semester.

Figure 12: Co-requisite Subject Conflict

38

Figure 13: Demand for Slots

The execution of the algorithm can be viewed in a two stage process. Selection is

applied to the current population to form the intermediate population, where the processes of

recombination and/or mutation are applied to form the next population. This process – of

going from the current population to the next population – constitutes a generation in the

execution of the genetic algorithm. As again described in the previous chapter, Non-

dominated sorting was the added feature of the NSGA-II designed by Deb et al.

Population will consist of the chromosomes described above which encode the

problem solution. In the evaluation, corresponding penalty will be given to a solution and is

described in the next section. A chromosome can mutate. Mutation happens when genes in a

chromosome are combined in another way.

134 | 123 | 111 | 142 133 | 124 | 111 | 142

Crossover causes recombination of genetic material of two chromosomes. It leads to

rapid combination of patterns from different chromosomes.

134 | 123 | 111 | 142 134 | 123 | 152 | 142

126 | 135 | 152 | 143 126 | 135 | 111 | 143

39

B. The Entity Relationship

The Entity Relationship Diagram, as illustrated in Figure 14, summarizes the user

interface’s entities interaction. During a semester, each department offers at least one subject

to at least one course (degree program), either belonging to the same department or not. One

to many faculty member (instructor or lecturer), teaches at least one subject of his expertise.

Also, each department may own rooms (of type lecture or laboratory) which is only exclusive

for department use, however some rooms may be shared by all departments. An instructor

handling a one of the sections of a subject at a certain room during a certain time consists a

schedule. A schedule may be an accepted one (to be implemented for the coming semester)

or may be just one of the candidate solutions (which resulted from the scheduling process).

Figure 14: Entity Relationship Diagram, CASScheduler

40

 The DEPARTMENT entity in Figure 15 represents a department under a CAS

(College of Arts and Sciences). While the COURSE entity represents the a degree program

under a department (Computer Science, Biology, Political Science and the like);

Figure 15: Department and Course Entity with Attributes, CASScheduler

 Figure 16 shows numerous attributes of the SUBJECT entity. This entity represents a

subject offered by a department taken by various students. The ROOM entity on the other

hand represents a room where subjects are held. FACULTY entity (illustrated in Figure 17)

represents an instructor, lecturer or a proctor designated to a department.

Figure 16: Subject and Room Entity with Attributes, CASScheduler

41

Figure 17: Faculty Entity with Attributes, CASScheduler

The TIME entity represents the time of unavailability of an instructor. TIMESLOT

entity on the other hand represents the time when a scheduled subject can be held.

Figure 18: Time and Timeslot Entity, CASScheduler

42

C. The Data Dictionary

The following tables show how the different entities will be represented as tables

in the system’s database.

DEPARTMENTS – table that stores the college’s departments
Field Name Type Description
*deptID int identification (id) of a department.
deptName varchar department name

ROOMS – table that stores the lecture rooms and laboratory rooms of the college
Field Name Type Description
*roomID int identification (id) of the room
bldg varchar building where the room is located.
roomName varchar name of the room
type int room type, i.e. lecture, laboratory or both.
labtype int laboratory room type i.e. Chemistry, Physics, etc.
cap int number of persons a room can accommodate – capacity.
isShared int determines if a room can be shared across departments.
^deptID int identification of the department where the room belongs
status int tells if the room is active (still exists) or not.

SEM_ROOMS – table that stores the rooms to be used for the semester
Field Name Type Description
*aysem int academic year and semester
*roomID int identification (id) of the room

COURSES – table that stores the degree programs within the college
Field Name Type Description
*courseID int identification (id) of the course
courseCode int course code known to its department.
courseDesc varchar description of the course
^deptID varchar identification (id) of the department handling the course
status int tells if the course is active (still exists) or not.

SUBJECTS – table that stores all the subjects the college offers
Field Name Type Description
*subjectID int academic year and semester
subjectCode varchar subject code known to its department.
subjectDesc varchar description of the subject
type int subject type – lecture, laboratory or both
^labtype int laboratory type – Chemistry, Computer, etc.
lecUnits int number of lecture units the subject has
labUnits int number of laboratory units the subject has
lechrs float number of hours (in a week) for the lecture part of the subject

43

isGE float number of hours (in a week) for the laboratory part of the subject
^deptID int identification (id) of the department handling the subject
status int tells if the course is active (still exists) or not.

SEM_SUBJECTS – table that stores all the subjects the college offers
Field Name Type Description
*aysem int academic year and semester
*courseID int identification (id) of the course taking the subject
*yrLevel int year level taking the subject
*subjectID int academic year and semester
*type int subject type – lecture, laboratory or both
^labtype int laboratory type – Chemistry, Computer, etc.
^deptID int identification (id) of the department handling the subject

sec int number of sections allotted for the course and year level taking the
subject

slots int number of slots allotted for each section
mtgs int number of time each section meets
hrs float number of hours (in a week) needed for the subject

FACULTY – table that stores the instructors, lecturers and/or proctors
Field Name Type Description
*facultyID int identification (id) of the course
^deptID int identification (id) of the department handling the course
lname varchar surname or last name of the faculty
fname varchar given or first name of the faculty
mname varchar middle name of the faculty

SEM_FACULTY – table which stores the instructors with loads for the semester
Field Name Type Description
*aysem int academic year and semester
*^facultyID int identification (id) of the faculty

FACULTY_SUBJECTS – table which stores instructors and the subjects they teach
Field Name Type Description
*aysem int academic year and semester
*^facultyID int identification (id) of the faculty
*^subjectID int identification of the subject
type int subject type

FACULTY_UNAV – table that stores the time unavailability of the instructors
Field Name Type Description
*aysem int academic year and semester
*^facultyID int identification (id) of the faculty
*^stimeID int start time when the instructor is unavailable

44

*^etimeID int end time when the instructor is unavailable
*^dayID int day when the instructor is unavailable

HALFTIME – table that stores the half times from 7:00 am to 8:30 pm.
Field Name Type Description
*timeID int identification (id) of the time
timeCode int time code indicating the days and time
startTime int start time
endTime int end time

DAYSPOSS – table that stores possible days when a subject may be scheduled.
Field Name Type Description
*dayID int identification (id) of the time
dayCode int time code used for naming sections (M,T,Th,..MTh…S)
mtgsperwk int number of meetings per week

SECTIONS – table which store al the possible timeslots (for naming section).
Field Name Type Description
*sectionID int identification (id) of the section
sectionCode int section code / section name
dayID int identification (id) of the day/s when he section meets
starttime int when timeslot starts
endtime int when timeslot ends
nhrs float number of hours the timeslot has

SUBJECT_RESULTS – table that stores optimized subject scheduling results
Field Name Type Description
*resultID int An identification (id) of the result (1 being the best result)
^subjectID int An identification (id) of the subject
^type int subject type – lecture, or laboratory
^sectionID int An identification (id) of the section
^roomID int The room where the course section will be held
^facultyID int The faculty who will be teaching the class
conflict int Non zero if conflict arises.

EXAM_RESULTS – table that stores optimized exam scheduling results
Field Name Type Description
*resultID int An identification (id) of the result
^subjectID int An identification (id) of the subject
^type int subject type – lecture, or laboratory
^timeID int An identification (id) of the section
^roomID int The room where the course section will be held
conflict int Non zero if conflict arises.

45

SUBJECT_SCHEDULES – table of accepted or implemented subject schedules
Field Name Type Description
*aysem int academic year and semester
*^subjectID int An identification (id) of the subject
*^type int subject type – lecture, or laboratory
*^sectionID int An identification (id) of the section
*^roomID int The room where the course section will be held
*^facultyID int The faculty who will be teaching the class
conflict int Non zero if conflict arises.

EXAM_SCHEDULES – table of accepted or implemented final exam schedules
Field Name Type Description
*aysem int academic year and semester
*^subjectID int An identification (id) of the subject
*^type int subject type – lecture, or laboratory
*^timeID int An identification (id) of the section
*^roomID int The room where the course section will be held
conflict int Non zero if conflict arises.

USER – table which stores the system users
Field Name Type Description
*username varchar unique name identifying the a user
password varchar password associated with the user
usertype int user type which determines the privileges
lname varchar surname or last name of the user
fname varchar given or first name of the user
mname varchar middle name of the user
deptID int identification (id) of the department where the user belongs
facultyID int identification (id) of the faculty if user is a faculty

*Primary key
^Foreign Key

46

D. The Data Flow

Figure 19 illustrates the Context Diagram of CASS. It represents the overall

interactions between the users of the system. CASScheduler has three users – the

instructors / lecturers, the department chairman, and OCS personnel/s who may also serve

as the system administrator. Each will input information for the system to process and

each may see the results which the system will output. Figures 20-24 illustrated the flow

of data on the proposed system.

Figure 19: Context Diagram, CASScheduler

47

 The user interacts with the system by entering all the scheduling parameters, view

the generated and accepted results, or (for users with Administrator privileges) do some

modifications to the accepted schedule. These are illustrated in the top level data flow

diagram on Figure 20. Upon logging into the system, the user will also have the option to

change his password as seen in Figure 21.

Figure 20: Top Level - Data flow Diagram, CASScheduler

Figure 21: Sub-Explosion of Login, CASScheduler

48

The generation of optimal schedule is comprised of the processes shown in Figure

22. User inputs stored in the data store, are processed and passed to the NSGA-II Engine,

being the brain of the system, once a user request (to generate schedule) is made.

Solutions generated, are then stored to the data store. Figure 23 shows the basic processes

of the scheduling run (Perform Scheduling with NSGA-II Engine).

Figure 22: Sub-Explosion of Generate Optimal Schedule, CASScheduler

49

Figure 23: Sub-Explosion of Perform Scheduling, CASScheduler

The algorithm is run for several generations, and during its run, it involves

chromosome operations. These are depicted in Figures 24 – 25.

.

Figure 24: Sub-Explosion of Generate the Population, CASScheduler

50

Figure 25: Explosion of Perform Chromosome Operations, CASScheduler

Supplementary functions are done prior to or after performing the scheduling

procedure as shown in Figures 26-28 and 32-33. System users, rooms, course, faculty and

subjects must exist first before scheduling can take place, or even before the gathering of

scheduling parameters. Such entities may be updated or deleted whenever necessary.

51

Figure 26: Sub-Explosion of Perform Supplementary Functions, CASScheduler

Figure 27: Sub-Explosion of Manage Users, CASScheduler

52

Figure 28: Sub-Explosion of Manage Rooms, CASScheduler

There are instances when there is a need to dissolve an offered subject or offer

petitioned subjects. These processes are comprised in the management of subjects. A user

having Department Head privileges) adds all the subjects being offered under his

department. (see Figure 29-31)

Figure 29: Sub-Explosion of Manage Subjects, CASScheduler

53

Figure 30: Sub-Explosion of Add Subjects, CASScheduler

Figure 31: Sub-Explosion of Delete Subjects, CASScheduler

The management of courses and faculty members are also part of the

supplementary functions accessible to OCS Personnel users and Department Head users.

These are shown in Figures 32- 33.

54

Figure 32; Sub-Explosion of process Manage Courses, CASScheduler

Figure 33: Sub-Explosion of Manage Faculty, CASScheduler

55

E. Technical Architecture

CASScheduler makes use of a client-server model, where computer clients request

services provided by from computer servers [66]. Particularly LAMP (Linux-Apache-

MySQL-PHP) software bundle was used in the development of the system. “This

technology allows the user of a web browser to execute a program on the web server and

to thereby receive dynamic as well as static content”. [67] Also, it offers completely open

source development stack that is lightweight, inexpensive, highly efficient and easy to

use

The system was developed and configured using Linux operating system –

particularly, Ubuntu. The “next generation of the omnipotent Apache web server” was

used. Being a total rewrite, version 2 introduces many new improvements, which

includes threading, request responsive filtering and more [68].

As for the data repository of CASScheduler, the DBMS (database management

system) used was MySQL, which is a “fast, stable and true multi-user, multi-threaded

SQL database server”, and of which speed, robustness and ease of use is the main goal.

Among the middleware languages, PHP – an HTML-embedded scripting

language – with the goal to allow web developers to write dynamically generated pages

quickly, was chosen for the interpretation of the requests.

56

CHAPTER V

RESULTS

 Shown below in Figure 34, is the homepage of CASScheduler. Positioned on the

upper right is where the users login or change their password, as they login.

Figure 34: Index Page, CASScheduler

 Users of CASScheduler are of three types, first are the heads of each department;

another are the instructors or lecturers; and last is/are the OCS Personnel/s. Each of their

functionalities differs and is shown at the top of their homepages as they login.

57

 Prior to the generation of schedules, each of the department heads has to decide

on what subjects their department will offer, and assign who among their faculty

members is eligible in teaching each subject.

 In designing the curriculum users having department head privileges may choose

to either modify or apply the default curriculum design for a semester. Subjects to be

offered, may be chosen from the subject dropdown box. This is seen in Figure 35.

Figure 35: Curriculum Design, CASScheduler

Figure 36 shows how the users (OCS Personnel or department head) may edit

subject settings – of which duration and meetings per week, number of sections and

58

number of slots, per course, and year level may be modified. Only the subjects offered or

are present in the curriculum of the chosen course and year level is shown and may

Figure 36: Subject Settings, CASScheduler

be edited. The only difference between the two user type’s functionality is that, OCS

personnel users may modify any department’s subject settings, while the latter cannot.

59

 Instructors on leave must also be inputted in the system, to know which among

the faculty members of each department may be assigned at least one subject for the

semester (see Figure 37).

Figure 37: Faculty-on-Leave, CASScheduler

 It is the department head who knows more than anyone else what his

subordinates’ expertise are. Hence before the scheduling procedure takes place, he must

also provide the system of which among the subjects offered by his department can each

of his instructors can teach (see Figure 38).

60

Figure 38: Faculty-Subjects, CASScheduler

 Instructors may also input their time of unavailability as shown in Figure 39.

Their respective department heads may verify their entries and may modify the inputs

made if they think this functionality has been abused.

61

Figure 39: Time of Unavailability, CASScheduler

For some time, a room cannot be used due to some reasons. For instance, it may

be under construction, or has been reserved to serve as some other purpose. Taking this

into consideration, the system asks for which among the rooms are restricted for the

semester that is about to be scheduled as illustrated in Figure 40.

62

Figure 40: Restrict Rooms, CASScheduler

The scheduling proper only involves a mouse click. The authority to perform this

function is only given to users having OCS privileges. Scheduling involves both the

course and exam schedules for the semester.

63

Figure 41: Schedule, CASScheduler

User having OCS Personnel privileges will be shown the fittest solutions that

were produced by the system. If full solutions were found, the at most ten of the best and

unique will be shown (see Figure 42), otherwise, only the best among the not fit solutions

will be made known where the constraint violated is indicated at beside each scheduled

class (refer to Figure 43).

64

Figure 42: View All Solutions, CASScheduler

Figure 43: No full Solutions, CASScheduler

All users may view the accepted or implemented schedule for any semester. It

may be a room schedule, a faculty schedule, or schedules sorted by timeslot (shown in

Figure 44-46).

65

Figure 44: View Room Schedule, CASScheduler

Figure 45: View Faculty Schedule, CASScheduler

66

Figure 46: View Subject Schedule, CASScheduler

 And to help the users of the system resolve conflicts (if in case they arise), they

are also provided of an option to view room, subject and instructor conflicts as depicted

in Figure 47.

Figure 47: View Conflicts, CASScheduler
Also, some supplementary functions are provided by the system. Department

heads, these includes managing subjects, instructors, and courses as illustrated in Figure

67

48-50. OCS personnel may manage – add, edit/update, and delete – room and courses as

shown in Figure 51-52, and may dissolve, or add petitioned subjects in Figure 53.

Figure 48: Manage Faculty, CASScheduler

68

Figure 49: Manage Courses, CASScheduler

Figure 50: Manage Subjects, CASScheduler

69

Figure 51: Manage Rooms , CASScheduler

Figure 52: Manage Users, CASScheduler

70

Figure 53: Add Petitioned Subject, CASScheduler

CHAPTER VI

DISCUSSION

71

 CASScheduler is an application that produces optimal timetable the College of

Arts and Science of the University of the Philippines, Manila. Users input scheduling

parameters like rooms, instructors, and timeslots needed by the system to generate

results. Optimal timetable/s is/are produced by applying Non-dominated Sorting Genetic

Algorithm II (NSGA-II) to the gathered data. Several constraints are taken into

consideration in finding an optimal schedule – it includes avoidance of conflict between

rooms, instructors, and timeslot. Minimization functions which include satisfying the

demand of students for each subject, avoidance of offering subjects taken by students of

the same course and year level at the same timeslot, preventing the assignment of an

instructor to a timeslot when he is unavailable, and the like, were also implemented.

 This application was designed for use in a client-server scenario, and was

developed using Apache 2 as HTTP server, MySQL 5 as DBMS, and PHP 5 as the server

scripting language. It also uses client-side JavaScript for some form processing.

 As compared to Schedule-EZ [8] and QUICK Scheduler [9], CASScheduler is

more than just an automation of the manual process of timetabling. It made use of

artificial intelligence techniques, like how UTTS and UTTSExam [40], and particularly

CSS [29] and NSGA-II-UCTO approached the problem of timetabling. But unlike CSS

and that of UCTO, CASScheduler made every effort to attend to both course and exam

timetabling problem.

The results produced by CASScheduler is final which means that if changes in the

inputs would like to be made, the whole scheduling process (not including the gathering

72

of data inputs) would have to be performed again, and it cannot guarantee that the results

produced on the previous run would also be achieved in the next run of the algorithm on

the data including the additional inputs or changes made in the inputs.

CASScheduler produces set of optimal solutions that may guide the OCS

Personnel in making class and final exam schedules, the choice of the best solution is not

anymore part of the system. Manual override by the user (OCS) is still in place. There

may be times when no full solutions will be found. In this case, the OCS Personnel has

the option to perform the scheduling process again, ensuring that all the assumptions of

the system are met, or he may also try to increase the number of generation (iteration of

the NSGA-II algorithm).

CASScheduler produces solutions in a relatively lesser time than manual

timetabling provided that the specifications of the machine used is the best possible –

specially the RAM, which must be no less than 512 MB. Otherwise, it could have a very

poor running time.

73

CHAPTER VII

CONCLUSION

 CASScheduler can produce optimal class and exam timetables for the College of

Arts and Science of the University of the Philippines, Manila.

 It allows users to input scheduling parameters such as rooms, courses (or degree

program), and instructors (or lecturers) by providing a form within the users’ browser so

that the users can submit the necessary information regarding the parameters. Using these

information, the application executes the server-side scripts to produce timetables (either

schedule of classes, or final exams schedule), which are optimal. Eligible user may

choose from these timetables, the schedule to be implemented for the chosen semester,

and this implemented schedule can then be viewed by other users of the system.

Moreover, users are provided with different ways to view the implemented schedule,

either by room, faculty, or per subject, and if in case conflict arise, room, subject and

instructor conflicts may also be viewed separately to further help the user to design

appropriate timetables.

74

CHAPTER VIII

RECOMMENDATION

 At present the CASScheduler is able to produce timetables for classes, and final

exams. It could be improved if timetabling of departmental exams will also be covered.

Another interesting improvement would be to modify the engine used in such a way that

the accepted results on its first run could be maintained if some changes in the scheduling

parameters will be made (for instance, deletion or addition of new faculty, or subject).

 It is also recommended to deploy the application on a server that is fast – at least

512 MB RAM – since as parameters increases, the running time of the application also

increases, or modifying the mutation operator of the engine would also be helpful.

 Additional constrains and fitness functions could also be made to improve the

course (class) scheduling, and final exam scheduling, and make it more beneficial for the

students; like implementing something that would consider irregular students

75

CHAPTER IX

BIBLIOGRAPHY

[1] Wren, A., “Scheduling, Timetabling and Rostering – A Special relationship?”, in

The Practice and Theory of Automated Timetabling: Selected Papers from the 1st

int’l Conf. on the practice and Theory of Automated Timetabling, Burke, E.,

Ross, P. (Eds.) Springer Lecture Notes in Computer Science Series, Vol. 1153,

1996, pp. 46-75.

[2] Kazarlis, S., Petridis, V. and Fragkou, P., "Solving University Timetabling

Problems Using Advance Genetic Algorithms."

[3] Landa Silva J.D., Burke E.K., Petrovic S., "An Introduction to Multi-objective

Metaheuristics for Scheduling and Timetabling", in: Metaheuristic for Multi-

objective Optimisation, Gandibleux X., Sevaux M., Sorensen K., T'kindt V. (Eds.)

Lecture Notes in Economics and Mathematical Systems, Vol. 535, Springer, pp.

91-129, 2004.

[4] Burke,E.K., Jackson, K.S., Kingston, J.H. and Weare, R.F., “Automated

University Timetabling: The State of the Art”, The Computer Journal, Vol. 40,

No. 9, pp 565-571, 1997

[5] Perzina, R., “Solving University Timetabling Problems with Optimized

Enrollment of Students by a Parallel Self-Adaptive Genetic Algorithm”, Practice

76

and Theory of Automated Timetabling (PATAT), Burke, E., Ross, P. (Eds.) 2006,

pp. 264–280. ISBN 80-210-3726-1.

[6] Garey, M. R. and Johnson, D. S. “Computers and Intractability: A Guide to the

Theory of NP-Completeness”, (1979) San Francisco, CA W.H. Freeman .

[7] Even, S., Iati, A., Shamir, A. “On the Complexity of Timetabling and

Multicomodity Flow Problems”. Siam Journal of Computation, vol. 5, no. 4,

pp. 691-703.1976.

[8] Siva, S., Chhabra, J., “Schedule-EZ: A Tool for Scheduling Faculty, Rooms, and

Courses”. Use Services Conference Proceeding of the annual ACM SIGUCCS

Conference on User services, 2003, pp. 21-24. ISBN: 1-58113-665-X. San

Antonio, Texas.

[9] Gregory, J.M., Carter, W.J., and Gregory, P.S. “The Student's Handbook for

Academic Survival in College”, McGraw Hill, New York, 1997, p.p. 9-10.

[10] Owen, C.K., “QUICK Scheduler A Time-saving Tool for Scheduling Class

Sections”, Use Services Conference Proceeding of the 23rd annual ACM

SIGUCCS Conference on User services, 2005, pp. 294-298. California

[11] Thompson, J. and Dowsland, K.A., “Variants of Simulated Annealing for the

Examination Timetabling Problem”. Annals of Operations Research, 1995.

European Business Management School, University of Wales at Swansea, UK

77

[12] Thompson, J. and Dowsland, K.A., “General Cooling Schedules for a Simulated

Annealing based Timetabling System”. in the Practice and Theory of Automated

Timetabling. Burke, E.K. and Ross, P. (Eds.) pp. 345-363, Springer-Verlag

(Lecture Notes in Computer Science), 1996. European Business Management

School, University of Wales at Swansea, UK

[13] Boufflet, J.P. and N`egre, S. “Three Methods used to solve an Examination

Timetable Problem” in The Practice and Theory of Automated Timetabling, ed.

Burke, E.K. and Ross, P. pp. 327-344, Springer-Verlag (Lecture Notes in

Computer Science), 1996. D´epartement de G´enie Informatique, Universit´e de

Technologie de Compi`egne, France

[14] Hertz, A., “Tabu Search for Large-Scale Timetabling Problems”. European

Journal of Operations Research, no. 54, pp. 39-47, 1991. D´epartement

d’Informatique et de Recherche Op´erationelle, Universit´e de Montr´eal, Canada

[15] A Hertz, “Finding a Feasible Course Schedule using Tabu Search,” Discrete

Applied Mathematics, vol. 35, no. 3, pp. 255-270, Elsevier Science Publishers,

1992. D´epartement d’Informatique et de Recherche Op´erationelle, Universit´e

de Montr´eal, Canada

[16] Corne, D., Ross, P., and Fang, H.L., “Fast Practical Evolutionary Timetabling”

Lecture Notes in Computer Science, vol. 865 (Artificial Intelligence and

Simulation of Behaviour (AISB) Workshop on Evolutionary Computing,

78

University of Leeds, UK, 11th-13th April 1994), pp. 251-263, Springer-Verlag,

1994. Department of Artificial Intelligence, University of Edinburgh, UK

[17] Paechter*, B., Cumming*, A., Luchian†, H. and Petriuc‡, M. “Two Solutions to

the General Timetable Problem using Evolutionary Methods” proceedings of the

IEEE Conference on Evolutionary Computation 1994. *Computer Studies

Department, Napier University, Edinburgh, Scotland, UK; †Faculty of Computer

Science, Al I Cuza University of Iasi, Romania; and ‡Technical University of

Iasi, Romania

[18] Burke, E.K., Elliman, D.G., and Weare, R.F. “The Automation of the Timetabling

Process in Higher Education”. Journal of Educational Technology Systems, vol.

23, no. 4, pp. 257-266, Baywood Publishing Company, 1995. Department of

Computer Science, University of Nottingham, UK

[19] Burke, E.K., Elliman, D.G., and Weare, R.F, “A Hybrid Genetic Algorithm for

Highly Constrained Timetabling Problems”. 6th International Conference on

Genetic Algorithms (ICGA’95, Pittsburgh, USA, 15th-19th July 1995),

Kaufmann, M.. San Francisco, CA, USA. Department of Computer Science,

University of Nottingham, UK

[20] EK Burke, DG Elliman, and RF Weare, “Specialised Recombinative Operators

for Timetabling Problems”. proceedings of the AISB (Artificial Intelligence and

Simulation of Behaviour) Workshop on Evolutionary Computing (University of

79

Sheffield, UK, 3rd-7th April 1995), pp. 75-85, Springer-Verlag, 1995. Department

of Computer Science, University of Nottingham, UK

[21] Fernandes, C., Paulo, C. J., Fernando, M., and Agostinho, R., “High School

Weekly Timetabling by Evolutionary Algorithms”. Symposium on Applied

Computing Proceedings of the 1999 ACM Symposium on computing, 1999, pp.

344-350. ISBN:1-58113-086-4. San Antonio, Texas.

[22] Lim, A. Ang, J.C., Ho, W.K., Oon, W.C., “UTTSExam: A Campus-Wide

University Exam-Timetabling System,” Eighteenth National Conference on

Artificial Intelligence. 2002. p.p. 838-844. ISBN: 0-262-51129-0. Edmonton,

Alberta, Canada.

[23] Ho, W.K. and Lim, A., “ A Hybrid-Based Framework for Constraint Satisfaction

Optimization Poblems,” in International Conference on Information Systems

(ICIS) 2001, pg. 65-76.

[24] Tsang, E., “Foundations of Constraint Satisfaction”, 1993.

[25] Marin, H.T. , “Combinations of GA and CSP Strategies for Solving the

Examination Timetabling Problem”. PhD thesis, Intituto Technologico y de

Estudios Superiores de Menterrey, 1998.

[26] Rayward-Smith, V.J. , Osman, I.H., Reeves, C.R. and Smith, G.D., Modern

Heuristics Search Methods, 1996.

80

[27] Burke, E. K. and Newall, J. P., "A New Adaptive Heuristic Framework for

Examination Timetabling Problems". University of Nottingham,Working Group on

Automated Timetabling, TR-2002-1http://www.cs.nott.ac.uk/TR-

cgi/TR.cgi?tr=2002-1

[28] Yuri Bykov. “Time-Predefined and Trajectory-Based Search: Single and

Multiobjective Approaches to Exam Timetabling”, PhD thesis, University of

Nottingham, UK, November 2003.

[29] Gagno, P.A. , Sarmiento, L. and Teroso, S.K.. “Multiobjective Course

Scheduling”. Bachelor thesis, University of the Philippines – Diliman, March

2006.

[30] Datta, D., Deb, K., & Fonseca, C.M., “Multi-objective evolutionary algorithm for

University Class Timetabling Problem”. in Evolutionary Scheduling, Springer-

Verlag (in Press), 2006.

[31] Datta, D., Deb, K., Fonseca, C. M. “Solving class timetabling problem of IIT

Kanpur using multi-objective evolutionary algorithm”. KanGAL Report No.

2006006. June 2006.

[32] de Werra D., “An Introduction to Timetabling”. European Journal of Operational

Research, Vol. 19, pp. 151-162, 1985.

81

[33] Rankin R.C., “Automated Timetabling in Practice”, in: The Practice and Theory

of Automated Timetabling: Selected Papers from the 1st International Conference

on the Practice and Theory of Automated Timetabling (PATAT 1995), Burke

E.K., Ross P. (eds.), Lecture Notes in Computer Science, Vol. 1153, Springer, pp.

266-279, 1996.

[34] Papadimitriou C.H., “Combinatorial Optimization: Algorithms and Complexity,

Prentice-Hall”. 1982.

[35] Reeves C.R. (ed.), “Modern Heuristic Techniques for Combinatorial Problems”.

McGraw-Hill, 1995.

[36] Steuer, R.E., “Multiple Criteria Optimization: Theory, Computation and

Application”. Wiley. 1986.

[37] Coello C.A., Van Veldhuizen D.A., Lamont G.B., “Evolutionary Algorithms for

Solving Multi-Objective Problems”, Kluwer Academic Publishers, 2002.

[38] Fonseca C.M., Fleming P.J., “An Overview of Evolutionary Algorithms in Multi-

objective Optimization”. Evolutionary Computation, Vol. 3, No. 1, pp. 1-16,

1995.

[39] Abramson, D., “Constructing school timetables using simulated annealing:

sequential and parallel algorithms”. Management Science, 37(1), January 1991,

pp. 98-113

82

[40] A. Hertz, “Tabu search for large scale timetabling problems”. European journal

of Operations Research, vol. 54, 1991, pp. 39-47.

[41] Paechter, B., Cumming, A., Norman, M.G. and Luchian,H., “Extensions to a

memetic timetabling system” in Proceedings of the 1st International Conference

on the Practice and Theory of Automated Timetabling, Burke, E.K. and Ross,

P.M. (eds.) 1995.

[42] Schaerf, A., “A Survey of Automated Timetabling”. Artificial Intelligence

Review, vol 13 (2), 1999, 87-127.

[43] Tripathy, A., “A lagrangian relaxation approach to course timetabling”. Journal

of the Operational Research Society, vol. 31,1980, pp. 599-603

[44] Carter, M.W., “A Survey of Practical Applications of Examination Timetabling

Algorithms”. Journal of Operations Research vol. 34, 1986, pp. 193-202.

[45] Welsh D.J.A. and Powell M.B., “An Upper Bound for the Chromatic Number of a

Graph and Its Application to Timetabling Problems”. Computer Journal vol. 10,

1967, pp. 85-86.

[46] Broder S. “Final Examination Scheduling”. Comm. A.C.M. vol. 7. 1964. 494-

498.

83

[47] Matula D.W., Marble G. and Isaacson I.D. “Graph Colouring Algorithms” in

Graph Theory and Computing, R.C.Read (ed.) Academic Press, New York.1972.

[48] Burke, E.K., Elliman, D.G. and Weare, R.F., “A University Timetabling System

based on Graph Colouring and Constraint Manipulation”. Journal of Research

on Computing in Education Vol. 27, Iss. 1, pp. 1-18, 1994.

[49] White, G.M. and Chan, P.W., “Towards the Construction of Optimal

Examination Timetables”. INFOR vol. 17, 1979, p.p. 219-229.

[50] Brailsford, S.C., Potts, C.N. and Smith, B.M., “Constraint Satisfaction Problems:

Algorithms and Applications”. European Journal of Operational Research, vol

119, 1999, pp. 557-581. Burke, E.K. and Newall, J.P. (eds.) "A New Adaptive

Heuristic Framework”

[51] Burke, E.K., Petrovic, S. and Qu, R. “Case Based Heuristic Selection for

Timetabling Problems” . Journal of Scheduling, vol 9, no. 2, pp 115-132, 2006

[52] Petrovic, S., Yang, Y. and Dror, M., “Case-based Selection of Initialisation

Heuristics for Metaheuristic Examination Timetabling”. Accepted for publication

in Expert Systems With Applications, to appear in vol. 33 iss.3, 2007.

[53] Burke, E.K., MacCarthy, B., Petrovic, S. and Qu, R., “Multiple-Retrieval Case

Based Reasoning for Course Timetabling Problems”. Journal of the Operational

Research Society, vol. 57, no. 2, pp 148-162, 2006.

84

[54] Adamidis, P. and Arapakis, P., “Evolutionary Algorithms in Lecture Timetabling”

Proceedings of the 1999 IEEE Congress on Evolutionary Computation (CEC ’99),

IEEE, 1999, pp. 1145-1151.

[55] Colorni, A., Dorigo, M., and Maniezzo, V., “Genetic algorithms – A new

approach to the timetable problem” In Lecture Notes in Computer Science -

NATO ASI Series, Vol. F 82, Combinatorial Optimization, (Akgul et al eds),

Springer-Verlag, 1990, pp. 235-239.

[56] ”Genetic Algorithm”, http://en.wikipedia.org/wiki/Genetic algorithm

[57] Voss S., Martello S., Osman I.H. and Rucairol C. (eds.), “Meta-Heuristics:

Advances and Trends in Local Search Paradigms for Optimization”. Kluwer

Academic Publishers, 1999.

[58] Deb K., “Multi-Objective Optimization Using Evolutionary Algorithms”, Wiley,

2001.

[59] ”Evolutionary Algorithm”, http://en.wikipedia.org/wiki/Evolutionary algorithm

[60] Bagchi T.P., “Multi-objective Scheduling By Genetic Algorithms”, Kluwer

Academic Publishers, 1999.

85

[61] Bagchi T.P., “Pareto-Optimal Solutions for Multi-objective Production

Scheduling Problems”, In:: Proceedings of the 1st International Conference on

Evolutionary Multi-Criterion Optimization (EMO 2001), Lecture Notes in

Computer Science, Vol. 1993, Springer, pp. 458-471, 2001.

[62] Brizuela C., Sannomiya N., Zhao Y., “Multi-objective Flow-Shop: Preliminary

Results”, In: [61], pp. 443-457, 2001.

[63] Ishibuchi, H., Yoshida, T., and Murata, T., “Selection of Initial Solutions for

Local Search in Multi-objective Genetic Local Search”. Proceedings of the 2002

Congress on Evolutionary Computation (CEC 2002), IEEE Press, pp. 950-955,

2002.

[64] Murata, T., Ishibuchi, H., Gen, M., “Specification of Genetic Search Directions in

Cellular Multi-objective Genetic Algorithms”. In: Proceedings of the 1st

International Conference on Evolutionary Multi-Criterion Optimization (EMO

2001), Lecture Notes in Computer Science, Vol. 1993, Springer, pp. 82-95, 2001.

[65] Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T. “A fast Elitist Non-

Dominated Sorting Genetic Algorith for Multi-Objective Optimization: NSGA-II”.

IEEE Transacion in Evolutionary Computation, vol. 6 iss. 2, 181-197.

[66] Tyson, J. “How Internet Infrastructure Works”

<http://computer.howstuffworks.com/

internet-infrastructure5.htm>.

86

[67] “LAMP Servers on SUSE Linux Enterprise”. <http://www.novell.com/products/

Serve/lamp.html>.

[68] Synaptic Package Manager. Computer Software. Disk.

87

CHAPTER X

APPENDIX

nsga2.c (class scheduling)

88

89

90

91

92

nsga2.c (final exam scheduling)

93

94

95

96

97

random.h

98

mut.h

realinit.h

init.h

99

input.h

100

decode.h

ranking.h

101

102

ranc-con.h

103

104

func-con.h (class scheduling)

105

func-con.h (final exam scheduling)

106

select.h

107

crossover.h

108

uniformxr.h

realcross2.h

109

110

realmut1.h

keepaliven.h

111

112

113

114

115

cassCross.h

parameters.h (class scheduling)

116

117

118

119

120

121

122

123

124

125

126

parameters.h (final exam scheduling)

127

128

129

130

131

132

133

timetableOut.h (class scheduling)

134

135

136

137

138

timetableOut.h (final exam scheduling)

139

140

141

142

143

mutation.h (class scheduling)

144

145

146

mutation.h (final exam scheduling)

147

148

149

evaluation.h (class scheduling)

150

151

152

evaluation.h (final exam scheduling)

153

154

155

CHAPTER XI

ACKNOWLEDGEMENT

 With love and passion, this paper is dedicated to my family who has always been

there supporting me in every endeavors I’ve been through. The completion of this work

would have not been achieved if not for their love, support, guidance and encouragement.

To my classmates and friends who has always been praying for me, who has always

been there inspiring me to do better, thank you all!

Many, many thanks to the examiners of this SP, and most specially to my adviser,

Ma’am Sheila Magboo. You all made me do better.

Most of all, I thank God, for his never ending support, for the strength He’s given me,

for the talent He’s bestowed upon me.

This SP was accomplished through all the help and support of my family and friends

and through my sacrifices. This is a fruit of love, passion, inspiration, support and

encouragement.

