UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

MACHINE LEARNING-DRIVEN BREAST CANCER
DIAGNOSIS SOFTWARE INTEGRATED WITH
EXPLAINABLE ARTIFICIAL INTELLIGENCE BASED ON
FINE NEEDLE ASPIRATE FINDINGS

A special problem in partial fulfillment
of the requirements for the degree of
Bachelor of Science in Computer Science

Submitted by:

Tristan Paul Bachini

June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser | No

Available only to those bound by confidentiality agreement | No

ACCEPTANCE SHEET

The Special Problem entitled “Machine Learning-Driven Breast Cancer
Diagnosis Software Integrated with Explainable Artificial Intelligence Based on Fine
Needle Aspirate Findings” prepared and submitted by Tristan Paul Bachini in partial
fulfillment of the requirements for the degree of Bachelor of Science in Computer
Science has been examined and is recommended for acceptance.

Ma. Sheila A. Magboo, Ph.D. (cand.)

Adviser
EXAMINERS:
Approved Disapproved
1. Avegail D. Carpio, M.Sc.
2. Richard Bryann L. Chua, M.Sc.
3. Perlita E. Gasmen, M.Sc. (cand.)
4. Vincent Peter C. Magboo, M.D.
5. Marbert John C. Marasigan, M.Sc. (cand.)
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.
Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean
College of Arts and Sciences

Abstract

Around the world, breast cancer remains to be the most frequent type of all can-
cers, and the major cause of death in women worldwide. A major factor in why the
diagnosis of breast cancer through Fine Needle Aspiration results is still done after
manual review of doctors, is because of the lack of explainability by the traditional
black box machine learning models. This paper aims to incorporate a simple web
user interface, and explainibility through the LIME python package. The perfor-
mance of four machine learning models (K-Nearest Neighbors, Logistic Regression,
Random Forest, and Support Vector Machine) were compared by its metrics (ac-
curacy, precision, fl-score, and area-under-curve) produced when predicting breast
cancer diagnosis, and its applicability with the LIME python package. The four
models were utilized with the Breast Cancer Wisconsin Diagnostic Dataset with 10
different configurations a) only scaling applied, b) scaling then random oversampling,
¢) scaling, random oversampling, then feature extraction, d) scaling then feature ex-
traction, e) scaling, feature extraction, then random oversampling. Configurations f-]
are similar configurations, except it does not include scaling. The results show that
in terms of metrics and applicability towards the LIME model, random forest with
random oversampling produced the best results. As such, random forest with random
oversampling was the model and configuration chosen to be applied towards the web
application.

Keywords: LIME, random oversampling, accuracy, precision, fl-score, area-under-curve, ex-
plainability, support vector machine, logistic regression, random forest, k-nearest-neighbors,

fine needle aspiration

Contents

Acceptance Sheet

Abstract

List of Figures

List of Tables

II.

III.

IV.

VL

Introduction

A. Background of the Study
B. Statement of the Problem
C. Objectives of the Study

C..1 General Objectives

C..2 Specific Objectives
D. Significance of the Project
E. Scope and Limitations

F. Assumptions

Review of Related Literature

Theoretical Framework

Design and Implementation

Results

A. Testing for the best performing model

B. Building the web application

Discussions

A. Machine Learning Models

ii

vi

_~ W W

10

18

21
21
29

33

B. Objectives

VII. Conclusions

VIII. Recommendations

IX. Bibliography

X. Appendix

A, Source Code

XI. Acknowledgment

v

37

38

39

41
41

65

List of Figures

co N O

10
11
12
13
14
15

16

17

Accuracy of the testingset
AUC computed from the different machine learning models.
Boston dataset taken from scikit-learn python library.
Sample output of LIME. 00
Overview of project implementation from acquisition of dataset to
building the web application..
LIME sample output from dataset using feature scaling.
LIME sample output from dataset using feature scaling and PCA

LIME sample output from dataset using only oversampling

Visualization of slight imbalance in the dataset.

Visualization of dataset instances after applying random oversampling.

Elbow graph of PCA Variance on dataset without feature scaling.

Elbow graph of PCA Variance on dataset with feature scaling.
Homepage interface.
Page where FNA input values are entered.
After entering FNA values, the prediction and explanations are gener-
ated in this results page. oL
About page which contains instructions on how components are used
and interpreted. L
Updated overview of project implementation from acquisition of dataset

to building the web application. L.

18
24
24
25
26
27
28
28
30
30

31

31

34

List of Tables

1 Table of metrics with feature scaling applied, given 5 different config-
urations with 4 machine learning models. 22

2 Table of metrics without feature scaling, given 5 different configura-
tions with 4 machine learning models. 23

3 Confusion matrix of random forest model with resampling. 23

4 Numerical values of variance explained for figure 11 per principal com-

vi

I. Introduction

A. Background of the Study

Around the world, breast cancer remains to be the most frequent type of all can-
cers, and the major cause of death in women worldwide. The most effective measure
against breast cancer is early detection and prevention [1][2]. The reliability of data
mining algorithms applied towards disease detection and diagnosis has been thor-
oughly proven through numerous studies [3][1][5], yet diagnosis is done by manual
review of radiologists—which are prone to human errors. In fact, in 2020, an interna-
tional team from Google Health and Imperial College London developed an AT model
to predict breast cancer diagnosis, and it was found to be more accurate than doctors,

when pitted against each other [0].

Fine Needle Aspiration (FNA) is a type of breast screening procedure that is among
the least invasive of the available breast cancer screening procedures. Apart from the
breast, FNA is also applied towards different parts of the body, such as the thyroid,
to check for cancer. The process involves the insertion of a thin, hollow needle into
a suspicious area, in order to extract a small amount of tissue or fluid, to be checked

for cancer.

FNA can be used as a breast screening procedure, among many other breast cancer
screening procedures. The advantages of the FNA against other breast screening
procedures is its cost-effectiveness, low complication rate, and the rapidness at which

it is administered [7].

As it is speedily applied towards a patient undergoing breast cancer screening, it
has become a widely used and accepted breast cancer diagnostic tool. Because of its

affordability, it is especially popular in developing countries such as the Philippines

(7.

The dataset to be utilized in the study is the Breast Cancer Wisconsin Diagnostic
Dataset, with 569 instances of which 212 are malignant and 357 are benign. The
dataset has 30 features, which is why the paper will explore dimentionality reduction
techniques. Additionally, from the number of instances of each class, it can be said
that there exists a slight data imbalance, which is why random oversampling will be

applied.

B. Statement of the Problem

Despite the support of recent studies for the implementation of machine learning
algorithms towards breast cancer diagnosis on FNA, the diagnosis remains to be
a result of manual reviews by doctors—with reliability of diagnosis often relying
solely on a FNA practitioner’s skill [3]. A study showed that, in sub-Saharan Africa,
there exists a lengthy buffer between a patient’s first visit to a doctor for breast
cancer screening, and this patient’s first procedure to treat breast cancer. One of
the main determinants of this buffer is a misdiagnosis on the part of the doctor
[9]. Doctors sometimes tend to have different interpretations on FNA results— some
doctors conclude that the cells are malignant, some do not. This is why asking for
a second opinion from fellow doctors is common practice. Expounding on that idea,
the implementation of artificial intelligence to augment human decision making has
been shown to improve overall diagnostic accuracy. Such a tool would be useful as
an Al assistant for a doctor assessing the FNA results of a patient, especially during

the cases where a doctor does not have access to a second opinion.

There is also the variable of human errors that should be taken into consideration.

There are a number of factors that can cloud the judgment of a human, in this

case, a doctor, such as being overworked or stressed, which hinders decision-making

performance.

Another problem with the implementation of modern machine learning solutions
towards the domain of medicine is the lack of reasoning and basis behind the predic-
tions made by the model [10]. Since the doctor would want to know the how and
why of the machine learning model predicting the diagnosis for a number of reasons
including reasons of trust, sociality, legality, and practicality [10], then simply having
a high reliability and a simple interface is not enough to practically apply machine

learning towards cancer diagnosis.

C. Objectives of the Study
C..1 General Objectives

The study aims to solve the problem above by bridging the gap between the intri-
cacies of machine learning and practical use by a licensed professional, by creating a
simplified web application with Explainable Artificial Intelligence (XAI) component

and maximized predicting power that can be utilized to assist with the diagnosis.

C..2 Specific Objectives

1. Train, test, and compare the performance of Random Forest, K Nearest Neigh-
bors, Logistic Regression, and Support Vector Machines, on the prediction of
breast cancer diagnosis.

(a) Apply feature scaling to the dataset.
(b) Apply feature scaling, then random oversampling to the dataset

(c) Apply feature scaling, random oversampling, then feature extraction to the

dataset.

(d) Apply feature scaling, then feature extraction to the dataset.

(e) Apply feature scaling, feature extraction, then random oversampling to the

dataset.

(f) Train and test the Random Forest, K Nearest Neighbors, Logistic Regres-

sion, and Support Vector Machines, using the preprocessed dataset.

(g) Compare the 20 model performances to determine the best-performing

model to be implemented in the system.

(h) Incorporate Explainable Artificial Intelligence through the Local Inter-
pretable Model-Agnostic Explanations (LIME) Python package, to the

optimized model.
2. Build the web application with the optimized machine learning model.

(a) Create a simple web application that takes input and produces an output

decision variable

(b) Add quality-of-life (QOL) pages such as help, about, etc, in order to im-
prove the overall experience and assist the user in using the web applica-

tion, and interpreting the outputs.

(c) Host the website on a server.

D. Significance of the Project

As earlier mentioned, Breast Cancer remains to be the leading type of cancer
afflicting women in the world. Although there are already multiple different breast
cancer screening methods developed, the diagnosis made for the FNA procedure is
ultimately made after manual review. The application aims to further validate the
decision of the doctor, on top of the several screening methods, by allowing the input

of real numbers associated with the features derived from FNA.

For breast cancer, early diagnosis is key. Sometimes, doctors are vulnerable to
errors despite the available procedures [9]. The application of a high-performance
machine learning algorithm with XAT to help with this decision will serve as another
layer of ensuring the correct diagnosis is made. Such technology would be important

for doctors and patients alike.

E. Scope and Limitations

1. The intended users are doctors who are in the process of deciding the diagnosis

of a patient who had undergone FNA.

2. The machine learning model used in the study will utilize the Breast Cancer

Wisconsin Diagnostic dataset from University of Wisconsin Hospitals Madison.

3. The system should only be used to augment, and not be the main decision

maker in the diagnosis of a patient.

4. There is also a limitation on what constitutes a “good reasoning” in XAI as
it is a topic still in active debate across various fields [10]. In this study, the
reasoning that will be integrated in the project will be done through the LIME

python package.

F. Assumptions

1. The user is a doctor who has knowledge on the procedure of FNA, as well as

familiarity on the inputs being asked.
2. The user will only enter correct inputs.

3. The user has access to the values from the digitized image of the breast sample.

II. Review of Related Literature

There are numerous studies that have been done regarding the study, most of which
show promising results in terms of the metrics provided by the machine learning
models applied [3][5][4][11]. A system had also been implemented before, in a paper
published in 1994 [11]. This tells us that ever since 1994, and possibly even before
that, the feasibility of the implementation of machine learning towards breast cancer
prediction through FNA results has been tested. Despite that, diagnosis remains to
be a manual process. Most of these works were limited in its practical application,
that is for actual use by a physician. As for the system that had been implemented,
it lacks an integral tool that is necessary to acquire the trust of the physicians to

whom this system aims to assist. That is the concept of XAI

As earlier mentioned, what has been done regarding the problem that the paper
alms to solve are extensive studies on machine learning models that best fit the
challenge of predicting the diagnosis of breast cancer in patients. Performance of
models were taken from different metrics such as accuracy, precision, and area-under-
curve, as well as its applicability towards the LIME python package, which will be
discussed in more detail later on. Across the different studies, accuracy was often
the most-highlighted metric which ranged from 96-97 percent for the best-performing
model. Aside from metrics, what will also be checked is how well the model fits with

the LIME package.

Algorithms Accuracy Training Set Accuracy Testing
%) Set (%)

SVM 98.4 972

Radom 90.8% 96.5%

Forest

Logistic 95.5% 95.8%

Regression

Decision 98.8% 95.1%

Tree

KNN 94.6% 93.7%

Figure 1: Accuracy of the testing set

Algorithms AUC (%)
SVM 0.966
Random Forests 0.960
Logistic Regression 0.947
Decision Tree 0.945

K-NN 0.952

Figure 2: AUC computed from the different machine learning models.

For example, Naji, et al [3] ran the different machine learning models utilizing the
Breast Cancer Wisconsin Diagnostic dataset, and was able to extract the metrics
above, which are relatively good metrics to have. Across the different studies, the
best-performing model also varied between logistic regression and support vector ma-
chines. It should also be noted that these journals made use of the same dataset, the
Wisconsin Breast Cancer dataset, that will be applied in this study [3][5][1][!1]. As
such, it can be deduced that the reason for these variations in metrics would be the
fine tuning or preprocessing techniques applied towards the dataset. Upon analysis of
their approaches and limitations, a commonly recurring limitation is the selection of
preprocessing techniques that was applied towards the dataset. Also, several studies
did not mention whether the model performances were compared before and after

application of each preprocessing technique.

Gbenosi et al. examined the factors that determined the length of the buffer be-
tween a patient’s first screening for breast cancer, and this patient’s first day of
breast cancer treatment. The study concluded by naming diagnostic errors as one of
the main determinants of the length of this buffer [9]. As this study is a paper on
the application of machine learning algorithms to aid in the diagnosis of a patient of
breast cancer, and its implementation for a full-fledged system that can potentially
be used by doctors, then this system is aimed at directly giving solution to that main

determinant cited by the study.

XAI has also been applied before towards the prediction of Autism Spectrum Dis-
order (ASD) of a patient exhibiting a specific set of behaviors. The performance of
the machine learning algorithms, in terms of its metrics, proved to be highly reliable,
and this reliability came with the transparency that XAI provided. The system not
only predicted with a certain amount of accuracy, but also it gave insights to how the
algorithm arrived at a certain conclusion. With that said, it was stated in the paper
that this insightful and reliable system is potentially something of practical use by
physicians to predict autism in children [12]. This is exactly the aim of this paper:
create a system that predicts breast cancer from FNA results, that could be of prac-
tical use by doctors in predicting the diagnosis of breast cancer. In that sense, since
reliability has already been proven by the extensive research done, which resulted in
a 96-97 percent-accuracy classifier model, we must then provide the insight, through
the application of XAI, and its implementation into a system that can be put into

practical use in the medical domain.

There are many reasons as to why XAl is important in the context of integration
of machine learning systems towards the different sectors of society. These reasons
include legal, practical, and social reasons. Among those reasons is that, with XAI,
we are able to enhance the robustness of a system, since it helps with troubleshooting.
Apart from that, the ability to provide reasoning to how a decision was made has be-
come an increasingly desirable property of intelligent systems. All of these combined
would directly relate to the users’ trust and persuasion, which are essential variables

to consider in this paper [10][13].

If we analyze each article, we conclude that each journal study falls short of being of
practical use by doctors in predicting the diagnosis of breast cancer. There are three
components that will allow for its potential use in the medical domain. As concluded

in the study of the prediction of ASD in children, having reliability and insight in a

machine learning model is enough for the idea to be potentially applied in medicine
[12]. However, for the gap between computer technicality and medicine to be truly
bridged, then it requires a user interface that will take in the input, and automatically
run it through the chosen machine learning algorithm, to extract the decision variable,
as well as the reasoning behind it. This is how the study will augment all of these
studies; by incorporating all three components, that is: reliability, reasoning, and a

user interface.

The study will be a synthesis of past work on breast cancer diagnosis based on
machine learning, diagnosis systems with integrated XAI, and a user interface that
simplifies the process of input and output. The system to be implemented will address
the following hindrances towards the implementation of machine learning models in
the medical domain: trust, accuracy, and simplicity. By doing so, we create a readily-
applicable machine learning-driven software system that predicts the diagnosis of

breast cancer from FNA results.

III. Theoretical Framework

Breast Cancer

Breast cancer is a phenomenon that occurs when cells in the breast grow abnor-
mally. It is the most common form of cancer among women globally, as well as the

leading cause of mortality in women worldwide [2].

Fine Needle Aspiration

Fine Needle Aspiration is a type of breast screening procedure that is among the
least invasive of the available breast cancer screening procedures. Apart from the
breast, FNA is also applied towards different parts of the body, such as the thyroid,
to check for cancer. The process involves the insertion of a thin, hollow needle into
a suspicious area, in order to extract a small amount of tissue or fluid, to be checked
for cancer. It is rapid, cost-effective, and accurate, which makes it a popular breast

cancer screening procedure in developing countries such as the Philippines [7].

Dataset

The dataset used to train the different machine learning models in the study is
the Breast Cancer Wisconsin Diagnostic Dataset. In this dataset, 10 features that
have real values are taken into consideration to predict whether the observation is
classified as benign or malignant. The 10 features, namely: radius, texture, perimeter,
area, smoothness, compactness, concavity, concave points, symmetry, and fractal
dimension, were computed from a digitized image of the fine needle aspirate of a
breast mass. For each feature, the mean, standard error, and the largest of these
features were computed, resulting in 30 attributes, excluding the ID and decision

variable, for a total of 32 attributes. The dataset has a total of 569 observations, of

10

which 357 are classified as benign, while the remaining 212 are classified as malignant.

Feature Scaling

Feature scaling is a preprocessing technique used in order to normalize the different
values in the dataset so that each value would weigh the same whether they be large
or small. This prevents one large value skewing the way the machine learning model

learns. This is applicable to the study, since the dataset contains only real values.

Resampling

Resampling is the creation of more samples based on a sample. It is used to deal
with the problem of having imbalance in a dataset. There are a few techniques that

can be used, such as upsampling and downsampling.

Feature Extraction

Feature extraction is the process of lessening the number of attributes in the
dataset. This is done in order to lessen the complexity with regards to the data
being dealt with, and potentially increase the predicting power of the machine learn-

ing model.

Linear Discriminant Analysis

Linear Discriminant Analysis is a supervised method of feature extraction used to
reduce the dimensionality of a dataset. LDA maximizes the distance between the

mean of each class and minimizes the spreading within the class itself.

Machine Learning

11

Machine Learning is a subfield of Al that allows computers to learn from existing
data, and draw inferences without explicitly being instructed, through the use of

different models and statistical tools [11].

Explainable Artificial Intelligence

XAT is a component of artificial intelligence that provides the “reasoning” on which
how the computer arrived at a decision. It adds on to the feasibility of having a
prediction system aid physicians’ diagnosis of breast cancer, since XAI allows for

more transparency during the decision-making process of the computer [13].

XAT adds towards the interpretability of a machine learning model. There are many
goals that exist that define the reasons on why there is a need for interpretability.
Lipton mentions 3 goals for interpretability: a means to engender trust, a desirable
model that may help uncover causal structure in observable data, and a means to

simply gather more information [13].

First, there is interpretability as a means to engender trust. This is because XAl
helps a user understand how and why a decision was made [10]. Transparency and
scrutability are key characteristics of XAI that fosters the trust of its users, whereas
transparency allows for the understandability of the model for the user, and scrutabil-
ity allows for the user to tell when the machine learning model may have made a

mistake [13].

Second, interpretability as a desirable model that may help uncover causal struc-
ture in observable data. Machine learning, when applied in different contexts, has
its social, practical, and legal aspects to be considered. These aspects is what inter-
pretability aims to satisfy. For example, when legal action is taken against a user

who made a controversial decision augmented by a machine learning model, having

12

an explanation for how that decision was made allows for a defense from the user.
This highlights the need to know the causal structure behind the decision-making of

the machine learning model [10].

Third, interpretability as a means to simply gather more information. This is a
general goal for the need of interpretability of machine learning models, since the
information gathered can be used to accomplish a set of varying goals. One example
is using the information to test the accuracy of the machine learning model as time
passes by, since sometimes datasets that are used to train machine learning models
lose relevance over time. By understanding how a machine learning model arrives at

a decision, engineers pinpoint and troubleshoot the errors in the model.

Schemmer et. al. (2022) states that there is an observable positive impact of
XAI towards user performance, versus the use of machine learning without XAI.
In this context, user performance is defined by the manual user’s decision-making

performance [15].

Local Interpretable Model-Agnostic Explanations

Local Intepretable Model-Agnostic Explanation is a method of application of ex-
plainable artificial intelligence to provide the reasoning as to how the model had

arrived at a particular decision variable.

13

CRIM N NDUS CHAS NOX RM AGH DIS RAD TAX PTRATIO] LSTAT target

464 7.83932 0.0 8.10 0.0 0.655 6.209 65.4 29634 240 666.0 20.2 396.90 322 21.4
290 0.03502 80.0 495 00 04 6.861 278 51167 40 2450 9.2 396.90 333 285
273 0.22188 200 6.96 1.0 0.464 7.681 518 4.3665 30 223.0 18.6 300.77 6.58 352
144 2.77974 0.0 9.58 0.0 0.87 4.903 97.8 3450 5.0 403.0 14.7 306.00 20.29 118

Figure 3: Boston dataset taken from scikit-learn python library.

Local explanation

TAX <= 280.50 1 l
17.40 < PTRATIO <= 19.10 A I

5.16 < INDUS <= 9.69 1 I

o4
=
8]
W
-
w
(=]
-~

Figure 4: Sample output of LIME.

Above, we have a sample output of the LIME python package. The dataset utilized
is the boston dataset taken from the sci-kit library. The model attempted to predict
the 47th data point in the testing dataset. LSTAT stands for lower status of society,
RM stands for amount of room per dwelling, TAX is the tax-rate of the property,
PTRATIO is the ratio of students to teacher, and INDUS is the number of non-retails

near the society.

The model predicts the value of a property around Boston. For this datapoint, the
value predicted was 34.324 units. Looking at the sample output of LIME, we are able
to understand the reasoning behind this prediction of the value of the property. We
can notice that RM and LSTAT played a major role in the prediction of a relatively
high value (depicted by the majority of the bars being positive). The amount of room
per dwelling, which had a value greater than 6.63, and a low value of LSTAT, being
below or equal to 7.20 units. In other words, since the property had a relatively larger
amount of room per dwelling, as well as a grand status of its society in terms of its
education and employment, then it resulted in a relatively higher predicted property

value.

Supervised Learning

Supervised learning is a subgroup under machine learning that deals with data
columns that have labels, for both inputs and outputs. Since the dataset that will be
used in the study is labelled, then the machine learning models that will be applied

are supervised learning models.

K-Nearest Neighbors

K-Nearest Neighbors is a supervised learning method that predicts based on the

proximity of other data points near it or its "neighbors”. An odd value k is selected,

15

and the k number of datapoints near the datapoint being predicted are considered

when making the prediction.

Logistic Regression

Logistic Regression is a supervised learning method where the linear combination
of the independent variables are taken into account, and used in order to predict the

the dependent variable.

Support Vector Machine

Support vector machine is a supervised learning method where the optimal hyper-
plane is found by maximizing the margin between the two sets of classification. The
datapoints nearest to the hyperplane are called the support vectors, and it is between
these support vectors and the hyperplane that we want to maximize the distance,

that is the margin.

Random Forest

Random Forest is a supervised learning method that is based on multiple decision
trees. It is an ensemble-type model, meaning that it utilizes multiple decision trees,
and aggregates their decisions. The prediction that is made by the most decision

trees will be the decision made by the random forest model.

Area-Under-Curve

The Area-under-curve (AUC) tests for the area under the Receiver Operator Char-
acteristic (ROC) curve. A value of AUC that is close to 1 suggests that the classifier
is good, while a value of 0.5 suggests that the classifier is not able to distinguish

between positive and negative class points.

16

Precision

The precision calculates the number of correctly classified positive predictions, over
the total number of positive predictions. It measures the performance of a model in

terms of its ability to classify a sample as positive.

Accuracy

The Accuracy is used in order to get the general performance of the model across

the classes, and is often used when classes are of equal importance.

F1 Score

The F'1 score is the harmonic mean between the precision and recall. Its best value

is at 1, and its worst value is at 0.

17

IV. Design and Implementation

The goal is to create a software system that integrates the best performing machine
learning model before and after the application of different preprocessing techniques.
The system is a web application, with a simple user interface that accepts input, and
displays output. It will also have a help page, that will assist users and give more

information regarding the web application.

Breast Cancer
Dataset Aquisition |-{\Wisconsin Diagnostic —» Feature Scaling
Datazet

Run through RF,
KNN, SVM, and LR.

Run through RF,

Resamoing =1y v and LR

v

Run through RF,

Resampling | Feature Exiraction | KNA. SVM. 2nd LR,

v

Run through RF,
KNN, SVM, and LR.

v

Feature Extraction —w

Y

Comparison of
% machine leaming
models performance

Run through RF,
KNN, SWM and LR.

v

Feature Exfraction |-» Resamplng |-

Comparison of Er:;rr?nﬁténnﬂ%febtﬁed Inteqration of XAl Building of software
maching leaming _bpmachinglearnin —» towards machine —{ system for simplfied | Hosting on a server
models’ performance model . learning model input and output

Figure 5: Overview of project implementation from acquisition of dataset to building
the web application.

The target audience are the doctors or radiologists who extract the breast tissue
sample, and the pathologists to whom the breast tissue sample is sent to in the
laboratory [16]. Since both parties are involved in the decision-making process of
classifying a breast tissue sample as benign or malignant, the system is aimed towards

them.

18

Different machine learning methods performance will be tested with the dataset,
and different preprocessing techniques will be applied to maximize model metrics. The
machine learning models that will be included in the study are K-Nearest Neighbors
(KNN), Logistic Regression, Support Vector Machine (SVM), and Random Forest.
Aside from the implementation of different machine learning models, different fine-
tunings will be tested on the dataset via preprocessing techniques namely feature scal-
ing to normalize the range of values, feature extraction, and resampling techniques.
The resulting metrics will be compared with one another, and each fine-tuning of the

dataset will be tested on the LIME model interpreter to determine its applicability.

The fields of medicine and machine learning are two different domains. For the
target user to be able to take advantage of the already-proven diagnostic reliability of
machine learning models, then the technical gap must be filled such that the target
users with little to no exposure to machine learning are able to integrate the proposed
system towards diagnosis of patients who had undergone breast cancer screening. To
do this, a web application software will be developed such that running an observation
on the best-performing machine learning algorithm is as simple as entering an input
and pushing a button. To determine the best-performing algorithm, first, there are
the metrics, where slightly more emphasis will be placed on the Fl-score, AUC, and
precision metrics, since there is slight imbalance on the dataset. Second, there is the

suitability of the fine-tuned model towards the LIME interpreter.

For the completion of the study, the tools that will be used include the sklearn and
pandas packages in order to apply the different machine learning models as well as
the different preprocessing techniques towards the dataset. The Lime package is used
in order to provide reason and explanation to the prediction of the machine learning
model. In other words, we integrate XAI to the project through the Lime python

package. Towards building the web application, Django will be the framework to be

19

used for the backend. MySQL is the database that will be used, and Bootstrap for

the frontend.

20

V. Results

A. Testing for the best performing model

Following the original objectives resulted in models that were substandard. The
reason will be expounded on in more detail later in this section. To fix this, a few
more configurations of models were added. From 20 models, this section will now

compare 40 differently configured models.

Logistic Regression, Random Forest Classifier, K-Nearest Neighbors, and Support
Vector Machine were tested on 10 different variations of applications of feature scaling,
resampling, and feature extraction. This resulted in 40 different sets of metrics to be

compared with one another.

From tables 1 and 2 below, we can see 40 different potential models, of which the
best-performing model would be applied towards the web application. 10 fold cross
validation was used, and then the mean of each metric of all folds was extracted to be
the final metric. Highlighted in yellow and green are the models that were considered
to be applied towards the web application from its metrics alone, which is indicative
of its effectiveness in correctly predicting the presence of breast cancer. Upon analysis
of the table, we can observe high-valued metrics across most of the differently fine-
tuned datasets. The model highlighted in green is chosen to be applied towards the
web application, based on its performance. Table 3 below lists down the confusion
matrix of this model. It should be noted that the metrics taken in tables 1 and 2 were
taken using 10-fold cross validation. The confusion matrix, on the other hand, was
taken after running one instance of the model. One of the main basis for selecting
the random forest with oversampling applied is the value of its area-under-curve,
with the other metrics supporting this decision. This is because the auc takes into

consideration each of the four elements in the confusion matrix, making it into a

21

Feature Scaling

Model Accuracy | F1 Score | Precision | Area under curve
Random Forest 0.957863 | 0.940001 | 0.961753 | 0.991594
K-Nearest Neighbors 0.964787 | 0.950533 | 0.980627 | 0.984502
Support Vector Machine 0.975376 | 0.966486 | 0.977096 | 0.995513

Logistic Regression 0.98067 0.973492 | 0.986107 | 0.996172

Feature Scaling then Resampling

Model Accuracy | F1 Score | Precision | Area under curve
Random Forest 0.983216 | 0.982072 | 0.973444 | 0.999414
K-Nearest Neighbors 0.973435 | 0.973656 | 0.972823 | 0.988785
Support Vector Machine 0.978991 | 0.97898 | 0.98647 | 0.996473

Logistic Regression 0.981788 | 0.981724 | 0.986186 0.997013

Feature Scaling, Resampling, then Feature Extraction

Model Accuracy | F1 Score | Precision | Area under curve
Random Forest 0.983236 | 0.984808 | 0.978433 0.999489
K-Nearest Neighbors 0.973435 | 0.973656 | 0.972823 | 0.988785
Support Vector Machine 0.978991 | 0.97898 | 0.98647 | 0.996473

Logistic Regression 0.981788 | 0.981724 | 0.986186 0.997013

Feature Scaling, then Feature Extraction

Model Accuracy | F1 Score | Precision | Area under curve
Random Forest 0.956109 | 0.94744 | 0.962254 | 0.990011
K-Nearest Neighbors 0.964787 | 0.950533 | 0.980627 | 0.984502
Support Vector Machine 0.975376 | 0.966486 | 0.977096 | 0.995513

Logistic Regression 0.98067 0.973492 | 0.986107 | 0.996172

Feature Scaling, Feature Extraction, then resampling

Model Accuracy | F1 Score | Precision | Area under curve
Random Forest 0.758979 | 0.779984 | 0.71679 | 0.760679
K-Nearest Neighbors 0.638498 | 0.668279 | 0.618855 | 0.690906
Support Vector Machine 0.513869 | 0.604765 | 0.509651 | 0.530705

Logistic Regression 0.512617 | 0.55734 | 0.511165 | 0.530705

Table 1: Table of metrics with feature scaling applied, given 5 different configurations

with 4 machine learning models.

robust metric to measure the predictive power of this model.

22

No preprocessing technique applied

Model Accuracy | F1 Score | Precision | Area under curve
Random Forest 0.961341 | 0.954323 | 0.956728 | 0.989943
K-Nearest Neighbors 0.92619 0.897563 | 0.928011 | 0.950248
Support Vector Machine 0.954323 | 0.936822 | 0.958166 | 0.989716

Logistic Regression 0.942043 | 0.920452 | 0.939575 | 0.99143
Resampling

Model Accuracy ‘ F1 Score | Precision | Area under curve
Random Forest 0.981808 0.986105 | 0.975802 | 0.999491
K-Nearest Neighbors 0.952387 | 0.953106 | 0.946764 | 0.984209
Support Vector Machine 0.96207 | 0.961738 | 0.966723 | 0.992899

Logistic Regression 0.943916 | 0.943552 | 0.949685 | 0.989685
Resampling then Feature Extraction

Model Accuracy ‘ F1 Score | Precision | Area under curve
Random Forest 0.981827 0.984884 | 0.981342 | 0.999493
K-Nearest Neighbors 0.952387 | 0.953106 | 0.946764 | 0.984209
Support Vector Machine 0.96207 0.961738 | 0.966723 | 0.992899

Logistic Regression 0.943916 | 0.943552 | 0.949685 | 0.989685

Feature Extraction

Model Accuracy | F1 Score | Precision | Area under curve
Random Forest 0.961404 | 0.959085 | 0.953185 | 0.990267
K-Nearest Neighbors 0.92619 0.897563 | 0.928011 | 0.950248
Support Vector Machine 0.954323 | 0.936822 | 0.958166 | 0.989716

Logistic Regression 0.942043 | 0.920452 | 0.939575 | 0.99143

Feature Extraction, then resampling

Model Accuracy | F1 Score | Precision | Area under curve
Random Forest 0.787011 | 0.804577 | 0.747033 | 0.789243
K-Nearest Neighbors 0.647046 | 0.680604 | 0.623807 | 0.714687
Support Vector Machine 0.52099 0.626235 | 0.51376 | 0.556248

Logistic Regression 0.526624 | 0.603239 | 0.519114 | 0.556248

Table 2: Table of metrics without feature scaling, given 5 different configurations
with 4 machine learning models.

90 | 1
3 149

Table 3: Confusion matrix of random forest model with resampling.

Performance is based off of 2 factors. First, the values of its metrics namely accu-
racy, F'1 score, precision, and AUC. These values range from 0 to 1, where 1 denotes a
model that perfectly correctly predicts breast cancer. Second, its suitability towards
being used in tandem with the LIME package. Although there exists in the tables
other models with slightly better metrics that are highlighted in yellow, it is worth
mentioning that it was observed that application of PCA or feature scaling towards

the dataset yielded sub-optimal explainability, which is shown below.

23

Local explanation for class 1

perimeter_worst == -0.61
-0.68 < texture_worst <= -0.13

fractal_dimension_se <= -0.64 -

radius_worst > 0.83

concavity_worst <= -0.78

-0.75 < compactness_worst <= -0.06 -
-0.48 < perimeter_se <= -0.19
texture_mean <= -0.67

concavity_mean <= -0.67

perimeter_mean <= -0.62 -

T T T T T T T
-0.10 -0.08 -0.06 —0.04 -0.02 0.00 0.02 0.04

Figure 6: LIME sample output from dataset using feature scaling.

Local explanation for class 1

8 > 0.40

0.12 < 4 <= 0.89 1

3 <=-1.26 A

2 <= -0.97 A

0.06 =9 == 0.30 ~

0.21 <5 <= 1.04 4

-0.60 < 1 <= 0.83 A

-0.49 =6 == -0.14 4

-0.41 = 0 == 2.58

-0.41 =7 ==-0.11 4

T T T
—0.02 0.00 0.02 0.04 0.06

Figure 7: LIME sample output from dataset using feature scaling and PCA

Local explanation for class 1

fractal_dimension_se <= 13.34 - _
perimeter_worst <= 54705 | [T
texture_worst <= s6.94 | [N NN
concavity_worst > 0.18 o
radius_worst <= 21.98 - _
concavity_mean > 0.09
radius_mean <= 16.75 _
perimeter_se <= 19.03 _
compactness_mean > 0.15

compactness_worst > 0.43

T T T T T T T
-0.075 -0.050 -0.025 0.000 0.025 0.050 0.075

Figure 8: LIME sample output from dataset using only oversampling

In figures 6, 7, 8, we can compare the differences between the fine-tuning of the
machine learning models. Figure 8 shows the fine-tuning used in the model highlighted
in green, that is integrated in the web application. It should be noted that not the
same datapoint is being tested, so the actual values can be disregarded, as well as
the machine learning algorithm. What should be taken note of are the feature names
listed on the y-axis. In figure 7, instead of column names from the original dataset,
the LIME python package utilized the new column names after running PCA. Column
names were designated from 0 to 9, for a total of 10 columns, which was the number

of principal components selected.

Additionally, comparing figures 6 and 7, and figure 8, it can be observed that the
values on the y axis of figures 8 and 9 are scaled. As of writing, there is no function
in the lime library that was used that enables one to extract these values in the y

axis, and apply inverse scaling techniques.

Since a principal component is a linear combination of, or in other words, an
aggregate of, the initial variables that are used in the dataset, the LIME package
cannot determine how each initial variable in a principal component impacted the

final decision variable. What happens is that LIME takes a principal component as

25

it is. The problem with this, as can be observed in figure 7, is that the Explanation
object cannot properly convey to the user pertinent information regarding how a
decision was made, since feature names such as 0 to 9 provide zero explainability,
whereas in figures 6 and 7, features can be distinguished from one another, and thus
ample explainability is provided. This is why PCA as a feature extraction method is
not suitable, if the model will be paired afterwards with LIME as an explainability
model. This is why it is concluded that a model fine-tuned without scaling and PCA
is most suitable to be applied towards the lime python package, to offer maximum

explainability.

In an attempt to address the slight imbalance in the dataset,and possibly yield a

better set of metrics, oversampling was used as a resampling method.

Distribution of Diagnoses from the Dataset

400

357

350

300

250

200

150

100

50

Benign Malignant

Figure 9: Visualization of slight imbalance in the dataset.

Figure 9 shows the class imbalance in the dataset. Oversampling was applied to

the minority class, that is the malignant breast cancer diagnosis, in order to be of

26

equal occurrences as the benign diagnoses. We are able to see a visualization of this

in figure 10 below.

Distribution of Diagnoses from Resampled

Dataset
400 357 357
350
300
250
200
150
100

50

Benign Malignant

Figure 10: Visualization of dataset instances after applying random oversampling.

As such, datasets which underwent resampling have 714 samples, while the rest

have the original 569

PCA was applied to both datasets which did and did not undergo feature scaling.
The number of principal components varied between these two configurations, as
variability has been tested by the elbow method (figures 11 and 12) and actual values

for variability (tables 4 and 5).

Principal Component | Variance
PC1 0.9840
PC2 0.0148
PC3 0.0011
PC4 0.0001
PC5 0.0001
PC6 0.0000

Table 4: Numerical values of variance explained for figure 11 per principal component.

27

Elbow Graph - PCA Variance Explained

1.000 4 . L \ ® <

o

[Le]

o

o
I

0.996 -

0.994 -

0.992 A

0.990 A

0.988 A

Cumulative Explained Variance Ratio

0.986 -

0.984 -

2 4 6 8 10
Number of Principal Components

Figure 11: Elbow graph of PCA Variance on dataset without feature scaling.

Elbow Graph - PCA Variance Explained

0.9 A

0.8 A

0.7 A

0.6 1

Cumulative Explained Variance Ratio

2 4 6 8 10
Number of Principal Components

Figure 12: Elbow graph of PCA Variance on dataset with feature scaling.

28

Principal Component | Variance
PC1 0.4428
PC2 0.1951
PC3 0.0915
PC4 0.0625
PC5 0.0556
PC6 0.0424
PC7 0.0221
PC8 0.0161
PC9 0.0141
PC10 0.0111

Table 5: Numerical values of variance explained for figure 12 per principal component.

Comparing the elbow graphs in figure 11 and 12, the number of principal compo-
nents to be used is more obvious in the model that did not undergo feature scaling
versus the model that did. This is apparent in the flattening of the line, which in-
dicates that from principal component n to n+1, the increase in variance explained
is less than the increase from principal component n-1 to n. When the lessening of
variance explained is significant enough, we select that amount of principal compo-
nents to use towards the models. That is how 1 principal component was selected in
the models without feature scaling, and 3 were selected in the models with feature

scaling.

B. Building the web application

The web application consists of 4 pages: The predict page where a user may input
the 30 necessary attributes, then lead to the results page where the prediction and
explanation will be displayed in graphs and sentences, the about page where the user
may learn more about the different components that appear in the results and how

they are interpreted, and the homepage which contains a small introduction on the

29

web application and a links to the predict page and the about us page. Additionally,

all pages are linked by a navigation bar to make it easier to browse through the web

pages.

BreastFriend Home Predict About Us

BreastFriend

Predicting breast cancer diagnosis based on Fine Needle Aspirate findings.

Explainability Reliability Simplicity
Using the Local Inferpretable Model-Agnostic Explanations (Lime) Python package, With a guaranteed accuracy and precision of over 97% fowards diagnosing breast cancer Asimple usedinterace thatiiog skl el U
meaningfulexplanations were exiracted from predictions made on breast cancer diagnosis. from Fine Needle Aspirafion results. explainability, catered towards doctors and radiologists.

Image by starline on Freepik

Figure 13: Homepage interface.

Enter required values:

Predict

Figure 14: Page where FNA input values are entered.

30

BreastFriend Home Predict About Us

texture_worst <= 86.94

concavity_worst > 0.18

fractal_dimension_se <= 13.34

perimeter_worst <= 547.05
radius_mean <= 16.75
concavity_mean > 0.09
perimeter_se <= 19.03
radius_worst <= 21.98
compactness_worst > 0.43

compactness_mean > 0.15

Figure 15: After entering FNA values, the prediction and explanations are generated
in this results page.

BreastFriend Home Predict About Us

Breastfriend is a machine learning web application that utilizes the Wisconsin Breast Cancer Dataset, of which details are available at the UCI Machine Learning Repository. 4
machine learning models, namely Random Forest, Logistic Regression, K-Nearest Neighbors, and Support Vector Machine, were tested on different pre-processing techniques,

which d 40 different which were compared with one another, to find which model performed best in terms of its predicting power, and its suitability with the
lime python package, that is used to generate meaningful explanations.

Below are the different that will be

i while using this web application, and instructions on how they are handled or interpreted.

This figure represents the machine learning model's
confidence towards whether a datapoint is benign (blue)
or malignant (orange). This is influenced by the feature
importance presented in another figure. In this specific
example, the model is 96% confident in predicting that
the datapoint is malignant.

This figure represents the top 10 features that had the
most significant impact in terms of predicting whether a
datapoint is benign or malignant. In other words, this

vmvarnnte tha fanbiin inamarbanes ~f tha fan 10 fanbivan

Figure 16: About page which contains instructions on how components are used and
interpreted.

31

Figures 13 to 16 show the different pages of Breastfriend. Figure 13 is the homepage,
where a user first lands upon entering the base url in the search bar. It gives a brief
explanation on the main features of the application mainly reliability, explainability,
and simplicity. Figure 14 shows the page where FNA values are input to create the
datapoint that will be predicted. Figure 15 is the results page that is generated
after pressing the predict button from the input page. It contains the prediction
probabilities, feature importance, input values of the top 10 features in terms of
impact, a plot generated from matplotlib, the prediction of whether the datapoint
is benign or malignant, the accuracy at which the prediction was made, and the
feature importance explanation in textual form. Finally, figure 16 shows the about
page, which contains a link to where the dataset used in the application was sourced
from, as well as instructions on how the different components in the application are

interpreted. This page also serves as the help page.

32

VI. Discussions

A. Machine Learning Models

Initially, only 20 machine learning models were considered for this paper. Feature
scaling was to be applied to all models, before undergoing resampling or feature
extraction techniques. However, upon comparison of the machine learning models,
it was found that the models produced sub-optimal results in terms of the degree of
explainability demonstrated. Issues with feature scaling are highlighted in figures 6
and 7. Additionally, issues with PCA as a feature extraction technique are highlighted
also in figure 7. As such, it was decided to include a repeat of all configurations
of preprocessing techniques, without feature scaling. As such, from originally 20
configurations to choose from, there are now 40. The updated pipeline is shown in

figure 17 below.

33

Breast Cancer
Dataset Aquisition [—w{Wisconsin Diagnostic —»| Run through RF,
KNN, SVM, and LR.
Dataset
.| : Run through RF,
> Resamping =M suM, and LR
.|) — Run through RF,
» Resampling —» Feature Extraction KNN. SUM. and LR,
\| P Run through RF,
»| Feature Extraction | KNN. SVM. and LR,
¥
Comparison of
» Feature Extraction Resampling 3 Kmng‘::&ughg[ﬁ I machine learning
' an : models performance
Breast Cancer
Dataset Aquisition -{Wisconsin Diagnostic —» Feature Scaling Run through RF,
Dataset KNN, SVM, and LR.
N) Run through RF,
» Resamolng = sy andLR
N - P Run through RF,
» Resampling |—» Feature Exiracion —»| KNN. SVM and LR
N P Run through RF,
¥ Feature Exfraction —m KNN. SVM. and LR,
¥
Comparison of
¥ Feature Exfraction —» Resampling Kmng‘:fr&u%ﬁ[R » machine learning
' ' ' models performance
, Exraction of best- N o
Comparison of performing fine-tuned Inteqgration of XAl Building of software
machine leaming —m machine leaming — towards machine ¥ system for simplified — Hosting on a server.
models’ performance model leaming model input and output

Figure 17: Updated overview of project implementation from acquisition of dataset
to building the web application.

34

The machine learning models metrics shown in tables 1 and 2 are limited by the
application of feature scaling and PCA which were found to be unsuitable towards the
LIME model, which is why despite slightly better metrics from other configurations,
random forest with only oversampling applied was ultimately chosen. The difference
in metrics is only minimal. This is the reason why the pipeline was updated with
additional configurations, in order to maximize the explainability of the LIME python
package. Because 10-fold cross-validation was used in testing each configuration of

machine learning model, the listed metrics are consistent.

While there is a method in order to unscale values that were scaled using Stan-
dardScaler() from the scikit-learn library, it was not possible to extract the values

that needed to be unscaled from the graphs.

Selection of the number of principal components was done visually by analyzing
the elbow graph and referring to the table of values. Whenever there is no more
significant gain in the variance explained by the next principal component, then we

retain that amount of principal components.

B. Objectives

The final program was able to achieve each of the objectives that were proposed
in this paper: the best-performing machine learning model was created by testing
a combination of no feature scaling, with feature scaling, resampling, and feature
extraction. The final model to be used was Random Forest with resampling, which
had an accuracy of 0.981808, an F1 score of 0.986105, a precision of 0.975802, and an
AUC of 0.999491. Aside from these metrics, the suitability towards the LIME model
is also considered in evaluating the performance of a model, which this model was

able to demonstrate.

35

Lastly, the best-performing model incorporated with XAI in the form of the LIME
interpreter, was built into the backend of the Django web application. The web
application has 4 pages: the home page, the page where inputs are applied, an about
page that also provides instruction for interpretation, and the results page. The web

application is hosted on the Heroku platform, with an eco subscription.

36

VII. Conclusions

This study is about aiding the process of diagnosing breast cancer from values
obtained through Fine Needle Aspiration. These inputs obtained consist of 30 real
values. 10 different configurations of 4 machine learning models were tested, for a total
of 40 machine learning models. The chosen model and configuration is random forest
with resampling, which achieved an accuracy of 0.98324, an F1 score of 0.982249, a
precision of 0.976471, and an AUC of 0.983521. Aside from that, it was also able to
maximize the explainability that the LIME interpreter provides. A web application
was built on the Django platform that incorporates this machine learning model with
the LIME interpreter, and generates the results that consist of the predicted value,

and the outputs from LIME.

37

VIII. Recommendations

While the machine learning model itself exhibits high metrics and is fully com-
patible with the LIME interpreter, it is still recommended that other preprocessing
techniques be explored, particularly on the application of feature extraction. As of
writing, while PCA is not recommended to be applied with the lime interpreter since
it diminishes the provided explainability, there are other feature extraction techniques
that may be applied such as the selectKbest and RFECV (Recursive Feature Elimina-
tion with Cross-Validation). This can possibly retain the model metrics or minimally
diminish it, while the necessary features may be reduced significantly, to allow for

more ease with regards to the input of values.

Also, it is also recommended that other XAl packages be tested aside from LIME,
such as SHAP (SHapley Additive exPlanations). This may allow for better explain-
ability in the context of breast cancer, or it may give entirely different explanations,

that may be compared with the output of LIME.

In this study, the Breast Cancer Wisconsin Diagnostic Dataset was used. For
future work, it is suggested that other datasets be explored so as to see if the results,

particularly the metrics, are consistent with what was demonstrated in tables 1 and

2.

38

IX. Bibliography

1]

T. Wu and J. Lee, “Promoting breast cancer awareness and screening practices

for early detection in low-resource settings,” Pubmed Central, vol. 15, 2019.

C. H. Barrios, “Global challenges in breast cancer detection and treatment,” The

breast, vol. 62, 2022.

M. A. Naji, S. E. Filali, K. Aarika, E. H. Benlahmar, R. A. Abdelouhadid, and
O. Debauche, “Machine learning algorithms for breast cancer prediction and

diagnosis,” Procedia computer science, vol. 191, 2021.

V. P. C. Maghoo and M. S. A. Magboo, “Machine learning classifiers on breast

cancer recurrences,” Procedia computer science, vol. 192, 2021.

S. Islam, S. Sarkar, F. [. Ayaz, M. K. Ananda, T. Tazin, A. A. Albraikan, and
F. A. Almalki, “Machine learning based comparative analysis for breast cancer
prediction,” Journal of healthcare engineering: advanced circuits and systems for

healthcare and security applications, 2022.

F. Walsh, “Ai ‘outperforms’ doctors diagnosing breast cancer.” https://www.

bbc.com/news/health-50857759, October 2022.

A. San Juan, A. Salillas, “Is fna still a useful tool in the diagnosis of breast

masses? a 5-year review with cytohistopathologic correlation,” 2017.

J. S. Abele, “Private practice outpatient fine needle aspiration clinic: A 2018

update,” Cancer cytopathology, vol. 126, 2018.

G. Gbenosi, M. Boucham, Z. Belrhiti, C. Nejjari, I. Huybrechts, and M. Khalis,
“Health system factors that influence diagnostic and treatment intervals in

women with breast cancer in sub-saharan africa: A systematic review,” BMC

Public Health, vol. 21, 2021.

39

https://www.bbc.com/news/health-50857759
https://www.bbc.com/news/health-50857759

[10]

[11]

[12]

[16]

R. Confalonieri, L. Coba, B. Wagner, and T. R. Besold, “A historical perspec-
tive of explainable artificial intelligence,” WIRFEs data mining and knowledge

discovery, vol. 11, 2020.

W. H. Wohlberg, W. N. Street, and O. L.. Mangasarian, “Machine learning tech-
niques to diagnose breast cancer from image-processed nuclear features of fine

needle aspirates,” Cancer letters, vol. 77, 1994.

V. P. C. Magboo and M. S. A. Magboo, “Explainable ai for autism classification

7

in children,” Agents and multi-agent systems: Technologies and applications,

vol. 306, 2022.
Z. C. Lipton, “The mythos of model interpretability,” Acmqueue, vol. 16, 2018.

K. Selig, “What is machine learning: A definition.” https://www.expert.ai/

blog/machine-learning-definition/, November 2022.

M. Schemmer, P. Hemmer, M. Nitsche, N. Kuhl, and M. Vossing, “A meta-
analysis of the utility of explainable artificial intelligence in human-ai decision-
making,” Proceedings of the 2022 AAAI/ACM Conference on Al, Ethics, and
Society, 2021.

S. Hibbs, “Fine needle aspiration: How to prepare and what to expect.” https:
//www.cancer.net/blog/2021-10/fine-needle-aspiration-biopsy-how-
prepare-and-what-expect#:~:text=To20perform20a20fine20needle,

fine20needle20biopsy200r20FNA., November 2021.

40

https://www.expert.ai/blog/machine-learning-definition/
https://www.expert.ai/blog/machine-learning-definition/
https://www.cancer.net/blog/2021-10/fine-needle-aspiration-biopsy-how-prepare-and-what-expect#:~:text=To20perform20a20fine20needle, fine20needle20biopsy20or20FNA.
https://www.cancer.net/blog/2021-10/fine-needle-aspiration-biopsy-how-prepare-and-what-expect#:~:text=To20perform20a20fine20needle, fine20needle20biopsy20or20FNA.
https://www.cancer.net/blog/2021-10/fine-needle-aspiration-biopsy-how-prepare-and-what-expect#:~:text=To20perform20a20fine20needle, fine20needle20biopsy20or20FNA.
https://www.cancer.net/blog/2021-10/fine-needle-aspiration-biopsy-how-prepare-and-what-expect#:~:text=To20perform20a20fine20needle, fine20needle20biopsy20or20FNA.

X. Appendix

A. Source Code

{% extends ’predict/homepage.html’ %}
{% load static %}
{% block content %}

<div class="container” style="background—color: white; border—radius: 100px;”>
<div class="top container—md about—us—text”>Breastfriend is a machine learning web application

that utilizes the Wisconsin Breast Cancer Dataset, of which details are available

at the UCI Machine Learning Repository. 4 machine learning models, namely Random Forest,
Logistic Regression, K-Nearest Neighbors,

and Support Vector Machine, were tested on different pre—processing techniques, which
generated 40 different configurations which were compared with one another, to find
which

model performed best in terms of its predicting power, and its suitability with the lime
python package, that is used to generate meaningful explanations.</div>

<div class="container —md about—us—text”>Below are the different components that will be
encountered while using this web application, and instructions on how they are handled
or interpreted.</div>

<div class="container about—us—grid 7>
<div class="row about—us—row”>
<div class="col ">
1
</div>
<div class="col”>

</div>
<div class="col 7>
This figure represents the machine learning model’s confidence towards whether a
datapoint is benign (blue) or malignant (orange). This is influenced by
the feature importance presented in another figure. In this specific example, the
model is 96% confident in predicting that the datapoint is malignant.
</div>
</div>
<div class="row about—us—row”>
<div class="col ">
2
</div>
<div class="col”>

</div>
<div class="col”>
This figure represents the top 10 features that had the most significant
impact in terms of predicting whether a datapoint is benign or malignant.

In other

words, this represents the feature importance of the top 10 features. How is
is interpreted is, for the 3rd row in the figure for example, because the
input

value for concavity worst is greater than 0.18, this attribute alone has a 9%
impact towards why the model predicted malignant.
</div>
</div>
<div class="row about—us—row”>
<div class="col ">
3
</div>
<div class="col”>

</div>
<div class="col”>
This figure displays the respective input values of the top 10 most
significant features, and its color denotes whether this attribute
contributed towards the
datapoint being benign or malignant.
</div>
</div>
<div class="row about—us—row”>
<div class="col 7>

4

</div>
<div class="col”>

</div>

<div class="col”>
This figure represents a more detailed version, where all values and
attributes in the y axis is present, of the previous figure on feature
importance. In this
figure alone, a negative red value denotes benignity , whereas a positive green
value denotes malignance.

41

</div>
</div>
<div class="row about—us—row”>
<div class="col 7>
5
</div>
<div class="col”>

</div>
<div class="col”>
This text gives the final predicted class of the model, as well as the real—
time accuracy that the model exhibited from the testing set in the machine
learning
process.
</div>
</div>
<div class="row about—us—row”>
<div class="col ">

6
</div>
<div class="col”>
<img style="width: 4in;” stc="{% static ’predict/images/textexplanation.png
T %Y >
</div>

<div class="col”>
This is an explanation, in text, of the attributes, and their significance

towards the conclusion that the model had predicted— if the model
predicted that a
datapoint is negative for cancer, then it only gives an explanation for the
attributes that the model deems to have contributed towards the benignity
of a datapoint.
</div>
</div>
<div class="row about—us—row bottom”>
<div class="col ">

7

</div>
<div class="col”>

</div>

<div class="col”>
This is the input page, where 30 of the required inputs, that are values
extracted from the digitized image of a breast tissue sample, taken from a
FNA test , are applied.
</div>
</div>
</div>

</div>

{% endblock %}

{% load static %}
<IDOCTYPE html>
<html lang="en”>
<head>
<meta charset="UTF-8">
<meta http—equiv="X-UA—Compatible” content="IE=edge”>
<meta name="viewport” content="width=device—width, initial —scale=1.0">
<title >BreastFriend </title >
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/css/bootstrap.min.css” rel="
stylesheet” integrity="sha384
rbsA2VBKQhggwzxH7pPCaAqO46MgnOM80zW1RWuH61DGLwZJEdK2Kadq2F9CUG65” crossorigin="anonymous”>
<link rel="stylesheet” href="{% static ’predict/css/website.css’ %}’>
<link rel="preconnect” href="https://fonts.googleapis.com”>
<link rel="preconnect” href="https://fonts.gstatic.com” crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Flow+Circular&family=Jost:ital ,wght@O
,400;0,500;1,100& display=swap” rel="stylesheet”>
<script src="https://kit.fontawesome.com/767e01c769.js” crossorigin="anonymous”’></script>
</head>
<body background="{% static ’'predict/images/61802.jpg’ %}’>
<nav class="navbar navbar—expand—lg bg—light”>
<div class="container—fluid”>
BreastFriend
<button class="navbar—toggler” type="button” data—bs—toggle="collapse” data—bs—target="+#
navbarNav” aria—controls="navbarNav” aria—expanded="false” aria—label="Toggle
navigation”>

</button>
<div class="collapse navbar—collapse” id="navbarNav”’>
<ul class="navbar—nav”>
<li class="nav—item”>
Home

<li class="nav—item”>
Predict
</1i>
<li class="nav—item”>

42

About Us

</div>
</div>
</nav>

{%block content%}
<div class="cright”>

<a href="https://www. freepik .com/free—vector/health—care—science —medical—dna—background—

banner_5129974 .htm”>Image by starline on Freepik
</div>
<div class="title”>
<p style="font—size: 60px; text—align: center;”>BreastFriend </p>
<p style="text—align: center; font—size: 25px;”> Predicting breast
Fine Needle Aspirate findings. </p>
<div >
<button
lg”>Learn More</button>
<a class="nav—link buttons” href="{%url
btn—lg”> Predict </button>
</div>

cancer diagnosis based on

class="btn btn—primary btn—

’predict —page’%}”><button class="btn btn—primary

<div class="row row—cols —1 row—cols—md—3 g—4”
;7>
<div class="col”>
<div class="card h—100 bg—transparent border—dark mb3” >

style="margin—bottom: 2in; text—align: center

<div >
<img style="width: 3in; text—align: center;” src="{% static ’predict/images/chart.
png’ %}” class="card—img—top” alt="..." >
</div>

<div class="card—body”>

<h5 class="card—title”>Explainability </h5>

<p class="card—text”>Using the Local Interpretable Model-Agnostic

) Python package, meaningful explanations were extracted
from predictions made on breast cancer diagnosis.
</p>
</div>

</div>
</div>
<div class="col”>

<div class="card h—100 bg—transparent border—dark mb—3">

Explanations (Lime

<div>
<img style="width: 3in; text—align: center;” src="{% static ’predict/images/bullseye
.png’ %}” class="card—img—top” alt="...">
</div>

<div class="card—body”>
<h5 class="card—title”>Reliability </h5>
<p class="card—text”>With a guaranteed accuracy and precision of over 97% towards
diagnosing breast cancer from Fine Needle Aspiration results.</p>
</div>
</div>
</div>
<div class="col”>
<div class="card h—100 bg—transparent border—dark mb—-3">

<div>
<img style="width: 3in; text—align: center;” src="{% static ’predict/images/house.
png’ %}” class="card—img—top” alt="...">
</div>

<div class="card—body”>
<h5 class="card—title”>Simplicity </h5>
<p class="card—text”> A simple user interface that
learning model with meaningful explainability ,
radiologists .
</p>
</div>
</div>
</div>
</div>

integrates a reliable machine
catered towards doctors and

</div>

{% endblock %}

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/js/bootstrap.bundle.min. js”

integrity="sha384-kenU1KFdBIle4zVF0s0G1M5b4hcpxyDIF7jL+jjXkk+Q2h455rYXK /7THAuoJ1+014"
crossorigin="anonymous”></script >

43

</body>
</html>

Importing the necessary libraries

import matplotlib.pyplot as
import pandas as pd

import sklearn

Loading the dataset using
import numpy as np # linear
from sklearn.model_selection
from sklearn.ensemble import
from sklearn.metrics import

plt

sklearn

algebra

import train_test_split

RandomForestClassifier

recall_score ,precision_score ,accuracy_score ,fl_score ,roc_auc_score ,

confusion_matrix ,roc_curve
from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

from sklearn.linear_model import LogisticRegression
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import os

os.chdir (os.path.dirname(os.path.abspath(_-_file__)))

dataset = pd.read_csv(”data.csv”)

dataset = pd.get_.dummies(data = dataset, drop_first = True)
dataset = dataset.drop(columns = ’Unnamed: 327)

X = dataset.iloc[:,1: —1].values

y = dataset.iloc[:, —1].values

X_scaled = X

X_imbalanced = np.vstack ((X_scaled [y == 1], X_scaled[y == 0]))
y-imbalanced = np.hstack ((y[y == 1], yly == 0]))

from sklearn.utils import resample

#

Create oversampled training data set for minority class

#

X_oversampled, y_oversampled

= resample (X_imbalanced [y_-imbalanced == 1],
y-imbalanced [y_-imbalanced == 1],
replace=True,
n_samples=X_imbalanced [y_-imbalanced == 0].shape[0],

random_state=123)

Append the oversampled minority class to training data and related labels

#
X _balanced = np.vstack ((X_scaled[y == 0], X_oversampled))
y-balanced = np.hstack ((y[y == 0], y-oversampled))

from sklearn.model_selection

import train_-test_split

x-train ,x_test ,y-train ,y_test = train_test_split(X_scaled,y, test_size = 0.25, random_state = 45)

dataframe = pd.DataFrame(X_scaled)

rfc = RandomForestClassifier ()

rfc.fit (x_train,y_train)

y-pred = rfc.predict(x_-test)

acc = accuracy.score(y-test ,y_pred)
conf_matrix = confusion_matrix (y-test ,y_pred)
fpr ,tpr,-. = roc_curve(y-test ,y_pred)

plt.plot (fpr ,tpr)

plt.ylabel ("True Positive Rate’)
plt.xlabel ("False Positive Rate’)

plt .show ()
#X_train, X_test, y-train, y_test = train_test_split(
X, y, train_size=0.90, random_state=50)

Creating a dataframe of the data, for a visual check
#df = pd.concat ([pd.DataFrame(X), pd.DataFrame(y)], axis=1)

#df.columns = np.concatenate

((features , np.array ([’label ’])))

#print (” Shape of data =", df.shape)

Printing the top 5 rows of the dataframe

#print (df.head ())

Instantiating the prediction model — an extra—trees regressor
#from sklearn.ensemble import ExtraTreesRegressor
#reg = ExtraTreesRegressor(random_state=50)

Fitting the predictino model onto the training set

#reg . fit (X_train, y_train)

Checking the model’s performance on the test set

s

#print (’R2 score for the model on test set =’, reg.score(X_test, y-test))

44

Importing the module for LimeTabularExplainer
import lime.lime_tabular

Instantiating the explainer object by passing in the training set, and the extracted features

explainer_lime = lime.lime_tabular.LimeTabularExplainer(x_train ,
feature_names=dataframe.columns,
verbose=True, mode=’classification ’)

Index corresponding to the test vector
i = 25

Number denoting the top features
k = 10

Calling the explain_-instance method by passing in the:

1) ith test vector
2) prediction function used by our prediction model(’reg’ in this case)
3) the top features which we want to see, denoted by k
exp_lime = explainer_lime.explain_instance (
x_test [i], rfc.predict_.proba, num_features=k)
plot = exp-lime.as_pyplot_figure ()

import io
from PIL import Image
import matplotlib.pyplot as plt

plt.rcParams|[” figure . figsize”] = [100, 50]
plt .rcParams[” figure . autolayout”] = True

plt.figure(plot)

img_-buf = io.BytesIO ()
plt.savefig (img-buf, format=’'png’,bbox_inches = ’tight’)

im = Image.open(img_buf)
im.show(title="My Image”)

img_buf.close ()

Finally visualizing the explanations

{% extends ’predict/homepage.html’ %}
{% block content %}
<body class="predict”>

<form action="" method="post”>
{% csrf_token %}
<center>

<div class="card”>
<div class="card—body”>
<h3 style="margin—bottom: 10%”>Enter required values:</h3>
<div class="row”>
<div class="col”>
<input
type="number”
step="any”
name="radiusm?”
class="form—control”
id="floatingInput”
placeholder="Radius Mean”
required

/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="radiusse”
class="form—control”
id="floatingPassword”
placeholder="Radius Standard Error”
required
/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="radiusl”
class="form—control”
id="floatingPassword”
placeholder="Radius Largest”
required
/>
</div>
</div>

45

<div class="row”>
<div class="col”>
<input

type="number”
step="any”
name="texturem?”
class="form—control”
id="floatingInput”
placeholder="Texture Mean”
required

/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="texturese”
class="form—control”
id="floatingPassword”
placeholder="Texture Standard Error”
required
/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="texturel”
class="form—control”
id="floatingPassword”
placeholder="Texture Largest”
required
/>
</div>
</div>

<div class="row”>
<div class="col”>
<input

type="number”
step="any”
name="perimeterm?”
class="form—control”
id="floatingInput”
placeholder="Perimeter Mean”
required

/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="perimeterse”
class="form—control”
id="floatingPassword”
placeholder="Perimeter Standard Error”
required
/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="perimeterl”
class="form—control”
id="floatingPassword”
placeholder="Perimeter Largest”
required
/>
</div>
</div>

<div class="row”>
<div class="col”>
<input

type="number”
step="any”
name="aream”
class="form—control”
id="floatingInput”
placeholder="Area Mean”
required

/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="arease”
class="form—control”
id="floatingPassword”
placeholder="Area Standard Error”
required
/>

46

</div>
<div class="col”>
<input
type="number”
step="any”
name="areal”
class="form—control”
id="floatingPassword”
placeholder="Area Largest”
required
/>
</div>
</div>
<div class="row”>
<div class="col”>
<input
type="number”
step="any”
name="smoothnessm?”
class="form—control”
id="floatingInput”
placeholder="Smoothness Mean”
required

/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="smoothnessse”
class="form—control”
id="floatingPassword”
placeholder="Smoothness Standard Error”
required
/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="smoothnessl”
class="form—control”
id="floatingPassword”
placeholder="Smoothness Largest”
required
/>
</div>
</div>

<div class="row”>
<div class="col”>
<input

type="number”
step="any”
name="compactnessm?”
class="form—control”
id="floatingInput”
placeholder="Compactness Mean”
required

/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="compactnessse”
class="form—control”
id="floatingPassword”
placeholder="Compactness Standard Error”
required
/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="compactnessl”
class="form—control”
id="floatingPassword”
placeholder="Compactness Largest”
required
/>
</div>
</div>

<div class="row”>
<div class="col”>
<input

type="number”
step="any”
name="concavitym?”
class="form—control”
id="floatingInput”
placeholder="Concavity Mean”

47

required

/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="concavityse”
class="form—control”
id="floatingPassword”
placeholder="Concavity Standard Error”
required
/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="concavityl”
class="form—control”
id="floatingPassword”
placeholder="Concavity Largest”
required
/>
</div>
</div>

<div class="row”>
<div class="col”>
<input

type="number”
step="any”
name="concavepointsm?”
class="form—control”
id="floatingInput”

placeholder="Concave Points Mean”

required
/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="concavepointsse”
class="form—control”
id="floatingPassword”

placeholder="Concave Points

required
/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="concavepointsl”
class="form—control”
id="floatingPassword”

placeholder="Concave Points

required
/>
</div>
</div>
<div class="row”>
<div class="col”>
<input
type="number”
step="any”
name="symmetrym”
class="form—control”
id="floatingInput”
placeholder="Symmetry Mean”
required

/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="symmetryse”
class="form—control”
id="floatingPassword”
placeholder="Symmetry Standard Error”
required
/>
</div>
<div class="col”>
<input

type="number”
step="any”
name="symmetryl”
class="form—control”
id="floatingPassword”

placeholder="Symmetry Largest”

Standard

Largest”

48

Error”

required
/>
</div>
</div>
<div class="row”>
<div class="col”>

<input
type="number”
step="any”

name="fractaldimensionm?”
class="form—control”
id="floatingInput”
placeholder="Fractal Dimension Mean”
required

/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="fractaldimensionse”
class="form—control”
id="floatingPassword”
placeholder="Fractal Dimension Standard Error”
required
/>
</div>
<div class="col”>
<input
type="number”
step="any”
name="fractaldimensionl”
class="form—control”
id="floatingPassword”
placeholder="Fractal Dimension Largest”
required
/>
</div>
</div>

<div class="col”>
<button class="btn btn—custom” type="submit”>Predict!</button>
</div>
</div>
</div>
</center>
</form>
</body>
{% endblock %}

{% extends ’predict/homepage.html’ %}
{% block content %}

<center>
{% autoescape off %}
{{results}}
{% endautoescape %}
<div>

<table>
<tr>
<td>
Prediction :
</td>
<td>
{{pred}}
</td>
</tr>
<tr>
<td>
Accuracy:
</td>
<td>
{{accuracy}}
</td>
</tr>
</table>
</div>
<div>
<table>
{% for key, value in feat_imp.items %}
<tr>
<td>
{% if pred == ’Negative!’ %}

{% if value < 0 %}

The attribute {{key}} contributed {% widthratio value 1 —1 %}% towards the
sample tissue being <p style="font—weight: bold;” >Benign</p>

{% endif %}

49

{% else %}
{% if value >= 0 %}
The attribute {{key}} contributed {{value}}% towards the sample tissue being <
p style="font—weight: bold;” >Malignant</p>
{% endif %}
{% endif %}
</td>
</tr>
{% endfor %}
</table>
</div>
</center>

{% endblock %}

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

dataset = pd.read-csv(”data.csv”)

dataset = pd.get-dummies(data = dataset, drop-first = True)
dataset = dataset.drop(columns = ’Unnamed: 32’)

X = dataset.iloc [:,1: —1].values

y = dataset.iloc[:, —1].values

X_scaled = X

X_imbalanced
y-imbalanced

np.vstack ((X_scaled [y == 1], X_scaled|[y == 0]))
np. hstack ((y[y == 1], yly == 0]))

from sklearn.utils import resample

Create oversampled training data set for minority class

X_oversampled, y-oversampled = resample(X_imbalanced[y-imbalanced == 1],
y-imbalanced [y-imbalanced == 1],
replace=True,
n_samples=X_imbalanced [y_-imbalanced == 0].shape[0],

random_state=123)

Append the oversampled minority class to training data and related labels

X_balanced
y-balanced

= np.vstack ((X_scaled [y == 0], X_oversampled))
= np.hstack ((y[y == 0], y-oversampled))

print (len (X_balanced))

from sklearn.model_selection import train_test_split ,cross_val_score

x-train ,x_test ,y_train ,y_test = train_test_split(X_scaled,y, test_size = 0.25, random_state = 45)
x-train_b ,x_test_b ,y_train_b ,y_test_-b = train_test_split(X_scaled,y, test_size = 0.25,
random_state = 45)

from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier ()
rfc.fit (x_train,y_train)
y-pred = rfc.predict(x_-test)

from sklearn.metrics import recall_score ,precision_score ,accuracy_score ,fl_score ,roc_auc_score

Calculate accuracy using cross—validation

accuracy._scores = cross_val_score(rfc, X_scaled, y, cv=10, scoring=’accuracy ’)
acc = accuracy-scores.mean|()

Calculate precision using cross—validation

precision_scores = cross_val_score (rfc, X_scaled, y, cv=10, scoring='precision ’)
precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(rfc, X_scaled, y, cv=10, scoring="f1")

fl = fl_scores .mean()

50

Calculate AUC using cross—validation

auc_scores = cross_val_score(rfc, X_scaled, y, cv=10, scoring='roc_auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ RandomForestClassifier ’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, ’'AUC’])

print (results)

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier (n_neighbors = 3)

knn. fit (x_train, y_train)

y-pred = knn.predict(x_test)

accuracy.-scores = cross_val_score(knn, X_scaled, y, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (knn, X_scaled, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(knn, X_scaled, y, cv=10, scoring="f1")

fl = fl_scores.mean()

Calculate AUC using cross—validation

auc_scores = cross_val_score (knn, X_scaled, y, cv=10, scoring='roc_auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’KNearestNeighbors ————— >, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])

print (results)

from sklearn.svm import SVC
clf = SVC(kernel="linear)
clf . fit (x_train, y_train)

y-pred = clf.predict(x-test)

accuracy-scores = cross_val_score(clf, X_scaled, y, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (clf , X_scaled, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(clf, X_scaled, y, cv=10, scoring="f1")

fl = fl_scores.mean()

Calculate AUC using cross—validation

auc_scores = cross_-val_score (clf, X_scaled, y, cv=10, scoring=’roc_auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ SupportVectorMachines —’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])

print (results)
from sklearn.linear_-model import LogisticRegression

Ir = LogisticRegression (random_state = 0)
Ir. fit (x-train, y_-train)
y-pred = Ir.predict(x-test)

accuracy._scores = cross_val_score(lr, X_scaled, y, cv=10, scoring=’accuracy ’)

acc = accuracy_scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (lr, X_scaled, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(lr, X_scaled, y, cv=10, scoring="f1")

fl1 = fl_scores .mean()

Calculate AUC using cross—validation

auc_scores = cross-val_score (lr, X_scaled, y, cv=10, scoring=’roc-auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ LogisticRegression ————’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])

print (results)

##feature scaling then resampling
print (” Feature Scaling Then resampling”)

x_-train ,x_test ,y_train ,y_test = train_test_split(X_balanced,y_-balanced, test_size = 0.25,
random_state = 45)
rfc = RandomForestClassifier ()
rfc.fit (x_train,y_train)
y-pred = rfc.predict(x_-test)
accuracy.-scores = cross-val_score(rfc, X_balanced, y_-balanced, cv=10, scoring=’accuracy ’)
acc = accuracy._scores.mean()
Calculate precision using cross—validation
precision_scores = cross_val_score (rfc, X_balanced, y-balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(rfc, X_balanced, y_-balanced, cv=10, scoring="f1")
fl1 = fl_scores .mean()
Calculate AUC using cross—validation
auc_scores = cross_val_score(rfc, X_balanced, y_balanced, cv=10, scoring='roc_auc ’)
auc = auc_scores.mean ()
results = pd.DataFrame ([[’ RandomForestClassifier ’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])

print (results)

51

knn = KNeighborsClassifier (n_neighbors = 3)
knn. fit (x_train, y_train)
y-pred = knn.predict (x_-test)

accuracy.scores = cross_-val_score (knn, X_balanced, y_balanced,
acc = accuracy._scores.mean /()

Calculate precision using cross—validation

precision_scores = cross_val_score (knn, X_balanced, y_balanced
precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(knn, X_balanced, y_-balanced, cv=10,
fl = fl_scores .mean()

Calculate AUC using cross—validation

cv=10, scoring=’accuracy ’)

, cv=10,

scoring='precision ’)

scoring="f1")

scoring=’roc-auc’

auc]],

auc-scores = cross_-val_score (knn, X_balanced, y-balanced, cv=10,

auc = auc-scores.mean ()

results = pd.DataFrame ([[’KNearestNeighbors ———— >, acc, fl, precision ,
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’,

print (results)

from sklearn.svm import SVC
clf = SVC(kernel="linear ’)
clf . fit (x-train, y_-train)

y-pred = clf.predict(x_-test)

accuracy._-scores = cross_val_score(clf, X_balanced, y-balanced,
acc = accuracy-scores .mean|()

Calculate precision using cross—validation

precision_scores = cross_val_score (clf , X_balanced, y_-balanced
precision = precision_scores .mean()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(clf, X_balanced, y-balanced, cv=10,
fl = fl_scores .mean()

Calculate AUC using cross—validation

cv=10, scoring=’accuracy ')

, cv=10,

scoring=’'precision ’)

PAUC’])

scoring="f1")

scoring=’roc_auc ’)

auc]],

auc_scores = cross_val_score (clf, X_balanced, y_balanced, cv=10,

auc = auc_scores.mean ()

results = pd.DataFrame ([[’SupportVectorMachines —’, acc, fl, precision,
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’,

print (results)

Ir = LogisticRegression (random_state = 0)

Ir.fit (x_-train, y_train)

y-pred = Ir.predict(x_-test)

accuracy._-scores = cross_val_score(lr, X_balanced, y_balanced,
acc = accuracy_scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (Ir, X_balanced, y-balanced,
precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(lr, X_balanced, y-balanced, cv=10,
fl = fl_scores .mean()

Calculate AUC using cross—validation

cv=10,

cv=10, scoring=’'precision ’)

PAUC’])

scoring=’accuracy ’)

scoring="f1")

auc_scores = cross-val_score (lr, X_balanced, y-balanced, cv=10,

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ LogisticRegression ————", acc, fl, precision,
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision

print (results)

##feature scaling , resampling, then feature extraction
print (” Feature scaling , resampling, then feature extraction”)
from sklearn.decomposition import PCA

import matplotlib.pyplot as plt

pca = PCA(n_components=1)
X_train = pca.fit_-transform (x_-train)
X_test = pca.transform(x_-test)

classifier = RandomForestClassifier ()
classifier.fit (X_train, y-_train)
y-pred = classifier.predict(X_test)

accuracy_-scores = cross_val_score(rfc, X_balanced, y_balanced,
acc = accuracy-scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score(rfc, X_balanced, y-balanced
precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(rfc, X_balanced, y_balanced, cv=10,

fl = fl_scores .mean()
Calculate AUC using cross—validation

cv=10, scoring=’accuracy ’)

, cv=10,

scoring=’roc_auc ’)

auc]],

)
s

scoring='precision ’)

TAUC’)

scoring="f1")

scoring=’roc_auc ’)

auc]]

auc-scores = cross_val_score(rfc, X_balanced, y-balanced, cv=10,

auc = auc-scores.mean ()

results = pd.DataFrame ([[’ RandomForestClassifier ’, acc, fl, precision ,
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’

print (results)
knn = KNeighborsClassifier (n_neighbors = 3)

knn. fit (X_train, y_train)
y-pred = knn.predict (X_test)

52

’

PAUC’])

accuracy._-scores = cross_val_score(knn, X_balanced, y_balanced, cv=10, scoring=’accuracy ’)

acc = accuracy_scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (knn, X_balanced, y_balanced, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score (knn, X_balanced, y_-balanced, cv=10, scoring="f1")

fl = fl_scores .mean()

Calculate AUC using cross—validation

auc_scores = cross_val_score (knn, X_balanced, y-balanced, cv=10, scoring='roc_auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ KNearestNeighbors ———— >, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])

print (results)

from sklearn.svm import SVC

clf = SVC(kernel=’linear ’)

clf. fit (X_train, y_train)

y-pred = clf.predict(X_test)

accuracy-scores = cross_val_score(clf, X_balanced, y_balanced, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean /()

Calculate precision using cross—validation

precision_scores = cross_-val_score(clf, X_balanced, y-balanced, cv=10, scoring=’'precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(clf, X_balanced, y_balanced, cv=10, scoring="f1")

fl = fl_scores.mean()

Calculate AUC using cross—validation

auc-scores = cross_val_score (clf, X_balanced, y-balanced, cv=10, scoring='roc_auc’)

auc = auc-scores.mean ()

results = pd.DataFrame ([[’SupportVectorMachines —’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])

print (results)

Ir = LogisticRegression (random_state = 0)

Ir. fit (x_-train, y_train)

y-pred = Ir.predict(x_-test)

accuracy_-scores = cross_val_score(lr, X_balanced, y-balanced, cv=10, scoring=’accuracy ’)

acc = accuracy-scores .mean ()

Calculate precision using cross—validation

precision_scores = cross_val_score(lr, X_balanced, y-balanced, cv=10, scoring=’precision)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(lr, X_balanced, y_balanced, cv=10, scoring="f1")

fl = fl_scores .mean()

Calculate AUC using cross—validation

auc-scores = cross-val_score(lr, X_balanced, y-balanced, c¢cv=10, scoring=’'roc_auc’)

auc = auc-scores.mean ()

results = pd.DataFrame ([[’ LogisticRegression ———", acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])

print (results)

print (” Feature scaling , then feature extraction”)

pca = PCA(n_components=1)

X_train = pca.fit_transform (x_train_b)

X_test = pca.transform(x_-test_b)

classifier = RandomForestClassifier ()

classifier.fit (X_train, y_train_b)

y-pred = classifier.predict(X_test)

accuracy.-scores = cross_-val_score(rfc, X, y, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score(rfc, X, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(rfc, X, y, cv=10, scoring="f1")

fl = fl_scores.mean()

Calculate AUC using cross—validation

auc_scores = cross_val_score(rfc, X, y, cv=10, scoring=’roc_auc’)

auc = auc_-scores.mean()

results = pd.DataFrame ([[’ RandomForestClassifier ’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])

print (results)

knn = KNeighborsClassifier (n_neighbors = 3)

knn. fit (X_train, y_-train_b)

y-pred = knn.predict (X_test)

accuracy-scores = cross-val_score(knn, X, y, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (knn, X, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(knn, X, y, cv=10, scoring='f1")

fl = fl_scores.mean()

53

Calculate AUC using cross—validation

auc_scores = cross_val_score (knn, X, y, cv=10, scoring=’roc_auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’KNearestNeighbors ————— >, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, ’'AUC’])

print (results)

from sklearn.svm import SVC
clf = SVC(kernel="linear ’)

clf . fit (X_train, y_train_b)
y-pred = clf.predict(X_test)

accuracy.-scores = cross-val_score(clf, X, y, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score(clf, X, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(clf, X, y, cv=10, scoring='f1")

fl = fl_scores.mean()

Calculate AUC using cross—validation

auc_scores = cross_val_score(clf, X, y, cv=10, scoring=’roc_auc’)

auc = auc_-scores.mean()

results = pd.DataFrame ([[’ SupportVectorMachines —’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])

print (results)

Ir = LogisticRegression(random_state = 0)

Ir.fit(X_train, y-train_b)

y-pred = Ir.predict(X_test)

accuracy-scores = cross_val_score(lr, X, y, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean/()

#Calculate precision using cross—validation

precision_scores = cross_val_score (lr, X, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

#Calculate F1 score using cross—validation

fl_scores = cross_val_score(lr, X, y, cv=10, scoring="f1")

fl = fl_scores .mean()

#Calculate AUC using cross—validation

auc_scores = cross-val_score(lr, X, y, cv=10, scoring=’roc_auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ LogisticRegression ————’, acc, fl, precision, auc]],

columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])
print (results)

print (” Feature scaling , feature extraction, then resampling”)

merged-x = np.concatenate ((X_train, X_test), axis=0)

X_imbalanced = np.vstack ((merged_x[y == 1], merged_x[y == 0]))

y-imbalanced = np.hstack ((y[y == 1], y[y == 0]))

from sklearn.utils import resample

Create oversampled training data set for minority class

#

X_oversampled, y_-oversampled = resample(X_imbalanced [y-imbalanced == 1],
y-imbalanced [y-imbalanced == 1],
replace=True,
n_samples=X_imbalanced [y_-imbalanced == 0].shape[0],

random_state=123)

Append the oversampled minority class to training data and related labels

X_balanced = np.vstack ((merged_-x[y == 0], X_oversampled))

y-balanced = np.hstack ((y[y == 0], y-oversampled))

x_train ,x_test ,y_train ,y_test = train_test_split(X_balanced,y_-balanced, test_size = 0.25,
random_state = 45

rfc = RandomForestClassifier ()

rfc.fit (x_train ,y_train)

y-pred = rfc.predict(x_-test)

accuracy._-scores = cross_val_score(rfc, X_balanced, y-balanced, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (rfc, X_balanced, y-balanced, cv=10, scoring=’precision)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(rfc, X_balanced, y_balanced, cv=10, scoring="f1")

fl = fl_scores .mean()

Calculate AUC using cross—validation

auc_scores = cross_val_score(rfc, X_balanced, y_balanced, cv=10, scoring='roc_auc ’)

auc = auc_-scores.mean ()

o4

results = pd.DataFrame ([[’ RandomForestClassifier ’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])
print (results)

knn = KNeighborsClassifier (n_neighbors = 3)
knn. fit (x_-train, y_train)
y-pred = knn.predict(x_-test)

accuracy.-scores = cross-val_score (knn, X_balanced, y-balanced, cv=10, scoring=’accuracy ’)
acc = accuracy._scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (knn, X_balanced, y-balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(knn, X_balanced, y_-balanced, cv=10, scoring="f1")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc_scores = cross_val_score (knn, X_balanced, y_balanced, cv=10, scoring='roc_auc ’)
auc = auc_scores.mean ()
results = pd.DataFrame ([[’KNearestNeighbors ———— >, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])
print (results)

from sklearn.svm import SVC
clf = SVC(kernel="linear)
clf . fit (x_train, y_train)

y-pred = clf.predict(x-test)
accuracy.-scores = cross_val_score(clf, X_balanced, y-balanced, cv=10, scoring=’accuracy ’)
acc = accuracy-scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (clf, X_balanced, y-balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(clf, X_balanced, y_balanced, cv=10, scoring="f1")
fl = fl_scores.mean()
Calculate AUC using cross—validation
auc_scores = cross_val_score (clf, X_balanced, y_-balanced, cv=10, scoring='roc_auc ’)
auc = auc-scores.mean ()
results = pd.DataFrame ([[’ SupportVectorMachines —’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, 'F1’, ’ Precision’, 'AUC’])

print (results)

Ir = LogisticRegression(random_state = 0)
Ir. fit (x-train, y_train)
y-pred = Ir.predict(x_-test)
accuracy.-scores = cross_val_score(lr, X_balanced, y-balanced, c¢cv=10, scoring=’accuracy ’)
acc = accuracy-scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (lr, X_balanced, y_balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(lr, X_balanced, y_balanced, cv=10, scoring="f1")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc_scores = cross-val_score (lr, X_balanced, y-balanced, cv=10, scoring=’'roc_auc ’)
auc = auc_scores.mean ()
results = pd.DataFrame ([[’ LogisticRegression ————’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])

print (results)

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

dataset = pd.read_csv(”data.csv”)

dataset = pd.get_-dummies(data = dataset, drop-_first = True)
dataset = dataset.drop(columns = ’Unnamed: 327)

X = dataset.iloc[:,1: —1].values

y = dataset.iloc[:, —1].values

##feature scaling
print (” Feature Scaling”)
from sklearn.preprocessing import StandardScaler

sc = StandardScaler ()

X_scaled = sc.fit_-transform (X)

X_imbalanced = np.vstack ((X_scaled [y == 1], X_scaled[y == 0]))
y-imbalanced = np.hstack ((y[y == 1], yly == 0]))

from sklearn.utils import resample

#

Create oversampled training data set for minority class

#

X_oversampled, y-oversampled = resample(X_imbalanced[y-imbalanced == 1],

55

y-imbalanced [y-imbalanced == 1],

replace=True,

n_samples=X_imbalanced [y_-imbalanced == 0].shape[0],
random_state=123)

Append the oversampled minority class to training data and related labels

#

X _balanced = np.vstack ((X_scaled[y == 0], X_oversampled))
y-balanced = np.hstack ((y[y == 0], y-oversampled))

print (len (X_balanced))

from sklearn.model_selection import train_test_split ,cross_val_score

x-train ,x_test ,y-train ,y_test = train_test_split(X_scaled,y, test_size = 0.25, random_state = 45)
x-train_b ,x_test_b ,y_train_b ,y_test_-b = train_test_split(X_scaled ,y, test_size = 0.25,
random_state = 45)

from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier ()
rfc.fit (x_train,y_train)
y-pred = rfc.predict(x_-test)

from sklearn.metrics import recall_score ,precision_score ,accuracy_score,fl_score ,roc_auc_score

Calculate accuracy using cross—validation

accuracy._-scores = cross_val_score(rfc, X_scaled, y, cv=10, scoring=’accuracy ’)

acc = accuracy._scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score(rfc, X_scaled, y, cv=10, scoring='precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(rfc, X_scaled, y, cv=10, scoring="f1")

fl = fl_scores .mean()

Calculate AUC using cross—validation

auc_scores = cross_val_score(rfc, X_scaled, y, cv=10, scoring='roc_auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ RandomForestClassifier ’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])

print (results)

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier (n_neighbors = 3)

knn. fit (x_train, y_train)

y-pred = knn.predict(x_-test)

accuracy-scores = cross_val_score(knn, X_scaled, y, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (knn, X_scaled, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(knn, X_scaled, y, cv=10, scoring="f1")

fl = fl_scores.mean()

Calculate AUC using cross—validation

auc_scores = cross-val_score (knn, X_scaled, y, cv=10, scoring=’roc_auc’)

auc = auc-scores.mean()

results = pd.DataFrame ([[’ KNearestNeighbors ———— >, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])

print (results)

from sklearn.svm import SVC
clf = SVC(kernel="linear ’)
clf . fit (x_train, y_train)

y-pred = clf.predict(x_-test)

accuracy-scores = cross_-val_score(clf, X_scaled, y, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (clf, X_scaled, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(clf, X_scaled, y, cv=10, scoring="f1")

fl = fl_scores .mean()

Calculate AUC using cross—validation

auc_scores = cross-val_score (clf, X_scaled, y, cv=10, scoring=’roc-auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ SupportVectorMachines —’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])

print (results)
from sklearn.linear_-model import LogisticRegression

Ir = LogisticRegression (random_state 0)

Ir . fit (x-train, y-train)

y-pred = Ir.predict(x_test)

accuracy._scores = cross_val_score(lr, X_scaled, y, cv=10, scoring=’accuracy ’)
acc = accuracy_scores.mean/()

Calculate precision using cross—validation

56

precision_scores = cross_val_score (lr, X_scaled, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(lr, X_scaled, y, cv=10, scoring='f1")
fl = fl_scores.mean()
Calculate AUC using cross—validation
auc_scores = cross-val_score (lr, X_scaled, y, cv=10, scoring=’roc_auc’)
auc = auc_scores.mean ()
results = pd.DataFrame ([[’ LogisticRegression ’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])
print (results)
##feature scaling then resampling
print (” Feature Scaling Then resampling”)
x-train ,x_test ,y_-train ,y_test = train_test_split(X_balanced,y-balanced, test_size = 0.25,
random_state = 45)
rfc = RandomForestClassifier ()
rfc.fit (x_train ,y_train)
y-pred = rfc.predict(x_test)
accuracy.-scores = cross_val_score(rfc, X_balanced, y_balanced, cv=10, scoring=’accuracy ’)
acc = accuracy-scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_-val_score(rfc, X_balanced, y-balanced, cv=10, scoring=’'precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(rfc, X_balanced, y_balanced, cv=10, scoring="f1")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc-scores = cross_-val_score(rfc, X_balanced, y-balanced, cv=10, scoring='roc_auc’)
auc = auc-scores.mean ()
results = pd.DataFrame ([[’ RandomForestClassifier ’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])
print (results)
knn = KNeighborsClassifier (n_neighbors = 3)
knn. fit (x_train, y_train)
y-pred = knn.predict (x_-test)
accuracy.-scores = cross-val_score (knn, X_balanced, y-balanced, cv=10, scoring=’accuracy ’)
acc = accuracy._scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (knn, X_balanced, y_balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(knn, X_balanced, y_-balanced, cv=10, scoring="f1")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc-scores = cross_-val_score (knn, X_balanced, y-balanced, cv=10, scoring='roc-auc’)
auc = auc-scores.mean ()
results = pd.DataFrame ([[’KNearestNeighbors ———— >, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])
print (results)
from sklearn.svm import SVC
clf = SVC(kernel="linear ’)
clf.fit (x-train, y-train)
y-pred = clf.predict(x_-test)
accuracy._-scores = cross_val_score(clf, X_balanced, y-balanced, cv=10, scoring=’accuracy ’)
acc = accuracy._scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (clf, X_balanced, y-balanced, cv=10, scoring=’precision)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(clf, X_balanced, y-balanced, cv=10, scoring="fl")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc_scores = cross_val_score (clf, X_balanced, y_balanced, cv=10, scoring='roc_auc ’)
auc = auc_scores.mean ()
results = pd.DataFrame ([[’SupportVectorMachines —’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, ’'AUC’])
print (results)
Ir = LogisticRegression(random_state = 0)
Ir. fit (x_-train, y_train)
y-pred = Ir.predict(x_test)
accuracy.-scores = cross_val_score(lr, X_balanced, y_balanced, c¢cv=10, scoring='accuracy ’)
acc = accuracy-scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (lr, X_balanced, y-balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(lr, X_balanced, y_balanced, cv=10, scoring="f1l")
fl = fl_scores.mean()
Calculate AUC using cross—validation
auc_scores = cross_val_score (lr, X_balanced, y_-balanced, cv=10, scoring=’'roc_auc ’)

57

auc = auc-scores.mean /()

results = pd.DataFrame ([[’ LogisticRegression ———", acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, ’'AUC’])

print (results)

##feature scaling , resampling, then feature extraction

print (” Feature scaling , resampling, then feature extraction”)

from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

pca = PCA(n_components=1)

X_train = pca.fit_transform (x_train)
X_test = pca.transform(x_test)
classifier = RandomForestClassifier ()
classifier.fit (X_train, y-train)
y-pred = classifier.predict(X_test)
accuracy._-scores = cross_val_score(rfc, X_balanced, y_balanced, cv=10, scoring=’accuracy ’)
acc = accuracy_scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (rfc, X_balanced, y_balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(rfc, X_balanced, y_-balanced, cv=10, scoring="f1")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc_scores = cross-val_score(rfc, X_balanced, y-balanced, cv=10, scoring=’'roc_-auc’)
auc = auc_scores.mean ()
results = pd.DataFrame ([[’ RandomForestClassifier >, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])
print (results)
knn = KNeighborsClassifier (n_neighbors = 3)
knn. fit (X_train, y-train)
y-pred = knn.predict (X_test)
accuracy._-scores = cross_val_score(knn, X_balanced, y_balanced, cv=10, scoring=’accuracy ’)
acc = accuracy_scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (knn, X_balanced, y_balanced, cv=10, scoring=’'precision ’)
precision = precision_scores.mean()
Calculate F1 score using cross—validation
fl_scores = cross_val_score (knn, X_balanced, y-balanced, cv=10, scoring="f1")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc_-scores = cross_val_score (knn, X_balanced, y-balanced, cv=10, scoring='roc_auc’)
auc = auc-scores.mean ()
results = pd.DataFrame ([[’KNearestNeighbors ———— >, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])
print (results)
from sklearn.svm import SVC
clf = SVC(kernel=’linear ’)
clf. fit (X_train, y_train)
y-pred = clf.predict(X_test)
accuracy.-scores = cross_val_score(clf, X_balanced, y_-balanced, cv=10, scoring=’accuracy ’)
acc = accuracy.-scores .mean ()
Calculate precision using cross—validation
precision_scores = cross_-val_score(clf, X_balanced, y-balanced, cv=10, scoring=’'precision ”)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(clf, X_balanced, y_balanced, cv=10, scoring="f1")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc-scores = cross_val_score (clf, X_balanced, y-balanced, cv=10, scoring='roc-auc’)
auc = auc-scores.mean ()
results = pd.DataFrame ([[’SupportVectorMachines —’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])
print (results)
Ir = LogisticRegression (random_state = 0)
Ir. fit (x_-train, y_train)
y-pred = Ir.predict(x_-test)
accuracy.-scores = cross-val_score(lr, X_balanced, y_-balanced, cv=10, scoring='accuracy ’)
acc = accuracy._scores.mean ()
Calculate precision using cross—validation
precision_scores = cross_val_score (lr, X_balanced, y_-balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(lr, X_balanced, y_-balanced, cv=10, scoring="f1")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc-scores = cross-val_score(lr, X_balanced, y-balanced, c¢v=10, scoring=’'roc_auc’)
auc = auc-scores.mean ()
results = pd.DataFrame ([[’ LogisticRegression ———", acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])

print (results)

print (” Feature scaling , then feature extraction”)

58

pca = PCA(n-components=1)

X_train = pca.fit_transform (x_train_b)

X_test = pca.transform(x_test_b)

classifier = RandomForestClassifier ()

classifier.fit (X_train, y_train_b)

y-pred = classifier.predict(X_test)

accuracy.-scores = cross_-val_score(rfc, X_scaled, y, cv=10, scoring=’accuracy ')

acc = accuracy._scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (rfc, X_scaled, y, cv=10, scoring='precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(rfc, X_scaled, y, cv=10, scoring="f1")

fl = fl_scores .mean()

Calculate AUC using cross—validation

auc_scores = cross_val_score(rfc, X_scaled, y, cv=10, scoring='roc_auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ RandomForestClassifier ’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, ’'AUC’])

print (results)

knn = KNeighborsClassifier (n_neighbors = 3)
knn. fit (X_train, y_train_b)
y-pred = knn.predict (X_test)

accuracy._-scores = cross_val_score(knn, X_scaled, y, cv=10, scoring=’accuracy ’)

acc = accuracy._scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (knn, X_scaled, y, cv=10, scoring='precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(knn, X_scaled, y, cv=10, scoring="f1")

fl = fl_scores .mean()

Calculate AUC using cross—validation

auc_scores = cross_val_score (knn, X_scaled, y, cv=10, scoring='roc_auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’KNearestNeighbors ————— >, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, ’'AUC’])

print (results)

from sklearn.svm import SVC
clf = SVC(kernel="linear)

clf . fit (X_train, y-train_b)
y-pred = clf.predict(X_test)

accuracy-scores cross_val_score(clf , X_scaled, y, cv=10, scoring=’accuracy ’)

acc = accuracy-scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (clf, X_scaled, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(clf, X_scaled, y, cv=10, scoring="f1")

fl = fl_scores.mean()

Calculate AUC using cross—validation

auc_scores = cross-val_score (clf, X_scaled, y, cv=10, scoring=’roc_auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ SupportVectorMachines —’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])

print (results)

Ir = LogisticRegression(random_state = 0)

Ir. fit (X_train, y-train_b)

y-pred = Ir.predict(X_test)

accuracy-scores cross_val_score(lr, X_scaled, y, cv=10, scoring=’accuracy ’)

acc = accuracy_scores.mean/()

Calculate precision using cross—validation

precision_scores = cross_val_score (lr, X_scaled, y, cv=10, scoring=’precision ’)

precision = precision_scores .mean ()

Calculate F1 score using cross—validation

fl_scores = cross_val_score(lr, X_scaled, y, cv=10, scoring='f1")

fl1 = fl_scores .mean()

Calculate AUC using cross—validation

auc_scores = cross-val_score (lr, X_scaled, y, cv=10, scoring=’roc-auc’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ LogisticRegression ————’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])

print (results)

print (” Feature scaling , feature extraction, then resampling”)

merged_-x = np.concatenate ((X_train, X_test), axis=0)

X_imbalanced = np.vstack ((merged_x[y == 1], merged_-x[y == 0]))

59

y-imbalanced = np. hstack ((yly == 1], yly == 0]))
from sklearn.utils import resample

#
Create oversampled training data set for minority class
#
X_oversampled, y_oversampled = resample(X_imbalanced [y-imbalanced == 1],
y-imbalanced [y-imbalanced == 1],
replace=True,
n_samples=X_imbalanced [y_imbalanced == 0].shape[0],

random_state=123)

Append the oversampled minority class to training data and related labels

#

X_balanced = np.vstack ((merged_x[y == 0], X_oversampled))
y-balanced = np.hstack ((y[y == 0], y-oversampled))
x_train ,x_test ,y_train ,y_test = train_test_split(X_balanced,y_-balanced, test_size = 0.25,
random_state = 45)
rfc = RandomForestClassifier ()
rfc.fit (x_train,y_train)
y-pred = rfc.predict(x_-test)
accuracy.-scores = cross-val_score(rfc, X_balanced, y-balanced, cv=10, scoring=’accuracy ’)
acc = accuracy._scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (rfc, X_balanced, y_balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(rfc, X_balanced, y_-balanced, cv=10, scoring="f1")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc-scores = cross_-val_score(rfc, X_balanced, y-balanced, cv=10, scoring='roc-auc ’)
auc = auc_scores.mean ()
results = pd.DataFrame ([[’ RandomForestClassifier ’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, 'AUC’])
print (results)
knn = KNeighborsClassifier (n_neighbors = 3)
knn. fit (x_train, y_train)
y-pred = knn.predict(x_-test)
accuracy._scores = cross_val_score(knn, X_balanced, y-balanced, cv=10, scoring=’accuracy ’)
acc = accuracy._scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (knn, X_balanced, y-balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(knn, X_balanced, y-balanced, cv=10, scoring="f1")
fl = fl_scores .mean()
Calculate AUC using cross—validation
auc_scores = cross_val_score (knn, X_balanced, y_balanced, cv=10, scoring='roc_auc ’)
auc = auc_-scores.mean ()
results = pd.DataFrame ([[’KNearestNeighbors ———— >, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ° Precision’, ’'AUC’])
print (results)
from sklearn.svm import SVC
clf = SVC(kernel="linear)
clf . fit (x_train, y_train)
y-pred = clf.predict(x_-test)
accuracy-scores = cross_val_score(clf, X_balanced, y-balanced, cv=10, scoring=’accuracy ’)
acc = accuracy-scores.mean/()
Calculate precision using cross—validation
precision_scores cross_-val_score (clf , X_balanced, y-balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()
Calculate F1 score using cross—validation
fl_scores = cross_val_score(clf, X_balanced, y_-balanced, cv=10, scoring=’f1")
fl = fl_scores.mean()
Calculate AUC using cross—validation
auc_scores = cross-val_score (clf, X_balanced, y-balanced, cv=10, scoring=’'roc_auc’)
auc = auc_scores.mean ()
results = pd.DataFrame ([[’ SupportVectorMachines —’, acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])
print (results)
Ir = LogisticRegression(random_state = 0)
Ir. fit (x-train, y_train)
y-pred = Ir.predict(x-test)
accuracy-scores = cross_-val_score(lr, X_balanced, y-balanced, c¢cv=10, scoring=’accuracy ’)
acc = accuracy_scores.mean/()
Calculate precision using cross—validation
precision_scores = cross_val_score (lr, X_balanced, y_-balanced, cv=10, scoring=’precision ’)
precision = precision_scores .mean ()

Calculate F1 score using cross—validation

60

fl_scores = cross_val_score(lr, X_balanced, y-balanced, cv=10, scoring="f1")
fl = fl_scores .mean()

Calculate AUC using cross—validation

auc_scores = cross_-val_score (lr, X_balanced, y_-balanced, cv=10, scoring=’'roc_auc ’)

auc = auc_scores.mean ()

results = pd.DataFrame ([[’ LogisticRegression ———", acc, fl, precision, auc]],
columns = [’Model’,’ Accuracy’, ’'F1’, ’ Precision’, 'AUC’])

print (results)

from django.urls import path
from . import views

urlpatterns = |

path(’’, views.homepage, name="homepage”) ,
path (’predict/’, views.predict_page , name="predict—page”),
path (’about—us/’, views.about_us, name="about—us”),

from django.shortcuts import render

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import precision_score ,accuracy-score ,fl_score ,roc_auc_score
import lime.lime_tabular

import base64

from io import BytesIO

import random

import joblib

def image_to_base64 (image):
buff = BytesIO ()
image.save (buff, format="PNG”)
img_str = base64.b64encode (buff.getvalue())
img_-str = img._str.decode(” utf —8”) # convert to str and cut b’’ chars
buff.close ()
return img_str

def Convert(tup, di):
for a, b in tup:
a = int(a)
di.setdefault (a,[]) .append(b)
return di

def rename_features(feat_imp):
for key in list (feat_imp):
if key == ’radius_mean
feat_imp [mean of radius’] = feat_-imp[’radius_mean ’]

del feat_imp[’radius_-mean ’]

)

elif key == ’texture_mean’

feat_imp [mean of texture’] = feat_imp [’ texture_mean ’]
del feat_imp[’texture_mean ’]
elif key == ’perimeter_mean ’:
feat_imp [mean of perimeter’] = feat_imp [’ perimeter_-mean ’]
del feat_imp [’ perimeter_mean ’]
elif key == ’area_mean ’:
feat_imp [’mean of area’] = feat_imp[’area_mean ’]
del feat_imp [’ area_mean ’]
elif key == ’smoothness_mean ’:
feat_imp [mean of smoothness’] = feat_imp [smoothness_mean ’]
del feat_imp[’smoothness_mean ’]
elif key == ’compactness_mean ’:
feat_imp [mean of compactness’] = feat_-imp [’ compactness_mean ’]
del feat_imp[’compactness_mean ’]

elif key == ’concavity_mean’
feat_imp [mean of concavity ’] = feat_imp[’concavity_-mean ’]
del feat_imp[’concavity_-mean ’]
elif key == ’concave_mean ’:
feat_imp ["mean of concave’] = feat_imp [’ concave_mean ’]
del feat_imp [’concave_mean ’]
elif key == ’symmetry_mean ’:
feat_imp [mean of symmetry’] = feat_imp[’symmetry_mean ’]
del feat_imp [’symmetry_mean ’]
elif key == ’fractal_.dimension_-mean ’:
feat_imp [mean of fractal dimension’] = feat_-imp|[’fractal_-dimension_mean ’]
del feat_-imp[’fractal_-dimension_-mean ’]
elif key == ’radius_se’
feat_imp [’ standard error of radius’] = feat_imp |
del feat_imp|[’radius_se ']

"radius_se ’|

61

N).

elif key = texture_se
feat_imp [’ standard error

del feat_imp|[’radius_se ']

elif key == ’'perimeter_se’
feat_imp [’ standard error
del feat_imp [’ perimeter_se ’]
elif key == ’area_se ’:
feat_imp [’standard error
del feat_imp|[’area_se ’]

elif key ’smoothness_se ’:

feat_imp [’standard error
del feat_-imp[’smoothness_se ’]

J— .

elif key == ’compactness_se
feat_imp [’ standard error
del feat_imp[’compactness_se ’]
elif key == ’concavity_se ’:
feat_imp [’ standard error

del feat_imp[’concavity_se ’]

elif key == ’concave_.se’
feat_imp [’standard error
del feat_imp[’concave_se ’]

elif key == ’symmetry_se ’:
feat_imp [’standard error

del feat_imp[’symmetry_se ’]

of radius

of area ’]

of concave ’]

of symmetry ’]

=

of perimeter ’]

of smoothness ’]

of compactness’

of concavity 7]

elif key == ’fractal_-dimension_se ’:
feat_imp [’ standard error of fractal
del feat_imp[’fractal_-dimension_se ’]

elif key == ’radius_worst ’
feat_imp [’ largest of radius’]

del feat_imp[’radius_worst ’]

elif key == ’texture_worst ’
feat_imp [’ largest of texture ’]
del feat_imp|[’texture_worst ’]

elif key == ’'perimeter_worst ’:
feat_imp [’ largest of perimeter
del

elif key == ’area_-worst ’:
feat_imp [’ largest of area’]
del feat_imp|[’area_-worst ’]

elif key ’smoothness_worst ’:
feat_imp [’ largest of
del feat_imp[’smoothness_worst

elif key ==
feat_imp [’ largest

del

’compactness_worst ’:

elif key == ’concavity_-worst ’:
feat_imp [’ largest of concavity

del feat_imp|[’concavity_worst

elif key == ’concave_worst ’:
feat_imp [’ largest of concave’]
del feat_-imp|[’concave_worst ’]
elif key ==
feat_imp [’ largest
del feat_imp[’symmetry_worst ’]

’symmetry_worst ’:

elif key ==
feat_imp [’ largest
del

of fractal

return feat_imp

Create your views here.

def homepage(request):
from django.core.cache
from django.
cache.clear ()
random . seed (123)
np.random.seed (123)
session
session . flush ()

import cache

smoothness ’]

of compactness ’]
feat_imp [’ compactness_worst ']

of symmetry’

contrib.sessions . backends.

feat_imp [

dimension ’]

"radius_se ’|

feat_imp [’ perimeter_se ']

feat_imp [’ area_se ']

= feat_imp[’smoothness_se ’]

feat_imp [’ compactness_se]

3

feat_imp [’ concavity_se ']

= feat_imp [’ concave_se ’]

feat_imp [’ symmetry_se ’]

feat_imp [’ fractal_dimension_se ’]

feat_imp [’ radius_worst ']

= feat_imp [’ texture_worst ’]

=

feat_imp [’ perimeter_worst ’]

feat_imp [’

']

=

']

feat_imp [’ perimeter_worst ']

area-worst ']

feat_imp [’ smoothness_worst ’]

feat_imp [’ compactness_worst ’]

feat_imp [’ concavity_worst ']

feat_imp [’ concave_worst ’]

] = feat_imp [’ symmetry_worst ’]

’fractal_dimension_worst ’:
dimension ']
feat_imp [’ fractal_dimension_worst ’]

db

SessionStore (session_key=request.session

62

feat_imp [’ fractal_dimension_worst ']

import SessionStore

.session_key)

return render (request, ’'predict/homepage.html’)

def predict_page(request):

if (reque
data

data
data
data

st .method == ’"POST’) :
point = np.array ([request .POST. get (’radiusm ’) ,request .POST. get (’texturem ’) ,request.
POST. get (’perimeterm ’) ,request .POST. get (’aream’) ,request .POST. get (’smoothnessm ’) ,
request .POST. get (’compactnessm ’) ,request .POST. get (’concavitym ’) ,request .POST. get (’
concavepointsm ') ,request .POST. get (’symmetrym’) ,request .POST. get (' fractaldimensionm ’) ,
request .POST. get ("radiusse ') ,request .POST. get ('texturese ’) ,request .
POST. get (’perimeterse ') ,request .POST. get (’arease ’) ,request .POST.
get (’smoothnessse ’) ,request .POST. get (’compactnessse ’) ,request .
POST. get (’concavityse ') ,request .POST. get (' concavepointsse) ,
request .POST. get (’symmetryse’) ,request .POST. get (’
fractaldimensionse) ,
request .POST. get (’radiusl ’) ,request .POST. get (’texturel ’) ,request.
POST. get (’perimeterl ’) ,request .POST. get (’areal ’) ,request .POST.
get (’smoothnessl’) ,request .POST. get (’compactnessl’) ,request .POST
.get (’concavityl ’) ,request .POST. get (’concavepointsl ’) ,request .
POST. get (’symmetryl’) ,request .POST. get (’fractaldimensionl ’) ,])
set = pd.read_csv (” predict/data/data.csv”)
set = pd.get_-dummies(data = dataset, drop_first = True)
set = dataset.drop(columns = ’Unnamed: 32°)

rfc = joblib.load (” predict/data/random_forest.joblib”)

impo
with

ttts
data

rt dill

open (’predict /data/explainer.pkl’, ’'rb’) as f:
explainer_lime = dill.load(f)

= datapoint.astype(float)

set = dataset.drop ([’id’,’ diagnosis_-M '], axis=1)

newerdf=pd.DataFrame(ttts .reshape(l,—1), columns=dataset.columns)

pred = rfc.predict(newerdf)
accuracy = '98.18%’
exp_lime = explainer_lime.explain_instance (

ttts, rfc.predict_proba, num_features=10)

Save the explainer to a file

lime_model
dictionary

exp-lime.local_exp

{1

for _,value in lime_model.items():
dictionary = Convert(value,dictionary)
columns = list (dataset.columns)
feat_imp = {}
for i in range(0,len (columns)):
for key in dictionary:
if i == key:
value = round(dictionary [i][0]*100)
feat_imp .update({columns[i —1]:value})
results = exp-lime.as_html(labels=None, predict_-proba=True, show_predicted_value=True)
plot = exp_lime.as_pyplot_figure ()

import io

from

PIL import Image

import matplotlib.pyplot as plt

from
from

plt.
plt
plt.
img_
plt.
im =

imag

django.core.cache import cache
django.http import HttpResponse

figure (plot)

.xlabel (’’, fontsize=18)

ylabel (’’, fontsize=16)

buf = io.BytesIO ()

savefig (img_buf, format='png’,bbox_inches = ’tight ")

Image.open(img_buf)

e64 = image_to_base64 (im)

response = HttpResponse(content_type=’'image/png’)
response . write (img_buf. getvalue ())

if (p

else:

red[0]==0):
pred = ”Benign”
pred = ”Malignant”

63

feat_imp

data = {’accuracy ’:
feat_imp ,

= rename_features (feat_imp)

accuracy , 'results

’response ’':response}

cache. clear ()
return render (request, ’predict/results.html’, data)
return render (request, ’predict/predict—page.html’)

def about_us(request):

return render (request, ’predict/about—us.html’)
body {
background—size: 100%;
}
.cright{
position: fixed;
right: Opx; bottom: Opx;
¥
title {
position: absolute;
top: 10%;
font—family: ’'Flow Circular’, cursive;
font —family: ’Jost’, sans—serif;
margin—top: lin;
¥
.about—us—text {
margin—top: lin;
text—align: justify;
¥
.about—us—grid {
top:30%:;
text—align: center;
¥
.buttons{
text—align: center;
margin—top: 0.5in;
¥
.middle{
padding—left: 0.5in;
padding—right: 0.5in;
}
.card{
border: none;
¥
.predict {
background: none;
}
.about—us—row {
margin—top: 0.5in;
¥
.top{
padding—top: 1lin;
.bottom{
padding—bottom: 1lin;

}

64

’:results ,’image64 ’:

image64 ,’pred ’: pred,’feat_imp

.

XI. Acknowledgment

First and foremost, God. I would be nothing without you.

To my family, who continues to provide.

To my boys at Teampura who kept me grounded.

To my professors, especially to my Adviser who guided me through.

To the people who put dirt on me that turned to the soil from which I grew out of.

65

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	General Objectives
	Specific Objectives

	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Theoretical Framework
	Design and Implementation
	Results
	Testing for the best performing model
	Building the web application

	Discussions
	Machine Learning Models
	Objectives

	Conclusions
	Recommendations
	Bibliography
	Appendix
	Source Code

	Acknowledgment

