
University of the Philippines Manila

College of Arts and Sciences

Department of Physical Sciences and Mathematics

A blockchain-based system for supply chain

governance in the Philippine pig industry

A special problem in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Kyle Mari Angelo M. Aquino

June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser No

Available only to those bound by confidentiality agreement No

ACCEPTANCE SHEET

The Special Problem entitled “A blockchain-based system for supply
chain governance in the Philippine pig industry” prepared and submitted by Kyle
Mari Angelo M. Aquino in partial fulfillment of the requirements for the degree of
Bachelor of Science in Computer Science has been examined and is recommended for
acceptance.

Marbert John C. Marasigan, M.Sc. (cand.)
Adviser

EXAMINERS:
Approved Disapproved

1. Avegail D. Carpio, M.Sc.
2. Richard Bryann L. Chua, Ph.D. (cand.)
3. Perlita E. Gasmen, M.Sc. (cand.)
4. Ma. Sheila A. Magboo, Ph.D. (cand.)
5. Vincent Peter C. Magboo, M.D., M.Sc.
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.

Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences

Department of Physical Sciences and Mathematics
and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean

College of Arts and Sciences

i

Abstract

An approximate 63% of total pork produce in the Philippines is sourced from small

backyard operations. However, the lack of regulatory oversight and poor handling

of biosecurity in these backyard farms lead to significant challenges in disease con-

trol and quality assurance. To address these issues, there is a need to establish a

traceability-to-farm system that would encourage small backyard operators to par-

ticipate in quality control processes. This system can also provide transparency to

consumers and stakeholders alike and help establish trust and confidence in the sup-

ply chain. To this end, this paper has developed a blockchain-based solution for

supply chain governance that leverages Hyperledger Fabric’s enterprise-grade design

to enable efficient and reliable tracking of pigs and pork products in a customizable

and scalable manner.

Keywords: Blockchain, Supply Chain, Governance, Multisignature, Transparency, Trace-

ability, Pure Utility

Contents

Acceptance Sheet i

Abstract ii

List of Figures vi

List of Tables viii

I. Introduction 1

A. Background of the Study . 1

B. Statement of the Problem . 2

C. Objectives of the Study . 3

C..1 Blockchain System . 3

C..2 Client Application . 4

D. Significance of the Project . 5

E. Scope and Limitations . 6

F. Assumptions . 7

II. Review of Related Literature 8

A. Supply Chain Governance . 8

B. Overview of Blockchain Technology 9

C. Blockchain Technology as Applied to Supply Chains 11

C..1 Synthesis . 13

III. Theoretical Framework 15

A. Overview of Pork Supply Chains in the Philippines 15

B. Blockchain Technology . 15

C. Hyperledger Fabric . 16

D. Apache CouchDB . 18

iii

E. Azure . 18

F. Docker . 19

G. Kubernetes . 19

H. Hyperledger Caliper . 19

IV. Design and Implementation 21

A. Blockchain Pork Supply Chain . 21

B. Use Case Design . 23

B..1 Requirement Analysis . 23

B..2 Design and Development . 25

C. Use Cases . 31

D. Database Design . 32

E. System Architecture . 43

F. Technical Architecture . 45

V. Results 47

A. System Architecture Overview . 47

A..1 Blockchain Network . 47

A..2 Client Mobile Application . 50

A..3 Main Server . 52

A..4 Secondary Server . 54

A..5 Off-chain Slave Database . 55

B. Client Mobile App Functionalities 55

B..1 Authentication . 56

B..2 Adding a New Pig to the User’s Location 58

B..3 Adding a New Product to the User’s Location 59

B..4 Updating a Pig . 60

B..5 Viewing Pig History . 61

iv

B..6 Viewing Product History . 62

B..7 Adding a Pig Auction . 63

B..8 Bidding in a Pig Auction . 64

B..9 Accepting/Rejecting a Bid . 65

B..10 Confirming a Pig Transfer . 66

B..11 Confirming a Product Transfer 68

B..12 Registering a New User . 69

B..13 Updating an Existing User . 71

B..14 Removing a User from a Location 72

C. Public API Service . 73

VI. Discussion 77

VII. Conclusion 82

VIII. Recommendations 84

IX. Bibliography 87

X. Appendix 92

A. Smart Contracts . 92

XI. Acknowledgment 110

v

List of Figures

1 Blockchain-based supply chain governance structure with a multisig-

nature protocol [1] . 12

2 Relationship Dynamics between Value Chain Actor Respondents [2] . 15

3 Pork supply chain in Western Leyte [3] 22

4 PoA-based Multisignature pork supply chain architecture 27

5 The blockchain network . 28

6 Use Case Diagrams for the PorkWatch client mobile application . . . 31

7 Activity Diagram for Logging in to the Mobile App 32

8 Activity Diagram for the Server-Blockchain Transaction Process . . . 32

9 Data Model . 34

10 Docker containers for managing the kubernetes cluster and related images 47

11 K9s terminal based UI displaying the pods for the blockchain network 47

12 Transactions in the Blockchain (with custom console.log prints every

invocation) . 49

13 PorkWatch Mobile App Screens . 50

14 Events Emitted by the Smart Contracts in the Blockchain Network . 54

15 Logging in . 56

16 Adding a new pig . 58

17 Adding a new product . 59

18 Updating a pig . 60

19 Viewing Pig History . 61

20 Viewing Product History . 62

21 Adding a Pig Auction . 63

22 Bidding in a Pig Auction . 64

23 Accepting a Bid . 65

24 Confirming a Pig Transfer . 66

vi

25 Confirming a Product Transfer . 68

26 Registering a New User pt.1 . 69

27 Registering a New User pt.2 . 70

28 Updating an Existing User . 71

29 Removing a User from a Location . 72

30 Dockerized Off-chain CouchDB . 73

31 The Slave Database . 73

32 Requesting all Products in the System 74

33 Requesting the Product with Id: 1 in Detail 75

34 Constructing a Stringified CouchDB Query Encoded in URI using JS-

Fiddle . 75

35 Using an URI-Encoded Querystring to Query Certain Products with

Pagination . 76

vii

List of Tables

1 Problems in pig supply chains mainly comprising of small backyard

operators . 24

2 Data Dictionary for Auction . 35

3 Data Dictionary for Bid . 36

4 Data Dictionary for Buy Order . 36

5 Data Dictionary for Location . 37

6 Data Dictionary for Certification . 37

7 Data Dictionary for Notification . 38

8 Data Dictionary for Password . 38

9 Data Dictionary for Pig . 39

10 Data Dictionary for Location History 39

11 Data Dictionary for Health Record 40

12 Data Dictionary for Weight Record 40

13 Data Dictionary for Feed Nutrition 40

14 Breeding History for Location . 40

15 Data Dictionary for Quality Control 40

16 Data Dictionary for Product . 41

17 Data Dictionary for Transfer . 42

18 Data Dictionary for User . 43

viii

I. Introduction

A. Background of the Study

With an early 2022 estimate of about 1.4 million metric tons of pork meat consumed

[4], the Philippines ranks among the highest in total meat consumption in the world.

Pork accounts for 60% of all meat consumed by Filipinos [5], which was met by a

domestic pig production that ranked 9th largest in the world [6] and made up 2.0%

to 2.8% of the country’s GDP [7]. But despite this seeming enormity, the country

is only the 64th largest pig meat exporter in the world in 2020 [8] and has recently

experienced sharp inflation in pork prices mainly due to supply deficiencies caused

by the 2019 African swine flu [9].

Of the 12.71 million heads in the country’s inventory in 2019, 63% were kept by

small-scale backyard operators [10]. Small backyard operations tend to have prob-

lematic handling of biosecurity and disease control, and they do not benefit from

economies of scale [11]. The Pork Producers Federation of the Philippines, Inc. (Pro-

Pork) characterizes backyard farming as without investment or planning, and lack of

centralization and organization hinders government efforts to lend support to back-

yard farmers [7].

Despite all this, owing to the fact that still 63% of the country’s pork production

are from small backyard operators, more focus should be given to them if the country

is to achieve self-sufficiency and global exports competitiveness in the pig industry.

Organizations like ProPork have shown that it is possible to build reputable brands

out of small backyard farms by centralizing their operations, ensuring quality control,

and improving their marketing [11].

In light of the devastation caused by the 2019 African swine flu, which killed 40%

of the pig population in the country alone since 2019, there is renewed government

attention in the livestock industry [12]. Initiatives like eKadiwa, an ”online market-

1

ing platform that directly links producers and agripreneurs to consumers,” is part

of ongoing government efforts to modernize and digitalize the agricultural sector.

Commercial-scale farms have long already made use of ICT solutions to streamline

their operations and maximize their efficiency, but small-scale farmers have yet to

benefit from digitalization [13].

Meanwhile, blockchain has been increasingly researched as a candidate technology

for the digitalization of supply chains [14]. Blockchain technology is favored for its

provision of immutability, data integrity, whole-of-chain transparency, and automa-

tion, which are all integral in the modernization of supply chain governance (SCG),

or the mechanisms by which supply chains are monitored, materials are sourced, and

relationships between supply chain actors are managed, all without compromise to

the security and confidentiality afforded by traditional means of SCG in the country.

Current applications of blockchain technology to the supply chain do not intend for

the technology to be the be-all end-all solution, but for it to work in tandem with

other ICT solutions like ERPs, IoT, and other farmer applications.

This paper therefore aims to develop a blockchain-based system of applications

and distributed ledger for the digitalization of the Philippine domestic pig industry.

In particular, to enhance the supply chain governance of small backyard farms, which

are still largely disorganized and without oversight, to streamline processes, and pave

the way for reputable branding by way of enhancing quality control through whole-

of-chain transparency.

B. Statement of the Problem

An approximate 63% of total pork produce in the Philippines is sourced from small

backyard operations [10], where systems for supply chain governance are often lack-

ing. Small backyard operations in the country are characterized by poor handling

of biosecurity and disease control [11], and as these farms are typically without reg-

2

ulatory oversight, the lack of traceability-to-farm capabilities disincentivizes small

backyard operators from taking part in the quality control process. Quality checks

are not rewarded and the source of contaminated meat is hard to trace.

The implementation of a traceability system that would allow for whole-of-chain

transparency and enable consumers and other stakeholders alike to monitor the sys-

tem would help address these problems and introduce trust and confidence into such

supply chains mainly comprising of small backyard operators. However, as there is

the risk of data manipulation, the perishability of goods, and the regulatory require-

ments for pork (e.g., being ASF-free), such a system should also ensure that there

is no compromise in security, reliability, and data integrity, where traditional ICT

solutions are lacking.

C. Objectives of the Study

C..1 Blockchain System

This research aims to create a blockchain system for the tracking of pigs, portion

cuts, and other such information in pig supply chains with a focus on the following

properties:

• Data Immutability - The blockchain cannot be manipulated to show different

data once data is added.

• Data Integrity - Data is accurate and consistent throughout the supply chain

cycle.

• Whole-of-Chain Traceability - The entire process, from breeding to selling,

is transparent.

• Automation - Certain processes are automated through the system’s smart

contracts.

3

C..2 Client Application

This research aims to develop a native mobile client application to interact with the

blockchain, and a public API service to provide transparency to the public:

Native Mobile Application

1. Allows the breeders to

(a) manage pigs on their breeder farm.

(b) view pig information and history at each stage of the supply chain.

(c) put pigs for auction at the marketplace.

(d) accept/reject bids to their farm’s pigs.

(e) bid/cancel bid for another farm’s pigs.

(f) confirm pig transfers into/out of their farms.

2. Allows the raisers to

(a) manage pigs on their grower farm.

(b) view pig information and history at each stage of the supply chain.

(c) put pigs for auction at the marketplace.

(d) accept/reject bids to their farm’s pigs.

(e) bid/cancel bid for another farm’s pigs.

(f) confirm pig transfers into/out of their farms.

3. Allows the butchers to

(a) manage pigs in their slaughterhouse.

(b) manage products made from each pig.

(c) view pig information and history at each stage of the supply chain.

4

(d) bid/cancel bid for another farm’s pigs.

(e) sell products at the marketplace.

4. Allows the retailers to

(a) manage products in their store.

(b) view pig information and history at each stage of the supply chain.

(c) buy products at the marketplace.

5. Allows farm/location managers to

(a) register new users into their farm/slaughterhouse/store.

(b) manage member users of their farm/slaughterhouse/store.

6. Allows the administrators to

(a) register new users.

(b) manage users.

D. Significance of the Project

Traditional means of digitalization would go a long way in making the domestic pork

supply chain more efficient, but at the expense of:

• Security - Data on traditional databases can be tampered with.

• Reliability - Traditional systems can have a single-point of failure.

• Data Integrity - Backups are not inherent in traditional databases and can

risk unintentional modification or deletion of data.

Meanwhile, a blockchain-based solution has inherent security properties built into

its blockchain data structure such that data cannot be tampered with, does not have

5

a single-point of failure owing to being decentralized, and distributes its database

across a peer-to-peer network such that backups are inherent to the system. Aside

from this, a blockchain-based solution provides the following, especially in supply

chain applications, over other traditional means of digitalization:

• Immutabilility - Supply chain data is transactional. Transactional data records

the time, place, price, and other such pertinent data and should not be change-

able at any time in the future.

• Accountability - Quality control is essential to a reputable brand and espe-

cially for those dealing with food. Actors who were negligent in health checks

at each stage of the supply chain can easily be held accountable in a blockchain

system.

• Traceability - Blockchain systems can incentivize quality control in farms as

quality and contaminated meat can be traced back to their source farms.

Furthermore, the system’s implementation of on-chain and off-chain data storage

allows for harnessing of the blockchain ledger’s security properties while maintaining

the speed and convenience of conventional databases. The project’s public API uti-

lizes this to provide transparency and allow for rich queries into the system, providing

a platform for other applications, particularly dashboards, to connect to and make

use of the supply chain’s data.

E. Scope and Limitations

This project

1. only focuses on developing the blockchain-based system and its mobile client

application.

6

2. only considers application to pig supply chains that are mainly comprised of

small backyard operators.

3. can only prevent data tampering within the system, where forms of tampering

outside the software system are outside the scope of this paper.

4. does not endorse its system as a be-all end-all solution to supply chain gover-

nance, and is intended to work in tandem with existing ICT solutions such as

ERPs, IoTs, and other farmer applications.

5. does not consider the complexities related to deploying the system in an actual

operational setting.

6. does not consider how to get people to actually join the blockchain network.

F. Assumptions

1. That participants, especially those validating transactions, are computer liter-

ate, have device/s capable of accessing the necessary applications, and have

stable internet access.

2. That malicious actors do not make up a majority of the chain as members at

any time.

3. That participants of entire chains, from breeders to retailers, will join the

blockchain network at a time.

4. That participants will not buy/sell pigs, or products from/to those that are not

part of the blockchain network.

7

II. Review of Related Literature

The literature is presented in three areas: supply chain governance, overview of

blockchain technology, and blockchain technology as applied to supply chains.

A. Supply Chain Governance

[15] defines supply chain governance as the ”rules, structures and the institutions that

guide, regulate and control the supply chain, emanated from power.” Supply chain

governance shapes individual and collective actions between supply chain actors as it

represents the structures and processes by which they share power. [16] [17]

Two typical supply chain governance mechanisms are identified: (i) contractual

governance, which refers to the use of formal contracts to explicitly define each party’s

responsibilities and obligations, and (ii) relational governance, which refers to the use

of trust and relational norms to uphold said responsibilities and obligations [18]. Their

study also notes that there is interplay between the two mechanisms and that con-

tracts and trust are (i) independent in cross-border interorganizational relationships

(IOR) while being (ii) complementary in vertical IORs (e.g., outsourcing, buyer-

supplier relationships).

[1] identifies relational governance as representing the diverse and multi-tiered

communicative ecology that is often found in food systems and their supply chains.

This proves true in the Philippine setting as well, where studies [7] [2] have shown

the frequency of verbal contracts and consignment basis of payment in multiple pig

supply chains in the country. One study [2] even noting how an interviewee remarked

that tiwala or trust is very important in transactions, formal contracts are typically

nonexistent for small backyard farms in the country.

Studies also typically only explore IORs and supply chain governance in dyadic

relationships, e.g., buyer-supplier and manufacturer-distributor. This study extends

8

the literature by simulating IORs across an entire multi-tiered pig supply chain mod-

eled from various pig supply chains in the Philippines.

B. Overview of Blockchain Technology

A study in 2021 [14] remarks that blockchain technology is “often considered one

of the most remarkable innovations in the 21st century.” The World Bank [19] also

defined blockchain as a “novel and fast-evolving approach to recording and sharing

data across multiple data stores (or ledgers). This technology allows for transactions

and data to be recorded, shared, and synchronized across a distributed network of

different network participants.”

The term “blockchain” was first coined in the 2008 whitepaper by the developer/s

working under the pseudonym Satoshi Nakamoto. A blockchain can be thought of

as a chain of blocks that are sequentially added and ordered and whose copies are

distributed across a peer-to-peer (P2P) network such that the nodes or participants in

the network can validate each other in place of a central body or another intermediary.

[20]

The distributed property of blockchain decentralizes the system, prevents a single-

point of failure, and defends the system against attacks such as Denial of Service (DoS)

attacks, while the sequentially ordering of blocks with cryptographic hashes that point

to the block before them provides the data on the blockchain with immutability (which

makes it tamper-resistant/proof) and integrity (which can also be a problem for

traditional cloud databases). Blockchain systems make use of a consensus algorithm

to form consensus on the network such that a majority of its participants with a copy

of the ledger agree on a canonical version of the blockchain, in case that discrepancy

arises in a chain’s history of transactions. Bitcoin, the first cryptocurrency, was the

first blockchain application. [20]

Blockchain technology has since been studied for application in areas other than

9

cryptocurrency, including but not limited to: agriculture, carbon market, energy

and utilities, fashion, fintech, fish and forest, healthcare, ICT, logistics and supply

chain, manufacturing, mining, services, and transportation. [14] noted that the first

peer-reviewed papers they were able to scrape were only from 2015, which were back

then purely theoretical papers. Their meta-analysis showed an uptrend in volume

and increase in proportion of empirical papers, suggesting increasing interest from

mainstream industry.

[21] notes the controversies surrounding blockchain technology for its role in cryp-

tocurrencies. Bitcoin, Ethereum, and other such cryptocurrencies have suffered a

multitude of hacks, scandals (stemming from both centralized and decentralized prac-

tices), problems with regulatory bodies, and other vulnerabilities that erode the peo-

ple’s trust in such systems. [22] however, note that blockchain technology itself worked

flawlessly and has successfully been applied to both financial and non-financial world

applications.

Nevertheless, blockchain technology only continues to garner more attention for

research in every field. Hyperledger Fabric is one such project that acts as framework

for developers to easier create entire permissioned blockchain networks and systems of

applications benefiting from the properties of blockchain. It was primarily developed

by IBM to have a modular and versatile design that allows developers to essentially

plug-and-play components such as consensus and membership services to help tailor

their system to various industry use cases. The framework has already been used

by Walmart and IBM for food traceability and safety, by Hitachi to streamline and

secure procurement, by Tech Mahindra to transform Abu Dhabi’s land registry, and

many more.

10

C. Blockchain Technology as Applied to Supply Chains

Research into blockchain for use in supply chains is near the forefront of the meta-

analysis titled ”Is blockchain able to enhance environmental sustainability? A sys-

tematic review and research agenda from the perspective of Sustainable Development

Goals (SDGs)” [14], making up 11.8% of the papers scraped from 2015 to 2020.

Farmer Connect, one of the first applications developed by IBM through Hyperledger

Fabric, was also a supply chain solution for traceability and sustainability of the cof-

fee industry. Blockchain technology is also being looked into the shipment industry,

where the system’s smart contracts is thought to reflect the real-world system and

rules into code logic and policy, automating many of the lengthy redundancies of the

current supply chain systems.

A study titled ”A blockchain-based multisignature approach for supply chain gov-

ernance: A use case from the Australian beef industry” [1] aimed to digitalize the

Australian beef industry, in particular, to apply blockchain technology to a multi-tier

and geographically diverse beef supply chain in the country, to address the dyadic

relationships between the organizations involved in the supply chain, and to trace

(hopefully in real-time) the livestock cycle from breeders to processors. They noted in

their literature review that blockchain research into supply chains are many but have

mostly been theoretical with no pilot test in the actual setting. Their own research

contributed by using a multisignature Proof-of-Authority (PoA) consensus algorithm

with the various stakeholders at each stage of the supply chain as validators, where a

majority at each stage would validate the evidence and product sent downstream to

them in place of computationally expensive consensus algorithms like Proof-of-Work

(PoW), enabling tracking of livestock with over 6000 data points in their pilot test

with a cost-effective average of $0.5 USD cost for tracking each livestock.

11

Figure 1: Blockchain-based supply chain governance structure with a multisignature

protocol [1]

A study titled ”Privacy preserving transparent supply chain management through

Hyperledger Fabric” [23] conducted in 2022 simulated the use of the Hyperledger Fab-

ric blockchain framework in a simplified international coffee supply chain, addressing

the issues of traditional systems of non-transparency, monopoly, asymmetry, suscep-

tibility to tampering, and single-point of failure, while also addressing the issues of

public blockchain implementations of limited scalability, lack of anonymity, modular-

ity, and so on.

It is not a silver bullet for all supply chains though. The paper ”Blockchain is

not a silver bullet for agro-food supply chain sustainability: Insights from a coffee

case study” [24] noted the incompatibilities of blockchain technology with the current

infrastructure of the coffee supply chain in their case study. Coffee cherries tended

to be mixed in larger mills early in the chain rendering traceability to farm, a core

advantage of blockchain technology in supply chains, moot. Although they remarked

that the technology can be applied for niche coffee.

A study on the effects of blockchain technology on supply chains notes that trust

is shown to be a strong measure of a supply chain’s success. Information sharing

12

between organizations in the supply chain is often limited such that demand variation

increases upstream and lead time variation increases downstream. They compare a

simulated blockchain implementation’s performance compared to previous blockchain

and non-blockchain solutions (IoT and big data, conventional methods), noting that

through the facilitation of trust, information sharing, and automation through the

blockchain, costs incurred due to the bullwhip effect by key actors in the supply chain

can go down (in their simulation) by half or to even a fifth of the original cost. [25]

Solutions through blockchain in other industries can play a role in the supply

chain as well. A study titled ”Secure decentralized electronic health records sharing

system based on blockchains” [26] used blockchain technology to secure electronic

health records while providing patients privacy of information (even to staff that

are unrelated to his/her case) and ownership of their information (such that they

can sell or grant access to their data to researchers). The study also made use of

Interplanetary File System (IPFS) to store hashed or encrypted data offchain for

better performance while preventing a single point of failure (IPFS is distributed).

Key actors in the supply chain (especially smallholders like the producers) may be

granted privacy and ownership of their data in the same way.

Another study titled ”Blockchain-based mobile crowdsourcing model with task

security and task assignment” [27] also used blockchain technology for crowdsourc-

ing where the whole process from task assignment to payment (and punishment) is

automated. This can also be applied to supply chain systems such that supply and

demand are automatically matched together.

C..1 Synthesis

Supply chain governance, or the mechanisms which govern the rules and transactions

in a supply chain, shapes the individual and collective actions of the supply chain

actors and is an important factor in the cohesiveness and efficiency of a supply chain

13

as a whole. Blockchain technology, while having been first used for finance technology,

i.e., cryptocurrencies, have since been used in many other fields including but not

limited to: energy and utilities, transportation, the carbon market, and logistics

and supply chain. Supply chain application is one of the most popular use-cases

for blockchain technology, in particular supply chain governance, as the technology’s

inherent provision of security, reliability, and data integrity are important for supply

chains.

Many papers have since come to explore the use of blockchain technology in sup-

ply chain applications, in particular, to extend the dyadic relationships between sup-

ply chain actors, to address the bullwhip effect (BWE) by coordinating information

sharing across the chain, to incentivize quality control and sustainable practices by

enabling traceability to farm, and many more. Blockchain research into supply chain

applications have also recently seen more empirical papers, with pilot tests having

been done in a multi-tier and geographically diverse beef supply chain in Australia,

and a complex multinational coffee supply chain involving a cooperative of coffee

growers from Antioquia, Colombia.

The existing literature, though, have only tested on supply chains involving large

and established organizations. Few papers, if any, have explored the benefits of

blockchain technology to smaller supply chains involving smaller actors, like the back-

yard pig farmers in the Philippines. This paper contributes to the existing literature

by exploring the benefits and a possible implementation for a blockchain system to

regulate the supply chain governance of smaller supply chain actors.

14

III. Theoretical Framework

A. Overview of Pork Supply Chains in the Philippines

Pig production is a dominant activity throughout the country. A study by Ayomen

and Kingan (2019) in particular noted an age range of 21 to 68 for the pig raisers

in the highlands of Sablan, Benguet [7], with several other studies noting similar age

ranges in different areas of the country [2] [3]. Fig. 2 illustrates the relationship

dynamics between the supply chain actors for lechon processing in Quezon Province.

Figure 2: Relationship Dynamics between Value Chain Actor Respondents [2]

B. Blockchain Technology

Blockchain technology generally refers to systems that make use of a ledger database

distributed across a network of peers where computers add and validate transactions

on a linked list or chain of blocks. Generally, blockchains are comprised of:

• Distributed Ledger - The record of all transactions.

15

• Peer-to-Peer Network (P2P) - Computers or nodes that are linked in a clus-

tered way and work independently to write and validate blocks of transactional

data.

• Consensus Mechanism - The process by which the nodes on the blockchain

network achieve consensus, i.e., agree on a single valid chain of transactions.

• Incentive Mechanism - The mechanism(s) by which nodes are incentivized

to be ”honest” in writing or validating blocks.

C. Hyperledger Fabric

The Hyperledger Fabric is a blockchain framework developed by IBM, and is intended

for developers to easier create entire permissioned blockchain networks and systems

of applications benefiting from the properties of blockchain. The framework was de-

veloped to have a modular and versatile design that enables developers to essentially

plug-and-play components such as consensus and membership services to help tailor

their system to various specific industry use cases. The framework has already been

used by Walmart and IBM for food traceability and safety, by Hitachi to streamline

and secure procurement, by Tech Mahindra to transform Abu Dhabi’s land registry,

and many more. Projects developed through the Hyperledger Fabric generally com-

prise of the following:

• Identity - Each actor, whether they be peers, orderers, or even administrators,

are identified in the blockchain network by an X.509 digital certificate. This is

the most common type of digital certificate and includes a public key, digital

signature, and information regarding both its user and the Certificate Authority

(CA) that issued it.

• Membership Service Provider (MSP) - Is responsible for converting iden-

tities into roles for interacting with the blockchain network.

16

• Policies - Are the set of rules defining how decisions are made and how certain

outcomes are reached for certain operations in the blockchain network. In par-

ticular, Access Control Lists (ACLs) define how resources, e.g., chaincode, are

accessed, smart contract endorsement policies define how many endorsements

from endorsing peers are required for transactions to be considered valid, while

modification policies define the identities required to approve any configuration

update, including those updating certain policies, for the update to actually

push through.

• Peers - Also referred to as peer nodes, are the nodes that host and manage a

copy of the ledgers and smart contracts of the blockchain network. As of Hy-

perledger Fabric v2.4, certain peers, called the endorsing peers, are responsible

for the independent verification of transaction proposals by client applications

and the subsequent endorsement of the transaction if they are to pass certain

checks. A certain threshold for endorsements are required for transactions to

pass, be ordered by orderers into blocks, and included by all peers in their own

ledger database, as defined by the relevant endorsement policies.

• Ledger - Contains both the current state and historical data of transactions

and distributed to all peers on the blockchain network.

• Ordering Service - Are formed by orderers, or orderer nodes, which order the

transactions into blocks which are then sent to all peers for updating of their

own hosted ledger database. Whereas the consensus mechanism in Hyperledger

Fabric is performed by its endorsing peers and is deterministic, i.e. peers are

guaranteed to reach a consensus on a single canonical valid chain without forks,

the ordering service that comes after the consensus mechanism is also final and

correct. This is because nodes on the blockchain network in Hyperledger Fabric

do not compete with each other for incentives, instead, validation of transaction

17

proposals are delegated to peers in policy files.

• Smart Contracts and Chaincode - Smart contracts define the executable

logic that generate new data that are added to the database ledger. Related

smart contracts are grouped into chaincodes for deployment.

• REST API - REST APIs, meaning, Representational State Transfer (REST)

Application Programming Interface (API), are APIs that conform to the REST

architectural style set of constraints that allow for e.g., web services to interact

with one another. Client applications interact with the blockchain through

the REST API layer, which expose certain endpoints for the user to invoke

chaincode(s) on the blockchain network to submit their transaction proposals.

D. Apache CouchDB

Whereas LevelDB is the default state database for Hyperledger Fabric projects where

chaincode data is stored as simple key-value pairs and where only key queries are

supported, CouchDB is the alternate state database that allows for the modeling of

data as JSON and supports rich queries that allow for data to be queried by value

instead of their key.

E. Azure

Azure is a cloud computing platform run by Microsoft. As development on Hyper-

ledger Fabric requires a Linux-based OS, and its nodes are resource intensive, peer

nodes in particular requiring at least 1gb of memory allocated each, Azure’s B4ms

series virtual machine, specialized for high memory needs, was used for developing

the system. The virtual machine runs Ubuntu 20.04.

18

F. Docker

Docker is a set of Platform as a service (PaaS) products that uses OS-level virtualiza-

tion to package software in packages called containers, providing an efficient way to

create, deploy, and run applications. Containerization eases deployment of the same

application across different environments, from development to production, without

worrying about compatibility issues.

Docker is commonly used to package and deploy Hyperledger Fabric nodes and

other components, allowing organizations to easily spin up new nodes, manage them,

and scale up or down as necessary.

G. Kubernetes

Kubernetes is a container orchestration system that automate the deployment, scal-

ing, and management of containerized applications. It provides a way to manage

and orchestrate multiple Docker containers across multiple hosts, making it easier to

manage large-scale distributed applications.

Kubernetes is often used with Hyperledger Fabric and Docker to manage and or-

chestrate the deployment of Fabric nodes and services across multiple hosts, which

becomes necessary as blockchain networks get larger. This helps simplify the deploy-

ment and management of Fabric networks and improve scalability and availability.

H. Hyperledger Caliper

Hyperledger Caliper is a blockchain benchmarking tool for evaluating blockchain im-

plementations in terms of certain performance metrics, such as success rate, trans-

action & read throughput, transaction & read latency, and resource consumption.

19

Hyperledger Caliper measures the system’s performance using a set of predefined use

cases.

20

IV. Design and Implementation

As the paper’s objectives are to provide a blockchain-based solution to digitalize

the supply chain governance in domestic pork supply chains, an exploratory case

study approach is adopted to both guide the implementation of and evaluation of the

blockchain-based system.

A. Blockchain Pork Supply Chain

To achieve the paper’s objective of a blockchain-based solution for supply chain gover-

nance in pig supply chains mainly involving smallholders in the form of small backyard

operators, the specific supply chain structure used in the system is modeled around

existing supply chain(s) that are comprised of said operators. For this, we look at

three studies surveying the respective pork supply chains in various areas across the

country:

• Sablan, Benguet (highlands) (2019) [7]

• Quezon Province and La Loma, Quezon City (lowlands) (2014) [2]

• Western Leyte (lowlands) (2002) [3]

Of the three studies, the supply chain explored in the Leyte study painted the

most diverse channels for pigs to flow from producer to end consumer:

21

Figure 3: Pork supply chain in Western Leyte [3]

This study likely paints the most accurate depiction of a domestic pork supply

chain in terms of diversity, but the study notes that the usual channel for producers

to sell their pigs to is ”farmer-wholesalers-butcher/retailers-consumer”. This usual

channel matches with the channels in Sablan, Benguet, and Quezon Province, where

pigs are generally transferred as follows: farmer-traders-vendors/processors.

Ayomen et al. (2019) noted that their study in Benguet coincided with the study

in Quezon Province in that producers tended to only sell to traders or retailers.

The pig raisers in Leyte had the greatest flexibility in that they sold to everyone

downstream, including end consumers.

Wholesalers (or traders) present the largest complexity in the supply chain, as

they are essentially transporters, and therefore distributors who transport products

from butcher to retailers can also be regarded as traders. The study by Cao et al.

(2022) in Australia also did not include the transporters as key actors in their system

[1]. Hence, traders are not included as users in this system, and the key supply chain

actors that are included as users in the system therefore can be categorized as follows:

breeders, raisers, butchers, and retailers.

22

The 4 key actors are described as follows:

1. Breeders - breeds and farrows sows and keeps nursing piglets until they are

sold as feeder pigs to raisers. Breeders can also buy sows from other breeders.

2. Raisers - buys feeder pigs from breeders and grows them to market weight.

3. Butchers - slaughters and processes pigs into products and sells to retailers.

4. Retailers - sells products or processed pig meat products to end consumers.

B. Use Case Design

B..1 Requirement Analysis

The system’s design requirements take into factor the structure of the system’s pork

supply chain and the circumstances in the aforementioned studies’ pork supply chains.

As computer literacy, availability of internet-capable devices, and stable internet con-

nections are part of the paper’s assumptions, the circumstances here refer to the prob-

lems painted by the studies regarding their areas’ respective supply chains. These

problems are collated as follows:

23

Problem Details

Flow of information is lack-

ing

Members do not know the state

of the entire chain and only

hear from members adjacent to

them in the chain. Lack of

information causes imbalanced

negotiating powers and mis-

match between supply and de-

mand.

Lack of contracts in trans-

actions

Payments are informal and can

be on a consignment basis.

Nonpayment happens at times

especially for the producers,

hence why the members inter-

viewed remarked that ”trust”

is very important.

Limited market reach for

producers

Studies have shown that cer-

tain neighboring areas do not

know of excess supply or de-

mand in other areas. Members

often only transact with other

members in their area.

Limited financial capabil-

ity of members

Funds and profit are low espe-

cially for producers. Private

investment and govenrment in-

tervention are lacking.

Imbalanced negotiating

power favoring down-

stream actors

Studies have shown that (le-

chon) processors and (whole-

sale) traders dictated the price

and payment for pigs. Their

profits do not necessarily trans-

late to profits for producers.

Table 1: Problems in pig supply chains mainly comprising of small backyard operators

Basing on the above problems and other circumstances, 4 key strategic points are

identified for the blockchain-based solution to have:

1. easy application for low tech actors

2. whole-of-chain transparency for free flow of information

24

3. implementation of supply chain transactions in smart contracts

4. does not charge any actor for its services

B..2 Design and Development

To design the system prototype, the risks and disadvantages to blockchain, especially

as applied to supply chain purposes, are identified as follows:

1. Garbage in/Garbage out - the system needs a way to filter out malicious/prob-

lematic inputs (and malicious users).

2. Data Privacy - the chain’s data, including personal and other confidential

information, are duplicated in ledgers distributed to other members of the chain.

3. Cost-Effectiveness - blockchain implementations (e.g., cryptocurrency) have

a history of being expensive to maintain, this including the consensus mecha-

nism and the data storage problem.

4. Honesty of Members - malicious actors should not make up the majority of

the network’s members at any time.

To address the above, the following solutions are implemented in the system:

1. Proof of Authority-based (PoA) Multisignature Architecture - infor-

mation regarding transactions between two or more members need the tacit

approval of all members involved as validation.

2. Private Blockchain - private blockchains differ from public blockchains in that

membership requires the approval of its members (and that members’ identities

are known), this simplifies the security mechanisms needed for the network and

greatly reduces network traffic.

25

3. Deterministic Consensus Algorithm - deterministic consensus algorithms

differ from probabilistic consensus algorithms (used in public blockchains) in

that they do not need to provide incentives for validators since the members

of the private blockchain do not compete with each other and trust each other

(enough to permit them joining the chain), this also means a much fasfter

finality of transactions and much less computing costs.

4. Permissioned Blockchain - permissioned blockchains differs from permis-

sionless blockchains in that the network has rules on who have rights/authority

to access certain data, transact, and so on.

Fig. 4 illustrates the standard flow of pigs and products throughout the supply

chain, where: (i) the breeders would sell feeder pigs to raisers, (ii) the raisers would

sell market pigs to the butchers, (iii) the butchers would slaughter and process the

market pigs into products and sell to retailers, (iv) and retailers would finally sell the

products to the end consumers.

26

Figure 4: PoA-based Multisignature pork supply chain architecture

The implemented supply chain system, however, offers increased flexibility by

enabling breeders to engage in pig selling and transfers among themselves. Addition-

ally, breeders are also given the option to purchase pigs from raisers. This enhanced

flexibility aims to provide greater autonomy to farm locations in managing their pig

population. It allows breeders to address various situations such as shortages of sow

pigs or the temporary need for boars, ensuring efficient pig distribution and support-

ing the unique requirements of each farm.

Guided by the aforementioned solutions, the system is developed through Hy-

perledger Fabric, an open source enterprise-grade permissioned distributed ledger

technology (DLT) platform developed by IBM to boost development of custom en-

terprise blockchain solutions. Hyperledger Fabric was chosen for its highly modular

and configurable architecture, where components such as consensus and membership

services are plug-and-play.

27

Figure 5: The blockchain network

Visualized in Fig. 5 is the blockchain network for the pig supply chain. There are

in total 5 organizations, consisting of an orderer organization that is handled by an

external audit body, and 4 peer organizations (breeders, raisers, butchers, and retail-

ers), each with two peer nodes for redundancy, where each peer hosts an instance of

the same ledger L1, which contains both the mutable world state and blockchain, and

the same chaincode S1. Participants become members in each organization through

their organization’s own certificate authority CA. Administrators are the one to reg-

ister new users and will give them their public-private key pair and X.509 certificate

for their identity.

All organizations are connected to a single channel C1 to facilitate transactions

with each other, where C1 is configured in configuration CC1, detailing the author-

ity of each organization and the endorsements/signatures necessary to approve each

transaction.

A1 is a native mobile application that would render the relevant pages to the user

28

depending on their role (e.g., raiser), and has the functionalities for writing data to

the blockchain. Meanwhile, AP1 is a public API for the public (including members)

to perform rich queries into the system with the speed of a conventional off-chain

slave database DB1, which serves as a copy of the mutable world state and hosted

outside the blockchain network.

Members of each organization can share data with each other (transaction pro-

posals, etc.) through the channel C1. Members would access their application A1 to

access the network’s REST API layer through an anchor peer, which abstracts the

chaincode S1. It is the chaincode S1’s smart contracts that actually has the ability

to append blocks of data to the blockchain part of L1, and update the data (state

database or mutable world state) of the same ledger L1.

The blockchain part of L1 is the sequential chain of blocks of transactions that

form the historical data of the network and provide its traceability features. The

state database of L1, much like those in Ethereum, houses the latest data of the

network. This distinction allows the network to have a complete record of the history

of transactions through the blockchain, while not requiring a full retracing of the

blockchain just to extract the latest data by having a separate state database (unlike

e.g., Bitcoin), allowing for a higher throughput without compromising on traceability.

We define 3 node types necessary to the cycle of transactions in the blockchain

network:

• Anchor Peer - a single peer in each organization that facilitates sending of

data through the channel to other organizations.

• Endorsement Peer - peers who have endorsement capabilities, where a certain

number of which is necessary for a transaction to be passed to the ordering

service.

• Orderer Node - nodes that order the transactions sent to them in blocks for

29

committing to the blockchain.

We detail the cycle of each transaction as follows. Note that much of this is

abstracted away and from the user’s perspective, they are interacting with a regular

mobile app.

1. Transaction proposal - A member would propose a transaction by requesting

to invoke a chaincode S1, which the member would sign and submit.

2. Transaction endorsement - The endorsing peers would verify the signature

on the transaction and perform a preliminary check on it (authority, authentic-

ity, etc.). If all checks pass, the transaction is executed on the peer. If nothing

fails, the values produced by the chaincode execution are signed by the en-

dorsing peers (they’re working independently) and sent back to the proposing

member as endorsement.

3. Collection of endorsements and ordering request - The proposing mem-

ber checks the received endorsements against the network policies. If the trans-

action was a write operation, the proposing member requests for the orderers

O1 to O3 to process their transaction to append to the blockchain. If the

transaction was only a read operation, no ordering process is requested.

4. Transaction validation and commit - The orderers distribute the ordered

transactions to all peers, which they would independently validate and commit

to their ledger if all checks pass.

To facilitate ease of use of the applications for low tech actors, the functionalities

of the application A1 is akin to other conventional applications, that is, the UI/UX

are similar to that of conventional mobile applications despite the use of blockchain

technology in the system. Aside from the certificates necessary to log in, there is little

difference between the client application A1 and other mobile applications.

30

C. Use Cases

Below are the use case diagrams for the PorkWatch client mobile application, and two

activity diagrams illustrating the login process and the interaction between the main

server and the blockchain during transaction processing, both of which are prevalent

in all of the use cases of the mobile app. The specific use cases of the PorkWatch

mobile application are already outlined in the Objectives of the Study section of this

paper.

Figure 6: Use Case Diagrams for the PorkWatch client mobile application

31

Figure 7: Activity Diagram for Logging in to the Mobile App

Figure 8: Activity Diagram for the Server-Blockchain Transaction Process

D. Database Design

The system makes use of an on-chain state database that is replicated across all

peer nodes in the blockchain network, and a single off-chain database deployed out-

side the blockchain network. The on-chain state databases act as masters where

logged-in users could read/write to, and are the only databases that can and will

handle blockchain transactions in the network. The off-chain database act as a

slave database, whose main purpose is to keep up-to-date with the on-chain mas-

ter databases and be read from by all users, logged-in or not.

This serves to limit needless traffic in the blockchain network, as users of the dash-

32

board, who do not need to log in, can view data from the off-chain slave database.

Both types of databases are document-oriented NoSQL CouchDB databases.

The slave database is meant to replicate much of the on-chain master databases,

but with the exemption of the password documents, and thus share much of the

same data model and data dictionary, as shown below in that order. Note that

nested objects were represented also as collections in the data dictionary, but can be

identified by their lack of an Id field.

33

Figure 9: Data Model

34

Field Name Field Type Field Description Nullable

Id String Unique Identifier for the auction document No

PigId String References the pig the auction is for No

SellerId String References the user that initiated the auction No

SellerLocationId String References the location of the user when the

auction was initiated

No

WinningBidId String References the bid that won the auction No

ActiveBidIds String[] References the bids for the auction that are

neither canceled nor rejected

No

CanceledBidIds String[] References the bids for the auction that have

been canceled

No

RejectedBidIds String[] References the bids for the auction that have

been rejected

No

CurrPrice Float The price of the highest active bid on the auc-

tion

No

MinPrice Float The minimum price allowed for bids on the

auction

No

StartDate String The date when the auction was initiated No

BidAcceptedById String References the user that accepted the winning

bid, if any

Yes

CanceledById String References the user that canceled the auction,

if any

Yes

Table 2: Data Dictionary for Auction

35

Field Name Field Type Field Description Nullable

Id String Unique Identifier for the bid document No

AuctionId String References the auction the bid is for No

PigId String References the pig the bid is for No

SellerId String References the user that initiated the auction

the bid is for

No

SellerLocationId String References the location of the selling user

when the auction was initiated

No

BuyerId String References the user that initiated the bid on

the buyer side

No

BuyerLocationId String References the location of the user when the

bid was initiated

No

Price Float The price of the bid No

OfferDate String The date when the bid was initiated No

AcceptedById String References the user that accepted the bid Yes

RejectedById String References the user that rejected the bid Yes

CanceledById String References the user the canceled the bid Yes

Table 3: Data Dictionary for Bid

Field Name Field Type Field Description Nullable

Id String Unique Identifier for the buy order document No

SlaughterhouseId String References the slaughterhouse where the

products being bought are from

No

RetailerId String References the retailer that initiated the buy

order

No

RetailerLocationId String References the location of the retailer that

initiated the buy order

No

ProductIds String[] References the products that the buy order

pertains to

No

OrderDate String The time when the buy order was initiated No

CanceledById String References the user on the buying side that

canceled the buy order, if any

No

Table 4: Data Dictionary for Buy Order

36

Field Name Field Type Field Description Nullable

Id String Unique Identifier for the location document No

MemberIds String[] References the Ids of the users that are cur-

rently members of the location

No

ManagerIds String[] References the Ids of the users that are cur-

rently acting as managers of the location (in

the app)

No

PigIds String References the pigs that are currently owned

by the location

Yes

Name String The name of the location (in the app) No

Type String The type of the location, i.e., Breeder, Raiser,

Butcher, Retailer

No

Picture String A recent picture of the location No

Address String The registered address of the location No

Certifications Certification[] Consists of the certifications the location has

registered

Yes

RegistrationDate String The date when the location was registered in

the app

No

Table 5: Data Dictionary for Location

Field Name Field Type Field Description Nullable

Name String The name of the certification No

AwardedDate String The date when the certification was awarded No

ExpirationDate String The date when the certification will expire Yes

Table 6: Data Dictionary for Certification

37

Field Name Field Type Field Description Nullable

Id String Unique identifier for the notification docu-

ment

No

InitiatorId String References the user that caused/triggered the

notification to be created and distributed

No

RecipientIds String[] References the user/s that should receive the

notification

No

BidId String References the bid the notification is about No

TransferId String References the transfer the notification is

about

No

Type String The type of the notification, e.g., Bid, Trans-

fer, Member Addition/Removal

No

Title String The title of the notification No

Message String The message/body of the notification No

IssuanceDate String The date when the notification was issued No

IsSeen Boolean[] Is true if the respective user has already seen

the notification

No

Table 7: Data Dictionary for Notification

Field Name Field Type Field Description Nullable

Id String Unique identifier for the password document No

UserId String References the user that owns the password No

Password String The hash of the password No

IsActive Boolean Is true if the password is active, i.e., if the

user can log in using it (actions like changing

the password changes this)

No

Table 8: Data Dictionary for Password

38

Field Name Field Type Field Description Nullable

Id String Unique identifier for the pig document No

RegisteredById String References the user that registered the pig

first

No

MotherId String References the pig’s mother Yes

FatherId String References the pig’s father Yes

ChildrenIds String[] References the pig’s children Yes

Breed String The breed of the pig, e.g., Duroc Pig, Hamp-

shire Pig

No

IsMale Boolean Is true if the pig is male, false is female No

BirthDate String The date when the pig was birthed No

LocationHistory LocationHistory[] Consists of the locations the pig has been

through/currently residing in

No

HealthRecords HealthRecord[] Consists of the health checks the pig has un-

dergone

Yes

WeightRecords WeightRecord[] Consists of the measured weights of the pig

each time they’re measured

Yes

FeedNutrition FeedNutrition[] Consists of the feed the pig has been eating Yes

BreedingHistory BreedingHistory[] Consists of descriptions of when the pig has

birthed

Yes

QualityControl QualityControl[] Consists of quality checks the pig has under-

gone

Yes

RegistrationDate String The date when the pig was first registered No

Table 9: Data Dictionary for Pig

Field Name Field Type Field Description Nullable

LocationId String References the location of the pig at this in-

stance

No

Type String The type of the location, i.e., Breeder, Raiser,

Butcher, Retailer

No

Picture String The picture of the location at this instance No

Date String The date when the pig was transferred to this

location

No

Table 10: Data Dictionary for Location History

39

Field Name Field Type Field Description Nullable

Date String The date when the health record was taken No

Type String The type of the health check No

Description String A description of the health check No

Table 11: Data Dictionary for Health Record

Field Name Field Type Field Description Nullable

Date String The date of this instance No

Weight Float The weight during this instance No

Table 12: Data Dictionary for Weight Record

Field Name Field Type Field Description Nullable

Date String The date when the record was taken No

Type String The type of the feed No

Description String A description of the feed No

Table 13: Data Dictionary for Feed Nutrition

Field Name Field Type Field Description Nullable

Date String The date of this instance No

Type String The type of the breed No

Description String A description of this instance No

Table 14: Breeding History for Location

Field Name Field Type Field Description Nullable

Date String The date when the quality control check took

place

No

Type String The type of the quality check No

Description String A description of the quality check No

Table 15: Data Dictionary for Quality Control

40

Field Name Field Type Field Description Nullable

Id String Unique identifier for the product document No

PigId String References the source pig of this product No

RegisteredById String References the butcher that registered the

product

No

SlaughterhouseId String References the slaughterhouse where the

product was registered

No

RetailerId String References the retailer that bought the prod-

uct

No

RetailerLocationId String References the retail location where the prod-

uct was sold to

Yes

Cut String Describes the cut of meat, if applicable Yes

Picture String A picture of the product upon registration No

RegistrationDate String The date when the product was registered No

Table 16: Data Dictionary for Product

41

Field Name Field Type Field Description Nullable

Id String Unique identifier for the transfer document No

AuctionId String References the auction the transfer is related

to

Yes

BidId String References the bid the transfer is related to Yes

BuyOrderId String References the buy order the transfer is re-

tailed to

Yes

PigId String References the pig the transfer is about Yes

ProductIds String References the products the transfer is about Yes

SellerId String References the user that accepted the winning

bid or sold the product

No

BuyerId String References the user that initiated the winning

bid or bought the product

No

TransferFromId String References the location of the selling user

when the pig or product was sold

No

TransferToId String References the location of the buying user

when the pig or product was sold

No

Price Float The price with which the pig/product was

successfully bought

No

BeforeTransferPicture String The picture of the pig before the transfer has

commenced

Yes

AfterTransferPicture String The picture of the pig after the transfer has

finished

Yes

StartDate String The date when the transfer has initiated No

TransferDate String The date when the transfer has actually com-

menced

Yes

AcceptedDate String The date when the transfer has actually fin-

ished

Yes

CanceledBySellerId String References the user on the selling side that

canceled the transfer

Yes

CanceledByBuyerId String References the user on the buying side that

accepted the transfer

Yes

AcceptedBySellerId String References the user on the selling side that

accepted the transfer

Yes

AcceptedByBuyerId String References the user on the buying side that

accepted the transfer

Yes

Table 17: Data Dictionary for Transfer

42

Field Name Field Type Field Description Nullable

Id String Unique identifier for the user document No

LocationId String References the location the user is currently

a member of

No

RegisteredById String References the user that registered this user

into the app

No

Role String The role of the user, i.e., Breeder, Raiser,

Butcher, Retailer

No

FirstName String The first name of the user No

MiddleName String The middle name of the user Yes

LastName String The last name of the user No

Email String The unique registered email of the user No

PhoneNumber String The registered phone number of the user Yes

MobileNumber String The registered mobile number of the user Yes

BirthDate String The date when the user was born No

Sex String The sex assigned at birth of the user, i.e.,

Male or Female

No

Address String The registered address of the user No

Picture String A recent picture of the user No

RegistrationDate String The date when the user has/was first regis-

tered in the app

No

IsAdmin Boolean Is true if the user is an admin in the app No

IsActive Boolean Is true if the user is currently active in the

app

No

Table 18: Data Dictionary for User

E. System Architecture

The system comprises of a Hyperledger Fabric production network, a main backend

server, a native mobile client application, a public API server, and an off-chain slave

database with the following technology stack:

• React - Frontend UI Framework

• Redux - Frontend State Management Library

• React-Bootstrap - Frontend CSS Framework

• Node.js - Server Environment

43

• Express - Backend Framework

• WSL2 - Compatibility Layer for Linux

• Docker - Containerization Platform

• Hyperledger Fabric - Blockchain Framework

• Apache CouchDB - Document-oriented NoSQL Database

• Microfab - Containerized Hyperledger Fabric runtime

• Kubernetes - Container Orchestration System

The blockchain network is built using Hyperledger Fabric and Apache CouchDB,

and serves as the core of the system’s data storage and management capabilities. It

consists of multiple nodes, each node managed by an organization, that interact with

each other to maintain a distributed ledger of transactions and smart contracts.

Both the main backend server and the public API server are built using Node.js/Express.

The main backend server provides an API service for the mobile app to interact with

the blockchain network and retrieve data from the on-chain databases. The main

server implements business logic for the system, including user authentication, trans-

action processing, and data validation. Additionally, the main server listens to events

emitted on the blockchain, processes their payload, and handles inserting them to the

off-chain slave database for the public API to use.

The mobile app is built using React Native Expo. It provides a user interface for

the supply chain’s key actors, i.e., the breeders, raisers, butchers, and retailers, for

interacting with the system. It communicates with the backend server via REST API

calls, and uses a combination of local and remote data storage to manage user data

and state.

The project’s system architecture is designed to be modular and scalable, owing

to Hyperledger Fabric’s modular design and the use of Kubernetes pods and docker

44

containers for hosting each blockchain component. The justfiles and shell files can

be promptly edited to modify the number of organizations and their access control,

while the .yaml and .yml files, and Dockerfiles can be edited to modify the resource

allocation for the docker containers.

The blockchain and servers have been developed in and are deployed in production

in an Azure B4ms series virtual machine with Ubuntu 20.04.6 LTS as OS, a 64gb

premium SSD managed disk. The mobile app was simultaneously developed on the

local WSL2, using either a AMD Ryzen 5 3400GE desktop or a Ryzen 5 2500U laptop,

and deployed on Expo as an android build.

F. Technical Architecture

Running the full system, from blockchain to frontend, requires at least:

• Processor: At least more than 3 cpu units minimum; 4 cpu units recommended

• Memory: 16gb minimum

• Storage: 64gb minimum

• Screen Resolution: >300 px width or larger; any height

• Internet Connection: required

Although running the system on only 3 cpu units has not been tested, a minimum

of 3 cpu units is necessary as the sole worker node for the kubernetes cluster requires

a minimum of 2800 milliCPU units. 4 processors is recommended as this might ignore

spikes in usage and may fail in practice.

The blockchain network contains a single channel with 8 peer nodes, 3 orderer

nodes, and 5 certificate authorities. Their minimum memory requirements are as

follows, for a total of 13.7gb of memory:

45

• Peer Node: 1.25gb

• (3x) Orderer Nodes: 1.6gb

• Certificate Authority: 420mb

The above were estimated from their respective yaml configuration files. The Hy-

perledger Fabric documentation actually recommends allocating 1gb of memory for

the peer itself, which is just a part of the peer node yaml configuration file. Allocating

1gb of memory for the peer itself will increase the memory usage of each peer node

to 1.5gb, increasing the total memory usage of the blockchain network to 15.7gb.

To limit costs, each peer is only allocated 75% of the recommended memory unit at

750mb.

Azure’s B4ms series virtual machine was unable to handle the project with only

a 32gb managed disk, therefore a minimum of 64gb of storage is deemed minimum

for running the blockchain locally.

A stable internet connection is required to interact with the client mobile applica-

tion and the public API service. The blockchain, once set up, has not been tested if

it works without internet connectivity, but setting up the blockchain requires internet

connection every time.

A Linux-based OS, preferably either Ubuntu or Xubuntu, is required for running

the blockchain locally.

46

V. Results

This section is split into three main parts: (i) system architecture overview, (ii) client

mobile app functionalities, and the (iii) public API service.

A. System Architecture Overview

The system consists of 5 primary components: (i) blockchain network, (ii) client

mobile application, (iii) main server, (iv) secondary server, and the (v) off-chain slave

database.

A..1 Blockchain Network

Figure 10: Docker containers for managing the kubernetes cluster and related images

Figure 11: K9s terminal based UI displaying the pods for the blockchain network

47

The blockchain aspect of the system utilizes Hyperledger Fabric’s modular architec-

ture to deploy peer nodes, orderer nodes, certificate authorities, and other such com-

ponents. Shown in Fig. 11 above are the pods maintaining the blockchain network,

they are as follows:

1. cc-org*: Each pod runs a version of the chaincode for each of the two peers in

each of the four peer organizations.

2. fabric-operator-*: Manages and operates the Hyperledger Fabric blockchain

network within the Kubernetes cluster.

3. hlf-console-*: Provides a web-based interface for users to interact with, mon-

itor, and perform administrative tasks over the Hyperledger Fabric network.

4. org*-ca*: Runs the certificate authority for each of the four peer organizations

and one orderer organization.

5. org0-orderersnode*: Runs each of the three orderer nodes managed by the

orderer organization 0, which handles ordering of transactions into blocks and

establishing consensus deterministically within the network, using the crash

fault tolerant Raft consensus algorithm. The 3 orderer nodes together form

the ordering service for the channel C1.

6. org*-peer*: Runs each of the two peer nodes in each of the four peer organi-

zations; peer nodes maintain a copy of the distributed ledger, execute, endorse

and validate transactions, and participate in the consensus process.

All 8 peer nodes execute transactions using a single chaincode, containing all 10

smart contracts in the network, and serve to allow the main server and the mobile

client application to perform read and write operations to the blockchain.

In the network, all nodes, consisting of the orderer and peer nodes, are joined

to a single unified channel. This channel serves as a communication pathway for

48

coordinating and processing transaction proposals, which are separately verified by

the peer nodes, and processed into blocks by the orderer nodes, before committing

to each of the distributed ledger instances on all of the peer nodes. These processes

serve to ensure that the codebase has not been tampered with, that each transaction

proposal is valid, and that data is consistent across the blockchain network.

Additionally, the blockchain network makes use of the document-oriented NoSQL

CouchDB as its state database. The state database occupies a part of the distributed

ledger alongside the blockchain, and a copy is present and updated in all peers for

every update to the ledger. Unlike the default LevelDB database, CouchDB allows

for rich queries and modelling of data in JSON format, both of which are necessary

to the client mobile application.

Figure 12: Transactions in the Blockchain (with custom console.log prints every in-

vocation)

49

A..2 Client Mobile Application

Figure 13: PorkWatch Mobile App Screens

The PorkWatch mobile app is built using the React Native Expo framework and

acts as an interface for supply chain actors to interact with the blockchain. Its

functionalities include managing user profiles, managing their pigs, products, location,

participating in auctions, and more. As any interaction with the blockchain requires

authentication, the mobile app allows only logged-in users to access its screens, with

the login screen serving as the entry point.

In all, the mobile application hosts 35 screens, the visibility and functionalities

of which depends on the user visiting the screen, e.g., the ”Register Pig” screen for

breeders, the screens for viewing products for butchers and retailers, and so on.

1. Login - Asks for the user’s email, password, organization type, key, certificate,

and the TLS certificate of their organization for authentication.

2. Home - Where users are redirected to after a successful authentication.

3. Profile - Where users can view and edit their own profile details.

4. Farm - Groups together screens relevant to the managing of pigs, products,

users, locations, and all things related, e.g., bids, transactions, etc.

50

(a) Pigs - Where users can view and manage their location’s pigs.

(b) Products - Where users can view and manage their location’s products.

(c) Register Pig - Where breeders can register a new pig into the system.

(d) Register Product - Where butchers can register a new product into the

system.

(e) Transactions -Where users can view their ongoing and past transactions,

that is, the bids on their pig auctions, the transfers for their pigs and/or

products, and so on.

(f) Notifications - Where users can view their notifications.

(g) Farm Info - Where users can view and modify, should they be managers,

their location’s information.

(h) Farm Members - Where users can view and manage, should they be

managers, their location’s members.

(i) Register Farm Member - Where managers can register new members

into their location.

(j) Pig Info - Where users can view and edit, should their location own the

pig, a pig’s detailed information, and access the pig’s historical information

across the supply chain.

(k) Product Info - Where users can view and edit, should their location own

the product, a product’s detailed information, and access the product’s

historical information across the supply chain.

(l) Add Auction - Where breeders and raisers can post a new auction for

their location’s pigs.

(m) Auction Info - Where breeders, raisers, and butchers can view a pig

auction’s details, place or manage bids, and so on.

51

(n) Member Info - Where users can view and edit, should they be managers

of the same location as the user, another user’s profile.

(o) Pig Transfer Info - Where breeders, raisers, and butchers can view and

approve/cancel a pig transfer from or into their location.

(p) Product Transfer Info - Where butchers and retailers can view and

approve/cancel a product transfer from or into their location.

5. Market - Groups together screens displaying pigs and products that are cur-

rently for sale.

(a) (4) Pig Screens - Where breeders, raisers, and butchers can view cur-

rently active pig auctions categorized by weight classification (e.g., nursery

pigs, feeder pigs).

(b) (11) Product Screens - Where butchers and retailers can view the prod-

ucts currently being sold categorized by cut type (e.g., pork chops, spare

ribs).

A..3 Main Server

The main server acts as the intermediary between the blockchain network and the

client mobile app, facilitating communication and interaction between the two. Re-

sponsibilities of the main server include:

1. Authenticating and authorizing clients - The main server ensures that the

identity and credentials of the mobile app users are valid by verifying their key,

certificate, and TLS certificate. Once authenticated, the main server issues a

signed JSON Web Token (JWT) to the clients, which serves as proof of their

identity, and appended to their every request as part of the request header.

This token allows them to interact with the blockchain for a full hour, before

they are required to authenticate again.

52

2. Handling client requests - The main server receives requests from the client

mobile app, such as submitting transactions, querying blockchain data, and

initiating smart contract invocations.

3. Interacting with the blockchain network - The token given to the user

upon successful authentication contains data that would let the server instanti-

ate a new connection to the blockchain through a certain gateway peer depend-

ing on the user’s organization type before any transaction with the blockchain

proceeds, and close said connection prior to sending the response back to the

client mobile app.

4. Transaction processing and validation - Upon receiving a transaction re-

quest or a query from the client mobile app, the main server performs necessary

validation checks and business logic processing, ensuring that the transaction

data adheres to the defined rules of the blockchain network and the asset models

the targeted smart contracts make use of before submitting it to the blockchain

network for consensus and inclusion in the distributed ledger.

5. Event listening - The main server listens for events emitted within the smart

contracts of the blockchain network, processes their payload, and handles inser-

tion to the off-chain slave CouchDB database to keeping it up-to-date with the

on-chain state databases.

By acting as the intermediary, the main server simplifies the interaction between

the Hyperledger Fabric blockchain network and the client mobile app, abstracting

the complexity of the underlying blockchain technology and providing a seamless

user experience.

53

Figure 14: Events Emitted by the Smart Contracts in the Blockchain Network

A..4 Secondary Server

The secondary server serves as a public API service accessible to all users, including

the public and other stakeholders. It facilitates comprehensive queries within the

system, allowing other applications, particularly dashboards, to connect and perform

data analysis on the supply chain managed by the system. By utilizing an off-chain

slave database, this server enables faster and more convenient access to data. How-

ever, it solely permits queries to the off-chain slave database and does not support

any write operations.

54

A..5 Off-chain Slave Database

Managed by the main server, the off-chain slave CouchDB database remains syn-

chronized with the latest data from the on-chain state databases in real-time. This

synchronization ensures that the database is constantly updated. The secondary

server leverages this off-chain slave database to provide real-time access to the sys-

tem’s public API service, delivering up-to-date information to users.

B. Client Mobile App Functionalities

This section shows the different functionalities of the client mobile app PorkWatch,

first showing how authentication works, given that authentication is necessary for any

operation involving the blockchain, with the next parts following the order as written

in the use cases section.

55

B..1 Authentication

Figure 15: Logging in

Only users with both login credentials and their respective key, certificate, and their

organization’s TLS certificate can log into the mobile and instantiate a connection to

the blockchain network. Axios sends all 6 fields to the main server at once, where the

server would do as follows:

1. Create files from the received key, certificate, and TLS certificate, each with a

different string generated from the collision resistant uuid v4 as filename.

2. If the connection to the blockchain network is successful through said 3 files,

i.e., the stated organization’s certificate authority has verified the sent X.509

certificate, proceed with querying the ledger for a user with a matching email.

3. If a user with a matching email is found, query the ledger for a still active

password with a matching user id.

56

4. If a password with a matching user id is found, use the bcrypt library in the

server to check if the password sent from the mobile app and the password in

the ledger, which is encrypted using 10 salt rounds, matches.

5. If the request passes all of the above checks, an access token is generated signed

using the JWT library, containing the user’s email, id, organization type, the

paths to their newly created key, certificate, and TLS certificate files, using a

JWT secret, which is stored in an untracked env file. The access token is given

an expiration of an hour, after which the user will have to redo the authentica-

tion process.

6. The access token and the user’s details, at the time of query, are sent as response

to the mobile app, where they will be managed and made available by redux

and persistently stored in the device’s disk using the react native async storage

library.

7. The user, after receiving their access token and user details, are then redirected

to the home screen.

Following this, any subsequent interactions with the blockchain network, which

happens in every screen in the mobile app, will make use of the 3 uuid v4 generated

strings stored in the user’s access token to connect to the blockchain network, while

making use of the user id in the same access token to authenticate in the main server,

i.e., authentication happens on both the main server and blockchain levels.

This protects the system from bruteforce attacks to find a valid email and pass-

word combination, as the attacker will have to first find a valid combination of key,

certificate, and TLS certificate, all the while being unable to connect to the blockchain

network. Aside from a valid combination of the three files, authentication will also not

work if the 3 files and the email, if ever the valid password counterpart was found, do

not match. It is mentioned earlier in the blockchain section that all smart contracts

57

first process the transaction request and match the user credentials and the X.509

certificate used to connect to the blockchain network.

B..2 Adding a New Pig to the User’s Location

Depending on the type of the location the user is registered under, there are two ways

to add a new pig to the user’s location: (i) by registering them, or by (ii) getting a

successful transfer. This part shows the former, however, only users with the role of

breeders are allowed to do this part, that is, registering pigs into the system.

Figure 16: Adding a new pig

To register a new pig, the breeder will first navigate to the ”Register Pig” screen.

There, they will fill the necessary fields, and press on the empty image slot, which

will open up a camera view, to take of a picture of the new pig.

Once all of that has been accomplished, the user is to press on the ”Register Pig?”

button at the very bottom. If the registration was successful, the new pig will appear

58

in the ”Pigs” screen, automatically sorted into its own group by breed. There, the

user can press on the ellipsis icon on the row’s rightmost part, where they will be

presented the option to view the pig, or in the case of a manager, they will be shown

both the view and edit options.

B..3 Adding a New Product to the User’s Location

Figure 17: Adding a new product

In the same way as in registering a new pig, only butchers can register new products

into the system. Retailers can only add new products into their location after a suc-

cessful product transfer from a slaughterhouse. This part shows the former, through

the user Smith who is a butcher.

To register a new product, the butcher will first navigate to the ”Register Product”

screen. The rest of the proceeds as in registering a new pig in the case of breeders,

where the butcher fills the form and takes a picture of the product, and the product

would, having been successfully registered, appear in the ”Products” screen of the

user. There, the user can also press on the ellipsis icon on the row to show options

for navigating to the screen for viewing and editing the newly registered product’s

59

details.

B..4 Updating a Pig

Figure 18: Updating a pig

To update a pig, the user will first have to navigate to the ”Pig Info” screen. Here,

the user navigated to said screen by pressing on the ”View Pig Info” option from

the menu that popped up after the ellipsis icon of the relevant row is pressed in the

”Pigs” screen.

Now in the ”View Pig Info” screen, the user can press on ”Edit Pig Info” to switch

to edit mode. There, once all required fields are filled in and yup does not detect

any errors, the user can then press on the ”Submit” button. If the main server and

blockchain do not detect errors, the pig will successfully be modified and the mode

will be switched back to view mode, with the updated pig details showing on the

fields.

60

B..5 Viewing Pig History

Figure 19: Viewing Pig History

To view a pig’s history, navigating to the relevant ”Pig Info” comes first. Once there,

regardless if it’s the view mode or the edit mode, pressing the ”Download Pig Info

History?” button will download the file in your directory of choice, after taking your

permission.

As the downloaded file is in JSON format, a JSON viewer, like JSON Genie in

this case, is necessary to view the file. Fig. 19 shows the two versions so far of the

selected pig, alongside the timestamp indicating when the update took place. The

history file itself is in an array format, with the latest version of the pig at the top,

and the oldest version at the bottom.

61

B..6 Viewing Product History

Figure 20: Viewing Product History

Viewing a product’s history also has the same procedure as in viewing a pig’s history,

but instead of navigating to a ”Pig Info”, the user is to navigate to a ”Product Info”

and press the ”Download Product Info History?” at the bottom of the screen. The

downloaded file is also in JSON format, and includes the history of both the product

asset itself and the pig asset it is from, that is, the source of the product. This enables

whole-of-chain traceability in the system, as the product can be traced back to the

farm it is from.

62

B..7 Adding a Pig Auction

Figure 21: Adding a Pig Auction

To add a pig auction, first, the user has to navigate to either the ”Pigs” or ”Pig

Info” screen. In this case, the user navigated to the ”Pigs” screen. There, pressing

on the rightmost ellipsis icon of the relevant row will show a menu modal. If the pig

has neither an active auction nor an active transfer, the menu will include a ”Add

auction” option. Pressing on this will redirect the user to the ”Add Auction” screen.

The form on the ”Add Auction” screen only requires setting the minimum price

for the auction. The price is automatically calculated from the latest measured weight

of the pig by multiplying it for P170 per kilogram. This is editable however, and once

the user has pressed on the ”Create Auction?” button, the user will be redirected

to the ”Auction Info” screen, populated with the details of the newly created pig

auction.

Once there, the user can view the bids for the auction, and approve or reject them

63

as necessary. The user is also able to edit the auction details, i.e., edit the minimum

price, which automatically sets the minimum price of the bids to be created by users

from other locations. Cancelling the auction is also an option, and if there were active

bids at the time of cancelling, said bids will automatically appear as rejected on the

members of the locations that created them.

B..8 Bidding in a Pig Auction

Figure 22: Bidding in a Pig Auction

Users from locations other than the initiator of the pig auction can bid for the pig

auction by first navigating to the appropriate screen under the ”Market” tab. Based

on weight, for example, given that pig id # 10, the pig in the example, only has

a latest measured weight of 1.2kg, its auction can be found in the ”Nursery Pigs”

screen. There, the user is to press on the picture of the auction to navigate to its

corresponding ”Auction Info” screen.

Navigating to the very bottom of the screen, past bids on the auction are visible.

As there are none at the time, no bids are displayed. The user can submit their own

bid through the form at the bottom, where they only need to place their price in

64

order to submit a new bid. The yup validator schema for the form will check if the

submitted price is either equal or higher than the current price of the pig auction,

which is automatically set based on the highest priced bid so far. If the new bid

passes this check, the bid will successfully be added to the auction’s bids and will

appear on the screen.

The user can choose to submit a new bid, after the successful submission of which

the user’s location’s older bids will automatically be cancelled. The user can then

check for their recently created bid and their location’s other bids through the ”Trans-

actions” screen. Its bids mode will display all of the user’s location’s bids and to which

pig and auction they are for.

B..9 Accepting/Rejecting a Bid

Figure 23: Accepting a Bid

Users from the location that initiated the pig auction are able to accept a bid through

the ”Auction Info” screen. Here, the user navigated to said screen through the ”Trans-

actions” screen, where the initial mode shows that the user has bids pending their

approval. Upon pressing this, the location’s bids are displayed.

65

The bid in question is for pig id # 10. Pressing the ellipsis icon to the rightmost

part of the row and pressing the ”Go to Auction” option will redirect the user to the

appropriate ”Auction Info” screen. There, the user will navigate to the very bottom

of the screen and accept the bid of their choice.

Once a bid is accepted, the user is automatically redirected to a ”Transfer Info”

screen populated with details of the newly created transfer state. While it is not

shown here, the bid will have been removed from the pending bids list of Suarez and

his fellow members, and moved to the accepted bids table. The same goes for the

members of the location that submitted the bid.

Should the user decide to have instead rejected the bid. At the bottom part of

the ”Auction Info” screen, the user could have pressed on the ”Reject Bid?” link

instead. This will have updated the bid to a rejected state, and will promptly appear

as ”Rejected by User #1” in Suarez’ screen.

B..10 Confirming a Pig Transfer

Figure 24: Confirming a Pig Transfer

66

Users from both the location that initiated the pig auction and the location that

submitted the accepted bid should confirm the resulting transfer after the bid is

accepted for the pig transfer to take effect, that is, for the pig to be removed from

the ”Pigs” screen of the members of the original location, and for the pig to appear

in the ”Pigs” screen of the members of the location that submitted the bid.

For this, the user navigated to the ”Transfer Info” screen through the ”Transac-

tions” screen. The initial mode of the latter screen includes a button to switch to the

transfers mode and make the transfer visible.

Once in the appropriate transfers mode, the user can navigate to the transfer in

question by pressing on the rightmost ellipsis icon on the row. The user then selects

the ”Go to Transfer” option in the ensuing modal and is redirected to the appropriate

”Transfer Info” screen afterwards.

Now in the ”Transfers Info” screen, as the user, Suarez, is from the location that

initiated the auction, they are to press on ”Edit Transfer Info” to continue. Once

pressed, the picture slot becomes pressable, the ”Before Transfer Picture” slot in

Saurez’ case, indicating the picture of the pig before the transfer has commenced.

Once the picture slot is pressed, the camera is opened, and a picture of the pig

is to be taken. Once taken, the user can already press on ”Accept Transfer”, as the

picture is the sole requirement of confirmation. The screen is then toggled back to

view mode.

Navigating back to the ”Transactions” screen, the user can see that the transfers

pending their approval have been reduced by one, and the transfers mode reveals that

the transfer now only requires the approval of the members from the other location.

As transfers require confirmation from both sides, a user from the other location,

Maria, is to log in. They then navigate to the ”Transactions” screen and into transfers

mode, pressing on the same buttons to navigate to the ”Transfer Info” screen.

There, they press on ”Edit Transfer Info” and press the touchable ”After Transfer

67

Picture” slot. This opens the camera view, and after they capture a picture of the pig

after the transfer has been done in actuality, they can then press on ”Accept Transfer”.

This whole process indicates that the transfer has gained the tacit approval of both

locations, and that the digital confirmation of the transfer signals the actual transfer

of the pig in the real world.

While not shown here, the pig has then been removed from the ”Pigs” screen of

the original location, and has appeared in the same screen of the members of the

location that submitted the bid.

B..11 Confirming a Product Transfer

Figure 25: Confirming a Product Transfer

The process for confirming a product transfer also requires the approval of both a

user from the participating slaughterhouse and retailer locations, the entire process

of which is also similar to confirming a pig transfer. The product, after a successful

transfer, also disappears from the ”Products” section of the users in the slaughter-

house, meanwhile appearing in the ”Products” section of the users in the retailer

location.

68

B..12 Registering a New User

Figure 26: Registering a New User pt.1

Only location managers can register new users into their location. For this, the

user is to navigate to the ”Register Farm Member” screen. There, they are to fill the

required fields and select a picture of the new user from their phone’s filesystem. Once

all required fields have been accomplished according to the yup validator schema, the

user can press on ”Register Farm Member?”. If neither the main server nor the

blockchain detect any issue, the user and their password will be created, and the

user’s location will be modified to include the id of the newly added user into the

location.

69

Figure 27: Registering a New User pt.2

While the user’s data and password are already present in the ledger, for them

to authenticate themselves, a user with administrative privileges from the same or-

ganization is to enroll said user using their organization number, e.g., 1 in the case

of the breeder organization, their email, and their password. This generates the key

and certificate files to be securely sent, alongside the file of the organization’s TLS

certificate, to the user for them to use for authentication.

70

B..13 Updating an Existing User

Figure 28: Updating an Existing User

Only managers from the same location can update the profile details of an existing

user. For this, the manager would first navigate to the ”Farm Members” screen.

There, the manager clicks on the ”Edit” link under the card of the user they wish

to update the profile of. Once in the ”Member Info” screen, the manager then clicks

on the ”Edit Profile” at the top left, before updating the fields and pressing on the

”Submit” button at the top or bottom right sections to proceed with updating the

user’s profile. The manager is then redirected back to the view mode of the user’s

profile with the updated fields, indicating that the user’s profile has been successfully

updated.

71

B..14 Removing a User from a Location

Figure 29: Removing a User from a Location

Only managers from the same location can remove a user from said location. For

this, the manager would also first navigate to the ”Farm Members” screen. There,

the manager clicks on the ”Remove” link under the card of the user they wish to

remove from the location. The user, now without a location, would disappear from

the ”Farm Members” screen of all members in the location, and the user would be

unable to authenticate, necessitating undergoing a new registration process if they

are, for instance, to be reassigned to another location.

72

C. Public API Service

Figure 30: Dockerized Off-chain CouchDB

Figure 31: The Slave Database

The public API service is comprised of the off-chain slave CouchDB database and the

secondary server hosting the controllers allowing for any user to perform rich queries

into the system. The public API hosts the same GET endpoints as that of the main

server, save for those related to passwords.

As stated in the system architecture overview, the public API service is kept up-

to-date with the on-chain state databases through the main server populating the

off-chain slave database with payloads processed from all events emitted in all the

blockchain network’s smart contracts. As the slave database is hosted off-chain, users

73

of the public API service benefits from the speed and convenience of conventional

systems, making it useful for processes requiring the consumption of large amounts

of data at once, such as for data analysis and for dashboards and visualizations.

User traffic to the public API service also does not degrade the performance of

the blockchain network, given that both the secondary server and the slave database

are hosted off-chain.

Figure 32: Requesting all Products in the System

74

Figure 33: Requesting the Product with Id: 1 in Detail

Figure 34: Constructing a Stringified CouchDB Query Encoded in URI using JSFiddle

75

Figure 35: Using an URI-Encoded Querystring to Query Certain Products with Pag-

ination

The above figures show some possible endpoint calls and queries for the products

in the public API service. In Fig 32, the base endpoint of the products API is called,

hence all products in the system are returned. In Fig 33, the product with id # 1

is asked, the controller on this endpoint returns a detailed version of the product in

question, with the pig, slaughterhouse, etc. of the asset being returned as well. In

Figs 34 and 35, the JSFiddle website is used to construct an URI-encoded stringified

CouchDB query, this URI string is attached at the end of the /query endpoint of the

public API to send a rich query to the server, here asking for the product with the

cut of bacon in retailer location id # 4, with pagination.

76

VI. Discussion

The developed system, here dubbed the PorkWatch system for convenience, consist-

ing of a blockchain system, a client mobile app, two servers, and an off-chain slave

database, has fulfilled all of the main research objectives of the paper, that is, data

immutability, data integrity, whole-of-chain traceability, automation, security, and

reliability.

The system inherently benefits from data immutability through its use of blockchain

technology in storing data. The blockchain system’s distributed ledger consists of

two main parts, the blockchain component and the state database component. The

blockchain component is where transactions ordered in blocks are stored, and as

blocks can only be appended to it, data, once added, cannot be changed. The on-

chain state database serves to store the latest value of each data, or asset as they

are called in Hyperledger Fabric. The PorkWatch system rarely needs to traverse the

blockchain component of the ledger, getting the history of a pig or product is one

of the few reasons for such traversals to happen, hence the system is able to stay

performant, almost at the same level as conventional counterparts, while benefiting

from blockchain technology.

Data integrity is fulfilled through the majority endorsement rule of the channel

configuration. In the PorkWatch system, each transaction request by the client that

can modify the data on the ledger, requires the endorsement, that is, the validation

and approval of a majority of the peer organizations in the blockchain network, here

requiring at least 3 out of 4 organizations to approve the request. The validation and

subsequent ordering and committing processes are automatic, and does not require the

intervention of any user. This independent validation of the transaction request from

a majority of the peer nodes serve to make sure that data is maintained consistent and

valid throughout the system, and that the codebase are up-to-date and kept consistent

among at least a majority of the organizations, at least for the parts relevant to the

77

transaction.

Whole-of-chain traceability is achieved through the blockchain part of the dis-

tributed ledger. The system is able to reliably track all modifications and transfers

affecting each pig or product asset through this immutable store of values. All users

are able to download the entire history of a pig/product asset, from their registra-

tion in a breeder farm, to their final destinations, with every modification to the

pig/product asset specified at any point in time.

Automation is achieved through a combination of client-based components, server-

side controllers, and smart contracts hosted by the peer nodes in the blockchain

network. These serve to represent certain real-world processes like confirming pig

transfers, or approving bids, with processing and validation happening at essentially

three layers for each transaction.

Security, that is, protecting the data from any sort of tampering, is achieved

on both the private and permissioned blockchain system and the transparent and

accessible public API service. On the blockchain-enabled side, that is, including the

client mobile app that gets data directly from the tamperproof blockchain system,

the majority endorsement rule and independent validation of peer nodes for each

transaction request serves to protect the data from unilateral and malicious changes

from even amongst its own member peer organizations, so long as, in this case, only

a maximum of 2 out of 4 peer organizations are compromised.

On the side of the public API service, which has a second server querying data

from the off-chain slave database, while the data there can be vulnerable to tampering

with owing to its conventional implementation, these events can be easily remedied

with a removal of the checkpoint.json file. This file serves to mark the latest block

that was read by the event listener in the main server, and should this be removed, all

emitted events from all blocks will be processed again. As this event listener serves to

provide the off-chain slave database with non-confidential data from the distributed

78

ledger, the off-chain slave database and said event listener can simply be reset for the

slave database to be repopulated from scratch, removing the effects of any tampering.

Lastly for the objectives, reliability is fulfilled by having each peer node host a copy

of the chaincode and ledger. In a real production environment, with there being 4 peer

organizations, each managing 2 peer nodes, the peer nodes will be separately hosted

on different machines. So long as a peer organization has a peer node still operational,

its members can still interact with the blockchain, and its remaining peer node can

still participate in the endorsement process. Should all of the relevant machines of

a single peer organization go down, the operation of the PorkWatch system will not

halt. This means that if all 8 peer nodes are hosted on eight separate machines, a

maximum of 5 peer nodes can go down, and so long as at least 3 organizations has a

peer node left, little effect on the PorkWatch system can be perceived.

As the PorkWatch system comprises of essentially five distinct main components,

both research and development took extensive time to accomplish. While Hyperledger

Fabric is dominant in the realm of private permissioned blockchain platforms, espe-

cially for large enterprises, e.g. Walmart, Hitachi, IBM, and so on, its steep learning

curve, extensive use of containerization technology, high complexity in setup, along-

side its heavy toll on cpu, memory, and storage resources, makes it the most difficult

aspect of the project to work with.

The client mobile app, having been developed using React Native Expo, also

proved difficult to work with, with its relatively weaker libraries, being prone to

sudden breakdowns, unhelpful error messages, and frequent dependency problems.

The main REST API server, acting as separate validator and intermediary be-

tween the client mobile app, the blockchain network, and even the off-chain slave

database, also took a lot more time to develop than expected. The system required

that the main server be able to handle inputs from the mobile application, including

URI encoded query strings, validate the inputs, transform the inputs into a format

79

readable by the chaincode, call the appropriate function in the appropriate smart con-

tract, handle a lot of possible errors, listen for events emitted from the blockchain,

and so on. It required a lot of trial and error to get the main server to reliably act as

intermediary between the client mobile app and the blockchain system.

The PorkWatch system meanwhile drew significant inspiration and reference from

the paper titled ”A blockchain-based multisignature approach for supply chain gov-

ernance: A use case from the Australian beef study.” [1] Specifically, the paper pro-

vided the inspiration for using blockchain technology to transform the supply chain

governance in the Philippine pig industry, and for using a multisignature and proof-

of-authority (PoA)-based approach to validating transaction requests and confirming

the transfer of asset between two parties at each stage of the supply chain.

The PorkWatch system builds on their idea and approach on three fronts: (i) by

using the enterprise-grade and open-source Hyperledger Fabric blockchain framework

for the blockchain aspect of the system, (ii) by extending the use of blockchain tech-

nology in the system from only tracking the flow of lifestock, to tracking multiple

kinds of assets, generalizing the flow of livestock, i.e., pigs, and including representa-

tion of the location handling the pigs themselves as assets in the ledger, such that the

system is able to accommodate the entry and removal of locations, and differences

in the routes taken by the pigs from breeders to retailers, and (iii) by extending the

private and permissioned blockchain network in the system with a transparent and

accessible public API service, granting the public and auditors easy access to non-

confidential data without the need for interacting with the blockchain itself, further

enhancing the performance of the system and increasing its capacity.

The full-stack-asset-transfer-guide sample repository was also greatly helpful in es-

tablishing the infrastructure of the blockchain component of the PorkWatch system.

The tutorial repository comes ready with just recipes and extensive shell codes and

configuration files such that aside from developing the smart contracts, streamlining

80

https://github.com/hyperledger/fabric-samples/tree/main/full-stack-asset-transfer-guide

the deployment process with custom shell files, the CouchDB indexes, and customiz-

ing the blockchain infrastructure through the configuration files, not much else was

needed to set up and modify the blockchain network whenever and wherever deemed

necessary.

81

VII. Conclusion

The PorkWatch system, consisting of a blockchain system, a client mobile app, a main

backend server, a public API service, and an off-chain slave database, serves to trans-

form the supply chain governance in the Philippine pig industry through blockchain

technology, while maintaining, to an extent, the performance and convenience of con-

ventional systems, and without the transaction costs common in blockchain-enabled

systems.

The blockchain system was developed using Hyperledger Fabric, an enterprise-

grade and open-source blockchain framework that is known for its high modularity

and scalability. The blockchain component of the system serves to fulfill much of the

main research objectives in this paper through the following:

• Data Immutability - All asset data are stored in the on-chain ledger, with

its blockchain component serving to store the history of transactions and asset

data in an immutable manner.

• Data Integrity - With a majority endorsement rule enforced in the blockchain

network’s channel configuration, a majority of the peer nodes will have to in-

dependently simulate and verify each transaction request and output, ensuring

that data remains consistent throughout the system.

• Whole-of-chain Traceability - The entire history of any asset can be queried

anytime, in the process traversing the blockchain component of the on-chain

ledger. This data includes the initial state of the asset, and each subsequent

modification until the present.

• Automation - Automation is achieved through the mobile app components,

the controllers in the main server, and the smart contracts in the blockchain

network, abstracting away much of the complexity of the system from the user’s

82

perspective.

• Security - Data is ultimately secure on the blockchain network because of the

blockchain component of the on-chain ledger. While the data on the off-chain

slave database is not tamperproof, any effects can be easily remedied by a reset

on the part of the slave database and the event listener on the main server,

effectively overwrite the data on the database with up-to-date values from the

secure blockchain network.

• Reliability - With the system having 4 peer organizations, each with 2 peer

nodes, the system is able to handle the loss of an organization and up to an

additional 3 other peer nodes before operation on the system is halted. The

distributed nature of the ledger and chaincode means that they benefit from

this redundancy of peer nodes, preventing a single point of failure.

As the blockchain system and its related permissions are constrained by the

blockchain network’s private and permissioned nature, transparency to the system

is enabled by the off-chain slave database and the public API service, allowing the

public and external auditors access to the system’s data with the speed and conve-

nience of a conventional system without needing the credentials to actually interact

with the blockchain network.

83

VIII. Recommendations

While the PorkWatch system fulfilled its main research objectives, there is much to

improve on some of many of its components, particularly in reducing overheads and

for indexes to accommodate the mobile application’s more complex queries. The

system also lacks a dashboard and a benchmarking component, which would both

prove very useful to the study’s aim to explore blockchain technology’s potential for

provision of supply chain governance to the country’s pig supply chains.

The blockchain system lacks a GUI for monitoring its transactions and compo-

nents. The two known compatible systems to enable monitoring of transactions in

the blockchain network are Hyperledger FireFly and Hyperledger Explorer. While

the former is more recent, up-to-date, and powerful, setting it up would require many

changes in the already streamlined deployment process available in the blockchain

component of the system. Hyperledger Explorer is theoretically easier to set up, but

due to its heavily outdated dependencies owing to an end-of-life status as of 2022,

there was little luck in incorporating Hyperledger Explorer into the system.

The Hyperledger Fabric Operations Console, a web-based interface for managing

the blockchain network’s components, is deployed as a Kubernetes pod as part of the

streamlined blockchain network setup process, but there were problems encountered

with the scripts used to export the blockchain components, e.g., the peers and order-

ers, to JSON files for importing to the Fabric Console. Setting up the Fabric Console

would allow for a more holistic view of the blockchain network, and would allow for

further customization to its components through a GUI instead of being restricted to

the CLI.

The client mobile app, while aiming to transform supply chain governance in the

Philippine pig industry, was developed with little direct consultation from related

experts and the actual prospective clients. The system relegates the health and

quality checks on the pigs and product as a field that can be updated at any point of

84

the supply chain, this might not reflect actual systems in place for quality control in

the Philippines.

The mobile app also grew far larger in complexity and scope than expected. Cur-

rently, the mobile app is completely reliant on the blockchain system for data, but

much could be relegated to the conventional off-chain slave database for queries. In

this case, only write operations would remain in all smart contracts in the blockchain

network, save for the passwords smart contract, as no password is and should be

moved to the off-chain slave database. Once this is implemented, screens in the mo-

bile app would load much faster, and write operations will also significantly speed

up, as certain write operations in the main server, such as for determining the id of

a newly created asset, would make use of the slave database instead of the on-chain

state databases, greatly reducing overhead in write operations.

Currently, no CouchDB index is deployed on the slave database. Save for the

password index, all other indexes should be moved to the off-chain slave database once

queries from the main server are moved to said database. The 29 indexes currently

deployed on-chain are observed to be of no help to many of the queries from the

mobile app, creating new indexes specifically for those queries would greatly speed

up both read and write operations as well.

This paper also recommends developing a web-based application to serve as a

publicly accessible dashboard for the system. This website can access the system’s

data through the public API service, which has already been developed. Hyperledger

Caliper is also recommended to benchmark the system’s performance, particularly

its Transactions Per Second (TPS) and latency, at various levels of traffic, and for

different use cases. It is recommended that such benchmarking be done after all other

optimizations mentioned above, especially with regards to relegating queries to the

off-chain slave database, are implemented, so as to measure the system’s performance

once many of the current unnecessary overheads are removed.

85

For use in an actual production setting, valid tokens should also be stored some-

where, possibly off-chain as access tokens are valid for merely an hour, to keep track

of them. All smart contracts on the blockchain also currently receives the transac-

tor’s details through the user’s id sent by the main server, which it decodes from the

tokens. Although this process protects the system from identity-related issues arising

from the mobile application, the blockchain itself is vulnerable to internal attacks,

as administrators with access to the CLI can simply pass in any user’s id and mask

their identity, should they have access to said user’s MSP credentials, i.e., their key,

certificate, and their organization’s TLS certificate, without needing to know said

user’s email and password.

Although technically, the MSP credentials are enough to protect identities on the

blockchain, passwords serve as a second layer of protection should the MSP credentials

be compromised. Circumventing them lessens security on the blockchain system.

For this, the blockchain should instead also receive the undecoded JWT token and

decode it in the smart contract itself. This way, the blockchain is better protected

from internal attacks, as the token has to be signed on the main server, and the user

should undergo the normal login process for a valid token to be created and signed.

86

IX. Bibliography

[1] S. Cao, M. Foth, W. Powell, T. Miller, and M. Li, “A blockchain-based multisig-

nature approach for supply chain governance: A use case from the australian

beef industry,” Blockchain: Research and Applications, vol. 3, no. 4, p. 100091,

2022.

[2] N. E. P. Manipol, M. S. Flores, R. Tan, N. Aquino, and G. Baticados, “Value

chain analysis of philippine native swine (sus scrofa philippinensis) processed as

lechon in major production areas in the philippines,” Journal of Global Business

and Trade, no. 1, pp. 77–91, 2014.

[3] M. Rola-Rubzen, F. Gabunada, and R. Mesorado, “Marketing systems for small

livestock in the philippines: The case of western leyte.” Available at https:

//www.researchgate.net/publication/254385418_Marketing_Systems_

for_Small_Livestock_in_the_Philippines_The_Case_of_Western_Leyte

(2002).

[4] Statista, “Forecasted domestic volume of pork consump-

tion in the philippines from january 2019 to january 2022.”

Available at https://www.statista.com/statistics/1170386/

philippines-domestic-consumption-of-swine-meat/ (Accessed October,

2022), 2022.

[5] D. L. Z. Cabantac, “Swine industry prospect in the philippines.” Avail-

able at https://rr-asia.woah.org/wp-content/uploads/2020/03/

3-3-swine-industry-prospect_cabantac.pdf (Accessed October, 2022),

2018.

87

https://www.researchgate.net/publication/254385418_Marketing_Systems_for_Small_Livestock_in_the_Philippines_The_Case_of_Western_Leyte
https://www.researchgate.net/publication/254385418_Marketing_Systems_for_Small_Livestock_in_the_Philippines_The_Case_of_Western_Leyte
https://www.researchgate.net/publication/254385418_Marketing_Systems_for_Small_Livestock_in_the_Philippines_The_Case_of_Western_Leyte
https://www.statista.com/statistics/1170386/philippines-domestic-consumption-of-swine-meat/
https://www.statista.com/statistics/1170386/philippines-domestic-consumption-of-swine-meat/
https://rr-asia.woah.org/wp-content/uploads/2020/03/3-3-swine-industry-prospect_cabantac.pdf
https://rr-asia.woah.org/wp-content/uploads/2020/03/3-3-swine-industry-prospect_cabantac.pdf

[6] NationMaster, “Top countries in pork production - source oecd.” Avail-

able at https://www.nationmaster.com/nmx/ranking/pork-production (Ac-

cessed October, 2022), 2019.

[7] J. P. Ayomen and M. S. Kingan, “Value chain analysis of pig (sus scrota) in

a highland, indigenous community: The case of sablan, benguet, philippines,”

Mountain Journal of Science and Interdisciplinary Research, vol. 79, no. 2,

pp. 139–151, 2019.

[8] OEC, “Pig meat in philippines.” Available at https://oec.world/en/profile/

bilateral-product/pig-meat/reporter/phl (Accessed October, 2022), 2020.

[9] D. C. Group, “Guidelines on mav plus pork im-

port approved.” Available at https://www.da.gov.ph/

guidelines-on-mav-plus-pork-import-approved/ (Accessed October,

2022), 2021.

[10] G. Yan, “Pork remains the favourite in the philip-

pines.” Available at https://www.thepigsite.com/articles/

pork-remains-the-favourite-in-the-philippines (Accessed December,

2022), 2020.

[11] V. ter Beek, “Changing the mindset of philippine pig

farms.” Available at https://www.pigprogress.net/home/

changing-the-mindset-of-philippine-pig-farmers/ (Accessed Decem-

ber, 2022), 2015.

[12] R. M. Briones and I. B. Espineli, “Towards competitive livestock, poul-

try, and dairy industries: Consolidated benchmarking study.” Avail-

able at https://www.pids.gov.ph/publication/discussion-papers/

88

https://www.nationmaster.com/nmx/ranking/pork-production
https://oec.world/en/profile/bilateral-product/pig-meat/reporter/phl
https://oec.world/en/profile/bilateral-product/pig-meat/reporter/phl
https://www.da.gov.ph/guidelines-on-mav-plus-pork-import-approved/
https://www.da.gov.ph/guidelines-on-mav-plus-pork-import-approved/
https://www.thepigsite.com/articles/pork-remains-the-favourite-in-the-philippines
https://www.thepigsite.com/articles/pork-remains-the-favourite-in-the-philippines
https://www.pigprogress.net/home/changing-the-mindset-of-philippine-pig-farmers/
https://www.pigprogress.net/home/changing-the-mindset-of-philippine-pig-farmers/
https://www.pids.gov.ph/publication/discussion-papers/towards-competitive-livestock-poultry-and-dairy-industries-consolidated-benchmarking-study
https://www.pids.gov.ph/publication/discussion-papers/towards-competitive-livestock-poultry-and-dairy-industries-consolidated-benchmarking-study

towards-competitive-livestock-poultry-and-dairy-industries-consolidated-benchmarking-study

(Accessed December, 2022), 2022.

[13] B. World, “Farm logistics.” Available at https://www.pressreader.com/

philippines/business-world/20200720/281852940880599 (Accessed Octo-

ber, 2022), 2020.

[14] A. Parmentola, A. Petrillo, I. Tutore, and F. De Felice, “Is blockchain able to

enhance environmental sustainability? a systematic review and research agenda

from the perspective of sustainable development goals (sdgs),” Business Strategy

and the Environment, vol. 31, no. 1, pp. 194–217, 2021.

[15] D. C. Despres, “Models for supply chain governance,” Proceedings of the 7th

European Conference on Management Leadership and Governance, pp. 535–537,

2011.

[16] O. R. Young, “The effectiveness of international institutions: hard cases and crit-

ical variables,” in Governance without Government Order and Change in World

Politics (E.-O. C. James N. Rosenau, ed.), ch. 6, Cambridge, UK: Cambridge

University Press, 1992.

[17] R. Eltantawy, “Supply chain governance role in supply chain risk management

and sustainability,” in Supply Chain Management (S. Renko, ed.), ch. 19, Rijeka:

Interchopen, 2011.

[18] Z. Cao and F. Lumineau, “Revisiting the interplay between contractual and

relational governance: A qualitative and meta-analytic investigation,” Journal

of Operations Management, vol. 33-34, pp. 15–42, 2015.

[19] H. Natarajan, S. Krause, and H. Gradstein, “Distributed ledger technology and

blockchain,” World Bank Publications - Reports 29053, The World Bank Group,

2017.

89

https://www.pids.gov.ph/publication/discussion-papers/towards-competitive-livestock-poultry-and-dairy-industries-consolidated-benchmarking-study
https://www.pids.gov.ph/publication/discussion-papers/towards-competitive-livestock-poultry-and-dairy-industries-consolidated-benchmarking-study
https://www.pressreader.com/philippines/business-world/20200720/281852940880599
https://www.pressreader.com/philippines/business-world/20200720/281852940880599

[20] M. Iansiti and K. R. Lakhani, “The truth about blockchain.” Available at https:

//hbr.org/2017/01/the-truth-about-blockchain (2017).

[21] B. Ilsoe, “The internet of value: The controversies and op-

portunities in crypto technologies.” Available at https://

www.forbes.com/sites/forbesbusinesscouncil/2022/02/02/

the-internet-of-value-the-controversies-and-opportunities-in-crypto-technologies/

?sh=302e7240110e (2022).

[22] M. Crosby, Nachiappan, P. Pattanayak, S. Verma, and V. Kalyanaraman,

“Blockchain technology beyond bitcoin.” Available at https://scet.berkeley.

edu/wp-content/uploads/BlockchainPaper.pdf (2015).

[23] D. Ravi, S. Ramachandran, R. Vignesh, V. R. Falmari, and M. Brindha, “Privacy

preserving transparent supply chain management through hyperledger fabric,”

Blockchain: Research and Applications, vol. 3, no. 2, p. 100072, 2022.

[24] S. L. Bager, C. Singh, and U. M. Persson, “Blockchain is not a silver bullet for

agro-food supply chain sustainability: Insights from a coffee case study,” Current

Research in Environmental Sustainability, vol. 4, p. 100163, 2022.

[25] A. Sarfaraz, R. K. Chakrabortty, and D. L. Essam, “The implications of

blockchain-coordinated information sharing within a supply chain: A simulation

study,” Blockchain: Research and Applications, p. 100110, 2022.

[26] K. Shuaib, J. Abdella, F. Sallabi, and M. A. Serhani, “Secure decentralized

electronic health records sharing system based on blockchains,” Journal of King

Saud University - Computer and Information Sciences, vol. 34, no. 8, Part A,

pp. 5045–5058, 2022.

90

https://hbr.org/2017/01/the-truth-about-blockchain
https://hbr.org/2017/01/the-truth-about-blockchain
https://www.forbes.com/sites/forbesbusinesscouncil/2022/02/02/the-internet-of-value-the-controversies-and-opportunities-in-crypto-technologies/?sh=302e7240110e
https://www.forbes.com/sites/forbesbusinesscouncil/2022/02/02/the-internet-of-value-the-controversies-and-opportunities-in-crypto-technologies/?sh=302e7240110e
https://www.forbes.com/sites/forbesbusinesscouncil/2022/02/02/the-internet-of-value-the-controversies-and-opportunities-in-crypto-technologies/?sh=302e7240110e
https://www.forbes.com/sites/forbesbusinesscouncil/2022/02/02/the-internet-of-value-the-controversies-and-opportunities-in-crypto-technologies/?sh=302e7240110e
https://scet.berkeley.edu/wp-content/uploads/BlockchainPaper.pdf
https://scet.berkeley.edu/wp-content/uploads/BlockchainPaper.pdf

[27] Z. Liao, J. Ai, S. Liu, Y. Zhang, and S. Liu, “Blockchain-based mobile crowd-

sourcing model with task security and task assignment,” Expert Systems with

Applications, vol. 211, p. 118526, 2022.

91

X. Appendix

A. Smart Contracts

import stringify from ’json-stringify-deterministic’;

import { Context, Contract, Param, Returns, Transaction } from ’

fabric-contract-api’;

import {

assetExists,

marshal, unmarshal,

getClientCommonName, isTransactionSubmitting,

readAsset, retrieveUser, getAssetHistory, getCount,

getQueryResultForQueryString, getQueryResultWithPagination

,

getBid, getLocation, getPig, getUser

} from ’./helpers/chaincode.helper’;

import {

AssetJsonRes, QueryString

} from ’./helpers/general.helper’;

import { Auction, DetailedAuction } from ’./models/auction’;

import { Bid } from ’./models/bid’;

import { Location } from ’./models/location’;

import { Pig } from ’./models/pig’;

import { User } from ’./models/user’;

import sampleAuctions from ’./samples/auction’;

export class AuctionContract extends Contract {

constructor () {

super(’org.porkwatch.auction’);

}

async beforeTransaction (ctx: Context): Promise<void> {

const funcAndParams = ctx.stub.getFunctionAndParameters();

const transactionName = funcAndParams.fcn;

console.log(’transactionName’, transactionName);

console.log(’isTransactionSubmitting’, isTransactionSubmitting

(transactionName));

console.log(’clientCommonName’, getClientCommonName(ctx));

if (transactionName.endsWith(’InitLedger’)) {

// Skip custom logic for InitLedger transaction

return;

}

const params = funcAndParams.params;

if (!isTransactionSubmitting(transactionName))

return;

let transactorId = params.find((param) => /^\d+$/.test(param))
;

if (!transactorId)

throw new Error(’No transactorId found, transactorId, e.g.

req.user.Id, is necessary for all transactions

updating the ledger’);

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Email !== getClientCommonName(ctx))

throw new Error(’User credentials and X.509 certificate

details do not match!’);

}

async unknownTransaction (ctx:Context): Promise<void> {

const transactionName = ctx.stub.getFunctionAndParameters().

fcn;

throw new Error(‘Unknown transaction function: ${
transactionName}‘);

}

@Transaction()

@Param(’state’, ’Auction’, ’Part formed JSON of Auction’)

async CreateAuction (ctx: Context, state: Auction, transactorId:

string): Promise<string> {

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Id !== state.SellerId)

throw new Error(‘The User with Id: ${transactor.Id} is not

the seller at the Auction‘);

const exists = await this.AuctionExists(ctx, state.Id);

if (exists)

throw new Error(‘The Auction with Id: ${state.Id} already

exists‘);

const createdAuction = Auction.newInstance(state);

const createdAuctionBytes = marshal(createdAuction);

const auctionKey = this.CreateAuctionKey(ctx, createdAuction.

Id);

await ctx.stub.putState(auctionKey, createdAuctionBytes);

const indexes = [

{

name: ’auction_pigId’,

fields: [createdAuction.PigId]

},

{

name: ’auction_sellerLocationId’,

fields: [createdAuction.SellerLocationId]

},

{

name: ’auction_startDate’,

fields: [createdAuction.StartDate]

}

];

for (let i = 0; i < indexes.length; i++) {

const fields = indexes[i].fields.map((field) => field.

toString() || ’null’);

const indexKey = ctx.stub.createCompositeKey(indexes[i].name,

fields);

// Save index entry to state. Only the key name is needed, no

need to store a duplicate copy of the marble.

// Note - passing a ’nil’ value will effectively delete the

key from state, therefore we pass null character as

value

await ctx.stub.putState(indexKey, Buffer.from(’\u0000’));

}

const eventPayload = marshal({

...createdAuction,

key: auctionKey

});

ctx.stub.setEvent(’CreateAuction’, eventPayload);

return stringify(createdAuction);

}

@Transaction()

@Param(’state’, ’string’, ’Part formed JSON of Auction’)

async CreateAuctionWithStringState (ctx: Context, state: string,

transactorId: string): Promise<string> {

let returnedAuction = ’’;

try {

const auction = JSON.parse(state) as Auction;

returnedAuction = await this.CreateAuction(ctx, auction,

transactorId);

} catch (err) {

console.log(err);

}

return returnedAuction;

}

@Transaction()

@Param(’state’, ’Auction’, ’Part formed JSON of Auction’)

async UpdateAuction (ctx: Context, state: Auction, transactorId:

string): Promise<string> {

await retrieveUser(ctx, transactorId, true) as User as User;

if (!state.Id)

throw new Error(’No auction Id provided’);

const existingAuction = unmarshal(await this.ReadAuction(ctx,

state.Id)) as Auction;

// 4th optional param here is an object that would

// override the changes from state being copied into

existingAuction

// for updatedAuction

const updatedState = Object.assign({}, existingAuction, state)

;

const updatedAuction = Auction.newInstance(updatedState);

const updatedAuctionBytes = marshal(updatedAuction);

// no need to do anything with the CouchDB indexes for update

transactions

const auctionKey = this.CreateAuctionKey(ctx, updatedAuction.

Id);

await ctx.stub.putState(auctionKey, updatedAuctionBytes);

const eventPayload = marshal({

92

...updatedAuction,

key: auctionKey

});

ctx.stub.setEvent(’UpdateAuction’, eventPayload);

return stringify(updatedAuction);

}

@Transaction()

@Param(’state’, ’string’, ’Stringified part formed JSON of

Auction’)

async UpdateAuctionWithStringState (ctx: Context, state: string,

transactorId: string): Promise<string> {

let returnedAuction = ’’;

try {

const auction = JSON.parse(state) as Auction;

returnedAuction = await this.UpdateAuction(ctx, auction,

transactorId);

} catch (err) {

console.log(err);

}

return returnedAuction;

}

@Transaction(false)

@Returns(’string’)

async GetAuctionHistory (ctx: Context, id: string): Promise<

string> {

const results = await getAssetHistory(ctx, this.

CreateAuctionKey(ctx, id));

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetCount (ctx: Context): Promise<string> {

const totalCount = unmarshal(await getCount(ctx, ’auction’));

return stringify(totalCount);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultForQueryString (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultForQueryString(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultWithPagination (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultWithPagination(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetAllAuctions (ctx: Context): Promise<string> {

const queryString = stringify({

selector: {

docType: ’auction’

}

});

return this.GetQueryResultForQueryString(ctx, queryString);

}

@Transaction(false)

@Returns(’string’)

async GetAuction (ctx: Context, id: string, isDetailed?:boolean)

: Promise<string> {

const auction = unmarshal(await this.ReadAuction(ctx, id)) as

Auction;

if (!auction || !Object.keys(auction))

throw new Error(‘The Auction with Id: ${id} does not exist‘);

if (!isDetailed)

return stringify(auction);

const pig = unmarshal(await getPig(ctx, auction.PigId)) as Pig

;

const seller = unmarshal(await getUser(ctx, auction.SellerId))

as User;

const sellerLocation = unmarshal(await getLocation(ctx,

auction.SellerLocationId)) as Location;

const winningBid = auction.WinningBidId

? unmarshal(await getBid(ctx, auction.WinningBidId)) as Bid

: null;

let activeBids: Bid[] = [];

for (const id of auction.ActiveBidIds) {

const activeBid = unmarshal(await getBid(ctx, id)) as Bid;

activeBids.push(activeBid);

}

let canceledBids: Bid[] = [];

for (const id of auction.CanceledBidIds) {

const activeBid = unmarshal(await getBid(ctx, id)) as Bid;

canceledBids.push(activeBid);

}

let rejectedBids: Bid[] = [];

for (const id of auction.RejectedBidIds) {

const rejectedBid = unmarshal(await getBid(ctx, id)) as Bid;

rejectedBids.push(rejectedBid);

}

const bidAcceptedBy = auction.BidAcceptedById

? unmarshal(await getUser(ctx, auction.BidAcceptedById)) as

User

: null;

const canceledBy = auction.CanceledById

? unmarshal(await getUser(ctx, auction.CanceledById)) as User

: null;

const detailedAuction: DetailedAuction = {

...auction,

Pig: pig,

Seller: seller,

SellerLocation: sellerLocation,

WinningBid: winningBid,

ActiveBids: activeBids,

CanceledBids: canceledBids,

RejectedBids: rejectedBids,

BidAcceptedBy: bidAcceptedBy,

CanceledBy: canceledBy

}

return stringify(detailedAuction);

}

@Transaction()

async InitLedger (ctx: Context) {

// initialize the ledger with activity data

for await (const auction of sampleAuctions) {

try {

await this.CreateAuction(ctx, auction, auction.SellerId);

} catch (err) {

console.log(err);

}

}

ctx.stub.setEvent(’AuctionInitLedger’, Buffer.from(’Auction

Ledger Initialized’));

}

CorrectQueryString (queryString: string | QueryString): string {

const parsedQueryString = typeof queryString === ’string’

? unmarshal(queryString) as QueryString

: queryString;

const correctedQueryString = stringify({

...parsedQueryString,

selector: {

...parsedQueryString.selector,

docType: ’auction’

}

});

return correctedQueryString;

}

CreateAuctionKey (ctx: Context, id: string): string {

return ctx.stub.createCompositeKey(’auction’, [id]);

}

async ReadAuction (ctx: Context, id: string): Promise<Uint8Array

> {

return readAsset(ctx, this.CreateAuctionKey(ctx, id));

}

async AuctionExists (ctx: Context, id: string): Promise<boolean>

{

return assetExists(ctx, this.CreateAuctionKey(ctx, id));

}

}

import stringify from ’json-stringify-deterministic’;

93

import { Context, Contract, Param, Returns, Transaction } from ’

fabric-contract-api’;

import {

assetExists,

marshal, unmarshal,

getClientCommonName, isTransactionSubmitting,

readAsset, retrieveUser, getAssetHistory, getCount,

getQueryResultForQueryString, getQueryResultWithPagination

,

getAuction, getLocation, getPig, getUser

} from ’./helpers/chaincode.helper’;

import {

AssetJsonRes, QueryString

} from ’./helpers/general.helper’;

import { Auction } from ’./models/auction’;

import { Bid, DetailedBid } from ’./models/bid’;

import { Location } from ’./models/location’;

import { Pig } from ’./models/pig’;

import { User } from ’./models/user’;

import sampleBids from ’./samples/bid’;

export class BidContract extends Contract {

constructor () {

super(’org.porkwatch.bid’);

}

async beforeTransaction (ctx: Context): Promise<void> {

const funcAndParams = ctx.stub.getFunctionAndParameters();

const transactionName = funcAndParams.fcn;

console.log(’transactionName’, transactionName);

console.log(’isTransactionSubmitting’, isTransactionSubmitting

(transactionName));

console.log(’clientCommonName’, getClientCommonName(ctx));

if (transactionName.endsWith(’InitLedger’)) {

// Skip custom logic for InitLedger transaction

return;

}

const params = funcAndParams.params;

if (!isTransactionSubmitting(transactionName))

return;

let transactorId = params.find((param) => /^\d+$/.test(param))
;

if (!transactorId)

throw new Error(’No transactorId found, transactorId, e.g.

req.user.Id, is necessary for all transactions

updating the ledger’);

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Email !== getClientCommonName(ctx))

throw new Error(’User credentials and X.509 certificate

details do not match!’);

}

async unknownTransaction (ctx:Context): Promise<void> {

const transactionName = ctx.stub.getFunctionAndParameters().

fcn;

throw new Error(‘Unknown transaction function: ${
transactionName}‘);

}

@Transaction()

@Param(’state’, ’Bid’, ’Part formed JSON of Bid’)

async CreateBid (ctx: Context, state: Bid, transactorId: string)

: Promise<string> {

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Id !== state.BuyerId)

throw new Error(‘The User with Id: ${transactor.Id} is not

the buyer of the Bid‘);

const exists = await this.BidExists(ctx, state.Id);

if (exists)

throw new Error(‘The Bid with Id: ${state.Id} already exists

‘);

const createdBid = Bid.newInstance(state);

const createdBidBytes = marshal(createdBid);

const bidKey = this.CreateBidKey(ctx, createdBid.Id);

await ctx.stub.putState(bidKey, createdBidBytes);

const indexes = [

{

name: ’bid_pigId’,

fields: [createdBid.PigId]

},

{

name: ’bid_sellerLocationId’,

fields: [createdBid.SellerLocationId]

},

{

name: ’bid_buyerLocationId’,

fields: [createdBid.BuyerLocationId]

},

{

name: ’bid_offerDate’,

fields: [createdBid.OfferDate]

}

];

for (let i = 0; i < indexes.length; i++) {

const fields = indexes[i].fields.map((field) => field.

toString() || ’null’);

const indexKey = ctx.stub.createCompositeKey(indexes[i].name,

fields);

// Save index entry to state. Only the key name is needed, no

need to store a duplicate copy of the marble.

// Note - passing a ’nil’ value will effectively delete the

key from state, therefore we pass null character as

value

await ctx.stub.putState(indexKey, Buffer.from(’\u0000’));

}

const eventPayload = marshal({

...createdBid,

key: bidKey

});

ctx.stub.setEvent(’CreateBid’, eventPayload);

return stringify(createdBid);

}

@Transaction()

@Param(’state’, ’string’, ’Part formed JSON of Bid’)

async CreateBidWithStringState (ctx: Context, state: string,

transactorId: string): Promise<string> {

let returnedBid = ’’;

try {

const bid = JSON.parse(state) as Bid;

returnedBid = await this.CreateBid(ctx, bid, transactorId);

} catch (err) {

console.log(err);

}

return returnedBid;

}

@Transaction()

@Param(’state’, ’Bid’, ’Part formed JSON of Bid’)

async UpdateBid (ctx: Context, state: Bid, transactorId: string)

: Promise<string> {

await retrieveUser(ctx, transactorId, true) as User;

if (!state.Id)

throw new Error(’No bid Id provided’);

const existingBid = unmarshal(await this.ReadBid(ctx, state.Id

)) as Bid;

// 4th optional param here is an object that would

// override the changes from state being copied into

existingBid

// for updatedBid

const updatedState = Object.assign({}, existingBid, state);

const updatedBid = Bid.newInstance(updatedState);

const updatedBidBytes = marshal(updatedBid);

// no need to do anything with the CouchDB indexes for update

transactions

const bidKey = this.CreateBidKey(ctx, updatedBid.Id);

await ctx.stub.putState(bidKey, updatedBidBytes);

const eventPayload = marshal({

...updatedBid,

key: bidKey

});

ctx.stub.setEvent(’UpdateBid’, eventPayload);

return stringify(updatedBid);

}

@Transaction()

@Param(’state’, ’string’, ’Stringified part formed JSON of Bid’)

async UpdateBidWithStringState (ctx: Context, state: string,

transactorId: string): Promise<string> {

94

let returnedBid = ’’;

try {

const bid = JSON.parse(state) as Bid;

returnedBid = await this.UpdateBid(ctx, bid, transactorId);

} catch (err) {

console.log(err);

}

return returnedBid;

}

@Transaction(false)

@Returns(’string’)

async GetBidHistory (ctx: Context, id: string): Promise<string>

{

const results = await getAssetHistory(ctx, this.CreateBidKey(

ctx, id));

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetCount (ctx: Context): Promise<string> {

const totalCount = unmarshal(await getCount(ctx, ’bid’));

return stringify(totalCount);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultForQueryString (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultForQueryString(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultWithPagination (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultWithPagination(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetAllBids (ctx: Context): Promise<string> {

const queryString = stringify({

selector: {

docType: ’bid’

}

});

return this.GetQueryResultForQueryString(ctx, queryString);

}

@Transaction(false)

@Returns(’string’)

async GetBid (ctx: Context, id: string, isDetailed?:boolean):

Promise<string> {

const bid = unmarshal(await this.ReadBid(ctx, id)) as Bid;

if (!bid || !Object.keys(bid))

throw new Error(‘The Bid with Id: ${id} does not exist‘);

if (!isDetailed)

return stringify(bid);

const auction = unmarshal(await getAuction(ctx, bid.AuctionId)

) as Auction;

const pig = unmarshal(await getPig(ctx, bid.PigId)) as Pig;

const seller = unmarshal(await getUser(ctx, bid.SellerId)) as

User;

const sellerLocation = unmarshal(await getLocation(ctx, bid.

SellerLocationId)) as Location;

const buyer = unmarshal(await getUser(ctx, bid.BuyerId)) as

User;

const buyerLocation = unmarshal(await getLocation(ctx, bid.

BuyerLocationId)) as Location;

const acceptedBy = bid.AcceptedById

? unmarshal(await getUser(ctx, bid.AcceptedById)) as User

: null;

const rejectedBy = bid.RejectedById

?unmarshal(await getUser(ctx, bid.RejectedById)) as User

: null;

const canceledBy = bid.CanceledById

? unmarshal(await getUser(ctx, bid.CanceledById)) as User

: null;

const detailedBid: DetailedBid = {

...bid,

Auction: auction,

Pig: pig,

Seller: seller,

SellerLocation: sellerLocation,

Buyer: buyer,

BuyerLocation: buyerLocation,

AcceptedBy: acceptedBy,

RejectedBy: rejectedBy,

CanceledBy: canceledBy

};

return stringify(detailedBid);

}

@Transaction()

async InitLedger (ctx: Context) {

// initialize the ledger with activity data

for await (const bid of sampleBids) {

try {

await this.CreateBid(ctx, bid, bid.BuyerId);

} catch (err) {

console.log(err);

}

}

ctx.stub.setEvent(’BidInitLedger’, Buffer.from(’Bid Ledger

Initialized’));

}

CorrectQueryString (queryString: string | QueryString): string {

const parsedQueryString = typeof queryString === ’string’

? unmarshal(queryString) as QueryString

: queryString;

const correctedQueryString = stringify({

...parsedQueryString,

selector: {

...parsedQueryString.selector,

docType: ’bid’

}

});

return correctedQueryString;

}

CreateBidKey (ctx: Context, id: string): string {

return ctx.stub.createCompositeKey(’bid’, [id]);

}

async ReadBid (ctx: Context, id: string): Promise<Uint8Array> {

return readAsset(ctx, this.CreateBidKey(ctx, id));

}

async BidExists (ctx: Context, id: string): Promise<boolean> {

return assetExists(ctx, this.CreateBidKey(ctx, id));

}

}

import stringify from ’json-stringify-deterministic’;

import { Context, Contract, Param, Returns, Transaction } from ’

fabric-contract-api’;

import {

assetExists,

marshal, unmarshal,

getClientCommonName, isTransactionSubmitting,

readAsset, retrieveUser, getAssetHistory, getCount,

getQueryResultForQueryString, getQueryResultWithPagination

,

getLocation, getProduct, getUser

} from ’./helpers/chaincode.helper’;

import {

AssetJsonRes, QueryString

} from ’./helpers/general.helper’;

import { BuyOrder, DetailedBuyOrder } from ’./models/buyOrder’;

import { Location } from ’./models/location’;

import { Product } from ’./models/product’;

import { User } from ’./models/user’;

import sampleBuyOrders from ’./samples/buyOrder’;

export class BuyOrderContract extends Contract {

constructor () {

super(’org.porkwatch.buyorder’);

}

async beforeTransaction (ctx: Context): Promise<void> {

const funcAndParams = ctx.stub.getFunctionAndParameters();

95

const transactionName = funcAndParams.fcn;

console.log(’transactionName’, transactionName);

console.log(’isTransactionSubmitting’, isTransactionSubmitting

(transactionName));

console.log(’clientCommonName’, getClientCommonName(ctx));

if (transactionName.endsWith(’InitLedger’)) {

// Skip custom logic for InitLedger transaction

return;

}

const params = funcAndParams.params;

if (!isTransactionSubmitting(transactionName))

return;

let transactorId = params.find((param) => /^\d+$/.test(param))
;

if (!transactorId)

throw new Error(’No transactorId found, transactorId, e.g.

req.user.Id, is necessary for all transactions

updating the ledger’);

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Email !== getClientCommonName(ctx))

throw new Error(’User credentials and X.509 certificate

details do not match!’);

}

async unknownTransaction (ctx:Context): Promise<void> {

const transactionName = ctx.stub.getFunctionAndParameters().

fcn;

throw new Error(‘Unknown transaction function: ${
transactionName}‘);

}

@Transaction()

@Param(’state’, ’BuyOrder’, ’Part formed JSON of BuyOrder’)

async CreateBuyOrder (ctx: Context, state: BuyOrder,

transactorId: string): Promise<string> {

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Id !== state.RetailerId)

throw new Error(‘The User with Id: ${transactor.Id} is not

the initiator of the BuyOrder‘);

const exists = await this.BuyOrderExists(ctx, state.Id);

if (exists)

throw new Error(‘The BuyOrder with Id: ${state.Id} already

exists‘);

const createdBuyOrder = BuyOrder.newInstance(state);

const createdBuyOrderBytes = marshal(createdBuyOrder);

const buyOrderKey = this.CreateBuyOrderKey(ctx,

createdBuyOrder.Id);

await ctx.stub.putState(buyOrderKey, createdBuyOrderBytes);

const indexes = [

{

name: ’buyOrder_slaughterhouseId’,

fields: [createdBuyOrder.SlaughterhouseId]

},

{

name: ’buyOrder_retailerLocationId’,

fields: [createdBuyOrder.RetailerLocationId]

},

{

name: ’buyOrder_orderDate’,

fields: [createdBuyOrder.OrderDate]

}

];

for (let i = 0; i < indexes.length; i++) {

const fields = indexes[i].fields.map((field) => field.

toString() || ’null’);

const indexKey = ctx.stub.createCompositeKey(indexes[i].name,

fields);

// Save index entry to state. Only the key name is needed, no

need to store a duplicate copy of the marble.

// Note - passing a ’nil’ value will effectively delete the

key from state, therefore we pass null character as

value

await ctx.stub.putState(indexKey, Buffer.from(’\u0000’));

}

const eventPayload = marshal({

...createdBuyOrder,

key: buyOrderKey

});

ctx.stub.setEvent(’CreateBuyOrder’, eventPayload);

return stringify(createdBuyOrder);

}

@Transaction()

@Param(’state’, ’string’, ’Part formed JSON of BuyOrder’)

async CreateBuyOrderWithStringState (ctx: Context, state: string

, transactorId: string): Promise<string> {

let returnedBuyOrder = ’’;

try {

const buyOrder = JSON.parse(state) as BuyOrder;

returnedBuyOrder = await this.CreateBuyOrder(ctx, buyOrder,

transactorId);

} catch (err) {

console.log(err);

}

return returnedBuyOrder;

}

@Transaction()

@Param(’state’, ’BuyOrder’, ’Part formed JSON of BuyOrder’)

async UpdateBuyOrder (ctx: Context, state: BuyOrder,

transactorId: string): Promise<void> {

await retrieveUser(ctx, transactorId, true) as User;

if (!state.Id)

throw new Error(’No buyOrder Id provided’);

const existingBuyOrder = unmarshal(await this.ReadBuyOrder(ctx

, state.Id)) as BuyOrder;

// 4th optional param here is an object that would

// override the changes from state being copied into

existingBuyOrder

// for updatedBuyOrder

const updatedState = Object.assign({}, existingBuyOrder, state

);

const updatedBuyOrder = BuyOrder.newInstance(updatedState);

const updatedBuyOrderBytes = marshal(updatedBuyOrder);

// no need to do anything with the CouchDB indexes for update

transactions

const buyOrderKey = this.CreateBuyOrderKey(ctx,

updatedBuyOrder.Id);

await ctx.stub.putState(buyOrderKey, updatedBuyOrderBytes);

const eventPayload = marshal({

...updatedBuyOrder,

key: buyOrderKey

});

ctx.stub.setEvent(’UpdateBuyOrder’, eventPayload);

}

@Transaction()

@Param(’state’, ’string’, ’Stringified part formed JSON of

BuyOrder’)

async UpdateBuyOrderWithStringState (ctx: Context, state: string

, transactorId: string): Promise<void> {

const buyOrder = JSON.parse(state) as BuyOrder;

try {

await this.UpdateBuyOrder(ctx, buyOrder, transactorId);

} catch (err) {

console.log(err);

}

}

@Transaction(false)

@Returns(’string’)

async GetBuyOrderHistory (ctx: Context, id: string): Promise<

string> {

const results = await getAssetHistory(ctx, this.

CreateBuyOrderKey(ctx, id));

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetCount (ctx: Context): Promise<string> {

const totalCount = unmarshal(await getCount(ctx, ’buyOrder’));

return stringify(totalCount);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultForQueryString (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultForQueryString(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

96

@Transaction(false)

@Returns(’string’)

async GetQueryResultWithPagination (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultWithPagination(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetAllBuyOrders (ctx: Context): Promise<string> {

const queryString = stringify({

selector: {

docType: ’buyOrder’

}

});

return this.GetQueryResultForQueryString(ctx, queryString);

}

@Transaction(false)

@Returns(’string’)

async GetBuyOrder (ctx: Context, id: string, isDetailed?:boolean

): Promise<string> {

const buyOrder = unmarshal(await this.ReadBuyOrder(ctx, id))

as BuyOrder;

if (!buyOrder || !Object.keys(buyOrder))

throw new Error(‘The BuyOrder with Id: ${id} does not exist‘)

;

if (!isDetailed)

return stringify(buyOrder);

const slaughterhouse = unmarshal(await getLocation(ctx,

buyOrder.SlaughterhouseId)) as Location;

const retailer = unmarshal(await getUser(ctx, buyOrder.

RetailerId)) as User;

const retailerLocation = unmarshal(await getLocation(ctx,

buyOrder.RetailerLocationId)) as Location;

let products: Product[] = [];

for (const id of buyOrder.ProductIds) {

const product = unmarshal(await getProduct(ctx, id)) as

Product;

products.push(product);

}

const detailedBuyOrder: DetailedBuyOrder = {

...buyOrder,

Slaughterhouse: slaughterhouse,

Retailer: retailer,

RetailerLocation: retailerLocation,

Products: products

};

return stringify(detailedBuyOrder);

}

@Transaction()

async InitLedger (ctx: Context) {

// initialize the ledger with activity data

for await (const buyOrder of sampleBuyOrders) {

try {

await this.CreateBuyOrder(ctx, buyOrder, buyOrder.

RetailerId);

} catch (err) {

console.log(err);

}

}

ctx.stub.setEvent(’BuyOrderInitLedger’, Buffer.from(’Buy Order

Ledger Initialized’));

}

CorrectQueryString (queryString: string | QueryString): string {

const parsedQueryString = typeof queryString === ’string’

? unmarshal(queryString) as QueryString

: queryString;

const correctedQueryString = stringify({

...parsedQueryString,

selector: {

...parsedQueryString.selector,

docType: ’buyOrder’

}

});

return correctedQueryString;

}

CreateBuyOrderKey (ctx: Context, id: string): string {

return ctx.stub.createCompositeKey(’buyOrder’, [id]);

}

async ReadBuyOrder (ctx: Context, id: string): Promise<

Uint8Array> {

return readAsset(ctx, this.CreateBuyOrderKey(ctx, id));

}

async BuyOrderExists (ctx: Context, id: string): Promise<boolean

> {

return assetExists(ctx, this.CreateBuyOrderKey(ctx, id));

}

}

import stringify from ’json-stringify-deterministic’;

import { Context, Contract, Param, Returns, Transaction } from ’

fabric-contract-api’;

import {

assetExists,

marshal, unmarshal,

getClientCommonName, isTransactionSubmitting,

readAsset, retrieveUser, getAssetHistory, getCount,

getQueryResultForQueryString, getQueryResultWithPagination

,

getPig, getProduct, getUser

} from ’./helpers/chaincode.helper’;

import {

AssetJsonRes, QueryString

} from ’./helpers/general.helper’;

import { Location, DetailedLocation } from ’./models/location’;

import { Pig } from ’./models/pig’;

import { Product } from ’./models/product’;

import { User } from ’./models/user’;

import sampleLocations from ’./samples/location’;

export class LocationContract extends Contract {

constructor () {

super(’org.porkwatch.location’);

}

async beforeTransaction (ctx: Context): Promise<void> {

const funcAndParams = ctx.stub.getFunctionAndParameters();

const transactionName = funcAndParams.fcn;

console.log(’transactionName’, transactionName);

console.log(’isTransactionSubmitting’, isTransactionSubmitting

(transactionName));

console.log(’clientCommonName’, getClientCommonName(ctx));

if (transactionName.endsWith(’InitLedger’)) {

// Skip custom logic for InitLedger transaction

return;

}

const params = funcAndParams.params;

if (!isTransactionSubmitting(transactionName))

return;

let transactorId = params.find((param) => /^\d+$/.test(param))
;

if (!transactorId)

throw new Error(’No transactorId found, transactorId, e.g.

req.user.Id, is necessary for all transactions

updating the ledger’);

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Email !== getClientCommonName(ctx))

throw new Error(’User credentials and X.509 certificate

details do not match!’);

}

async unknownTransaction (ctx:Context): Promise<void> {

const transactionName = ctx.stub.getFunctionAndParameters().

fcn;

throw new Error(‘Unknown transaction function: ${
transactionName}‘);

}

@Transaction()

@Param(’state’, ’Location’, ’Part formed JSON of Location’)

async CreateLocation (ctx: Context, state: Location,

transactorId: string): Promise<string> {

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Id !== state.ManagerIds[0])

throw new Error(‘The User with Id: ${transactor.Id} is not

the manager of the Location‘);

97

const exists = await this.LocationExists(ctx, state.Id);

if (exists)

throw new Error(‘The Location with Id: ${state.Id} already

exists‘);

const createdLocation = Location.newInstance(state);

const createdLocationBytes = marshal(createdLocation);

const locationKey = this.CreateLocationKey(ctx,

createdLocation.Id);

await ctx.stub.putState(locationKey, createdLocationBytes);

const indexes = [

{

name: ’location_type’,

fields: [createdLocation.Type]

},

{

name: ’location_registrationDate’,

fields: [createdLocation.RegistrationDate]

}

];

for (let i = 0; i < indexes.length; i++) {

const fields = indexes[i].fields.map((field) => field.

toString() || ’null’);

const indexKey = ctx.stub.createCompositeKey(indexes[i].name,

fields);

// Save index entry to state. Only the key name is needed, no

need to store a duplicate copy of the marble.

// Note - passing a ’nil’ value will effectively delete the

key from state, therefore we pass null character as

value

await ctx.stub.putState(indexKey, Buffer.from(’\u0000’));

}

const eventPayload = marshal({

...createdLocation,

key: locationKey

});

ctx.stub.setEvent(’CreateLocation’, eventPayload);

return stringify(createdLocation);

}

@Transaction()

@Param(’state’, ’string’, ’Part formed JSON of Location’)

async CreateLocationWithStringState (ctx: Context, state: string

, transactorId: string): Promise<string> {

let returnedLocation = ’’;

try {

const location = JSON.parse(state) as Location;

returnedLocation = await this.CreateLocation(ctx, location,

transactorId);

} catch (err) {

console.log(err);

}

return returnedLocation;

}

@Transaction()

@Param(’state’, ’Location’, ’Part formed JSON of Location’)

async UpdateLocation (ctx: Context, state: Location,

transactorId: string): Promise<string> {

await retrieveUser(ctx, transactorId, true) as User;

if (!state.Id)

throw new Error(’No location Id provided’);

const existingLocation = unmarshal(await this.ReadLocation(ctx

, state.Id)) as Location;

// 4th optional param here is an object that would

// override the changes from state being copied into

existingLocation

// for updatedLocation

const updatedState = Object.assign({}, existingLocation, state

);

const updatedLocation = Location.newInstance(updatedState);

const updatedLocationBytes = marshal(updatedLocation);

// no need to do anything with the CouchDB indexes for update

transactions

const locationKey = this.CreateLocationKey(ctx,

updatedLocation.Id);

await ctx.stub.putState(locationKey, updatedLocationBytes);

const eventPayload = marshal({

...updatedLocation,

key: locationKey

});

ctx.stub.setEvent(’UpdateLocation’, eventPayload);

return stringify(updatedLocation);

}

@Transaction()

@Param(’state’, ’string’, ’Stringified part formed JSON of

Location’)

async UpdateLocationWithStringState (ctx: Context, state: string

, transactorId: string): Promise<string> {

let returnedLocation = ’’;

try {

const location = JSON.parse(state) as Location;

returnedLocation = await this.UpdateLocation(ctx, location,

transactorId);

} catch (err) {

console.log(err);

}

return returnedLocation;

}

@Transaction(false)

@Returns(’string’)

async GetLocationHistory (ctx: Context, id: string): Promise<

string> {

const results = await getAssetHistory(ctx, this.

CreateLocationKey(ctx, id));

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetCount (ctx: Context): Promise<string> {

const totalCount = unmarshal(await getCount(ctx, ’location’));

return stringify(totalCount);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultForQueryString (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultForQueryString(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultWithPagination (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultWithPagination(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetAllLocations (ctx: Context): Promise<string> {

const queryString = stringify({

selector: {

docType: ’location’

}

});

return this.GetQueryResultForQueryString(ctx, queryString);

}

@Transaction(false)

@Returns(’string’)

async GetLocation (ctx: Context, id: string, isDetailed?:boolean

): Promise<string> {

const location = unmarshal(await this.ReadLocation(ctx, id))

as Location;

if (!location || !Object.keys(location))

throw new Error(‘The Location with Id: ${id} does not exist‘)

;

if (!isDetailed)

return stringify(location);

let members: User[] = [];

for (const id of location.MemberIds) {

const member = unmarshal(await getUser(ctx, id)) as User;

members.push(member);

}

let managers: User[] = [];

for (const id of location.ManagerIds) {

98

const manager = unmarshal(await getUser(ctx, id)) as User;

managers.push(manager);

}

let pigs: Pig[] = [];

for (const id of location.PigIds) {

const pig = unmarshal(await getPig(ctx, id)) as Pig;

pigs.push(pig);

}

let products: Product[] = [];

for (const id of location.ProductIds) {

const product = unmarshal(await getProduct(ctx, id)) as

Product;

products.push(product);

}

const detailedLocation: DetailedLocation = {

...location,

Members: members,

Managers: managers,

Pigs: pigs,

Products: products

};

return stringify(detailedLocation);

}

@Transaction()

async InitLedger (ctx: Context) {

// initialize the ledger with activity data

for await (const location of sampleLocations) {

try {

await this.CreateLocation(ctx, location, location.

ManagerIds[0]);

} catch (err) {

console.log(err);

}

}

ctx.stub.setEvent(’LocationInitLedger’, Buffer.from(’Location

Ledger Initialized’));

}

CorrectQueryString (queryString: string | QueryString): string {

const parsedQueryString = typeof queryString === ’string’

? unmarshal(queryString) as QueryString

: queryString;

const correctedQueryString = stringify({

...parsedQueryString,

selector: {

...parsedQueryString.selector,

docType: ’location’

}

});

return correctedQueryString;

}

CreateLocationKey (ctx: Context, id: string): string {

return ctx.stub.createCompositeKey(’location’, [id]);

}

async ReadLocation (ctx: Context, id: string): Promise<

Uint8Array> {

return readAsset(ctx, this.CreateLocationKey(ctx, id));

}

async LocationExists (ctx: Context, id: string): Promise<boolean

> {

return assetExists(ctx, this.CreateLocationKey(ctx, id));

}

}

import stringify from ’json-stringify-deterministic’;

import { Context, Contract, Param, Returns, Transaction } from ’

fabric-contract-api’;

import {

assetExists,

marshal, unmarshal,

getClientCommonName, isTransactionSubmitting,

readAsset, retrieveUser, getAssetHistory, getCount,

getQueryResultForQueryString, getQueryResultWithPagination

,

getBid, getTransfer, getUser

} from ’./helpers/chaincode.helper’;

import {

AssetJsonRes, QueryString

} from ’./helpers/general.helper’;

import { Bid } from ’./models/bid’;

import { Notification, DetailedNotification } from ’./models/

notification’;

import { Transfer } from ’./models/transfer’;

import { User } from ’./models/user’;

import sampleNotifications from ’./samples/notification’;

export class NotificationContract extends Contract {

constructor () {

super(’org.porkwatch.notification’);

}

async beforeTransaction (ctx: Context): Promise<void> {

const funcAndParams = ctx.stub.getFunctionAndParameters();

const transactionName = funcAndParams.fcn;

console.log(’transactionName’, transactionName);

console.log(’isTransactionSubmitting’, isTransactionSubmitting

(transactionName));

console.log(’clientCommonName’, getClientCommonName(ctx));

if (transactionName.endsWith(’InitLedger’)) {

// Skip custom logic for InitLedger transaction

return;

}

const params = funcAndParams.params;

if (!isTransactionSubmitting(transactionName))

return;

let transactorId = params.find((param) => /^\d+$/.test(param))
;

if (!transactorId)

throw new Error(’No transactorId found, transactorId, e.g.

req.user.Id, is necessary for all transactions

updating the ledger’);

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Email !== getClientCommonName(ctx))

throw new Error(’User credentials and X.509 certificate

details do not match!’);

}

async unknownTransaction (ctx:Context): Promise<void> {

const transactionName = ctx.stub.getFunctionAndParameters().

fcn;

throw new Error(‘Unknown transaction function: ${
transactionName}‘);

}

@Transaction()

@Param(’state’, ’Notification’, ’Part formed JSON of

Notification’)

async CreateNotification (ctx: Context, state: Notification,

transactorId: string): Promise<string> {

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Id !== state.InitiatorId)

throw new Error(‘The User with Id: ${transactor.Id} is not

the initiator of the Notification‘);

const exists = await this.NotificationExists(ctx, state.Id);

if (exists)

throw new Error(‘The Notification with Id: ${state.Id}
already exists‘);

const createdNotification = Notification.newInstance(state);

const createdNotificationBytes = marshal(createdNotification);

const notificationKey = this.CreateNotificationKey(ctx,

createdNotification.Id);

await ctx.stub.putState(notificationKey,

createdNotificationBytes);

const indexes = [

{

name: ’notification_issuanceDate’,

fields: [createdNotification.IssuanceDate]

}

];

for (let i = 0; i < indexes.length; i++) {

const fields = indexes[i].fields.map((field) => field.

toString() || ’null’);

const indexKey = ctx.stub.createCompositeKey(indexes[i].name,

fields);

// Save index entry to state. Only the key name is needed, no

need to store a duplicate copy of the marble.

// Note - passing a ’nil’ value will effectively delete the

99

key from state, therefore we pass null character as

value

await ctx.stub.putState(indexKey, Buffer.from(’\u0000’));

}

const eventPayload = marshal({

...createdNotification,

key: notificationKey

});

ctx.stub.setEvent(’CreateNotification’, eventPayload);

return stringify(createdNotification);

}

@Transaction()

@Param(’state’, ’string’, ’Part formed JSON of Notification’)

async CreateNotificationWithStringState (ctx: Context, state:

string, transactorId: string): Promise<string> {

let returnedNotification = ’’;

try {

const notification = JSON.parse(state) as Notification;

returnedNotification = await this.CreateNotification(ctx,

notification, transactorId);

} catch (err) {

console.log(err);

}

return returnedNotification;

}

@Transaction()

@Param(’state’, ’Notification’, ’Part formed JSON of

Notification’)

async UpdateNotification (ctx: Context, state: Notification,

transactorId: string): Promise<string> {

await retrieveUser(ctx, transactorId, true) as User;

if (!state.Id)

throw new Error(’No notification Id provided’);

const existingNotification = unmarshal(await this.

ReadNotification(ctx, state.Id)) as Notification;

// 4th optional param here is an object that would

// override the changes from state being copied into

existingNotification

// for updatedNotification

const updatedState = Object.assign({}, existingNotification,

state);

const updatedNotification = Notification.newInstance(

updatedState);

const updatedNotificationBytes = marshal(updatedNotification);

// no need to do anything with the CouchDB indexes for update

transactions

const notificationKey = this.CreateNotificationKey(ctx,

updatedNotification.Id);

await ctx.stub.putState(notificationKey,

updatedNotificationBytes);

const eventPayload = marshal({

...updatedNotification,

key: notificationKey

});

ctx.stub.setEvent(’UpdateNotification’, eventPayload);

return stringify(updatedNotification);

}

@Transaction()

@Param(’state’, ’string’, ’Stringified part formed JSON of

Notification’)

async UpdateNotificationWithStringState (ctx: Context, state:

string, transactorId: string): Promise<string> {

let returnedNotification = ’’;

try {

const notification = JSON.parse(state) as Notification;

await this.UpdateNotification(ctx, notification, transactorId

);

} catch (err) {

console.log(err);

}

return returnedNotification;

}

@Transaction(false)

@Returns(’string’)

async GetNotificationHistory (ctx: Context, id: string): Promise

<string> {

const results = await getAssetHistory(ctx, this.

CreateNotificationKey(ctx, id));

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetCount (ctx: Context): Promise<string> {

const totalCount = unmarshal(await getCount(ctx, ’notification

’));

return stringify(totalCount);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultForQueryString (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultForQueryString(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultWithPagination (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultWithPagination(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetAllNotifications (ctx: Context): Promise<string> {

const queryString = stringify({

selector: {

docType: ’notification’

}

});

return this.GetQueryResultForQueryString(ctx, queryString);

}

@Transaction(false)

@Returns(’string’)

async GetNotification (ctx: Context, id: string, isDetailed?:

boolean): Promise<string> {

const notification = unmarshal(await this.ReadNotification(ctx

, id)) as Notification;

if (!notification || !Object.keys(notification))

throw new Error(‘The Notification with Id: ${id} does not

exist‘);

if (!isDetailed)

return stringify(notification);

const initiator = unmarshal(await getUser(ctx, notification.

InitiatorId)) as User;

let recipients: User[] = [];

for (const id of notification.RecipientIds) {

const recipient = unmarshal(await getUser(ctx, id)) as User;

recipients.push(recipient);

}

const bid = unmarshal(await getBid(ctx, notification.BidId))

as Bid;

const transfer = unmarshal(await getTransfer(ctx, notification

.TransferId)) as Transfer;

const detailedNotification: DetailedNotification = {

...notification,

Initiator: initiator,

Recipients: recipients,

Bid: bid,

Transfer: transfer

}

return stringify(detailedNotification);

}

@Transaction()

async InitLedger (ctx: Context) {

// initialize the ledger with activity data

for await (const notification of sampleNotifications) {

try {

await this.CreateNotification(ctx, notification,

notification.InitiatorId);

} catch (err) {

console.log(err);

}

100

}

ctx.stub.setEvent(’NotificationInitLedger’, Buffer.from(’

Notification Ledger Initialized’));

}

CorrectQueryString (queryString: string | QueryString): string {

const parsedQueryString = typeof queryString === ’string’

? unmarshal(queryString) as QueryString

: queryString;

const correctedQueryString = stringify({

...parsedQueryString,

selector: {

...parsedQueryString.selector,

docType: ’notification’

}

});

return correctedQueryString;

}

CreateNotificationKey (ctx: Context, id: string): string {

return ctx.stub.createCompositeKey(’notification’, [id]);

}

async ReadNotification (ctx: Context, id: string): Promise<

Uint8Array> {

return readAsset(ctx, this.CreateNotificationKey(ctx, id));

}

async NotificationExists (ctx: Context, id: string): Promise<

boolean> {

return assetExists(ctx, this.CreateNotificationKey(ctx, id));

}

}

import stringify from ’json-stringify-deterministic’;

import { Context, Contract, Param, Returns, Transaction } from ’

fabric-contract-api’;

import {

assetExists,

marshal, unmarshal,

getClientCommonName, isTransactionSubmitting,

readAsset, retrieveUser, getCount, getQueryResultForQueryString

} from ’./helpers/chaincode.helper’;

import {

AssetJsonRes, QueryString

} from ’./helpers/general.helper’;

import { Password } from ’./models/password’;

import { User } from ’./models/user’;

import samplePasswords from ’./samples/password’;

export class PasswordContract extends Contract {

constructor () {

super(’org.porkwatch.password’);

}

async beforeTransaction (ctx: Context): Promise<void> {

const funcAndParams = ctx.stub.getFunctionAndParameters();

const transactionName = funcAndParams.fcn;

console.log(’transactionName’, transactionName);

console.log(’isTransactionSubmitting’, isTransactionSubmitting

(transactionName));

console.log(’clientCommonName’, getClientCommonName(ctx));

if (transactionName.endsWith(’InitLedger’)) {

// Skip custom logic for InitLedger transaction

return;

}

const params = funcAndParams.params;

if (!isTransactionSubmitting(transactionName))

return;

let transactorId = params.find((param) => /^\d+$/.test(param))
;

if (!transactorId)

throw new Error(’No transactorId found, transactorId, e.g.

req.user.Id, is necessary for all transactions

updating the ledger’);

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Email !== getClientCommonName(ctx))

throw new Error(’User credentials and X.509 certificate

details do not match!’);

}

async unknownTransaction (ctx:Context): Promise<void> {

const transactionName = ctx.stub.getFunctionAndParameters().

fcn;

throw new Error(‘Unknown transaction function: ${
transactionName}‘);

}

@Transaction()

@Param(’state’, ’Password’, ’Part formed JSON of Password’)

async CreatePassword (ctx: Context, state: Password,

transactorId: string): Promise<string> {

await retrieveUser(ctx, transactorId, true) as User;

const exists = await this.PasswordExists(ctx, state.Id);

if (exists)

throw new Error(‘The Password with Id: ${state.Id} already

exists‘);

const createdPassword = Password.newInstance(state);

const createdPasswordBytes = marshal(createdPassword);

const passwordKey = this.CreatePasswordKey(ctx,

createdPassword.Id);

await ctx.stub.putState(passwordKey, createdPasswordBytes);

const indexes = [

{

name: ’password_userId’,

fields: [createdPassword.UserId]

}

];

for (let i = 0; i < indexes.length; i++) {

const fields = indexes[i].fields.map((field) => field.

toString() || ’null’);

const indexKey = ctx.stub.createCompositeKey(indexes[i].name,

fields);

// Save index entry to state. Only the key name is needed, no

need to store a duplicate copy of the marble.

// Note - passing a ’nil’ value will effectively delete the

key from state, therefore we pass null character as

value

await ctx.stub.putState(indexKey, Buffer.from(’\u0000’));

}

this.ExpirePassword(ctx, state.UserId, transactorId);

return stringify(createdPassword);

}

@Transaction()

@Param(’state’, ’string’, ’Part formed JSON of Password’)

async CreatePasswordWithStringState (ctx: Context, state: string

, transactorId: string): Promise<string> {

let returnedPassword = ’’;

try {

const password = JSON.parse(state) as Password;

returnedPassword = await this.CreatePassword(ctx, password,

transactorId);

} catch (err) {

console.log(err);

}

return returnedPassword;

}

@Transaction()

@Param(’state’, ’Password’, ’Part formed JSON of Password’)

async ExpirePassword (ctx: Context, userId: string, transactorId

: string): Promise<void> {

await retrieveUser(ctx, transactorId, true) as User;

if (!userId)

throw new Error(’No user Id provided’);

const queryString = stringify({

selector: {

docType: ’password’,

UserId: userId,

IsActive: true

},

sort: [

{ Id: ’desc’ }

],

// Get the previous active password

skip: 1,

limit: 1

});

// If empty, it’s the user’s first password and therefore this

should not run

const prevPassword = unmarshal(await this.

101

GetQueryResultForQueryString(ctx, queryString)) as

Password;

if (!prevPassword || !Object.keys(prevPassword).length)

return;

const expiredPassword = {

...prevPassword,

IsActive: false

};

const expiredPasswordBytes = marshal(expiredPassword);

// no need to do anything with the CouchDB indexes for update

transactions

const passwordKey = this.CreatePasswordKey(ctx,

expiredPassword.Id);

await ctx.stub.putState(passwordKey, expiredPasswordBytes);

}

@Transaction(false)

@Returns(’string’)

async GetCount (ctx: Context): Promise<string> {

const totalCount = unmarshal(await getCount(ctx, ’password’));

return stringify(totalCount);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultForQueryString (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultForQueryString(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction()

async InitLedger (ctx: Context) {

// initialize the ledger with activity data

for await (const password of samplePasswords) {

try {

await this.CreatePassword(ctx, password, password.UserId);

} catch (err) {

console.log(err);

}

}

}

CorrectQueryString (queryString: string | QueryString): string {

const parsedQueryString = typeof queryString === ’string’

? unmarshal(queryString) as QueryString

: queryString;

const correctedQueryString = stringify({

...parsedQueryString,

selector: {

...parsedQueryString.selector,

docType: ’password’

}

});

return correctedQueryString;

}

CreatePasswordKey (ctx: Context, id: string): string {

return ctx.stub.createCompositeKey(’password’, [id]);

}

async ReadPassword (ctx: Context, id: string): Promise<

Uint8Array> {

return readAsset(ctx, this.CreatePasswordKey(ctx, id));

}

async PasswordExists (ctx: Context, id: string): Promise<boolean

> {

return assetExists(ctx, this.CreatePasswordKey(ctx, id));

}

}

import stringify from ’json-stringify-deterministic’;

import { Context, Contract, Param, Returns, Transaction } from ’

fabric-contract-api’;

import {

assetExists,

marshal, unmarshal,

getClientCommonName, isTransactionSubmitting,

readAsset, retrieveUser, getAssetHistory, getCount,

getQueryResultForQueryString, getQueryResultWithPagination

,

getLocation, getUser

} from ’./helpers/chaincode.helper’;

import {

AssetJsonRes, Index, QueryString

} from ’./helpers/general.helper’;

import { Location } from ’./models/location’;

import {

Pig, DetailedPig

} from ’./models/pig’;

import { User } from ’./models/user’;

import samplePigs from ’./samples/pig’;

export class PigContract extends Contract {

constructor () {

super(’org.porkwatch.pig’);

}

async beforeTransaction (ctx: Context): Promise<void> {

const funcAndParams = ctx.stub.getFunctionAndParameters();

const transactionName = funcAndParams.fcn;

console.log(’transactionName’, transactionName);

console.log(’isTransactionSubmitting’, isTransactionSubmitting

(transactionName));

console.log(’clientCommonName’, getClientCommonName(ctx));

if (transactionName.endsWith(’InitLedger’)) {

// Skip custom logic for InitLedger transaction

return;

}

const params = funcAndParams.params;

if (!isTransactionSubmitting(transactionName))

return;

let transactorId = params.find((param) => /^\d+$/.test(param))
;

if (!transactorId)

throw new Error(’No transactorId found, transactorId, e.g.

req.user.Id, is necessary for all transactions

updating the ledger’);

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Email !== getClientCommonName(ctx))

throw new Error(’User credentials and X.509 certificate

details do not match!’);

}

async unknownTransaction (ctx:Context): Promise<void> {

const transactionName = ctx.stub.getFunctionAndParameters().

fcn;

throw new Error(‘Unknown transaction function: ${
transactionName}‘);

}

@Transaction()

@Param(’state’, ’Pig’, ’Part formed JSON of Pig’)

async CreatePig (ctx: Context, state: Pig, transactorId: string)

: Promise<string> {

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Id !== state.RegisteredById)

throw new Error(‘The user with Id: ${transactor.Id} is not

the one who is registering the Pig‘);

const exists = await this.PigExists(ctx, state.Id);

if (exists)

throw new Error(‘The Pig with Id: ${state.Id} already exists

‘);

const createdPig = Pig.newInstance(state);

const createdPigBytes = marshal(createdPig);

const pigKey = this.CreatePigKey(ctx, createdPig.Id);

await ctx.stub.putState(pigKey, createdPigBytes);

const indexes: Index[] = [

{

name: ’pig_breed’,

fields: [createdPig.Breed]

},

{

name: ’pig_birthDate’,

fields: [createdPig.BirthDate]

},

{

name: ’pig_isMale’,

fields: [createdPig.IsMale.toString()]

}

102

];

for (let i = 0; i < indexes.length; i++) {

const fields = indexes[i].fields.map((field) => field.

toString() || ’null’);

const indexKey = ctx.stub.createCompositeKey(indexes[i].name,

fields);

// Save index entry to state. Only the key name is needed, no

need to store a duplicate copy of the marble.

// Note - passing a ’nil’ value will effectively delete the

key from state, therefore we pass null character as

value

await ctx.stub.putState(indexKey, Buffer.from(’\u0000’));

}

const eventPayload = marshal({

...createdPig,

key: pigKey

});

ctx.stub.setEvent(’CreatePig’, eventPayload);

return stringify(createdPig);

}

@Transaction()

@Param(’state’, ’string’, ’Part formed JSON of Pig’)

async CreatePigWithStringState (ctx: Context, state: string,

transactorId: string): Promise<string> {

let returnedPig = ’’;

try {

const pig = JSON.parse(state) as Pig;

returnedPig = await this.CreatePig(ctx, pig, transactorId);

} catch (err) {

console.log(err);

}

return returnedPig;

}

@Transaction()

@Param(’state’, ’Pig’, ’Part formed JSON of Pig’)

async UpdatePig (ctx: Context, state: Pig, transactorId: string)

: Promise<string> {

await retrieveUser(ctx, transactorId, true) as User;

if (!state.Id)

throw new Error(’No pig Id provided’);

const existingPig = unmarshal(await this.ReadPig(ctx, state.Id

)) as Pig;

// 4th optional param here is an object that would

// override the changes from state being copied into

existingPig

// for updatedPig

const updatedState = Object.assign({}, existingPig, state);

const updatedPig = Pig.newInstance(updatedState);

const updatedPigBytes = marshal(updatedPig);

// no need to do anything with the CouchDB indexes for update

transactions

const pigKey = this.CreatePigKey(ctx, updatedPig.Id);

await ctx.stub.putState(pigKey, updatedPigBytes);

const eventPayload = marshal({

...updatedPig,

key: pigKey

});

ctx.stub.setEvent(’UpdatePig’, eventPayload);

return stringify(updatedPig);

}

@Transaction()

@Param(’state’, ’string’, ’Stringified part formed JSON of Pig’)

async UpdatePigWithStringState (ctx: Context, state: string,

transactorId: string): Promise<string> {

let returnedPig = ’’;

try {

const pig = JSON.parse(state) as Pig;

returnedPig = await this.UpdatePig(ctx, pig, transactorId);

} catch (err) {

console.log(err);

}

return returnedPig;

}

@Transaction(false)

@Returns(’string’)

async GetPigHistory (ctx: Context, id: string): Promise<string>

{

const results = await getAssetHistory(ctx, this.CreatePigKey(

ctx, id));

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetCount (ctx: Context): Promise<string> {

const totalCount = unmarshal(await getCount(ctx, ’pig’));

return stringify(totalCount);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultForQueryString (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultForQueryString(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultWithPagination (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultWithPagination(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetAllPigs (ctx: Context): Promise<string> {

const queryString = stringify({

selector: {

docType: ’pig’

}

});

return this.GetQueryResultForQueryString(ctx, queryString);

}

@Transaction(false)

@Returns(’string’)

async GetPig (ctx: Context, id: string, isDetailed?:boolean):

Promise<string> {

const pig = unmarshal(await this.ReadPig(ctx, id)) as Pig;

if (!pig || !Object.keys(pig))

throw new Error(‘The Pig with Id: ${id} does not exist‘);

if (!isDetailed)

return stringify(pig);

const mother = pig.MotherId ? unmarshal(await this.ReadPig(ctx

, pig.MotherId)) as Pig : null;

const father = pig.FatherId ? unmarshal(await this.ReadPig(ctx

, pig.FatherId)) as Pig : null;

let children: Pig[] = [];

for (const id of pig.ChildrenIds) {

const child = unmarshal(await this.ReadPig(ctx, id)) as Pig;

children.push(child);

}

let locations: Location[] = [];

for (const locationHistory of pig.LocationHistory) {

const location = unmarshal(await getLocation(ctx,

locationHistory.LocationId)) as Location;

locations.push(location);

}

const registeredBy = unmarshal(await getUser(ctx, pig.

RegisteredById)) as User;

const detailedPig: DetailedPig = {

...pig,

Mother: mother,

Father: father,

Children: children,

Locations: locations,

RegisteredBy: registeredBy

}

return stringify(detailedPig);

}

@Transaction()

async InitLedger (ctx: Context) {

// initialize the ledger with activity data

for await (const pig of samplePigs) {

103

try {

await this.CreatePig(ctx, pig, pig.RegisteredById);

} catch (err) {

console.log(err);

}

}

ctx.stub.setEvent(’PigInitLedger’, Buffer.from(’Pig Ledger

Initialized’));

}

CorrectQueryString (queryString: string | QueryString): string {

const parsedQueryString = typeof queryString === ’string’

? unmarshal(queryString) as QueryString

: queryString;

const correctedQueryString = stringify({

...parsedQueryString,

selector: {

...parsedQueryString.selector,

docType: ’pig’

}

});

return correctedQueryString;

}

CreatePigKey (ctx: Context, id: string): string {

return ctx.stub.createCompositeKey(’pig’, [id]);

}

async ReadPig (ctx: Context, id: string): Promise<Uint8Array> {

return readAsset(ctx, this.CreatePigKey(ctx, id));

}

async PigExists (ctx: Context, id: string): Promise<boolean> {

return assetExists(ctx, this.CreatePigKey(ctx, id));

}

}

import stringify from ’json-stringify-deterministic’;

import { Context, Contract, Param, Returns, Transaction } from ’

fabric-contract-api’;

import {

assetExists,

marshal, unmarshal,

getClientCommonName, isTransactionSubmitting,

readAsset, retrieveUser, getAssetHistory, getCount,

getQueryResultForQueryString, getQueryResultWithPagination

,

getLocation, getPig, getUser

} from ’./helpers/chaincode.helper’;

import {

AssetJsonRes, QueryString

} from ’./helpers/general.helper’;

import { Location } from ’./models/location’;

import { Pig } from ’./models/pig’;

import { Product, DetailedProduct } from ’./models/product’;

import { User } from ’./models/user’;

import sampleProducts from ’./samples/product’;

export class ProductContract extends Contract {

constructor () {

super(’org.porkwatch.product’);

}

async beforeTransaction (ctx: Context): Promise<void> {

const funcAndParams = ctx.stub.getFunctionAndParameters();

const transactionName = funcAndParams.fcn;

console.log(’transactionName’, transactionName);

console.log(’isTransactionSubmitting’, isTransactionSubmitting

(transactionName));

console.log(’clientCommonName’, getClientCommonName(ctx));

if (transactionName.endsWith(’InitLedger’)) {

// Skip custom logic for InitLedger transaction

return;

}

const params = funcAndParams.params;

if (!isTransactionSubmitting(transactionName))

return;

let transactorId = params.find((param) => /^\d+$/.test(param))
;

if (!transactorId)

throw new Error(’No transactorId found, transactorId, e.g.

req.user.Id, is necessary for all transactions

updating the ledger’);

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Email !== getClientCommonName(ctx))

throw new Error(’User credentials and X.509 certificate

details do not match!’);

}

async unknownTransaction (ctx:Context): Promise<void> {

const transactionName = ctx.stub.getFunctionAndParameters().

fcn;

throw new Error(‘Unknown transaction function: ${
transactionName}‘);

}

@Transaction()

@Param(’state’, ’Product’, ’Part formed JSON of Product’)

async CreateProduct (ctx: Context, state: Product, transactorId:

string): Promise<string> {

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Id !== state.RegisteredById)

throw new Error(‘The User with Id: ${transactor.Id} is not

the one who registered the Product‘);

const exists = await this.ProductExists(ctx, state.Id);

if (exists)

throw new Error(‘The Product with Id: ${state.Id} already

exists‘);

const createdProduct = Product.newInstance(state);

const createdProductBytes = marshal(createdProduct);

const productKey = this.CreateProductKey(ctx, createdProduct.

Id);

await ctx.stub.putState(productKey, createdProductBytes);

const indexes = [

{

name: ’product_pigId’,

fields: [createdProduct.PigId]

},

{

name: ’product_slaughterhouseId’,

fields: [createdProduct.SlaughterhouseId]

},

{

name: ’product_retailerLocationId’,

fields: [createdProduct.RetailerLocationId]

}

];

for (let i = 0; i < indexes.length; i++) {

const fields = indexes[i].fields.map((field) => field.

toString() || ’null’);

const indexKey = ctx.stub.createCompositeKey(indexes[i].name,

fields);

// Save index entry to state. Only the key name is needed, no

need to store a duplicate copy of the marble.

// Note - passing a ’nil’ value will effectively delete the

key from state, therefore we pass null character as

value

await ctx.stub.putState(indexKey, Buffer.from(’\u0000’));

}

const eventPayload = marshal({

...createdProduct,

key: productKey

});

ctx.stub.setEvent(’CreateProduct’, eventPayload);

return stringify(createdProduct);

}

@Transaction()

@Param(’state’, ’string’, ’Part formed JSON of Product’)

async CreateProductWithStringState (ctx: Context, state: string,

transactorId: string): Promise<string> {

let returnedProduct = ’’;

try {

const product = JSON.parse(state) as Product;

returnedProduct = await this.CreateProduct(ctx, product,

transactorId);

} catch (err) {

console.log(err);

}

return returnedProduct;

}

@Transaction()

@Param(’state’, ’Product’, ’Part formed JSON of Product’)

async UpdateProduct (ctx: Context, state: Product, transactorId:

104

string): Promise<string> {

await retrieveUser(ctx, transactorId, true) as User;

if (!state.Id)

throw new Error(’No product Id provided’);

const existingProduct = unmarshal(await this.ReadProduct(ctx,

state.Id)) as Product;

// 4th optional param here is an object that would

// override the changes from state being copied into

existingProduct

// for updatedProduct

const updatedState = Object.assign({}, existingProduct, state)

;

const updatedProduct = Product.newInstance(updatedState);

const updatedProductBytes = marshal(updatedProduct);

// no need to do anything with the CouchDB indexes for update

transactions

const productKey = this.CreateProductKey(ctx, updatedProduct.

Id);

await ctx.stub.putState(productKey, updatedProductBytes);

const eventPayload = marshal({

...updatedProduct,

key: productKey

});

ctx.stub.setEvent(’UpdateProduct’, eventPayload);

return stringify(updatedProduct);

}

@Transaction()

@Param(’state’, ’string’, ’Stringified part formed JSON of

Product’)

async UpdateProductWithStringState (ctx: Context, state: string,

transactorId: string): Promise<string> {

let returnedProduct = ’’;

try {

const product = JSON.parse(state) as Product;

returnedProduct = await this.UpdateProduct(ctx, product,

transactorId);

} catch (err) {

console.log(err);

}

return returnedProduct;

}

@Transaction(false)

@Returns(’string’)

async GetProductHistory (ctx: Context, id: string): Promise<

string> {

const results = await getAssetHistory(ctx, this.

CreateProductKey(ctx, id));

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetCount (ctx: Context): Promise<string> {

const totalCount = unmarshal(await getCount(ctx, ’product’));

return stringify(totalCount);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultForQueryString (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultForQueryString(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultWithPagination (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultWithPagination(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetAllProducts (ctx: Context): Promise<string> {

const queryString = stringify({

selector: {

docType: ’product’

}

});

return this.GetQueryResultForQueryString(ctx, queryString);

}

@Transaction(false)

@Returns(’string’)

async GetProduct (ctx: Context, id: string, isDetailed?:boolean)

: Promise<string> {

const product = unmarshal(await this.ReadProduct(ctx, id)) as

Product;

if (!product || !Object.keys(product))

throw new Error(‘The Product with Id: ${id} does not exist‘);

if (!isDetailed)

return stringify(product);

const pig = unmarshal(await getPig(ctx, product.PigId)) as Pig

;

const registeredBy = unmarshal(await getUser(ctx, product.

RegisteredById)) as User;

const slaughterhouse = unmarshal(await getLocation(ctx,

product.SlaughterhouseId)) as Location;

const retailer = product.RetailerId

? unmarshal(await getUser(ctx, product.RetailerId)) as User

: null;

const retailerLocation = product.RetailerLocationId

? unmarshal(await getLocation(ctx, product.RetailerLocationId

)) as Location

: null;

const detailedProduct: DetailedProduct = {

...product,

Pig: pig,

RegisteredBy: registeredBy,

Slaughterhouse: slaughterhouse,

Retailer: retailer,

RetailerLocation: retailerLocation

};

return stringify(detailedProduct);

}

@Transaction()

async InitLedger (ctx: Context) {

// initialize the ledger with activity data

for await (const product of sampleProducts) {

try {

await this.CreateProduct(ctx, product, product.

RegisteredById);

} catch (err) {

console.log(err);

}

}

ctx.stub.setEvent(’ProductInitLedger’, Buffer.from(’Product

Ledger Initialized’));

}

CorrectQueryString (queryString: string | QueryString): string {

const parsedQueryString = typeof queryString === ’string’

? unmarshal(queryString) as QueryString

: queryString;

const correctedQueryString = stringify({

...parsedQueryString,

selector: {

...parsedQueryString.selector,

docType: ’product’

}

});

return correctedQueryString;

}

CreateProductKey (ctx: Context, id: string): string {

return ctx.stub.createCompositeKey(’product’, [id]);

}

async ReadProduct (ctx: Context, id: string): Promise<Uint8Array

> {

return readAsset(ctx, this.CreateProductKey(ctx, id));

}

async ProductExists (ctx: Context, id: string): Promise<boolean>

{

return assetExists(ctx, this.CreateProductKey(ctx, id));

}

}

105

import stringify from ’json-stringify-deterministic’;

import { Context, Contract, Param, Returns, Transaction } from ’

fabric-contract-api’;

import {

assetExists,

marshal, unmarshal,

getClientCommonName, isTransactionSubmitting,

readAsset, retrieveUser, getAssetHistory, getCount,

getQueryResultForQueryString, getQueryResultWithPagination

,

getAuction, getBid, getBuyOrder, getLocation, getPig, getProduct

, getUser

} from ’./helpers/chaincode.helper’;

import {

AssetJsonRes, QueryString

} from ’./helpers/general.helper’;

import { Auction } from ’./models/auction’;

import { Bid } from ’./models/bid’;

import { BuyOrder } from ’./models/buyOrder’;

import { Location } from ’./models/location’;

import { Transfer, DetailedTransfer } from ’./models/transfer’;

import { Pig } from ’./models/pig’;

import { Product } from ’./models/product’;

import { User } from ’./models/user’;

import sampleTransfers from ’./samples/transfer’;

export class TransferContract extends Contract {

constructor () {

super(’org.porkwatch.transfer’);

}

async beforeTransaction (ctx: Context): Promise<void> {

const funcAndParams = ctx.stub.getFunctionAndParameters();

const transactionName = funcAndParams.fcn;

console.log(’transactionName’, transactionName);

console.log(’isTransactionSubmitting’, isTransactionSubmitting

(transactionName));

console.log(’clientCommonName’, getClientCommonName(ctx));

if (transactionName.endsWith(’InitLedger’)) {

// Skip custom logic for InitLedger transaction

return;

}

const params = funcAndParams.params;

if (!isTransactionSubmitting(transactionName))

return;

let transactorId = params.find((param) => /^\d+$/.test(param))
;

if (!transactorId)

throw new Error(’No transactorId found, transactorId, e.g.

req.user.Id, is necessary for all transactions

updating the ledger’);

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Email !== getClientCommonName(ctx))

throw new Error(’User credentials and X.509 certificate

details do not match!’);

}

async unknownTransaction (ctx:Context): Promise<void> {

const transactionName = ctx.stub.getFunctionAndParameters().

fcn;

throw new Error(‘Unknown transaction function: ${
transactionName}‘);

}

@Transaction()

@Param(’state’, ’Transfer’, ’Part formed JSON of Transfer’)

async CreateTransfer (ctx: Context, state: Transfer,

transactorId: string): Promise<string> {

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if ((!state.ProductIds || !state.ProductIds.length) &&

transactor.LocationId !== state.TransferFromId)

throw new Error(‘The user with Id: ${transactor.Id} is not

from the seller of the Transfer‘);

else if ((state.ProductIds && state.ProductIds.length) &&

transactor.LocationId !== state.TransferToId)

throw new Error(‘The user with Id: ${transactor.Id} is not

from the buyer of the Transfer‘);

const exists = await this.TransferExists(ctx, state.Id);

if (exists)

throw new Error(‘The Transfer with Id: ${state.Id} already

exists‘);

const createdTransfer = Transfer.newInstance(state);

const createdTransferBytes = marshal(createdTransfer);

const transferKey = this.CreateTransferKey(ctx,

createdTransfer.Id);

await ctx.stub.putState(transferKey, createdTransferBytes);

const indexes = [

{

name: ’transfer_transferFromId’,

fields: [createdTransfer.TransferFromId]

},

{

name: ’transfer_transferToId’,

fields: [createdTransfer.TransferToId]

},

{

name: ’transfer_startDate’,

fields: [createdTransfer.StartDate]

},

{

name: ’transfer_transferDate’,

fields: [createdTransfer.TransferDate]

},

{

name: ’transfer_acceptedDate’,

fields: [createdTransfer.AcceptedDate]

}

];

for (let i = 0; i < indexes.length; i++) {

const fields = indexes[i].fields.map((field) => field.

toString() || ’null’);

const indexKey = ctx.stub.createCompositeKey(indexes[i].name,

fields);

// Save index entry to state. Only the key name is needed, no

need to store a duplicate copy of the marble.

// Note - passing a ’nil’ value will effectively delete the

key from state, therefore we pass null character as

value

await ctx.stub.putState(indexKey, Buffer.from(’\u0000’));

}

const eventPayload = marshal({

...createdTransfer,

key: transferKey

});

ctx.stub.setEvent(’CreateTransfer’, eventPayload);

return stringify(createdTransfer);

}

@Transaction()

@Param(’state’, ’string’, ’Part formed JSON of Transfer’)

async CreateTransferWithStringState (ctx: Context, state: string

, transactorId: string): Promise<string> {

let returnedTransfer = ’’;

try {

const transfer = JSON.parse(state) as Transfer;

returnedTransfer = await this.CreateTransfer(ctx, transfer,

transactorId);

} catch (err) {

console.log(err);

}

return returnedTransfer;

}

@Transaction()

@Param(’state’, ’Transfer’, ’Part formed JSON of Transfer’)

async UpdateTransfer (ctx: Context, state: Transfer,

transactorId: string): Promise<string> {

await retrieveUser(ctx, transactorId, true) as User;

if (!state.Id)

throw new Error(’No transfer Id provided’);

const existingTransfer = unmarshal(await this.ReadTransfer(ctx

, state.Id)) as Transfer;

// 4th optional param here is an object that would

// override the changes from state being copied into

existingTransfer

// for updatedTransfer

const updatedState = Object.assign({}, existingTransfer, state

);

const updatedTransfer = Transfer.newInstance(updatedState);

const updatedTransferBytes = marshal(updatedTransfer);

// no need to do anything with the CouchDB indexes for update

transactions

106

const transferKey = this.CreateTransferKey(ctx,

updatedTransfer.Id);

await ctx.stub.putState(transferKey, updatedTransferBytes);

const eventPayload = marshal({

...updatedTransfer,

key: transferKey

});

ctx.stub.setEvent(’UpdateTransfer’, eventPayload);

return stringify(updatedTransfer);

}

@Transaction()

@Param(’state’, ’string’, ’Stringified part formed JSON of

Transfer’)

async UpdateTransferWithStringState (ctx: Context, state: string

, transactorId: string): Promise<string> {

let returnedTransfer = ’’;

try {

const transfer = JSON.parse(state) as Transfer;

returnedTransfer = await this.UpdateTransfer(ctx, transfer,

transactorId);

} catch (err) {

console.log(err);

}

return returnedTransfer;

}

@Transaction(false)

@Returns(’string’)

async GetTransferHistory (ctx: Context, id: string): Promise<

string> {

const results = await getAssetHistory(ctx, this.

CreateTransferKey(ctx, id));

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetCount (ctx: Context): Promise<string> {

const totalCount = unmarshal(await getCount(ctx, ’transfer’));

return stringify(totalCount);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultForQueryString (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultForQueryString(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultWithPagination (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultWithPagination(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetAllTransfers (ctx: Context): Promise<string> {

const queryString = stringify({

selector: {

docType: ’transfer’

}

});

return this.GetQueryResultForQueryString(ctx, queryString);

}

@Transaction(false)

@Returns(’string’)

async GetTransfer (ctx: Context, id: string, isDetailed?:boolean

): Promise<string> {

const transfer = unmarshal(await this.ReadTransfer(ctx, id))

as Transfer;

if (!transfer || !Object.keys(transfer))

throw new Error(‘The Transfer with Id: ${id} does not exist‘)

;

if (!isDetailed)

return stringify(transfer);

const auction = transfer.AuctionId

? unmarshal(await getAuction(ctx, transfer.AuctionId)) as

Auction

: null;

const bid = transfer.BidId

? unmarshal(await getBid(ctx, transfer.BidId)) as Bid

: null;

const buyOrder = transfer.BuyOrderId

? unmarshal(await getBuyOrder(ctx, transfer.BuyOrderId)) as

BuyOrder

: null;

const pig = unmarshal(await getPig(ctx, transfer.PigId)) as

Pig;

let products: Product[] = [];

for (const id of transfer.ProductIds) {

const product = unmarshal(await getProduct(ctx, id)) as

Product;

products.push(product);

}

const seller = unmarshal(await getUser(ctx, transfer.SellerId)

) as User;

const buyer = unmarshal(await getUser(ctx, transfer.BuyerId))

as User;

const transferFrom = unmarshal(await getLocation(ctx, transfer

.TransferFromId)) as Location;

const transferTo = unmarshal(await getLocation(ctx, transfer.

TransferToId)) as Location;

const canceledBySeller = transfer.CanceledBySellerId

? unmarshal(await getUser(ctx, transfer.CanceledBySellerId))

as User

: null;

const canceledByBuyer = transfer.CanceledByBuyerId

? unmarshal(await getUser(ctx, transfer.CanceledByBuyerId))

as User

: null;

const acceptedBySeller = transfer.AcceptedBySellerId

? unmarshal(await getUser(ctx, transfer.AcceptedBySellerId))

as User

: null;

const acceptedByBuyer = transfer.AcceptedByBuyerId

? unmarshal(await getUser(ctx, transfer.AcceptedByBuyerId))

as User

: null;

const detailedTransfer: DetailedTransfer = {

...transfer,

Auction: auction,

Bid: bid,

BuyOrder: buyOrder,

Pig: pig,

Products: products,

Seller: seller,

Buyer: buyer,

TransferFrom: transferFrom,

TransferTo: transferTo,

CanceledBySeller: canceledBySeller,

CanceledByBuyer: canceledByBuyer,

AcceptedBySeller: acceptedBySeller,

AcceptedByBuyer: acceptedByBuyer

};

return stringify(detailedTransfer);

}

@Transaction()

async InitLedger (ctx: Context) {

// initialize the ledger with activity data

for await (const transfer of sampleTransfers) {

try {

await this.CreateTransfer(ctx, transfer, transfer.SellerId)

;

} catch (err) {

console.log(err);

}

}

ctx.stub.setEvent(’TransferInitLedger’, Buffer.from(’Transfer

Ledger Initialized’));

}

CorrectQueryString (queryString: string | QueryString): string {

const parsedQueryString = typeof queryString === ’string’

? unmarshal(queryString) as QueryString

: queryString;

const correctedQueryString = stringify({

...parsedQueryString,

selector: {

...parsedQueryString.selector,

docType: ’transfer’

}

});

107

return correctedQueryString;

}

CreateTransferKey (ctx: Context, id: string): string {

return ctx.stub.createCompositeKey(’transfer’, [id]);

}

async ReadTransfer (ctx: Context, id: string): Promise<

Uint8Array> {

return readAsset(ctx, this.CreateTransferKey(ctx, id));

}

async TransferExists (ctx: Context, id: string): Promise<boolean

> {

return assetExists(ctx, this.CreateTransferKey(ctx, id));

}

}

import stringify from ’json-stringify-deterministic’;

import { Context, Contract, Param, Returns, Transaction } from ’

fabric-contract-api’;

import {

assetExists,

marshal, unmarshal,

getClientCommonName, isTransactionSubmitting,

readAsset, retrieveUser, getAssetHistory, getCount,

getQueryResultForQueryString, getQueryResultWithPagination

,

getLocation

} from ’./helpers/chaincode.helper’;

import {

AssetJsonRes, QueryString

} from ’./helpers/general.helper’;

import { Location } from ’./models/location’;

import { User, DetailedUser } from ’./models/user’;

import sampleUsers from ’./samples/user’;

export class UserContract extends Contract {

constructor () {

super(’org.porkwatch.user’);

}

async beforeTransaction (ctx: Context): Promise<void> {

const funcAndParams = ctx.stub.getFunctionAndParameters();

const transactionName = funcAndParams.fcn;

console.log(’transactionName’, transactionName);

console.log(’isTransactionSubmitting’, isTransactionSubmitting

(transactionName));

console.log(’clientCommonName’, getClientCommonName(ctx));

if (transactionName.endsWith(’InitLedger’)) {

// Skip custom logic for InitLedger transaction

return;

}

const params = funcAndParams.params;

if (!isTransactionSubmitting(transactionName))

return;

let transactorId = params.find((param) => /^\d+$/.test(param))
;

if (!transactorId)

throw new Error(’No transactorId found, transactorId, e.g.

req.user.Id, is necessary for all transactions

updating the ledger’);

const transactor = await retrieveUser(ctx, transactorId, true)

as User;

if (transactor.Email !== getClientCommonName(ctx))

throw new Error(’User credentials and X.509 certificate

details do not match!’);

}

async unknownTransaction (ctx:Context): Promise<void> {

const transactionName = ctx.stub.getFunctionAndParameters().

fcn;

throw new Error(‘Unknown transaction function: ${
transactionName}‘);

}

@Transaction()

@Param(’state’, ’User’, ’Part formed JSON of User’)

async CreateUser (ctx: Context, state: User, transactorId:

string): Promise<string> {

const transactor = await retrieveUser(ctx, transactorId) as

User;

if (transactorId !== state.Id && transactor.Id !== state.

RegisteredById)

throw new Error(‘The User with Id: ${transactor.Id} is not

the one who is registering the User‘);

const exists = await this.UserExists(ctx, state.Id);

if (exists)

throw new Error(‘The User with Id: ${state.Id} already exists

‘);

const createdUser = User.newInstance(state);

const createdUserBytes = marshal(createdUser);

const userKey = this.CreateUserKey(ctx, createdUser.Id);

await ctx.stub.putState(userKey, createdUserBytes);

const indexes = [

{

name: ’user_locationId’,

fields: [createdUser.LocationId]

},

{

name: ’user_role’,

fields: [createdUser.Role]

},

{

name: ’user_birthDate’,

fields: [createdUser.BirthDate]

},

{

name: ’user_registrationDate’,

fields: [createdUser.RegistrationDate]

}

];

for (let i = 0; i < indexes.length; i++) {

const fields = indexes[i].fields.map((field) => field.

toString() || ’null’);

const indexKey = ctx.stub.createCompositeKey(indexes[i].name,

fields);

// Save index entry to state. Only the key name is needed, no

need to store a duplicate copy of the marble.

// Note - passing a ’nil’ value will effectively delete the

key from state, therefore we pass null character as

value

await ctx.stub.putState(indexKey, Buffer.from(’\u0000’));

}

const eventPayload = marshal({

...createdUser,

key: userKey

});

ctx.stub.setEvent(’CreateUser’, eventPayload);

return stringify(createdUser);

}

@Transaction()

@Param(’state’, ’string’, ’Part formed JSON of User’)

async CreateUserWithStringState (ctx: Context, state: string,

transactorId: string): Promise<string> {

let returnedUser = ’’;

try {

const user = JSON.parse(state) as User;

returnedUser = await this.CreateUser(ctx, user, transactorId)

;

} catch (err) {

console.log(err);

}

return returnedUser;

}

@Transaction()

@Param(’state’, ’User’, ’Part formed JSON of User’)

async UpdateUser (ctx: Context, state: User, transactorId:

string): Promise<string> {

await retrieveUser(ctx, transactorId, true) as User;

if (!state.Id)

throw new Error(’No user Id provided’);

const existingUser = unmarshal(await this.ReadUser(ctx, state.

Id)) as User;

// 4th optional param here is an object that would

// override the changes from state being copied into

existingUser

// for updatedUser

const updatedState = Object.assign({}, existingUser, state);

const updatedUser = User.newInstance(updatedState);

const updatedUserBytes = marshal(updatedUser);

108

// no need to do anything with the CouchDB indexes for update

transactions

const userKey = this.CreateUserKey(ctx, updatedUser.Id);

await ctx.stub.putState(userKey, updatedUserBytes);

const eventPayload = marshal({

...updatedUser,

key: userKey

});

ctx.stub.setEvent(’UpdateUser’, eventPayload);

return stringify(updatedUser);

}

@Transaction()

@Param(’state’, ’string’, ’Stringified part formed JSON of User

’)

async UpdateUserWithStringState (ctx: Context, state: string,

transactorId: string): Promise<string> {

let returnedUser = ’’;

try {

const user = JSON.parse(state) as User;

returnedUser = await this.UpdateUser(ctx, user, transactorId)

;

} catch (err) {

console.log(err);

}

return returnedUser;

}

@Transaction(false)

@Returns(’string’)

async GetUserHistory (ctx: Context, id: string): Promise<string>

{

const results = await getAssetHistory(ctx, this.CreateUserKey(

ctx, id));

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetCount (ctx: Context): Promise<string> {

const totalCount = unmarshal(await getCount(ctx, ’user’));

return stringify(totalCount);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultForQueryString (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultForQueryString(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetQueryResultWithPagination (ctx: Context, queryString:

string): Promise<string> {

const correctedQueryString = this.CorrectQueryString(

queryString);

const results = unmarshal(await getQueryResultWithPagination(

ctx, correctedQueryString)) as AssetJsonRes[];

return stringify(results);

}

@Transaction(false)

@Returns(’string’)

async GetAllUsers (ctx: Context): Promise<string> {

const queryString = stringify({

selector: {

docType: ’user’

}

});

return await getQueryResultForQueryString(ctx, queryString);

}

@Transaction(false)

@Returns(’string’)

async GetUser (ctx: Context, id: string, isDetailed?:boolean):

Promise<string> {

const user = unmarshal(await this.ReadUser(ctx, id)) as User;

if (!user || !Object.keys(user))

throw new Error(‘The User with Id: ${id} does not exist‘);

if (!isDetailed)

return stringify(user);

const location = unmarshal(await getLocation(ctx, user.

LocationId)) as Location;

const registeredBy = unmarshal(await this.ReadUser(ctx, user.

RegisteredById)) as User;

const detailedUser: DetailedUser = {

...user,

Location: location,

RegisteredBy: registeredBy

};

return stringify(detailedUser);

}

@Transaction()

async InitLedger (ctx: Context) {

// initialize the ledger with activity data

for await (const user of sampleUsers) {

try {

await this.CreateUser(ctx, user, user.RegisteredById);

} catch (err) {

console.log(err);

}

}

ctx.stub.setEvent(’UserInitLedger’, Buffer.from(’User Ledger

Initialized’));

}

CorrectQueryString (queryString: string | QueryString): string {

const parsedQueryString = typeof queryString === ’string’

? unmarshal(queryString) as QueryString

: queryString;

const correctedQueryString = stringify({

...parsedQueryString,

selector: {

...parsedQueryString.selector,

docType: ’user’

}

});

return correctedQueryString;

}

CreateUserKey (ctx: Context, id: string): string {

return ctx.stub.createCompositeKey(’user’, [id]);

}

async ReadUser (ctx: Context, id: string): Promise<Uint8Array> {

return readAsset(ctx, this.CreateUserKey(ctx, id));

}

async UserExists (ctx: Context, id: string): Promise<boolean> {

return assetExists(ctx, this.CreateUserKey(ctx, id));

}

}

109

XI. Acknowledgment

First and foremost, I would like to thank Sir Marbert Marasigan and Sir Richard

Bryann Chua for their continued guidance in the year it took to complete this SP.

The system implemented in this study made use of many technologies I had no prior

experience of, and their insight greatly helped with both writing the manuscript and

the implementation of the system.

I would also like to thank Sir Alberto D. Burdeos, former Asst. Dept. Head III

of the Veterinary Inspection Board of the City of Manila, for answering my inquiries

into the country’s pig industry. His experience formed many of the schemas I used

for the assets in the system.

I would also like to thank the discord community of the Hyperledger Foundation

for answering my inquiries into Hyperledger Fabric, its documentation, and for giving

me some sample repositories to learn from. The blockchain system of this paper based

much of its infrastructure from the sample repository with the name of full-stack-

asset-transfer-guide. Setting up a blockchain network for production would not have

been possible in the time I was given without the sample infrastructure and guide

from this repository, and I would like to thank all the developers who worked on it.

110

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Blockchain System
	Client Application

	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Supply Chain Governance
	Overview of Blockchain Technology
	Blockchain Technology as Applied to Supply Chains
	Synthesis

	Theoretical Framework
	Overview of Pork Supply Chains in the Philippines
	Blockchain Technology
	Hyperledger Fabric
	Apache CouchDB
	Azure
	Docker
	Kubernetes
	Hyperledger Caliper

	Design and Implementation
	Blockchain Pork Supply Chain
	Use Case Design
	Requirement Analysis
	Design and Development

	Use Cases
	Database Design
	System Architecture
	Technical Architecture

	Results
	System Architecture Overview
	Blockchain Network
	Client Mobile Application
	Main Server
	Secondary Server
	Off-chain Slave Database

	Client Mobile App Functionalities
	Authentication
	Adding a New Pig to the User's Location
	Adding a New Product to the User's Location
	Updating a Pig
	Viewing Pig History
	Viewing Product History
	Adding a Pig Auction
	Bidding in a Pig Auction
	Accepting/Rejecting a Bid
	Confirming a Pig Transfer
	Confirming a Product Transfer
	Registering a New User
	Updating an Existing User
	Removing a User from a Location

	Public API Service

	Discussion
	Conclusion
	Recommendations
	Bibliography
	Appendix
	Smart Contracts

	Acknowledgment

