UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

ToxXICHECK: IN-SIiLicO NANO-QSAR ToXICITY
CLASSIFICATION USING HYBRID MACHINE LEARNING
ALGORITHMS

A special problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

John Derick E. Barcellano
June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser | No

Available only to those bound by confidentiality agreement | No

ACCEPTANCE SHEET

The Special Problem entitled “Toxicheck: In-Silico Nano-QSAR Toxicity
Classification using Hybrid Machine Learning Algorithms” prepared and submitted
by John Derick E. Barcellano in partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science has been examined and is recommended
for acceptance.

Perlita E. Gasmen, M.Sc.

Adviser
EXAMINERS:
Approved Disapproved
1. Avegail D. Carpio, M.Sc.
2. Richard Bryann Chua, Ph.D (cand.)
3. Ma. Sheila A. Magboo, Ph.D. (cand.)
4. Vincent Peter C. Magboo, M.D., M.Sc.
5. Marbert John C. Marasigan, M.Sc. (cand.)
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.
Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean
College of Arts and Sciences

Abstract

The health hazards and risks of nanoparticles (NPs) and engineered nanomaterials
(ENMs) are linked to their physicochemical features. Due to their minute structure,
they can cause intracellular and genetic damage, and harm the environment by form-
ing toxic mixtures with other compounds. Thus, it is essential to assess them first
before they are mass-produced for public use. Traditionally, nanomaterial toxicity
involves in-vivo and in-vitro approaches, but in recent years, machine learning (ML)
algorithms have also emerged as predictive tools through in-silico means. This ap-
proach provides a faster, cheaper, and safer way to assess the toxicological profile
of a nanomaterial. This study aims to investigate the applicability and efficiency of
using hybrid algorithms in nanomaterial toxicity classification. They are formed by
combining Genetic Algorithm (GA) with different base classifiers, namely Logistic
Regression (LR), Artificial Neural Network (ANN), and Random Forest (RF). Gen-
erally, the hybrid algorithm-based models perform better than their base classifier
counterparts, with an increase in scores of up to 19%. Using MCC as the main
metric, results show that GA-RF with SMOTE is the best-performing model with an
MCC score of 0.34. Building upon this model, this study developed a web application
that lets the user input information about a nanomaterial and the cell-based assay
that will be exposed for a certain amount of time. It predicts the cell viability of the

assay to produce a toxicity classification for the nanomaterial.

Keywords: Nanomaterial toxicity, hybrid algorithm, genetic algorithm, cell viability, ma-

chine learning

Contents
Acceptance Sheet
Abstract

List of Figures

List of Tables

ii

vi

vii

I. Introduction

Background of the Study L.
Statement of the Problem
Objectives of the Study
Significance of the Project

Scope and Limitations

=\ =0 o w o

Assumptions

II. Review of Related Literature
A. Nanomaterials
B. Testing Approaches

C. Machine Learningo oo

ITII. Theoretical Framework
A. Nanomaterial Toxicity
B. In-Silico Toxicological Testing
B.1. Quantitative Structure-Activity Relationship
Synthetic Minority Oversampling Technique (SMOTE)
Feature Scaling

Hyperparameter Tuning

<IN IR

Machine Learning

il

IV.

F.1. Feature Selection 15

F.2. Classifiers 16
G. Performance Metrics oL 17
G.1. Accuracy 17
G.2. Precision. 17
G.3. Recall 17
G4, FlScore 18
G.5. Receiver Operating Characteristic (ROC) 18
G.6. Area Under the Curve (AUC) 18
G.7. Matthew’s Correlation Coefficient (MCC) 19
Design and Implementation 20
A, Dataset L 20
B. General Workflow 21
B.1. Data Preprocessing 21
B.2. Feature Selection using Genetic Algorithm 22
B.3. Model Implementation 22
B.4. Model Evaluation and Application 23
C. Use-Case Diagram 23
D. Context-Free Diagram 24
E. System Architecture 24
F. Technical Architecture 25
Results 26
A. Data Preprocessing oo 26
B. Feature Selection using Genetic Algorithm 28
C. Data Splitting and Class Balancing using SMOTE 29
D. Feature Scaling 30

v

VI

VII.

VIII.

IX.

XI.

E. Hyperparameter Tuning using Grid Search
F. Model Evaluation
F.1. Model Performance with SMOTE and Genetic Algorithm . . .
F.2. Model Performance with Feature Scaling
F.3. Model Performance with All Applied
G. Web-Based Application
G.1. Landing Page
G.2. Inmput Form Page
G.3. Results View oo

Discussions

Conclusions

Recommendations

Bibliography

Appendix
A. Source Code e

Acknowledgment

31
33
33
34
34
35
36

37

39

40

41

44
44

64

List of Figures

1

10
11
12
13
14
15
16

Schematic representation of the QSAR modeling workflow. 13
Genetic algorithm workflow. 15
Accuracy rate formula. Lo 17
Precision rate formula.o o oo 17
Recall rate formula. oo 18
F1 score formula. oo 18
Matthew’s correlation coefficient score formula. 19
General workflow of the study. 21
Use-case diagram of the system. 23
Context-free diagram of the system. 24
Data type of each variable before data preprocessing. 26
Data type of each variable after data preprocessing. 27
Correlation matrix of the features. 27
Landing page of Toxicheck. 35
Input form page of Toxicheck. 35
Results view of Toxicheck. 36

vi

List of Tables

1

Data dictionary of the study., 20
Selected optimal features per classifier model. 28
Class distributions for train and test set. 29
Unscaled data samples for GA-RF. 30
Scaled data samples for GA-RF. 30
Hyperparameter tuning results per hybrid algorithm model. 31
Summary of performance metrics for batch 1 and batch 2. 32
Summary of performance metrics of models with feature scaling. . . . 33
Summary of performance metrics of models with all applied. 34

vil

I. Introduction

A. Background of the Study

Nanomaterials (NMs) consist of particles whose size ranges between 1-100 nanometers
on at least one structural dimension. Quantum effects can be employed to influence
their physical and chemical properties due to their incredibly small size and high
surface area to mass ratio [I]. Their physicochemical properties allow them to be
ideal candidates for creating sustainable products in different application fields such
as medicine, energy, and manufacturing industries.

At the nanoscale, almost every chemical can be altered to possess distinctive
qualities that appeal more over large-sized materials [2]. This concept eventually led
to the increased production of engineered nanomaterials (ENMs) as they posed better
practicality of use and displayed improved physicochemical features compared to their
respective conventional counterparts. However, despite the numerous beneficial effects
ENMs provide, recent studies have shown that their unique properties also account
for the risks they pose to human health and the environment.

According to [3], the health hazards and risks of nanoparticles (NPs) are linked to
their physicochemical features. Due to their minute structure, ENMs can penetrate
through cell membranes and cause intracellular and genetic damage. Additionally,
ENMs can also create toxic mixtures and compounds with other chemicals [1]. With
the continued use and production of these nanomaterials, the possibility of exposure
to them becomes a major concern. To avoid adding to this issue, ENMs must be
assessed before they are mass-produced to determine which of them are toxic and
what features they have that contribute to their toxicity.

Past efforts in studying nanotoxicology majorly involve in-vitro and in-vivo ex-
periments but both approaches require live samples and safety regulations due to the

nature of their tests. In-silico testing, on the other hand, involves performing simula-

tions and developing predictive models using computers and machine learning (ML)
algorithms. It eliminates the need for animal testing, lowers the cost and time, and
enhances prediction power [].

In-silico methods are usually centered around Quantitative Structure-Activity Re-
lationship (QSAR) which is an effective computational technique to ascertain the
relationship between a particle’s properties and its activity. It is built on the assump-
tion that biological effects are connected to a compound’s chemical structure and
physicochemical characteristics [2]. QSAR is already widely used in developing pre-
dictive models across various studies involving toxicity classification however, initial
attempts were limited due to small datasets [0].

Recently, there’s been an increasing trend of implementing hybrid algorithms on
classification problems. The principle of using this approach is to use multiple simple
algorithms together to complement each other and increase the accuracy of the model
by resolving problems that the other cannot solve on its own. For instance, the study
done by [7] used two distinct machine learning algorithms for feature selection and as
a classifier in a sequential pattern to produce improved results for Alzheimer’s disease
classification.

In this study, nano-QSAR models are developed using hybrid algorithms to classify
the toxicity of nanomaterials. These models provide a safer risk assessment approach
for ENMs and NPs and are used as guides for manufacturing safe-by-design NPs in

the future.

B. Statement of the Problem

No studies using hybrid algorithms for nano-QSAR models were published yet at the
time of this paper’s making. Thus, the researcher wants to investigate the perfor-
mance of hybrid algorithm models when applied to nanomaterial toxicity classifica-

tion.

C. Objectives of the Study

This research aims to develop a predictive model for nanomaterial toxicity classifica-
tion based on hybrid algorithm using cell viability as a toxicity measure and integrate
it into a web application that will serve as an in-silico testing tool for researchers and

professionals. It is directed toward the following objectives:

1. Use Genetic Algorithm (GA) for feature selection to identify relevant physico-

chemical features that affect nanomaterial toxicity.
2. Split the dataset where 80% is for training and 20% is for testing.
3. Apply SMOTE to address the class imbalance.
4. Use StandardScaler to apply feature scaling on numerical values.
5. Use GridSearch for Hyperparameter Tuning of classifier algorithms.

6. Use Logistic Regression (LR), Artificial Neural Network (ANN), and Random

Forest (RF) as classifiers in model training.

7. Assess each model’s performance using the following metrics: accuracy, preci-

sion, recall, F1 score, ROC-AUC, and MCC.

8. Develop a web-based application built on the best-performing model to provide

a toxicity classification of a nanomaterial described by the user input.

(a) The application has an input panel where the users can enter values about

the nanomaterial and the cell assay’s properties.

(b) The application saves the user’s input when the submitted form is valid

and it has a reset button that clears the saved values on the form.

(c) The application has an output panel where the model’s metrics are dis-

played.

(d) The application prints the classification result upon a valid submission. It

will print toxic or non-toxic depending on the model’s prediction.

D. Significance of the Project

Using a large dataset containing features of nanomaterials from different groups,
the model can classify whether a nanomaterial is toxic or not regardless of its type.
Therefore, its application extends to classifying not just metal oxides, but also other
types such as carbon-based and nanocomposites. The study can provide helpful
insights into what physicochemical attributes have a particular effect on the toxicity
of nanomaterials using feature selection. This can aid nanomaterial manufacturers to
create NPs that are safe by design and reduce the production of novel ENMs that are
toxic. Consequently, it reduces the need to study new toxic ENMs and the mixtures
they can produce.

Additionally, this study investigates if the hybrid algorithms used in creating the
models can yield strong predictive powers relative to already existing nano-QSAR
models for toxicity classification. It provides a new in-silico approach to assessing the
risk of nanomaterials by using a machine learning model that has not been tested yet
in the field. It gives a safer option for testing potentially toxic nanomaterials using

computer simulations instead of in-vivo and in-vitro experiments.

E. Scope and Limitations

The study focuses on building toxicity classification models using the dataset gathered
from meta-analysis done by [%]. Specifically, the scope and limitations of the study

are as follows:

1. The dataset used is obtained from assessing 93 peer-reviewed articles. It has

2896 individual data points consisting of 16 predictors and 1 response variable.

2. The endpoint of this study is cell viability which is a binary variable where 0

means non-toxic (> 50% cell viability) and 1 means toxic (< 50% cell viability).

3. The nano-QSAR models only use the following machine learning algorithms:
Genetic Algorithm, Logistic Regression, Artificial Neural Network, and Random

Forest.

4. The web-based application can only produce predictions using the features that
are included in the dataset: NP type, diameter, concentration, interference, col-
loidal stability, positive control, cell name, cell culture, cell type, cell morphol-
ogy, cell age, cell source, test, test indicator, biochemical metric, and exposure

time.

F. Assumptions

The following are assumptions on the web application:
1. All fields are filled before submission.

2. The user does not input invalid values.

II. Review of Related Literature

The unique physicochemical properties of nanomaterials make them suitable for man-
ufacturing new products that possess better efficiency in specific and targeted activ-
ities. These distinctive benefits they provide give them an edge against the conven-
tional larger-sized materials [2].

However, recent studies have shown that the utilization of nanomaterials can
pose hazards to health and the environment due to potential toxicity linked to their
properties [3]. Continued widespread use of these materials in industries, therefore,
makes exposure to them unavoidable. Various testing approaches were conducted to
assess the risks of nanomaterials, starting from experimental studies that required live
samples and cell cultures to operate. Eventually, improved computational methods
were adapted and allowed for machine learning algorithms to be the basis of assessing
the toxicity of nanomaterials.

Using novel models derived from a selection of machine learning techniques, newer
approaches can be discovered and evaluated based on their performance on classifi-
cation problems. In particular, this study aims to use hybrid algorithms to develop a
Quantitative Structure-Activity Relationship (QSAR) model for predicting the toxi-

city of different nanomaterials.

A. Nanomaterials

Nanomaterials (NMs) consist of particles whose size ranges between 1-100 nanome-
ters on at least one structural dimension. Due to their minute size and high surface
area to mass ratio, quantum effects can be employed to influence their physical and
chemical properties [1]. This principle consequently allows them to behave differently
than larger materials and exhibit desirable physicochemical properties that are ideal

for creating sustainable products in different application fields such as medicine, en-

ergy, and industries. However, it also renders them to be unpredictable at times,
as nanomaterials can undergo drastic changes to their properties with the slightest
change in particle size.

At the nanoscale, almost every chemical can be altered to possess distinctive qual-
ities that appeal more over their conventional bulk counterparts [2]. This eventually
inspired the widespread use of engineered nanomaterials (ENMs) as they posed better
practicality of use on material innovation. ENMs allowed the production of improved
products by solving the flaws that otherwise would exist on a material without any
NM. Some notable innovations include water-proof textiles, self-cleaning plastics, and
cleaner pesticides.

However, despite the numerous beneficial effects ENMs provide, recent studies
have shown that the unique properties that give them the ability to enhance ma-
terials also account for the risks they pose to human health and the environment.
According to [3], the health hazards and risks of nanoparticles (NPs) are linked to
their physicochemical features. Because of their nanoscopic size, ENMs can enter the
human body through multiple pathways such as ingestion, inhalation, absorption via
skin, and direct injection for therapeutic purposes [9]. Once inside the system, they
can penetrate through cell membranes and cause intracellular damage as well as harm
organs depending on the degree of exposure.

NMs may also interact with other contaminants to create a mixture of compounds
after being released into the environment [1]. These new incidental nano-mixtures are
recommended to be assessed on their own as these substances possess altered struc-
tures that may exhibit toxic properties. Additionally, toxicological studies show that
NMs may have an impact on aquatic species and unicellular aquatic organisms (e.g.,
Daphnia magna) as substantiated by higher mortality rates and in-vitro assessment
results.

Considering the extensive use and manufacture of nanomaterials, the possibility

of exposure to them becomes unavoidable and a major concern. To avoid adding on
and complicating this issue, ENMs must be assessed before they are mass-produced
to determine which of them are toxic and what features they have that contribute to

their toxicity.

B. Testing Approaches

As the field of nanotechnology rapidly grows, the hazard aspect of this subject is
explored thoroughly through various testing approaches to assess the risk of nanoma-
terials. Past toxicological studies include experimental setups that primarily involved
the use of in-vitro and in-vivo techniques. These methods were used because they
describe the biological effects of nanomaterials on cells.

In-vitro assays take place in a controlled environment, usually in a petri dish
or a test tube, outside of a living organism [10]. Tt uses cultures and isolated cells
to perform assessments on a cellular and molecular level. This approach offers the
benefits of being cost-effective, time-efficient, and not requiring animal use. However,
one major disadvantage of in-vitro testing is samples fail to replicate the mechanistic
functions of a whole organism, which in turn, can lead to unreliable and inaccurate
results. In-vivo experiments, on the other hand, make use of live samples [10]. It
is appropriate for studying the overall effects of a treatment on a living organism
because it addresses the complexity of organ systems. With its high translatability
to human systems, it can provide better evaluations of the toxicity of nanomaterials
to health. However, this poses unethical issues when causing distress and discomfort
to the animals that are used for testing.

Eventually, improved computational methods were adapted that allowed for ma-
chine learning algorithms to be the basis of assessing the toxicity of nanomaterials.
In-silico testing involves performing simulations and developing predictive models us-

ing computers. It eliminates the need for animal testing, lowers the cost and time, and

enhances prediction power [5]. Not only do these in-silico methods provide a faster
and better alternative than the past methodologies [11], but they can also identify
the physicochemical features that make a particular nanomaterial toxic. By doing
feature selection and analyzing feature importance, these models can pinpoint which
properties have significant influences on toxicity. Additionally, they can be used side
by side with in-vivo and in-vitro models to fix the gaps in their procedures and yield
more reliable outcomes.

In-silico methods are usually centered around Quantitative Structure-Activity Re-
lationship (QSAR) which is an effective tool to ascertain the relationship between a
particle’s properties and its activity. It is built on the assumption that biological
effects are connected to a compound’s chemical structure and physicochemical char-
acteristics [2]. However, these models require to be validated and regulated first and
this is done by applying the OECD principles as guidelines.

QSAR is already widely used in developing predictive models across various studies
involving toxicity classification. However, past attempts at toxicity classification were
limited by small datasets [6]. This emphasizes the need for further research using

larger datasets to fully explore the potential of machine learning in this field.

C. Machine Learning

A study done by [2] created an in-silico model of an in-vivo experiment using 6 ma-
chine learning algorithms to predict the toxicity of metallic nanomaterials on Daphnia
magna. The study found that the random forest, artificial neural network, and k-
nearest neighbor models displayed the best performance, but this was only marginally
better compared to the other models. Furthermore, it has been suggested through the
feature importance analysis that molecular descriptors and physicochemical proper-
ties were generally significant within most models [2]. However, some features related

to exposure conditions produced slightly conflicting results.

Another study done by [12] involved the use of an in-silico model for predicting
the interaction of TiO2-based nano-mixtures to Daphnia magna. In their study, they
used random forest algorithm which yielded an R? value equal to 0.9928. It showed
better predictive performance compared to existing CA and IA models and is suitable
to be a low-cost alternative for assessing the risk of TiO2-based nano-mixtures.

A decision-tree-based KDD process was developed by [13] for predictive modeling
of AgNPs-induced toxicity. This study yielded high f-score measures on classifying
these nanoparticles for both the toxic (93.1%) and the nontoxic class (98.3%). [11],
on the other hand, proposed 4 models using SMILES-based optimal descriptors and
MC-PLS modeling to characterize the toxicity of 21 metal oxide nanoparticles on
A549 cells. Their 4 models resulted in a high R? score of 0.8, indicating reliability,
stability, and satisfactory predictive ability. Other studies have also utilized ensemble
[5], simple rule-based model via association rule mining [3], and partial least square
regression [0].

Although these models have generated satisfactory results in terms of predicting
and classifying the toxicity of nanomaterials and nanoparticles, their findings only
apply to certain groups of NPs that are included in the respective datasets the re-
searchers used. Due to limited information and a small volume of data points, these
models require further validation from newer models that are trained with larger and
more general datasets.

The heterogeneities of published literature in terms of data quality can also be
an issue. However, this was later addressed by [15] by using data gap filling and
PChem score-based screening approaches to improve the completeness of the ex-
tracted datasets. They built models using datasets with different attribute combi-
nations [15]. It yielded 93% as the highest F1 score (Dose + PChem + Tox) while
78% as its lowest (Dose + Tox). Results show that by adapting these two preprocess-

ing techniques, a meta-analysis of nanotoxicity literature can also be an innovative

10

alternative for the risk assessment of nanomaterials.

Recently, there’s been an increasing trend of implementing hybrid algorithms on
classification problems. The principle of using this approach is to use multiple sim-
ple algorithms together to complement each other and increase the accuracy of the
model by resolving problems that the other cannot solve on its own. For instance,
the study done by [7] used a machine learning technique for feature selection and a
separate machine learning technique as a classifier. This study adapts this technique
to investigate its efficacy in the field of nanotoxicology.

By using genetic algorithm for feature selection and combining it with an ML
classifier (LR, ANN, RF), the study aims to develop nano-QSAR models using hybrid
algorithm with cell viability as its well-defined endpoint. A dataset containing 2896
individual points of NPs varying in type is used to train this model to expand the

model’s applicability domain.

11

III. Theoretical Framework

A. Nanomaterial Toxicity

Nanomaterial toxicity refers to the potential harmful effects that nanoscale materials
may have on living organisms and the environment[!6]. These materials have unique
physical and chemical properties that can make them more toxic than their bulk
counterparts [2]. Some potential effects of nanomaterial toxicity include damage to
DNA, oxidative stress, and inflammation. However, the toxicity of nanomaterials
can vary depending on factors such as the type of material, its size, shape, and
surface properties, and the method of exposure [3]. Due to the innate volatile nature
of nanomaterials, further research is needed to fully understand the potential risks

associated with them.

B. In-Silico Toxicological Testing

In-silico toxicological testing is a method of evaluating the potential toxicity of a
substance using computer-based models and simulations. This approach is used to
predict the potential effects of a substance on living organisms, without the need
for laboratory experimentation such as in-vivo and in-vitro testing. [10]. In-silico
methods are becoming increasingly popular in toxicology due to the speed, cost-

effectiveness, and ability to predict the toxicity of large numbers of chemicals quickly

[11].

B.1. Quantitative Structure-Activity Relationship

In-silico methods are usually focused on using Quantitative Structure-Activity Rela-
tionship (QSAR) models. It is a computational method used to predict the toxicity
of a chemical based on its molecular structure [2]. These models are mathematical

equations that are derived from a set of known toxicological data and are used to

12

determine the toxicity of new chemicals. It is essential for it to be trained using a
large dataset to enhance its accuracy [0]. There are four main phases in the QSAR

modeling workflow: data gathering, data preprocessing, modeling, and post-analysis.

Data set Data set Model
compilation processing) C post-analysis

| ‘I | ittt \'

I]
Data curation | Learni |
Public Primary : e ' 1) ! Benchmark |
databases literature : Boc pre | Ao ! with previous |

i :

: processing H : e H
I :) :

|]
; 1 Descriptor ! | 1 !
= — ! | calculation - | (! Pa"f°l""“_"°° 1
Compiled \ ¢ 1 Conatuct - evaluation "
data set I I 1 I
. - | e | im0 mp :
¢ : selection - - : Identify |
Select data I ¢ 1 ") important |
subset for | g 1|] 1 features :

. it : H
investigation - Ry 1 : '
,L I 1 Statistical I !
= : i : measure of : Interpret :
1 model important |
Data subset : Data splitting robustness : features |
: B " "
: | :]

Figure 1: Schematic representation of the QSAR modeling workflow.

C. Synthetic Minority Oversampling Technique (SMOTE)

SMOTE is an oversampling technique used to handle imbalanced datasets in ma-
chine learning [17]. Tt is used to balance the class distribution by creating synthetic
examples of the minority class. SMOTE works by selecting samples from the minority
class and generating synthetic samples along the line segments connecting the selected
sample to its k-nearest neighbors. The synthetic samples are added to the original
dataset, increasing the frequency of the minority class. The number of neighbors can
be adjusted to control the degree of oversampling. The higher its value, the more

similar the synthetic samples are to the original samples.

D. Feature Scaling

Feature Scaling is a method used to standardize the range of independent variables

or features of a data set to improve the performance of algorithms. The study used

13

StandardScaler() for feature scaling where numerical values are transformed to have
a mean of 0 and a standard deviation of 1. This is to remove the mean and scale each

feature to unit variance.

E. Hyperparameter Tuning

Hyperparameter tuning is the process of choosing a machine learning model’s hyper-
parameters’ ideal values. Hyperparameters are variables that are set before train-
ing the model to produce the optimal result from the model. They regulate how
the learning algorithm behaves and they have a significant influence on the model’s
functionality and generalizability. The study used 5-fold cross-validation on Grid-
SearchCV() alongside different parameter spaces that are unique to each model, to

obtain the optimal hyperparameter values.

F. Machine Learning

Machine learning is a subfield of artificial intelligence that focuses on machines repli-
cating human behavior. It creates models that can access data and use it to learn and
provide data-driven output. The machine learning method begins with monitoring
the data and searching for patterns. Then, the machine will generate conclusions and
decisions based on the data provided. Recently, there has been an increasing trend of
combining these different machine learning techniques for solving problems. This is
known as hybrid algorithm. It makes use of the strengths of the combined algorithms
to complement each other and overcome their limitations [18]. This includes using
separate machine learning techniques for feature selection and classification and then

merging their results together sequentially to create a model.

14

F.1. Feature Selection

Feature selection is the process of choosing a subset of relevant features for use in
model construction. The goal of feature selection is to improve the accuracy and
interpretability of the model by reducing the dimensionality of the input data. This
can be done by removing irrelevant or redundant features, or by selecting a subset of
the most informative features. This study will use genetic algorithm (GA) for feature

selection.

Genetic Algorithm (GA)

GA is a method for optimization that is inspired by the process of natural selection
[19]. Tt starts with a population of candidate solutions and iteratively applies genetic
operators such as selection, crossover (recombination), and mutation to evolve the
population toward an optimal solution.

The selection operator favors solutions that have higher fitness, which is a measure
of how well the solution solves the problem at hand. The crossover operator combines
the genetic information of two solutions to create new solutions. The mutation oper-
ator randomly changes the genetic information of a solution. If the fitness criterion is

met, then the subset of features in that iteration is selected as the optimal solution.

Pare_nl
selection
Initialize Crossover
population
T ¥
Compute Mutation
fitness
Compute
End fitness

Figure 2: Genetic algorithm workflow.

15

F.2. Classifiers
Logistic Regression (LR)

LR is a statistical approach for assessing a dataset in which one or more independent
variables affect a dichotomous result [20]. It predicts a binary result (represented by
0 and 1) from a set of independent variables. LR is represented by a linear equation
and a sigmoid function that converts the linear equation’s output to a probability
value between 0 and 1. The equation takes the form of the log odds of the outcome
variable, which is calculated using the input features and a set of parameters. The
logistic regression algorithm estimates the parameters of the model by maximizing

the likelihood of the observed data [20].

Artificial Neural Network (ANN)

ANN is a computational model that imitates the structure and functions of a human
brain to be able to make decisions on classification and prediction [21]. It has the
ability to learn and to create reasonable generalizations even on inputs that it has
not been thought how to deal with. It is composed of interconnected nodes known
as "neurons” which are connected by weighted edges that are fixed in each iteration.
The ANN function is a deterministic calculation that describes the weighted sum

from each neuron plus a bias.

Random Forest (RF)

RF is a decision tree-based machine learning algorithm that creates an ensemble of
individual decision trees that run in parallel with each other [22]. The results are de-
rived by calculating the average of all the decision tree values. To avoid compromising
the robustness and the accuracy of the model’s overall prediction, it is important that

the individual decision trees have a low correlation to each other.

16

G. Performance Metrics
G.1. Accuracy

The accuracy metric describes the percentage of the prediction that the model clas-
sified correctly. It is defined by the following formula where TP = True Positive, TN

= True Negative, FP = False Positive, and FN = False Negative.

TP+TN
TP+FP+TN+FN

Accuracy =

Figure 3: Accuracy rate formula.

G.2. Precision

Precision is the proportion of true positives over the total number of positive pre-
dictions made by the model. A high precision value means that the model is not
producing many false positives. It is used in conjunction with the Recall metric for

computing the F1 Score. It is defined by the following formula:

TP

P . . _
recision —TP T FP

Figure 4: Precision rate formula.

G.3. Recall

Recall is the proportion of true positives predicted by the model over the total actual
positive instances in the dataset. A high recall value means that the model is able to
correctly identify most of the positive instances. It is used in conjunction with the

Precision metric for computing the F1 Score. It is defined by the following formula:

17

TP

RE?C(I” = m

Figure 5: Recall rate formula.

G.4. F1 Score

The F1 Score is the harmonic mean of precision and recall. A high F1 score indicates
that the model has a good balance between precision and recall. It is defined by the

following formula:

2 * Precision * Recall

F1 Score =
core Precision + Recall

Figure 6: F1 score formula.

G.5. Receiver Operating Characteristic (ROC)

The ROC curve is a graph that plots the True Positive Rate (TPR) and the False
Positive Rate (FPR) across different discrimination thresholds. It is a way to evaluate
the performance of a classifier, thus, it can also be used to compare different classifiers.

It is used in conjunction with the area under the curve (AUC) metric.

G.6. Area Under the Curve (AUC)

AUC is a scalar value that summarizes the ROC curve. Its value ranges between 0
and 1, where 1 represents a perfect classifier and a score of 0.5 represents a random
classifier. It is independent of the classification threshold, so it is useful for classifiers

that do not have a nonlinear decision boundary.

18

G.7. Matthew’s Correlation Coefficient (MCC)

MCC is a measure of the performance of a binary classifier, specifically designed to
handle imbalanced datasets. It ranges from -1 to 1, where 1 represents a perfect
prediction, 0 represents no better than a random prediction, and -1 represents total
disagreement between prediction and observation. This will be the main metric to

determine the best-performing model. It is defined by the following formula:

TN-TP — FN - FP
J(TP +FP)(TP + FN)(TN + FP)(TN + FN)

MCC =

Figure 7: Matthew’s correlation coefficient score formula.

19

IV. Design and Implementation

A. Dataset

The dataset of this study focuses on building nano-QSAR models using a publicly
available dataset collated by [3] on their meta-analysis, in which they assessed a total
of 93 peer-reviewed articles about nanomaterial cytotoxicity. It yields 2896 individ-
ual data points consisting of 17 features: 16 predictor variables and 1 response. The
predictor variables consist of Nanoparticle-related features (NP type, diameter, con-
centration, interference, colloidal stability, and positive control); Cell-related features
(cell name, cell culture, cell type, cell morphology, cell age, and cell source); and
methodological parameters (test, test indicator, biochemical metric, exposure time)
[8]. The response variable is cell viability which is a binary variable where 0 is labeled
as non-toxic (> 50% cell viability) and 1 is labeled as toxic (< 50% cell viability).

The dataset obtained is divided into the training and testing set on an 80:20 ratio.

Table 1: Data dictionary of the study.

Variable Data Type Values
NP Type Binary 0 Organic — 1 Inorganic
Diameter Numerical 1 to 957 (nm)
Concentration Numerical 0 to 15000 (pm)
Interference Check Binary 0No-1 Yes
Colloidal Stability Check Binary 0No-1 Yes
Positive Control Binary 0No-1 Yes
Cell Name Categorical 81 Unique Values
Cell Type Binary 0 Human — 1 Animal
Cell Culture Binary 0 Primary Cell — 1 Cell Line
Cell Morphology Categorical 15 Unique Values
Cell Age Binary 0 Adult — | Embryonic
Cell Source Categorical 30 Unique Values
Test Categorical 21 Unique Values
Test Indicator Categorical 18 Unique Values
Biochemical Metric Categorical 26 Unique Values
Exposure Time Numerical 1 to 336 (hours)
Cell Viability Binary 0 Not Toxic — 1 Toxic

20

B. General Workflow

Data Preprocessing

|

Feature Selection via
Genetic Algonithm

I

Data Sphittimg

(80:200

ey
Traming Set (80%)

D

Class Balanemg usmg
SMOTE

l

Featire Scaling using
Standard Sealer

I

Hyperparameter
Tuning uzing Grid
Search

l ,

Meodelng using L., | Model Testing and
ANNand BF iy Evaluation

I

Web Application
Development

Testmg Set (20%%)

Figure 8: General workflow of the study.

B.1. Data Preprocessing

The dataset contains String-type binary and categorical variables. In order to prepare
the binary data for analysis, LabelEncoder() is used to convert these values into

an integer type (0 or 1). On the other hand, the remaining categorical features

21

are transformed into binary variables using One-Hot encoding. Additionally, rows
with missing and invalid values are dropped from the analysis. Once the dataset is
processed, the data is divided into predictors and response to prepare it for feature

selection.

B.2. Feature Selection using Genetic Algorithm

The predictor’s dimensionality is reduced using genetic algorithm. The list of optimal
features is produced after a 5-fold cross-validation run of GeneticSelectionCV() from
sklearn-genetic library. Once the optimized subset of features is selected, the dataset
is split into a training set (80%) and a testing set (20%). This ratio is done to avoid
overfitting and to preserve the integrity of the testing data that will be used for

evaluation purposes later on.

B.3. Model Implementation

Since the dataset has a class imbalance that may hinder the model’s prediction power,
Synthetic Minority Oversampling Technique (SMOTE) is applied. SMOTE is a wildly
used resampling technique to create synthetic samples that represent the minority
class and balance the ratio of classes. Furthermore, since the numerical features in
the dataset (diameter, concentration, exposure time) have a wide range of values,
feature scaling is applied using StandardScaler() to rescale the data to have a mean
of 0 and a standard deviation of 1.

The training set is used in building the models for LR, ANN, and RF as classifiers.
To improve the results of these algorithms, hyperparameter tuning is used for each
model. The hyperparameter spaces of each model are passed to GridSearchCV() and
are executed with 5-fold cross-validation. The resulting models from GridSearch are

used to predict the toxicity of the data points from the testing set.

22

B.4. Model Evaluation and Application

Once results are recorded, the performance of these models is compared to each other
and is evaluated using the following metrics: accuracy, precision, recall, F1 score,
ROC-AUC curve, and MCC. Using the MCC metric, the best-performing model is
selected to be integrated into the web-based application.

Lastly, a web-based application is developed based on the best-performing model
from the study. The application is a system that allows users to enter information
about the properties of a nanomaterial and the cell-based assay to be exposed to the
nanomaterial. It displays the result of whether that nanomaterial is toxic or non-toxic

based on the cell viability of the described assay.

C. Use-Case Diagram

Toxicheck

Reset Input
Fields

Actor

Figure 9: Use-case diagram of the system.

Figure 9 shows the functionalities that an end user has access to with the system.
The user can input information about a nanomaterial and the cell assay’s properties
into the system by filling out all the available fields in the web-based application. If

the submitted form is valid, the input values are saved in the panel until the reset

23

button is clicked. A summary of the result produced by the best-performing model
is displayed along with the toxicity classification result (toxic or non-toxic) in bold

text.

D. Context-Free Diagram

Nanomaterial Input Data

Toxicity
Classification
System

Researchers/ | Initial Dataset,

Developers Models Users

——— Classification ——»|

Figure 10: Context-free diagram of the system.

Figure 10 shows that there are two entities in the system. The initial data and the
nano-QSAR models are entered into the system by the developer. The user enters
the input data and the system processes this to predict and produce a result that is

displayed back to the user as the output.

E. System Architecture

The web-based application is built and developed using the Python-based Django
framework. The genetic algorithm uses sklearn-genetic while LR, ANN and RF use
scikit-learn. Other packages include the following: pandas, numpy, and imbalanced-learn
are used for handling data; joblib and pickle are used for saving pipelines into a

file; matplotlib and seaborn are used for visualization.
1. Python 3.11.2

(a) Django 4.1.7
(b) imbalanced-learn 0.10.1
(c) matplotlib 3.7.1

24

(d) numpy 1.23.1
(e) pandas 2.0.1

(f) scikit-learn 1.2.2
(g) seaborn 0.12.2

(h) sklearn-genetic 0.5.1

F. Technical Architecture

This application is currently deployed using localhost only. However, since this system
is intended to be deployed as a web application, most of the computing is going to
be done by the server. Therefore, minimal resources are required when it is used by

the user. The minimum requirements for the application are as follows:

1. 2 GHz processor
2. 1 GB disk space
3. 2 GB of RAM
4. Any OS

5. Web browser

25

V. Results

A. Data Preprocessing

Exploratory Data Analysis

The dataset gathered from [8] has 16 predictors that describe its nanoparticle-
related features, cell-related features, and methodological parameters related to the
response variable, which is cell viability. The figure below shows the data type of

each variable before data preprocessing.

o dataset.dtypes

C» NP Type object
Diameter float64
Concentration float64
Cell Name object
Cell Culture object
Cell Type object
Cell Morphology object
Cell Age object
Cell Source object
Exposure Time inte4
Test object
Test Indicator object
Biochemical Metric object
Interference Checked object
Colloidal Stability Checked object
Positive Control object
Cell viability int64

dtype: object

Figure 11: Data type of each variable before data preprocessing.

Figure 11 shows that there are four numerical features in the dataset: diameter,
concentration, exposure time, and cell viability. Both diameter and concentration are
float-type decimals, while exposure time and cell viability are integers. The remaining
12 variables are String-type objects that are either binary or categorical, as shown in
the data dictionary in Table 1.

The binary String-type variables are transformed to an integer type (0 or 1) using
the LabelEncoder() function, while the remaining categorical features are dropped
due to skill-related issues encountered while applying One-Hot encoding. There are

no rows with invalid values, so the number of data points is retained.

26

° dataset.dtypes

C» NP Type inté4
Diameter float64d
Concentration float64
Cell Culture inte64
Cell Type int64
Cell Age inte4
Exposure Time inté4
Interference Checked int64
Colloidal Stability Checked int64
Positive Control int64
Cell viability int64

dtype: object

Figure 12: Data type of each variable after data preprocessing.

Figure 12 shows that there are 11 variables left after dropping the categorical
values. Additionally, after the LabelEncoder() function is used, all of the remaining
variables have numerical values that are either float or integer types.

The feature variables of this updated dataset are checked for possible correlations
with each other. This is done to ensure that there is no multicollinearity between

variables that can negatively impact the model’s performance by creating bias and

overfitting.

NP Type [NV#]0.04 0.05 -0.14-0.08 0.12 0.00 -0.05 0.07 -0.00 0.04 +o
Diameter 0.04 iN]-0.07 -0.33 0.02 -0.09-0.12 0.03 -0.17 -0.06 0.8

Concentration 0.05 -0.07 ¥} -0.12 -0.00-0.02 0.06 -0.05-0.05-0.04 0.12
Cell Culture -0.14-0.33-0.12i[#8] 0.24 -0.23 0.05 0.12 -0.27 0.14 0.00 0.6
Cell Type -0.08 0.02 -0.00 0.24 K -0.10-0,04@-0.04 0.09 -0.08 o4

Cell Age 0.12 -0.09-0.02-0.23-0.10 V4 0.06 -0.08 0.06 -0.07 -0.10
Exposure Time 0,00 -0.12 0.06 0.05 -0.04 0.06 M1 0.20 -0.23-0.04 0.07 e

Interference Checked -0.05 0.03 -0.05 0.12 E-0.0B 0.20 p¥[#] 0.07 0.29 -0.03
Colloidal Stability Checked 0.07 ﬁ-o.cw -0.27-0.04 0.06 -0.23 0.07 pHi] 0.17 0.01 - 0.0

Positive Control -0.00-0.17-0.04 0.14 0.09 0.07-0.04/0.29 017 fHfJo15 -

Cell Viability 0.04 -0.06 0.12 0.00 -0.08-0.10 0.07 -0.03 0.01 0.15 gHs¢}

NP Type
Diameter
Cell Culture
Cell Type
Cell Age

>
£
2
8
=
@
(]

Concentration
Exposure Time
Interference Checked
Positive Control

Colloidal Stability Checked

Figure 13: Correlation matrix of the features.

27

If there are no highly correlated variables, the individual effect of each predictor on
the response variable is easier to determine. An absolute correlation coefficient score
greater than 0.7 indicates the presence of multicollinearity, which must be addressed
before it gets passed to the model.

Figure 13 shows that all of the variables have a weak correlation with one another,
with values ranging within [-0.33, 0.33]. The highest positive correlation is between
cell type and interference checked with 0.33 while the highest negative correlation is

between diameter and cell culture.

B. Feature Selection using Genetic Algorithm

For each classifier model (LR, ANN, RF), a list of optimal features is produced after a
5-fold cross-validation run of the GeneticSelectionCV() function from sklearn-genetic.

The table below shows all the features that are selected for each classifier model.

Table 2: Selected optimal features per classifier model.

Predictors GA-LR GA-ANN GA-RF
NP Type v v
Diameter v v v
Concentration v v v
Cell Type v v v
Cell Culture v v
Cell Age v v v
Exposure Time v v v

Interference Check

Colloidal Stability Check v v
Positive Control v v v

28

Table 2 shows that for all classifier models, the interference check predictor is
removed as a feature. Additionally, for logistic regression, the colloidal stability check
is also deemed insignificant, while NP type and cell culture are removed for the
artificial neural network. This means that GA-LR has 8 features, GA-ANN has 7

features, and GA-RF has 9 features after feature selection.

C. Data Splitting and Class Balancing using SMOTE

Upon analyzing the target variable of the dataset from [3], a class imbalance is ob-
served between the non-toxic class and the toxic class. The non-toxic (0) class has
2209 values, while the toxic (1) class has 687 points.

The data is partitioned into an 80-20 split, where 80% is for the training set and
20% is for the testing set. The training set has 2316 values, where 1765 are non-toxic
and 551 are toxic. While the testing set has 580 values, 444 are non-toxic and 136 are
toxic. To balance the uneven class distributions during the model training, SMOTE
is applied to the training set. Table 3 summarizes the split and the distribution of

classes in each set.

Table 3: Class distributions for train and test set.

Non-Toxic | Toxic

Train Set 1765 951
Train Set (SMOTE) | 1765 1765
Test Set 444 136

29

D. Feature Scaling

The numerical features in the dataset (diameter, concentration, exposure time) have
a wide range of values, which causes higher variability in the data. The diameter has
values ranging from 1 to 957 (in nm), the concentration ranges from 0 to 15000 in

(nm), and the exposure time is from 1 to 336 (in hours)|[3].

Table 4: Unscaled data samples for GA-RF.

NP Type Diameter Concentration Cell Culture Cell Type Cell Age Exposure Time Colloidal Stability Checked Positive Control

1382 1 170.00 0.000020 0 0 0 24 0 0
1308 1 13.50 0.003005 1 0 0 24 0 0
2789 0 5.90 0.068630 1 1 0 24 1 1
1890 1 27.17 300.000000 1 0 0 24 0 0

659 1 12.00 0.700496 1 1 0 8 1 0

Using the StandardScaler() function, feature scaling is applied to all predictors, in-
cluding the binary variables, to rescale both training sets (with and without SMOTE)
to have a mean of 0 and a standard deviation of 1. Table 5 shows a sample of scaled

training data to be used for GA-RF.

Table 5: Scaled data samples for GA-RF.

NP Type Diameter Concentration Cell Culture Cell Type CellAge Exposure Time Colloidal Stability Checked Positive Control

1382 05173561 0.243991 -0.107140 -2.088327 -0.549413 -0.21464 -0.407588 -0.5603236 -0.452764
1308 0.517351 -0.654016 -0.107136 0.478852 -0.549413 -0.21464 -0.407588 -0.503236 -0.452764
2789 -1.932924 -0.697625 -0.107061 0.478852 1.820123 -0.21464 -0.407588 1.987138 2.208659
1890 0.517351 -0.575576 0.238060 0.478852 -0.549413 -0.21464 -0.407588 -0.503236 -0.452764

659 0.517351 -0.662623 -0.106334 0478852 1.820123 -0.21464 -1.044931 1.987138 -0.452764

E. Hyperparameter Tuning using Grid Search

After finalizing the training and testing sets from the previous steps, distinct hy-
perparameter spaces are declared for each classifier model. These spaces describe
the values of each parameter to be tested using GridSearch to be able to obtain the

combination of hyperparameter values that would yield the best performance.

30

Table 6: Hyperparameter tuning results per hybrid algorithm model.

Algorithm | Hyperparameter Values Optimal Value
penalty [L1°, ‘L2’] L1
GA-LR C np.logspace(-3,3.7) 1
solver [‘newton-cg’ , ‘lbfgs’ . ‘liblinear’] liblinear
hidden_layer sizes [(10,30,10) . (20.) . (100.,)] (100.)
No | GA-ANN alpha [0.01, 0.05] 0.05
SMOTE learning_rate_init [0.001,0.01,0.1] 0.001
n_estimators [50, 100, 150, 200] 100
max_features [*sqrt’, ‘log2’. None] sqrt
GA-RF
max_depth [3.6.9] 6
max_leaf nodes [3.6.9] 9
penalty [L1’, L2’] L1
GA-LR C np.logspace(-3.3.7) 10
solver [‘newton-cg’ , ‘lbfgs’ . ‘liblinear’] liblinear
hidden layer sizes [(10,30,10) . (20.).(100,)] (20.,)
With | GA-ANN alpha [0.01, 0.05] 0.05
SMOTE learning rate_init [0.001,0.01,0.1] 0.01
n_estimators [50,100, 150, 200] 200
max_features [‘sqrt’ , ‘log2’, None] sqrt
GA-RF
max_depth [3.6.9] 9
max_leaf nodes [3.6.9] 9

The list of optimal hyperparameter values is produced after a 5-fold cross-validation
run of the GridSearchCV() function for each classifier. Table 6 shows all of the hy-
perparameters tested and their optimal values per model. The resulting models from

GridSearch are used to predict the toxicity of the data points from the testing set.

F. Model Evaluation

F.1. Model Performance with SMOTE and Genetic Algorithm

Model training is divided into four batches. For the first batch, the classifiers are
trained using the training set with SMOTE. The result of this batch determines

whether SMOTE improved the results of the hybrid algorithms or not. For the

31

second batch of runs, the classifiers are trained using the training set that is both not
scaled and not resampled by SMOTE. This part compares the performance metrics
of the hybrid classifiers with their base classifier counterparts. Table 7 summarizes

the results from the first two batches of training.

Table 7: Summary of performance metrics for batch 1 and batch 2.

Model Accuracy Precision Recall F1 AUC MCC

GA-LR 0.78 0.83 0.78 0.70 0.53 0.23

SM%’TE GA-ANN 0.78 0.78 0.78 0.72 0.55 0.24
GA-RF 0.80 0.82 0.80 0.74 0.57 0.33

LR 0.59 0.72 0.59 0.62 0.61 0.19

GA-LR 0.78 0.83 0.78 0.70 0.53 0.21

With ANN 0.67 0.76 0.67 0.69 0.68 0.30
SMOTE | GA-ANN 0.77 0.72 0.77 0.72 0.56 0.19
RF 0.71 0.76 0.71 0.73 0.68 0.33

GA-RF 0.80 0.82 0.80 0.75 0.58 0.34

The result of batch 1 shows that applying SMOTE to GA-LR and GA-RF has
a minimal effect on the performance metrics, with at most a 0.01% increase. How-
ever, GA-ANN receives a significant drop in precision and MCC scores after being
resampled with SMOTE.

The result of batch 2 shows that there is a significant increase in the accuracy of
the model from the base classifier to its hybrid counterparts after applying genetic
algorithm for feature selection. With Logistic Regression increasing from 0.59 to 0.78,
Artificial Neural Network increasing from 0.67 to 0.77, and Random Forest increasing
from 0.71 to 0.80. However, it has a mixed effect on the other metrics, and there is
a significant decrease observed in each model’s AUC scores.

Each highest score per metric is highlighted as shown in Table 7, but the main
metric used to determine which model is the best-performing model is the MCC score.
Based on the results of the two batches, the best-performing model is GA-RF with

SMOTE, with an MCC score of 0.34.

32

F.2. Model Performance with Feature Scaling

For the third batch of training, the classifiers are trained with the scaled train set.
This part investigates whether feature scaling improves the performance metrics of
the hybrid algorithm models. Table 8 shows the summary of the results of the models

with feature scaling.

Table 8: Summary of performance metrics of models with feature scaling.

No it
SMOTE Model Accuracy Precision Recall F1 AUC MCC
GA-LR 0.78 0.83 0.78 0.70 0.53 0.23
Not
Scaled | GA-ANN 0.78 0.78 0.78 0.72 0.55 0.24
GA-RF 0.80 0.82 0.80 0.74 0.57 0.33
GA-LR 0.43 0.68 0.43 0.46 0.54 0.07
Scaled | GA-ANN 0.55 0.67 0.55 0.58 0.54 0.07
GA-RF 0.39 0.67 0.39 0.39 0.53 0.05

Applying the StandardScaler() function for feature scaling decreases all of the
performance metrics to a poor state, with scores reaching below 0.50 on most of the
metrics. There is no new model that scored a higher MCC score than the current

best-performing model identified from batch 2.

F.3. Model Performance with All Applied

For the last batch of training, the classifiers are trained with the scaled trained set
with SMOTE. The result from this batch determines if applying all the techniques
can improve the performance metrics of the models or not. Table 9 summarizes the

performance metrics of the models after all techniques are applied.

33

Table 9: Summary of performance metrics of models with all applied.

With .,
SMOTE Model Accuracy Precision Recall F1 AUC MCC
GA-LR 0.78 0.83 0.78 0.70 0.53 0.21
Not

Scaled | GA-ANN 0.77 0.72 0.77 0.72 0.56 0.19
GA-RF 0.80 0.82 0.80 0.75 0.58 0.34
GA-LR 0.48 0.65 0.48 0.51 0.52 0.03

Scaled | GA-ANN 0.49 0.65 0.49 0.52 0.52 0.03
GA-RF 0.24 0.82 0.24 0.10 0.50 0.04

With similar effects observed in batch 3, applying the StandardScaler() function
to the models has produced significantly lower metric scores across the table. With

no improvements after using feature scaling, the best-performing model remains to

be the GA-RF with SMOTE.

G. Web-Based Application

The web application, named Toxicheck, comprises two pages and one view: Landing
Page, Input Form Page, and Results View. These pages are accessed through the

designated buttons that are displayed on each page.

G.1. Landing Page

The landing page is the first page of the application that will be displayed to the user.
It contains the title of the application, the system’s logo, and a brief introduction to
the system’s purpose. Below the introduction, a button that says, ”Test Now” can

be clicked to redirect the user to the input form page.

34

@ Toxicheck - Nanotoxicity Classification System

N

Machine Learning
Nanotoxicity Classification System
Toxicheck v

Due to the innate volatility of nanomaterials (NM), toxicity testing is an important step in
engineering NMs to ensure that they are safe to organisms and the environment

If you have questions and/or feedback, reach us through:

|

CONTACT INFORMATION

SYSTEM PROJECT
Toxicheck simulates the effect of a nanomaterial as described by its & jebarcellano@up.edu.ph - John Derick Barcellano
physicochemical properties to the cell viability of a cell-based assay. . +63 977 294 5883

Figure 14: Landing page of Toxicheck.

G.2. Input Form Page

The input form page contains the navbar, two rectangular panels, and the footer.
The navbar has the system’s logo and name. If the user clicks this area, they will be
redirected back to the landing page. The footer contains the contact information of

the researcher, as well as a brief description of the system.

@ Toxicheck - Nanotoxicity Classification System

Input Form Model Details
NP Type ©: Diameter (nm) @: Concentration (m) @ This section shows the performance metrics of GA-RF with SMOTE.
EnterOor 1 Enter 1to 957 Enter 0 to 15000 Accuracy: 80.17% Precision: 81.89% Recall: 80.17%
F1 Score: 74.63% MCC: 0.3413
Colloidal Stability ©: Surface Charge O Cell Culture ©:
Enter O or 1 Enter O or 1 Enter O or 1 e /
Cell Type @ Cell Age ®: Exposure Time (Hrs) ©: : . ’ I
Enter O or 1 Enter O or 1 Enter 1 to 336 i

Prediction O:

If you have questions and/or feedback, reach us through: G

CONTACT INFORMATION
& jebarcellano@up.edu.ph - John Derick Barcellano

SYSTEM PROJECT
Toxicheck simulates the effect of a nanomaterial as described by its
physicochemical properties to the cell viability of a cell-based assay. . +63 977 294 5883

Figure 15: Input form page of Toxicheck.

35

The left panel of this page contains the input form and two buttons: submit and
reset. This is where the input fields are displayed. If the user hovers over any of the
field’s names, a tooltip describing what the variable is about will show. The first five
input fields are nanoparticle-related, while the remaining four are about the cell-based
assay. Placeholder values are set to guide the user through the possible values that
they can enter into the system. Once the form is completed, the user can click the
‘submit’ button to proceed to the results view.

The right panel contains the performance metrics of the model that is integrated
into the system. It shows the accuracy, precision, recall, F1 score, MCC, the ROC-
AUC curve, and the confusion matrix of GA-RF with SMOTE.

G.3. Results View

Once the form is submitted, the system redirects the user to the results view. This
view retains all the functionalities described in the input form page. Additionally,
the prediction field now displays the classification result (non-toxic or toxic) made by
the model using the input values. The submitted values are saved on the input fields

and are only cleared once the user clicks the 'reset’ button.

E Toxicheck - Nanotoxicity Classification System

Input Form Model Details
NP Type ©: Diameter (nm) @: Concentration (um) @: This section shows the performance metrics of GA-RF with SMOTE.
10 3614 0.0000002 Accuracy: 80.17% Precision: 81.89% Recall: 80.17%

F1 Score: 74.63% MCC: 0.3413
Colloidal Stability ©: Surface Charge ©: Cell Culture ©:

Roc cune

00 00 10 -
Cell Type ©: Cell Age ©: Exposure Time (Hrs) @: P
e N
0.0 0.0 1200 i, ¥ 00
£ 150
Prediction @: Toxic
If you have questions and/or feedback, reach us through: G
SYSTEM PROJECT CONTACT INFORMATION

Toxicheck simulates the effect of a nanomaterial as described by its % jebarcellano@up.edu.ph - John Derick Barcellano
physicochemical properties to the cell viability of a cell-based assay. . +63977 294 5883

Figure 16: Results view of Toxicheck.

36

VI. Discussions

This research aims to evaluate the performance of three hybrid algorithm-based mod-
els (GA-LR, GA-ANN, GA-RF) in predicting whether a nanomaterial is toxic or non-
toxic by observing cell viability. After evaluating these models, the best-performing
model is integrated into the web-based application Toxicheck. Toxicheck is an in-silico
tool for predicting the toxicological profile of a nanomaterial based on the selected
features that were used to train the GA-RF with the SMOTE model. With its simple
and intuitive user interface, it is easy to navigate and operate.

Considering the time it takes for traditional methods to test the toxicity of nano-
materials through in-vitro and in-vivo methods, this application offers a faster way to
test nanomaterial samples through machine learning. By simulating how cell assays
are affected by a nanoparticle as described by its physicochemical properties, this
approach is valuable for researchers and ENM manufacturers as it provides insights
into the toxicity of the nanomaterial that they will be handling.

During the development of the models, multiple data-handling techniques are
applied to improve data quality. The dataset has several String-type variables. For the
dataset, LabelEncoder() is used to convert binary categorical variables into numerical
data, while the multiple categorical variables are dropped due to a lack of experience
in handling one-hot encoding results on the researcher’s part. Upon inspecting each
model’s results, the repudiation of these variables may have cost a significant amount
of scores to the metrics and may have reduced the dataset’s quality instead.

Feature scaling is applied to the predictors specifically to scale the values for
diameter, concentration, and exposure time, which all have a wide range of numerical
data. However, the use of standard scaler worsens the metric scores to an unacceptable
state. Most of the performance metrics drop below 0.50, with score reduction reaching
as high as 65%. Lastly, SMOTE is applied to address the imbalance between the toxic

and non-toxic classes.

37

The use of hybrid algorithms for building nano-QSAR models proves to be effec-
tive, as shown by genetic algorithm’s positive influence on the performance metrics of
the base classifier algorithms. GA significantly improved every model’s accuracy by
9% to 19%. However, it has mixed effects on the other metrics, and it significantly
reduced AUC scores by 8% to 10%.

GA-RF provided the best metrics relative to all the models tested in this study.
Its scores were improved (at most 1%) by applying SMOTE to address the class
imbalance of the dataset. However, when compared to the metrics from related
literature, the scores produced by the models in this study are relatively lower. This
could be attributed to the dataset’s quality and the functions used in model training.

Note that the majority of these models still hold merit, with their metric scores
reaching 80% on average, and they can still be used as a reliable way to look for
valuable insights needed for nanomaterial-related decision-making. Integrating the
best-performing model into a web application gives professionals and researchers an
intuitive way to assess a nanomaterial safely using the in-silico approach. The sys-
tem can be used alongside traditional toxicity testing approaches for cross-validating
results. Overall, this study emphasizes the significance of nanotoxicity testing and
offers new directions for future research into mitigating the harmful effects of NPs
and ENMs by investigating and confirming the applicability of hybrid algorithms in
this field.

38

VII. Conclusions

This research showcases the potential of in-silico toxicity testing in classifying the
toxicological profile of a nanomaterial when combined with hybrid algorithm. After
obtaining the dataset from [8], the researcher applies exploratory data analysis and
data preprocessing using label encoding and correlation coefficients. The processed
data is passed to the feature selection process, where genetic algorithm is involved.
Genetic algorithm is run on each base classifier to determine which features are se-
lected for each distinct model. Unselected predictors are dropped before proceeding
to data splitting.

The dataset is divided into 80:20, where 80% is for the training set and 20% is
for the testing set. The training set is duplicated into four copies: the first one has
no techniques applied, the second has standard scaler applied, the third has SMOTE
applied, and the last has both standard scaler and SMOTE applied. These four copies
are also done for the models with GA applied. Overall, there are 8 total versions of the
training set for each base classifier algorithm: the first 4 are for the original dataset,
and the remaining is for the dataset with GA. The original dataset is still utilized
to run the individual base classifier models without the effect of feature selection to
serve as the control setup of the study.

Afterward, hyperparameter tuning is applied to all prepared models. The resulting
models are trained and evaluated using the performance metrics: accuracy, precision,
recall, F1, ROC-AUC, and MCC, where MCC is the main metric to determine the
best-performing model. Results show that GA-RF with SMOTE is the optimal model
among the selections and is integrated into the web application named Toxicheck.
This study confirms the applicability and efficiency of hybrid algorithms for classifying
nanomaterial toxicity using a diverse dataset. This enables the users of the system
to perform safer and faster testing on a wider selection of nanomaterials using an

in-silico approach.

39

VIII. Recommendations

In terms of improving the performance of the models using the same dataset, future
studies may attempt to investigate the effect of removing outliers from the dataset.
It is also recommended to try applying one-hot encoding to the multiple categorical
features that were previously dropped in this study, as repudiating these variables
may have reduced the dataset’s quality.

Additionally, investigations into other feature scaling, oversampling, and feature
selection techniques will be helpful in establishing a more solid foundation regarding
the effect of these techniques on the model. Future researchers may also develop other
classification models using other algorithms that were not tested in this study (such
as XGBoost, Adaboost, etc.) with GA as a feature selector.

Alternatively, if the researcher uses a different dataset, they can still use the
same machine learning algorithms in the study to expand its scope. Note that it is
recommended to find a balanced dataset that still covers a large volume of different
nanoparticles to maintain a wide applicability domain. Lastly, future studies can also
focus on testing other toxicity measures besides cell viability.

In terms of improving the web application, a feature that lets the user choose
what model they want to use for the prediction can be added, assuming that all other
models in this study are also integrated into the system. Alternatively, the results
and predictions of all the models can be shown side by side in the web application
to give the user an insight into how each model predicted the classification of the

nanomaterial they described.

40

IX. Bibliography

1]

E. R. Bandala and M. Berli, “Engineered nanomaterials (enms) and their role at
the nexus of food, energy, and water,” Materials Science for Energy Technologies,

vol. 2, pp. 29-40, 2019.

S. Balraadjsing, W. J. G. M. Peijnenburg, and M. G. Vijver, “Exploring the
potential of in silico machine learning tools for the prediction of acute daphnia

magna nanotoxicity,” Chemosphere, vol. 307, 2022.

G. Gul, R. Yildirim, and N. Ileri-Ercan, “Cytotoxicity analysis of nanoparticles
by association rule mining,” Environmental Science: Nano, vol. 8, p. 937-949,

2021.

E. Kabir, V. Kumar, K.-H. Kim, A. C. K. Yip, and J. R. Sohn, “Environmental

7

impacts of nanomaterials,” Journal of Environmental Management, vol. 225,

pp. 261-271, 2018.

[. Furxhi, F. Murphy, M. Mullins, and C. A. Poland, “Machine learning pre-
diction of nanoparticle in vitro toxicity: A comparative study of classifiers

and ensemble-classifiers using the copeland index,” Tozicology Letters, vol. 312,

pp. 157-166, 2019.

V. Forest, J.-F. Hochepied, L. Leclerc, A. Trouvé, K. Abdelkebir, G. Sarry,
V. Augusto, and J. Pourchez, “Towards an alternative to nano-gsar for nanopar-

ticle toxicity ranking in case of small datasets,” Journal of Nanoparticle Research,

vol. 21, 2019.

R. Divya and R. Shantha Selva Kumari, “Genetic algorithm with logistic regres-
sion feature selection for alzheimer’s disease classification,” Neural Computing

and Applications, vol. 33, pp. 8435-8444, 2021.

41

8]

[12]

[13]

[14]

[15]

H. I. Labouta, N. Asgarian, K. Rinker, and D. T. Cramb, “Meta-analysis of

nanoparticle cytotoxicity via data-mining the literature,” ACS Nano, 2019.

H. M. Ahmed, A. Roy, M. Wahab, M. Ahmed, G. Othman-Qadir, B. H. Elesawy,
M. U. Khandaker, M. N. Islam, and T. B. Emran, “Applications of nanomaterials
in agrifood and pharmaceutical industry,” Journal of Nanomaterials, vol. 2021,

pp. 1-10, 2021.

M. Martinez, “Differences between in vitro, in vivo and in silico assays in pre-

clinical research,” ZeClinics, 2022.

E. Frohlich, “Comparison of conventional and advanced in vitro models in the
toxicity testing of nanoparticles,” Artificial Cells, Nanomedicine, and Biotech-

nology, vol. 46, p. 1091-1107, 2018.

T. X. Trinh, M. Seo, T. H. Yoon, and J. Kim, “Developing random forest based
gsar models for predicting the mixture toxicity of tio2 based nano-mixtures to

daphnia magna,” Nanolmpact, vol. 25, 2022.

B.-H. Mao, Y.-K. Luo, B.-J. Wang, C.-W. Chen, F.-Y. Cheng, Y.-H. Lee, S.-
J. Yan, and Y.-J. Wang, “Use of an in-silico knowledge discovery approach to
determine mechanistic studies of silver nanoparticles-induced toxicity from in

vitro to in vivo,” Particle and Fibre Toxicology, vol. 19, 2022.

J. Cao, Y. Pan, Y. Jiang, R. Qi, B. Yuan, Z. Jia, J. Jiang, and Q. Wang,
“Computer-aided nanotoxicology: risk assessment of metal oxide nanoparticles

via nano-gsar,” Green Chemistry, vol. 22, pp. 3512-3521, 2020.

M. K. Ha, T. X. Trinh, J. S. Choi, D. Maulina, H. G. Byun, and T. H. Yoon,
“Toxicity classification of oxide nanomaterials: Effects of data gap filling and

pchem score-based screening approaches,” Scientific Reports, vol. 8, 2018.

42

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. van der Merwe and J. A. Pickrell, Chapter 18 - Toxicity of Nanomaterials,

pp. 319-326. Academic Press, third edition ed., 2018.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Syn-

thetic minority over-sampling technique,” arXiv.org, Jun 2011.

M. Abdelrahim, C. Merlosy, and T. Wang, “Hybrid machine learning approaches:
A method to improve expected output of semi-structured sequential data,” in
2016 IEEE Tenth International Conference on Semantic Computing (ICSC),
IEEE, Feb 2016.

C. M. Boukhater, O. Dakroub, F. Lahoud, M. Awad, and H. Artail, “An in-
telligent and fair GA carpooling scheduler as a social solution for greener trans-
portation,” in MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical
Conference, IEEE, Apr. 2014.

M. Banoula, “An introduction to logistic regression in python,” Sep 2022.

Y .-S. Park and S. Lek, Chapter 7 - Artificial Neural Networks: Multilayer Per-
ceptron for Ecological Modeling, vol. 28 of Developments in Environmental Mod-

elling, pp. 123-140. Elsevier, 2016.

Simplilearn, “Random forest algorithm,” Jan 2023.

43

©OTD U WN -

X. Appendix

A. Source Code

1. Machine Learning: GA-LR.py

IMPORTANT #
This is a cleaned version of the ipynb files that was used to develop the models.
It is only formatted in python SOLELY for CLEANER presentation in the SP paper.

END

FHR I

Importing Libraries

import io

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import pickle

import seaborn as sns

import warnings

from genetic_selection import GeneticSelectionCV

from imblearn.over_sampling import SMOTE

from sklearn.metrics import accuracy_score, precision_score, fl_score, recall_score
from sklearn.metrics import confusion_matrix, roc_auc_score, roc_curve, matthews_corrcoef
from sklearn.metrics import classification_report

from sklearn.model_selection import GridSearchCV, train_test_split, StratifiedKFold
from sklearn.preprocessing import LabelEncoder, MultiLabelBinarizer , StandardScaler
from sklearn.linear_-model import LogisticRegression

Upload Data

dataset = pd.read_csv(r’np.csv’)
dataset = dataset.dropna()

print (dataset)

Show Count of Unique Values per Column
dataset [Cell Type’].nunique()

Show Unique Values per Column
dataset [’ Cell Type’].unique ()
print (dataset.dtypes)

Splitting Data into Predictors and Response
predictors = dataset.iloc[:, 0:9]
response = dataset.iloc [:, 9]

Check for Imbalance
dataset_eda = dataset.copy()
dataset_eda [’ classification ’]. value_counts ()

Feature Selection
model = LogisticRegression (random_state=2,max_iter=1000)
cv = StratifiedKFold(n_-splits=5, shuffle=True)
GALR = GeneticSelectionCV (
model ,
cv=cv ,
verbose=0,
scoring="accuracy”,
max_features=9,
n_population=100,
crossover_proba=0.5,
mutation_proba=0.2,
n_generations=50,
crossover_independent_proba=0.5,
mutation_independent_proba=0.04,
tournament_size=3,
n-gen_no-change=10,
caching=True,
n_jobs=-—1)
GALR = GALR. fit (predictors , response)
print (’Features:’, predictors.columns|[GALR.support-])

Drop Non—Selected Features

predictors_ga = predictors.drop ([’ Colloidal Stability Checked’, ’Interference Checked’],
axis = 1)

print (predictors_ga)

Data Splitting

seed = 2

test_size = 0.20

X_train , _test , y-train, y_-test = train_test_split(predictors, response,
test_size=test_size ,
random_state=seed)

X _train_ga, X_test_ga, y-train_ga, y-test_ga = train_test_split(predictors_ga , response,

test_-size=test_size ,

44

80 random_state=seed)
81

82 # Check Number of Rows

83 X_train.shape[0], X_test.shape[0], X_train_ga.shape[0], X_test_ga.shape[O0]

84

85 # Feature Scaling

86 scaler = StandardScaler ()

87 X_train_std = scaler.fit_transform (X_train)

88 X _train_scaled = pd.DataFrame(X_train_std , index=X_train.index, columns=X_train.columns)
89 print(X_train_scaled)

90

91 # Feature Scaling for GA Model

92 X_train_gastd = scaler.fit_transform (X_train_ga)

93 X_train_gascaled = pd.DataFrame(X_train_gastd , index=X_train_ga.index,

94 columns=X_train_ga .columns)

95 print(X_train_-gascaled)

96

97 # Class Balancing
98 sm = SMOTE(random_state=2)

99 X_train_.sm , y_-train_sm = sm.fit_-resample(X_train, y_train)

100 X_train_sm_scaled , y_-train_sm_scaled = sm.fit_resample(X_train_scaled, y-_train)
101 X _train_all , y_train_all = sm.fit_.resample(X_train_gascaled , y_train_ga)

102

103 # ————————————— Logistic Regression (No Feature Scaling) ———————— #

104 model = LogisticRegression (random_state=2, max_iter=1000)

105 warnings . filterwarnings (’ignore)

106

107 # Hyperparameter Tuning
108 parameters = {

109 penalty ’ [711°,712°],

110 c np.logspace(—3,3,7),

111 ‘solver’ [’newton—cg’, ’lbfgs’, ’liblinear ’],
12}

113

114 # For Model 1

115 c¢v = StratifiedKFold(n_splits=5, shuffle=True)

116 modell = GridSearchCV (model, parameters, cv=cv)
117 modell. fit (X_train, y_train)

118 print (modell.best_params_)

119 modell. best_estimator_.score(X_test, y_test)

120

121 # For Model 1 GA

122 modell_ga = GridSearchCV (model, parameters, cv=cv)
123 modell_ga. fit (X_train_ga, y-train_ga)

124 print (modell_ga.best_params_)

125 modell_ga.best_estimator_.score(X_test_ga , y_-test_ga)
126

127 # Make Predictions for Test Data

128 y_pred = modell.predict (X_test)

129 y_pred_-ga = modell_ga.predict(X_test_ga)

130

131 # Evaluate Predictions for Model 1

132 mcc = matthews_corrcoef(y-test_-ga ,y-pred-ga)

133 confusion_mat = confusion_matrix(y_-test_ga ,y_pred_ga)

134 print ("MCC is:” ,mcc)
135 print (” Confusion Matrix”)

136 print (confusion_mat)
137 print (classification_report (y-test_ga ,y-pred_ga))
138

139 # Evaluate Predictions for Model 1 GA

140 mcc = matthews_corrcoef(y_-test_ga ,y_-pred_ga)

141 confusion_mat = confusion_matrix(y-test_ga ,y_pred_ga)
142 print ("MCC is:” ,mcc)

143 print (” Confusion Matrix”)

144 print (confusion_mat)

145 print(classification_report(y-test_ga ,y_-pred_ga))

146

147 # —— For Model 1 ——

148 fpr, tpr, threshold = roc_-curve(y-test, y-pred, pos-label=1)
149 random = [0 for i in range(len(y-test))]

150 p-fpr, p-tpr, _- = roc_curve(y-test, random, pos_label=1)

151 auc_score = roc-auc-score(y_test, y_pred)=x100

152

153 print (PAUC Score: ”, auc_score)

154

155 # Plot ROC Curves

156 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Logistic Regression ’)
157 plt.plot (p-fpr, p_-tpr, linestyle=’ ’, color=’black)

158

159 # Title and Labels

160 plt.title (’ROC Curve’)

161 plt.xlabel ('False Positive Rate’)
162 plt.ylabel (’True Positive rate’)
163

164 #Legend

165 plt.legend (loc=’'best’)

166 plt.savefig ('ROC’ ,dpi=300)

167 plt.show ()

168

169 # —— For Model 1 GA —

170 fpr, tpr, threshold = roc_curve(y_-test_ga, y_pred_ga, pos_label=1)
171 random = [0 for i in range(len(y-test_ga))]

45

172 p-fpr, p-tpr, - = roc-curve(y-test_ga , random, pos_label=1)

173 auc_score = roc_auc_score(y_test_ga , y_pred_ga)x100

174 print ("AUC Score: ”, auc_score)

175

176 # Plot ROC Curves

177 plt.plot (fpr, tpr, linestyle="——’,color="blue’ label="Logistic Regression’)
178 plt.plot (p-fpr, p_-tpr, linestyle="——’, color=’black’)

179

180 # Title and Labels

181 plt.title (’ROC Curve’)

182 plt.xlabel ("False Positive Rate’)

183 plt.ylabel (’True Positive rate’)

184

185 #Legend

186 plt.legend (loc=’'best’)

187 plt.savefig (’ROC’ ,dpi=300)

188 plt.show ()

189

190 # ——————— Logistic Regression (With Feature Scaling) ———— #
191 #For Model 2

192 model2 = GridSearchCV (model, parameters, cv=cv)
193 model2. fit (X_train_scaled , y_train)

194 print (model2. best_params_)

195 model2.best_estimator_.score(X_test, y_test)

196

197 # For Model 2 GA

198 model2_ga = GridSearchCV (model, parameters, cv=cv)
199 model2_ga.fit (X_train_gascaled , y_train_ga)

200 print(model2_ga.best_params_)

201 model2_ga.best_estimator_.score(X_test_ga , y_-test_ga)
202

203 # Make Predictions for Test Data

204 y-pred = model2.predict (X_test)

205 y-pred-ga = model2_ga.predict(X_test_ga)

206

207 # Evaluate Predictions for Model 2

208 mcc = matthews_corrcoef(y_test_ga ,y-pred_ga)

209 confusion_mat = confusion_matrix(y_-test_ga ,y_pred_ga)

210 print ("MCC is:” ,mcc)
211 print (” Confusion Matrix”)

212 print (confusion_mat)

213 print (classification_report (y-test_ga ,y_-pred_ga))

214

215 # Evaluate Predictions for Model 2 GA

216 mcc = matthews_corrcoef(y_-test_ga ,y-pred_ga)

217 confusion_mat = confusion_matrix (y-test_ga ,y_pred_ga)

218 print ("MCC is:” ,mcc)

219 print (” Confusion Matrix”)

220 print(confusion_mat)

221 print (classification_report (y-test_ga ,y-pred_ga))

222

223 # —— For Model 2 ——

224 fpr, tpr, threshold = roc_curve(y-test, y_pred, pos_label=1)
225 random = [0 for i in range(len(y-test))]

226 p-fpr, p-tpr, _- = roc_curve(y-test, random, pos_label=1)

227 auc_score = roc-auc-score(y_test, y_pred)=x100

228

229 print (?AUC Score: ”, auc_score)

230

231 # Plot ROC Curves

232 plt.plot (fpr, tpr, linestyle=’ ’,color="blue’, label="Logistic Regression’)
233 plt.plot (p-fpr, p-tpr, linestyle="——’, color=’"black)

234

235 # Title and Labels

236 plt.title (’ROC Curve’)

237 plt.xlabel (’False Positive Rate’)
238 plt.ylabel (’True Positive rate’)
239

240 #Legend

241 plt.legend (loc="best)

242 plt.savefig ('ROC’ ,dpi=300)

243 plt.show ()

244

245 # —— For Model 2 GA ——

246 fpr, tpr, threshold = roc_curve(y-test_ga , y_pred_ga, pos_-label=1)
247 random = [0 for i in range(len(y-test_ga))]

248 p-fpr, p-tpr, - = roc_curve(y-test_ga , random, pos_label=1)

249 auc_score = roc-auc.score(y-test_ga, y_pred_ga)x100

250 print ("AUC Score: 7, auc-score)

251

252 # Plot ROC Curves

253 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Logistic Regression’)
254 plt.plot(p-fpr, p-tpr, linestyle="——', color="black’)

255

256 # Title and Labels

257 plt.title (’ROC Curve’)

258 plt.xlabel (’False Positive Rate’)
259 plt.ylabel (’True Positive rate’)
260

261 #Legend

262 plt.legend (loc="best)

263 plt.savefig ('ROC’ ,dpi=300)

46

264 plt.show ()

265

266 # ——————————————— Logistic Regression (With Smote) —————— #
267 # For Model 3

268 model3 = GridSearchCV (model, parameters, cv=cv)

269 model3. fit (X_train_.sm, y_train_sm)

270 print(model3.best_params_)

271 model3.best_estimator_.score(X_test, y-_-test)

272

273 # For Model 3 GA

274 model3_ga = GridSearchCV (model, parameters, cv=cv)
275 model3_ga. fit (X_train_ga, y_train_ga)

276 print(model3_ga.best_params._)

277 model3_ga.best_estimator_.score(X_test_ga, y-test_ga)
278

279 # Make Predictions for Test Data

280 y-pred = model3.predict (X_test)

281 y-pred_ga = model3_ga.predict (X_test_ga)

282

283 # Evaluate Predictions for Model 3

284 mcc = matthews_corrcoef(y_-test, y_pred)

285 confusion_mat = confusion_matrix (y-test ,y_pred)

286 print ("MCC is:” ,mcc)

287 print (” Confusion Matrix”)

288 print(confusion_mat)

289 print (classification_report (y-test ,y_pred))

290

291 # Evaluate Predictions for Model 3 GA

292 mcc = matthews_corrcoef(y_test_ga ,y_pred_ga)

293 confusion_mat = confusion_matrix(y-test_ga ,y_-pred_ga)
294 print ("MCC is:” ,mcc)

295 print (” Confusion Matrix”)

296 print(confusion_mat)

297 print(classification_report(y-test_ga ,y-pred_ga))

298

299 # —— For Model 3 —

300 fpr, tpr, threshold = roc_curve(y-test, y_pred, pos_label=1)
301 random = [0 for i in range(len(y-test))]

302 p-fpr, p-tpr, _- = roc_curve(y-test, random, pos_label=1)

303 auc_score = roc_auc.score(y-test, y_pred)*100

304

305 print ("AUC Score: ”, auc_score)

306

307 # Plot ROC Curves

308 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Logistic Regression’)
309 plt.plot(p-fpr, p-tpr, linestyle="——', color="black’)

310

311 # Title and Labels

312 plt.title (’'ROC Curve’)

313 plt.xlabel(’False Positive Rate’)
314 plt.ylabel (’True Positive rate’)
315

316 #Legend

317 plt.legend (loc=’best)

318 plt.savefig ('ROC’ ,dpi=300)

319 plt.show()

320

321 # —— For Model 3 GA ——

322 fpr, tpr, threshold = roc_curve(y-test_ga , y_-pred_ga, pos_-label=1)
323 random = [0 for i in range(len(y-test_ga))]

324 p-fpr, p-tpr, - = roc_curve(y-test_ga , random, pos_label=1)

325 auc_score = roc-auc-score(y-test_ga, y_pred_ga)x100

326 print ("AUC Score: ”, auc.score)

327

328 # Plot ROC Curves

329 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Logistic Regression’)
330 plt.plot(p-fpr, p-tpr, linestyle="——', color="black’)

331

332 # Title and Labels

333 plt.title ('ROC Curve’)

334 plt.xlabel(’False Positive Rate’)

335 plt.ylabel (’True Positive rate’)

336

337 #Legend

338 plt.legend (loc="best ’)

339 plt.savefig (’ROC’,dpi=300)

340 plt .show ()

341

342 # ————————— Logistic Regression (All Applied) ——M— #
343 # For Model 4

344 model4d = GridSearchCV (model, parameters, cv=cv)
345 modeld. fit (X_train_sm_scaled, y_-train_sm_scaled)
346 print (modeld4.best_params_)

347 modeld. best_estimator_.score(X_test, y_test)

348

349 # For Model 4 GA

350 modeld_ga = GridSearchCV (model, parameters, cv=cv)
351 modeld_ga.fit (X_train_all, y_train_all)

352 print (modeld_ga.best_params_)

353 modeld_ga.best_estimator_.score(X_test_ga, y_-test_ga)
354

355 # Make Predictions for Test Data

47

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

©oTOU A WN R~

y-pred = modeld. predict (X_-test)
y-pred_ga = modeld_ga.predict (X_test_ga)

Evaluate Predictions for Model 4

mcc = matthews_corrcoef(y_test, y_pred)
confusion_.mat = confusion_matrix (y-test ,y_pred)
print ("MCC is:” ,mcc)

print (” Confusion Matrix”)

print (confusion_mat)

print (classification_report (y-test ,y_pred))

Evaluate Predictions for Model 4 GA

mcc = matthews_corrcoef(y-test_ga ,y-pred_ga)
confusion_mat = confusion_matrix(y-test_ga ,y_-pred_ga)
print ("MCC is:” ,mcc)

print (” Confusion Matrix”)

print (confusion_mat)

print (classification_report (y-test_ga ,y-pred_-ga))

—— For Model 4 ——

fpr, tpr, threshold = roc_curve(y-test, y_pred, pos_label=1)
random = [0 for i in range(len(y-test))]

p-fpr, p-tpr, - = roc_curve(y-test, random, pos_label=1)
auc_score = roc_auc.score(y-test , y_pred)*100

print (7AUC Score: ”, auc_-score)

Plot ROC Curves
plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Logistic Regression’)

i

plt.plot(p_-fpr, p-tpr, linestyle="——', color="black’)
Title and Labels
plt.title (’ROC Curve’)

plt.xlabel (’False Positive Rate’)
plt.ylabel (’True Positive rate’)

#Legend
plt.legend (loc="best ’)
plt.savefig ('ROC’ ,dpi=300)

plt.show ()

—— For Model 4 GA ——

fpr, tpr, threshold = roc_curve(y-test_ga , y_pred_ga, pos_-label=1)

random = [0 for i in range(len(y-test_ga))]

p-fpr, p-tpr, - = roc_curve(y-test_ga , random, pos_label=1)

auc-score = roc-auc-score(y-test_ga, y_pred_ga)x100

print ("AUC Score: 7, auc_score)

Plot ROC Curves

plt.plot(fpr, tpr, linestyle="——’,color="blue’, label="Logistic Regression’)
plt.plot(p-fpr, p-tpr, linestyle="——', color="black’)

Title and Labels

plt.title (’'ROC Curve’)

plt.xlabel (’False Positive Rate’)
plt.ylabel (’True Positive rate’)

#Legend
plt.legend (loc="best ")
plt.savefig (’ROC’,dpi=300)

plt .show ()

———————— Saving the Pipeline into a File —M—————
pickle .dump(model3_ga, open(’galr.pkl’, ’wb’))

2. Machine Learning: GA-ANN.py

IMPORTANT #
This is a cleaned version of the ipynb files that was used to develop the models.
It is only formatted in python SOLELY for CLEANER presentation in the SP paper.

END

FFH I

Importing Libraries

import io

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import pickle

import seaborn as sns

import warnings

from genetic_selection import GeneticSelectionCV

from imblearn.over_sampling import SMOTE

from sklearn.metrics import accuracy-score, precision_score, fl_score, recall_score
from sklearn.metrics import confusion_-matrix, roc_auc-score, roc-curve, matthews_corrcoef
from sklearn.metrics import classification_report

from sklearn.model_selection import GridSearchCV, train_test_split , StratifiedKFold
from sklearn.preprocessing import LabelEncoder, MultiLabelBinarizer , StandardScaler
from sklearn.neural_-network import MLPClassifier

Upload Data

48

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

dataset = pd.read-csv(r’'np.csv’)
dataset = dataset.dropna()
print (dataset)

Show Count of Unique Values per Column
dataset [’ Cell Type’].nunique ()

Show Unique Values per Column
dataset [> Cell Type’'].unique()
print (dataset.dtypes)

Splitting Data into Predictors and Response
predictors = dataset.iloc[:, 0:9]
response = dataset.iloc [:, 9]

Check for Imbalance
dataset_eda = dataset.copy()
dataset_eda [’ classification ’]. value_counts ()

Feature Selection
model = MLPClassifier (random_state=2, max_iter=1000)
cv = StratifiedKFold(n_splits=5, shuffle=True)
GAANN = GeneticSelectionCV (
model,
cv=cv ,
verbose=0,
scoring="accuracy”,
max_features=9,
n_population=100,
crossover_proba=0.5,
mutation_proba=0.2,
n_generations=>50,
crossover_-independent_proba=0.5,
mutation_-independent_-proba=0.04,
tournament_size=3,
n_gen_no_change=10,
caching=True,
n_jobs=-—1)
GAANN = GAANN. fit (predictors , response)
print (' Features:’, predictors.columns[GAANN. support_])

Drop Non—Selected Features

predictors_ga = predictors.drop ([’NP Type’, ’Cell Culture’, ’Interference Checked’],
axis = 1)

print (predictors_ga)

Data Splitting
seed = 2

test_size = 0.20

X_train, X_test, y-train, y-test = train_test_split(predictors, response,
test_size=test_size ,
random_state=seed)

X _train_ga, X_test_ga, y-train_ga, y_-test_ga = train_test_split(predictors_ga , response,

test_size=test_size ,
random_state=seed)

Check Number of Rows
X_train.shape[0], X_test.shape[0], X_train_ga.shape[0], X_test_ga.shape[0]

Feature Scaling

scaler = StandardScaler ()
X_train_std = scaler.fit_transform (X_train)
X _train_scaled = pd.DataFrame(X_train_std , index=X_train.index, columns=X_train.columns)

print (X_train_scaled)

Feature Scaling for GA Model

X_train_gastd = scaler.fit_transform (X_train_ga)

X_train_gascaled = pd.DataFrame(X_train_gastd , index=X_train_ga.index,
columns=X_train_ga.columns)

print (X _train_gascaled)

Class Balancing
sm = SMOTE(random_state=2)

X_train_sm , y_train_sm = sm.fit_resample (X_train, y_train)

X_train_sm_scaled , y_-train_sm_scaled = sm.fit_.resample(X_train_scaled , y_train)
X_train_all , y_train_all = sm.fit_.resample(X_train_gascaled , y_train_ga)

——————— Artificial Neural Network (No Feature Scaling) ——————

model = MLPClassifier (random_state=2, max_iter=1000)
warnings . filterwarnings (’ignore ’)

Hyperparameter Tuning

parameters = {
’hidden_layer_sizes ’: [(10,30,10),(20,),(100,)],
alpha’: [0.01, 0.05],
’learning_rate_init ’: [0.001, 0.01, 0.1],

¥

For Model 1
cv = StratifiedKFold(n_splits=5, shuffle=True)
modell = GridSearchCV (model, parameters, cv=cv)

49

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

modell. fit (X_train, y-train)
print (modell. best_params_)
modell. best_estimator_.score(X_test, y_test)

For Model 1 GA

modell_ga = GridSearchCV (model, parameters, cv=cv)
modell_ga. fit (X_train_ga, y_-train_ga)

print (modell_ga.best_params_)
modell_ga.best_estimator_.score(X_test_ga, y-test_ga)

Make Predictions for Test Data
y-pred = modell.predict (X_test)
y-pred_ga = modell_ga.predict(X_test_ga)

Evaluate Predictions for Model 1

mcc = matthews_corrcoef(y-test_-ga ,y-pred_-ga)
confusion_mat = confusion_-matrix(y-test_ga ,y-pred_ga)
print ("MCC is:” ,mcc)

print (” Confusion Matrix”)

print (confusion_mat)

print (classification_report(y-test_ga ,y_-pred_ga))

Evaluate Predictions for Model 1 GA

mcc = matthews_corrcoef(y_-test_ga ,y_pred_ga)
confusion_mat = confusion_matrix (y-test_ga ,y_-pred_ga)
print ("MCC is:” ,mcc)

print (” Confusion Matrix”)

print (confusion_mat)

print (classification_report (y-test_ga ,y_-pred_ga))

—— For Model 1 ——

fpr, tpr, threshold = roc_curve(y-test, y_pred, pos_label=1)
random = [0 for i in range(len(y-test))]

p-fpr, p-tpr, - = roc-curve(y-test, random, pos_label=1)
auc-score = roc-auc-score (y-test, y_pred)=100

print (AUC Score: ”, auc_score)

Plot ROC Curves
plt.plot (fpr, tpr, linestyle='——’,color='blue’, label="Artificial
plt.plot (p-fpr, p_-tpr, linestyle="——’, color=’'black)

Title and Labels

plt.title (’ROC Curve’)

plt.xlabel ('False Positive Rate’)
plt.ylabel (’True Positive rate’)

#Legend
plt.legend (loc="best)
plt.savefig ('ROC’ ,dpi=300)

plt.show ()

—— For Model 1 GA ——

fpr, tpr, threshold = roc_curve(y_-test_ga, y_pred_-ga, pos_label=1)
random = [0 for i in range(len(y-test_ga))]

p-fpr, p-tpr, - = roc_curve(y-test_ga , random, pos_label=1)
auc_score = roc-auc-score(y_-test_ga, y_pred_ga)x100

print (?AUC Score: ”, auc_score)

Plot ROC Curves

plt.plot (fpr, tpr, linestyle=’ ’,color="blue’, label="Artificial
plt.plot (p-fpr, p-tpr, linestyle="——’, color=’"black)

Title and Labels

plt.title (’ROC Curve’)

plt.xlabel (’False Positive Rate’)

plt.ylabel (’True Positive rate’)

#Legend

plt.legend (loc="best ’)
plt.savefig ('ROC’ ,dpi=300)
plt.show ()

Artificial Neural Network (With Feature Scaling)
#For Model 2

model2 = GridSearchCV (model, parameters, cv=cv)

model2. fit (X_train_scaled , y_train)

print (model2. best_params_)

model2. best_estimator_.score(X_test, y_-test)

For Model 2 GA

model2_ga = GridSearchCV (model, parameters, cv=cv)
model2_ga . fit (X_train_gascaled , y_train_ga)

print (model2_ga.best_params_)
model2_ga.best_estimator_.score(X_test_ga , y-test_ga)

Make Predictions for Test Data
y-pred = model2. predict (X_test)
y-pred_ga = model2_ga.predict (X_test_ga)

Evaluate Predictions for Model 2
mcc = matthews_corrcoef(y_test_ga ,y-pred_ga)

50

209 confusion_mat = confusion_-matrix(y-test_ga ,y-pred-ga)
210 print ("MCC is:” ,mcc)
211 print (” Confusion Matrix”)

212 print(confusion_mat)
213 print (classification_report(y-test_ga ,y_-pred_ga))
214

215 # Evaluate Predictions for Model 2 GA

216 mcc = matthews_corrcoef(y_-test_ga ,y_pred_ga)

217 confusion_.mat = confusion_matrix (y-test_ga ,y_-pred_ga)
218 print ("MCC is:” ,mcc)

219 print (” Confusion Matrix”)

220 print(confusion_mat)

221 print(classification_report(y-test_ga ,y-pred_ga))

222

223 # —— For Model 2 ——

224 fpr, tpr, threshold = roc_curve(y-test, y_pred, pos_label=1)
225 random = [0 for i in range(len(y-test))]

226 p-fpr, p-tpr, - = roc-curve(y-test, random, pos_-label=1)

227 auc_score = roc-auc_score (y_test, y_pred)=x100

228

229 print (?AUC Score: ”, auc_score)

230

231 # Plot ROC Curves

232 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Artificial Neural Network’)
233 plt.plot (p-fpr, p_-tpr, linestyle="——’, color=’black)

234

235 # Title and Labels

236 plt.title (’ROC Curve’)

237 plt.xlabel (’False Positive Rate’)
238 plt.ylabel (’True Positive rate’)
239

240 #Legend

241 plt.legend (loc="best)

242 plt.savefig ('ROC’ ,dpi=300)

243 plt.show ()

244

245 # —— For Model 2 GA ——

246 fpr, tpr, threshold = roc_curve(y_-test_ga, y_pred_ga, pos_label=1)
247 random = [0 for i in range(len(y-test_ga))]

248 p-fpr, p-tpr, - = roc_curve(y-test_ga , random, pos_label=1)

249 auc_score = roc_auc.score(y-test_ga, y_pred_ga)x100

250 print (”AUC Score: ”, auc._score)

251

252 # Plot ROC Curves

253 plt.plot (fpr, tpr, linestyle="——",color="blue’, label="Artificial Neural Network’)
254 plt.plot(p-fpr, p-tpr, linestyle="——', color="black’)

255

256 # Title and Labels

257 plt.title (’ROC Curve’)

258 plt.xlabel (’False Positive Rate’)

259 plt.ylabel (’True Positive rate’)

260

261 #Legend

262 plt.legend (loc="best)

263 plt.savefig ('ROC’ ,dpi=300)

264 plt.show ()

265

266 # ———————— Artificial Neural Network (With Smote) —— #
267 # For Model 3

268 model3 = GridSearchCV (model, parameters, cv=cv)
269 model3. fit (X_train_sm, y_train_sm)

270 print (model3. best_params_)

271 model3.best_estimator_.score(X_test, y-_-test)

272

273 # For Model 3 GA

274 model3_ga = GridSearchCV (model, parameters, cv=cv)
275 model3_ga. fit (X_train_ga, y-train_ga)

276 print(model3_ga.best_params._)

277 model3_ga.best_estimator_.score(X_test_ga, y-test_ga)
278

279 # Make Predictions for Test Data

280 y-pred = model3.predict (X_test)

281 y-pred_ga = model3_ga.predict (X_test_ga)

282

283 # Evaluate Predictions for Model 3

284 mcc = matthews_corrcoef(y_-test, y_pred)

285 confusion_.mat = confusion_matrix (y-test ,y_pred)

286 print ("MCC is:” ,mcc)

287 print (" Confusion Matrix”)

288 print (confusion_mat)

289 print(classification_report(y-test ,y_pred))

290

291 # Evaluate Predictions for Model 3 GA

292 mcc = matthews_corrcoef(y_-test_ga ,y_-pred_ga)

293 confusion_-mat = confusion_matrix(y-test_ga ,y_pred_ga)

294 print ("MCC is:” ,mcc)
295 print (” Confusion Matrix”)

296 print(confusion_mat)

297 print(classification_report(y-test_ga ,y_pred_ga))

298

299 # —— For Model 3 —

300 fpr, tpr, threshold = roc_curve(y-test, y_pred, pos_label=1)

51

301 random = [0 for i in range(len(y-test))]

302 p-fpr, p-tpr, _- = roc_curve(y-test, random, pos_label=1)

303 auc_score = roc-auc-score (y_test, y_pred)=*100

304

305 print (PAUC Score: ”, auc_score)

306

307 # Plot ROC Curves

308 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Artificial Neural Network’)
309 plt.plot (p-fpr, p-tpr, linestyle=’ ’, color=’black)

310

311 # Title and Labels

312 plt.title (’ROC Curve’)

313 plt.xlabel (’False Positive Rate’)
314 plt.ylabel (’True Positive rate’)
315

316 #Legend

317 plt.legend (loc="best)

318 plt.savefig ('ROC’ ,dpi=300)

319 plt.show ()

320

321 # —— For Model 3 GA —

322 fpr, tpr, threshold = roc_curve(y-test_ga, y_pred_-ga, pos_label=1)
323 random = [0 for i in range(len(y-test_ga))]

324 p-fpr, p-tpr, - = roc_curve(y-test_ga , random, pos_label=1)

325 auc_score = roc_auc.score(y-test_ga, y_pred_ga)x100

326 print ("AUC Score: 7, auc-score)

327

328 # Plot ROC Curves

329 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Artificial Neural Network’)
330 plt.plot(p-fpr, p-tpr, linestyle="——', color="black’)

331

332 # Title and Labels

333 plt.title (’'ROC Curve’)

334 plt.xlabel(’False Positive Rate’)

335 plt.ylabel(’True Positive rate’)

336

337 #Legend

338 plt.legend (loc="best)

339 plt.savefig ('ROC’ ,dpi=300)

340 plt.show()

341

342 # —————— Artificial Neural Network (All Applied) —M———— #
343 # For Model 4

344 model4d = GridSearchCV (model, parameters, cv=cv)
345 model4. fit (X_train_sm_scaled, y_-train_sm_scaled)
346 print (model4 . best_params_)

347 modeld. best_estimator_-.score(X_test, y-_-test)

348

349 # For Model 4 GA

350 modeld_ga = GridSearchCV (model, parameters, cv=cv)
351 modeld_ga.fit (X_train_all, y_train_all)

352 print (modeld_ga.best_params.)

353 modeld_ga.best_estimator_.score(X_test_ga , y-test_ga)
354

355 # Make Predictions for Test Data

356 y_pred = modeld4. predict (X_test)

357 y-pred_ga = modeld_ga.predict (X_test_ga)

358

359 # Evaluate Predictions for Model 4

360 mcc = matthews_corrcoef(y_-test, y_pred)

361 confusion_.mat = confusion_matrix (y-test ,y_pred)
362 print ("MCC is:” ,mcc)

363 print (” Confusion Matrix”)

364 print(confusion_mat)

365 print(classification_report (y-test ,y_pred))

366

367 # Evaluate Predictions for Model 4 GA

368 mcc = matthews_corrcoef(y-test_-ga ,y-pred_-ga)

369 confusion_mat = confusion_-matrix(y-test_ga ,y-pred_ga)
370 print ("MCC is:” ,mcc)

371 print (” Confusion Matrix”)

372 print (confusion_mat)

373 print (classification_report (y-test_ga ,y_-pred_ga))

374

375 # —— For Model 4 ——

376 fpr, tpr, threshold = roc_curve(y-test, y_-pred, pos_label=1)
377 random = [0 for i in range(len(y-test))]

378 p-fpr, p-tpr, - = roc_curve(y-test, random, pos_label=1)

379 auc-score = roc-auc-score(y-test , y_pred)*100

380 print ("AUC Score: ”, auc.score)

381

382 # Plot ROC Curves

383 plt.plot(fpr, tpr, linestyle="——’,color="blue’, label="Artificial Neural Network’)
384 plt.plot(p-fpr, p-tpr, linestyle="——', color="black’)

385

386 # Title and Labels

387 plt.title ('ROC Curve’)

388 plt.xlabel(’False Positive Rate’)
389 plt.ylabel(’True Positive rate’)
390

391 #Legend

392 plt.legend (loc="best ’)

52

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

OO~ U s WN

plt.savefig ('ROC’ ,dpi=300)

plt.show ()

—— For Model 4 GA ——

fpr, tpr, threshold = roc_curve(y-test_ga, y_pred_ga, pos_label=1)
random = [0 for i in range(len(y-test_ga))]

p-fpr, p-tpr, - = roc_curve(y-test_ga , random, pos_label=1)
auc_score = roc-auc.score(y-test_ga, y_pred_ga)x100

print ("AUC Score: 7, auc-score)

Plot ROC Curves
plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Artificial Neural Network’)
plt.plot(p-fpr, p-tpr, linestyle="——', color="black’)

Title and Labels

plt.title (’ROC Curve’)

plt.xlabel (’False Positive Rate’)
plt.ylabel (’True Positive rate’)

#Legend
plt.legend (loc="best ’)
plt.savefig ('ROC’ ,dpi=300)

plt .show ()

—————————— Saving the Pipeline into a File ——M—————— #
pickle .dump(model3_ga, open(’gaann.pkl’, ’wb’))
3. Machine Learning: GA-RF.py

IMPORTANT
This is a cleaned version of the ipynb files that was used to develop the models.
It is only formatted in python SOLELY for CLEANER presentation in the SP paper.

END #

e HFHR I

Importing Libraries

import io

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import pickle

import seaborn as sns

import warnings

from genetic_selection import GeneticSelectionCV
from imblearn.over_sampling import SMOTE

from sklearn.metrics import accuracy-score, precision_score, fl_score, recall_score

from sklearn.metrics import confusion_matrix, roc_auc-score, roc_-curve, matthews_corrcoef

from sklearn.metrics import classification_report

from sklearn.model_selection import GridSearchCV, train_test_split, StratifiedKFold
from sklearn.preprocessing import LabelEncoder, MultiLabelBinarizer, StandardScaler
from sklearn.ensemble import RandomForestClassifier

Upload Data

dataset = pd.read-csv(r’np.csv’)
dataset = dataset.dropna()

print (dataset)

Show Count of Unique Values per Column
dataset [’ Cell Type’].nunique()

Show Unique Values per Column
dataset [> Cell Type’].unique()
print (dataset.dtypes)

Splitting Data into Predictors and Response
predictors = dataset.iloc[:, 0:9]
response = dataset.iloc [:, 9]

Check for Imbalance
dataset_eda = dataset.copy()
dataset_eda [’ classification ’]. value_counts ()

Feature Selection
model = RandomForestClassifier (random_state=2)
cv = StratifiedKFold(n_splits=5, shuffle=True)
GARF = GeneticSelectionCV (
model,
cv=cv ,
verbose=0,
scoring="accuracy”,
max_features=9,
n_population=100,
crossover_proba=0.5,
mutation_proba=0.2,
n_generations=>50,
crossover_-independent_proba=0.5,
mutation_-independent_-proba=0.04,
tournament_size=3,
n_gen_no_change=10,
caching=True,

53

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

n_jobs=-—1)
GARF = GARF. fit (predictors , respon
print (’Features:’

5

predictors

Drop Non—Selected Features
predictors.drop ([’ Interference
print (predictors_ga)

predictors_ga =

Data Splitting
seed = 2

test_size = 0.20
X_train , -test ,

y-train , y_test =

X_train_ga, X_test_ga, y-train_ga,

Check Number of Rows
X_test.shape[0],

X_train.shape[0]

)

se)

.columns [GARF. support_])

Checked’] , axis = 1)

train_test_split (predictors, response,
test_size=test_size ,
random_state=seed)

y-test_ga =

X_train_ga.shape[0],

Feature Scaling
scaler = StandardScaler ()
X_train_std = scaler.fit_transform (X_train)

X _train_scaled =
print (X_train_scaled)

pd.DataFrame(X_train_std ,

Feature Scaling for GA Model
X _train_gastd = scaler.fit_transform (X_train_ga)
pd.DataFrame(X_train_gastd ,
columns=X_train_ga .columns)

X_train_gascaled

print (X _train_gascaled)

Class Balancin

g

sm = SMOTE(random_state=2)

index=X_train .

train_test_split (predictors_ga , response,

test_size=test_size ,
random_state=seed)

X_test_ga .shape [0]

index , columns=X_train.columns)

index=X_train_ga.index ,

X_train_.sm , y_-train_sm = sm.fit_-resample(X_train, y_train)

X_train_sm_scaled , y_train_sm_scaled = sm.fit_resample(X_train_scaled, y-_train)
X _train_all , y_train_all = sm.fit_.resample(X_train_gascaled, y_train_ga)

—————————————— Random Forest (No Feature Scaling)

model = RandomForestClassifier (random_state=2)

warnings . filterwarnings (’ignore)

Hyperparameter

parameters = {
’n_estimator
’max_feature
’max_-depth ’:

S

Tuning

.

s

[3

’max_leaf_nodes

}
For Model 1

s

).

[50, 100, 150,
["sqrt’, ’log2
6, 9],

[3, 6, 9],

cv = StratifiedKFold (n_splits=5, s

modell = GridSearchCV (model,

modell. fit (X_train ,
print (modell . best_params_)

modell. best_estimator_.

For Model 1 GA
modell_ga = GridSearchCV (model, pa

modell_ga. fit (X_train_ga,

y-train)

print (modell_ga.best_params_)

modell_ga.best_estimator_.

Make Predictions
y-pred = modell.predict (X_test)
y-pred_ga = modell_ga.predict(X_test_ga)

for Test Data

Evaluate Predictions for Model 1
mcc = matthews_corrcoef(y_test_ga ,y-pred_ga)
confusion_matrix (y_-test_ga ,y_pred_ga)
print ("MCC is:” ,mcc)
print (” Confusion Matrix”)
print (confusion_mat)
print (classification_report (y-test_ga ,y_-pred_ga))

confusion_mat =

Evaluate Predictions for Model 1
mcc = matthews_corrcoef(y_-test_ga ,y_-pred_ga)
confusion_matrix (y-test_ga ,y_pred_ga)
print ("MCC is:” ,mcc)
print (” Confusion Matrix”)
print (confusion_mat)
print (classification_report (y-test_ga ,y-pred_ga))

confusion_mat =

200],
>, None],

huffle=True)

parameters , cv=cv)

score (X_test, y_test)

rameters , cv=
y-train_ga)

GA

cv)

score (X_test_ga , y-test_ga)

—— For Model 1 ——

fpr, tpr, threshold = roc_-curve(y-test, y-pred, pos-label=1)
random = [0 for i in range(len(y-test))]

p-fpr, p-tpr, _- = roc_curve(y-test, random, pos_label=1)
auc_score = roc-auc_score(y_test, y_pred)=*100

print (”AUC Score:

»
’

auc_score)

o4

154
155 # Plot ROC Curves

156 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label='Random Forest’)
157 plt.plot(p-fpr, p-tpr, linestyle="——’, color="black’)
158

159 # Title and Labels

160 plt.title (’'ROC Curve’)

161 plt.xlabel ('False Positive Rate’)
162 plt.ylabel ("True Positive rate’)
163

164 #Legend

165 plt.legend (loc="best)

166 plt.savefig ('ROC’ ,dpi=300)

167 plt.show ()

168

169 # —— For Model 1 GA ——

170 fpr, tpr, threshold = roc_-curve(y-test_ga , y-pred_ga, pos_label=1)
171 random = [0 for i in range(len(y-test_ga))]

172 p-fpr, p-tpr, _- = roc_curve(y-test_ga , random, pos_label=1)

173 auc_score = roc_auc_score(y_test_ga, y_pred_ga)x100

174 print ("AUC Score: ”, auc_score)

175

176 # Plot ROC Curves

177 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Random Forest)
178 plt.plot (p-fpr, p_-tpr, linestyle="——’, color=’black)

179

180 # Title and Labels

181 plt.title (’ROC Curve’)

182 plt.xlabel ('False Positive Rate’)

183 plt.ylabel (’True Positive rate’)

184

185 #Legend

186 plt.legend (loc=’'best’)

187 plt.savefig (’ROC’ ,dpi=300)

188 plt.show ()

189

190 # —————————————— Random Forest (With Feature Scaling) —————— #
191 #For Model 2

192 model2 = GridSearchCV (model, parameters, cv=cv)
193 model2. fit (X_train_scaled , y_train)

194 print (model2. best_params_)

195 model2.best_estimator_.score(X_test, y_test)

196

197 # For Model 2 GA

198 model2_ga = GridSearchCV (model, parameters, cv=cv)
199 model2_ga.fit (X_train_gascaled, y_-train_ga)

200 print (model2_ga.best_params_)

201 model2_ga.best_estimator_.score(X_test_ga , y-test_ga)
202

203 # Make Predictions for Test Data

204 y-pred = model2.predict (X_test)

205 y-pred-ga = model2_ga.predict(X_-test_ga)

206

207 # Evaluate Predictions for Model 2

208 mcc = matthews_corrcoef(y_test_ga ,y-pred_ga)

209 confusion_mat = confusion_matrix(y_-test_ga ,y_pred_ga)

210 print ("MCC is:” ,mcc)

211 print (” Confusion Matrix”)

212 print(confusion_mat)

213 print (classification_report (y-test_ga ,y-pred_ga))

214

215 # Evaluate Predictions for Model 2 GA

216 mcc = matthews_corrcoef(y_test_ga ,y_pred_ga)

217 confusion_mat = confusion_matrix(y-test_ga ,y_pred_ga)

218 print ("MCC is:” ,mcc)

219 print (” Confusion Matrix”)

220 print(confusion_mat)

221 print (classification_report (y-test_ga ,y_pred_ga))

222

223 # —— For Model 2 ——

224 fpr, tpr, threshold = roc_curve(y_-test, y_pred, pos_label=1)
225 random = [0 for i in range(len(y-test))]

226 p-fpr, p-tpr, _- = roc_curve(y-test, random, pos_label=1)

227 auc_score = roc-auc-score(y_test, y_pred)=100

228

229 print ("AUC Score: ”, auc._score)

230

231 # Plot ROC Curves

232 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Random Forest)
233 plt.plot(p_-fpr, p-tpr, linestyle="——', color="black’)

234

235 # Title and Labels

236 plt.title (’ROC Curve’)

237 plt.xlabel (’False Positive Rate’)
238 plt.ylabel (’True Positive rate’)
239

240 #Legend

241 plt.legend (loc="best)

242 plt.savefig ('ROC’ ,dpi=300)

243 plt.show ()

244

245 # —— For Model 2 GA ——

55

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

fpr, tpr, threshold = roc_curve(y-test_ga, y-pred-ga, pos-label=1)

random = [0 for i in range(len(y-test_ga))]

p-fpr, p-tpr, - = roc_curve(y-test_ga , random, pos_label=1)
auc_score = roc.auc.score(y_-test_ga , y_pred_ga)x100

print (PAUC Score: ”, auc_score)

Plot ROC Curves

plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Random Forest)
plt.plot (p-fpr, p-tpr, linestyle=’

Title and Labels
plt.title (’ROC Curve’)
plt.xlabel ('False Positive
plt.ylabel (’True Positive

#Legend

plt.legend (loc="best ’)
plt.savefig ('ROC’ ,dpi=300)
plt.show ()

#
For Model 3

model3 = GridSearchCV (model,

Random Forest

Rate ”)
rate ')

model3. fit (X_train_sm , y_train_sm)

print (model3. best_params_)

model3. best_estimator_.score (X_test ,

For Model 3 GA

model3_ga = GridSearchCV (model,

model3_ga. fit (X_train_ga ,

model3_ga.best_estimator_.

y-train_ga)
print (model3_ga.best_params_)
score (X_test_ga , y-test_ga)

Make Predictions for Test Data
y-pred = model3.predict (X_test)
y-pred_ga = model3_ga.predict(X_test_ga)

Evaluate Predictions for

mcc = matthews_corrcoef(y-

Model

test , y-_pred)

3

5
s

color=’"black)

(With Smote) ———— #

parameters , cv=cv)

y-test)

parameters , cv=cv)

confusion_.mat = confusion_matrix (y-test ,y_pred)

print ("MCC is:” ,mcc)
print (" Confusion Matrix”)
print (confusion_mat)

print (classification_report (y-test ,y_pred))

Evaluate Predictions for Model 3 GA
mcc = matthews_corrcoef(y_-test_ga ,y-pred_ga)
confusion_mat = confusion_matrix(y-test_ga ,y_-pred_ga)

print ("MCC is:” ,mcc)
print (” Confusion Matrix”)
print (confusion_mat)

print (classification_report (y-test_ga ,y_-pred_ga))

—— For Model 3 ——

fpr, tpr, threshold = roc_curve(y-test, y_pred, pos_label=1)

random = [0 for i in range(len(y-test))]

p-fpr, p-tpr, - = roc_curve(y-test, random, pos_label=1)

auc_score = roc_auc.score(y-test, y_pred)*100

print ("AUC Score: 7, auc-score)

Plot ROC Curves

plt.plot (fpr, tpr, linestyle="——’,color="blue’, label='Random Forest’)

plt.plot(p-fpr, p-tpr, linestyle="——

Title and Labels
plt.title (’ROC Curve’)

i
s

color=’black ")

plt.xlabel (’False Positive Rate’)

plt.ylabel (’True Positive rate’)

#Legend

plt.legend (loc="best ’)

plt.savefig ('ROC’ ,dpi=300)

plt.show ()

—— For Model 3 GA ——

fpr, tpr, threshold = roc_curve(y-test_ga , y_pred_ga, pos_-label=1)
random = [0 for i in range(len(y_-test_ga))]

p-fpr, p-tpr, - = roc_curve(y-test_ga , random, pos_label=1)
auc_score = roc-auc-score(y-test_ga, y_pred_ga)x100

print (AUC Score: 7, auc.score)

Plot ROC Curves

plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Random Forest’)

plt.plot(p-fpr, p-tpr, linestyle="——

Title and Labels
plt.title (’ROC Curve’)
plt.xlabel (’False Positive
plt.ylabel (’True Positive

#Legend

Rate)
rate ’)

)
s

color="black)

56

338 plt.legend (loc="best)

339 plt.savefig ('ROC’ ,dpi=300)

340 plt.show ()

341

342 # ————————— Random Forest (All Applied) ————— #
343 # For Model 4

344 model4d = GridSearchCV (model, parameters, cv=cv)

345 model4. fit (X_train_sm_scaled, y_-train_sm_scaled)

346 print (model4. best_params_)

347 modeld. best_estimator_.score(X_test, y-_test)

348

349 # For Model 4 GA

350 modeld_ga = GridSearchCV (model, parameters, cv=cv)
351 modeld_ga.fit (X_train_all, y_train_all)

352 print (modeld_ga.best_params._)

353 modeld_ga.best_estimator_.score(X_test_ga, y-test_ga)
354

355 # Make Predictions for Test Data

356 y_pred = modeld. predict (X_test)

357 y-pred_ga = modeld_ga.predict(X_test_ga)

358

359 # Evaluate Predictions for Model 4

360 mcc = matthews_corrcoef(y_test, y_pred)

361 confusion_.mat = confusion_matrix (y-test ,y_pred)

362 print ("MCC is:” ,mcc)

363 print (” Confusion Matrix”)

364 print (confusion_mat)

365 print (classification_report (y-test ,y_pred))

366

367 # Evaluate Predictions for Model 4 GA

368 mcc = matthews_corrcoef(y-test_ga ,y-pred_ga)

369 confusion_mat = confusion_matrix(y-test_ga ,y_-pred_ga)

370 print ("MCC is:” ,mcc)

371 print (” Confusion Matrix”)

372 print (confusion_mat)

373 print (classification_report (y-test_ga ,y_pred_ga))

374

375 # —— For Model 4 —

376 fpr, tpr, threshold = roc_curve(y-test, y_pred, pos_label=1)
377 random = [0 for i in range(len(y-test))]

378 p-fpr, p-tpr, - = roc_curve(y-test, random, pos_label=1)

379 auc_score = roc-auc.score(y-test , y_pred)*100

380 print ("AUC Score: 7, auc-score)

381

382 # Plot ROC Curves

383 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label='Random Forest’)
384 plt.plot(p-fpr, p-tpr, linestyle="——', color="black’)

385

386 # Title and Labels

387 plt.title (’'ROC Curve’)

388 plt.xlabel(’False Positive Rate’)
389 plt.ylabel(’True Positive rate’)
390

391 #Legend

392 plt.legend (loc="best)

393 plt.savefig ('ROC’ ,dpi=300)

394 plt.show ()

395

396 # —— For Model 4 GA ——

397 fpr, tpr, threshold = roc_curve(y-test_ga , y_-pred_ga, pos_-label=1)
398 random = [0 for i in range(len(y-test_ga))]

399 p-fpr, p-tpr, - = roc_curve(y-test_ga , random, pos_label=1)

400 auc-score = roc-auc-score(y-test_ga, y_pred_ga)x100

401 print ("AUC Score: ”, auc_score)

402

403 # Plot ROC Curves

404 plt.plot (fpr, tpr, linestyle="——’,color="blue’, label="Random Forest’)
405 plt.plot(p-fpr, p-tpr, linestyle="——", color="black’)

406

407 # Title and Labels

408 plt.title (’'ROC Curve’)

409 plt.xlabel (’False Positive Rate’)
410 plt.ylabel (’True Positive rate’)
411

412 #Legend

413 plt.legend (loc="best ’)

414 plt.savefig (’ROC’,dpi=300)

415 plt.show ()

416
417 # —————— Saving the Pipeline into a File ——m————— #
418 pickle .dump(model3_ga, open(’garf.pkl’, ’wb’))
4. HTML: index.html

1 {% load static %}

2

3 <!doctype html>

4 <html lang="en”>

5 <head>

6 <meta charset="utf—8">

57

<meta http—equiv="X—UA—Compatible” content="IE=edge”>
<meta name="viewport” content="width=device—width, initial —scale=1, shrink—to—fit=no”>
<title >Toxicheck — Nanotoxicity Classification System</title >

<link rel="icon

href="https://cdn—icons—png. flaticon .com/512/4689/4689000.png”
.net/npm/bootstrap@5.0.2/ dist /css/bootstrap.min.css”
integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9INao0YzlztcQTwFspd3yD65VohhpuuCOmLASjC”

<link href="https://cdn.jsdelivr

»

type="images/x—icon”

crossorigin="anonymous” rel="stylesheet”>
<link rel="stylesheet”

href="https://cdnjs.cloudflare.com/ajax/libs/font—awesome/4.7.0/css/font—awesome.min.css”>

<link rel="stylesheet” href="{% static ’main.css’ %}’>

<script src="https://cdn.jsdelivr.

crossor

<script src="https://cdn.jsdelivr.

crossor

</head>

<body>
<nav class="nav

igin="anonymous”></script>

igin="anonymous”></script>

bar navbar—dark” style="background: #2365C2;” >

<div class="container —fluid”>

<a class="n

<img src="{% static ’logo.png’ %}’ alt="" width=730" height="30"
class="d—inline —block align—text—top”

Toxicheck
</div>
</nav>

avbar—brand” href="{% url ’home’%}”>

Nanotoxicity Classification System

<div class="container”>
<div class="row”>
<div class="col—md—5">
<img src="static/logo.png” style="width: 370px; height:

margin—1le
</div>

ft: auto; margin—right: auto; margin—top: 60px;”

<div class="col-md-7">
<div class="container—fluid” style="margin—top: 120px;

<h5 sty
<hl sty

Toxicheck </h1>

<p>Due to the innate volatility of nanomaterials (NM),
important step in engineering NMs to ensure that they are

and the environment.</p>

<a href="{% url ’predict’ %}’ class="btn button” style="background:

color:
</div>
</div>
</div>
</div>
</body>

white; margin—top: 10px;”>Test Now

<footer class="text—center text—lg—start text—dark”>
<!—— Section: Links —>

<section class="d—flex justify —content—between p—3 text—white”

style="background—color: #2365C2">

<!—— Left >

<div class="me—5">

If you have questions

</div>

<!—— Right —>

<div>

<a href="https://tinyurl.com/5pc0d35”

<i class="fa fa—google” aria—hidden="true”’></i>

</div>
</section>
<!—— Section: Contacts —>
<section class="">

<div class="c

ontainer text—center text—md-start mt—4”>

<div class="row md—3">
<div class="col-md—5 col—lg—5 col—xl—5 mx—auto mb—4">

<h6 class="text—uppercase fw—bold”>System Project</h6>

<p>

Toxicheck simulates the effect of a nanomaterial

</p>
</div>

<div class="col-md—5 col—lg—5 col—xl—5 mx—auto mb-md—0 mb—4">
<h6 class="text—uppercase fw—bold”>Contact Information </h6>

<p><i

jebarcellano@up .edu.ph — John Derick Barcellano </p>

class="fa fa—envelope”’></i>

<p style="margin—top:—15px;” >

<i
</div>
</div>
</div>
</section>
</footer >
</html>

class="fa fa—phone”’></i> 463 977 294 5883</p>

58

net /npm/@popperjs/core@2.9.2/ dist /umd/popper.min. j
integrity="sha384—-IQsoLXI15PILFhosVNubq5LC7Qb9DXgDA9i+tQ8Zj3iwWAwPtgFTxbJ8NT4GN1R8p”

net /npm/bootstrap@5.0.2/ dist/js/bootstrap.min. js”
integrity="sha384—cVKIPhGWiC2Al4u+LWgxfKTRIcfu0OJTxR+EQDz/bgldoEyl4HOzUFO0QKbrJOEcQF”

style="margin—right:

alt="Toxicheck Icon”>

margin—bottom :
le="color: #2365C2; ”>Machine Learning</h5>
le="margin—bottom: 15px;”>Nanotoxicity Classification System

to organisms

and/or feedback, reach us through:

class="text—white me—4">

described by
physicochemical properties to the cell viability of a cell —based assay.

© WU B WN -

5. HTML: homepage.html

{% load static %}

<IDOCTYPE html>
<html lang="en”>
<head>
<meta charset="utf—8">
<meta http—equiv="X-UA-Compatible” content="IE=edge”>
<meta name="viewport” content="width=device—width, initial —scale=1, shrink—to—fit=no”>
<title >Toxicheck Nanotoxicity Classification System</title >
<link rel="icon” type="images/x—icon”
href="https://cdn—icons—png. flaticon .com/512/4689/4689000.png” />
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/ dist/css/bootstrap.min.css”
integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9Nao0YzlztcQTwFspd3yD65VohhpuuCOmLASjC”
crossorigin="anonymous” rel="stylesheet”>
<link rel="stylesheet”
href="https://cdnjs.cloudflare.com/ajax/libs /font—awesome/4.7.0/ css/font—awesome.min.css”>
<link rel="stylesheet” href="{% static ’'main.css’ %}’>
<script src="https://cdn.jsdelivr.net/npm/@Qpopperjs/core@2.9.2/dist/umd/popper.min. js
integrity="sha384 1QsoLXI15PILFhosVNubg5LC7QbDXgDA9i+tQ8Zj3iwWAwPtgFTxbJSNTAGN1RSp”
crossorigin="anonymous”></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/js/bootstrap.min. js”
integrity="sha384—cVKIPhGWiC2Al4u+LWgxfKTRIcfuOJTxR+EQDz/bgldoEyl4HOzUFOQKbrJOEcQF”
crossorigin="anonymous”></script >

»

</head>

<body>
<nav class="navbar navbar—dark” style="background: #2365C2;” >
<div class="container—fluid”>

<img src="{% static ’logo.png’ %}” alt="" width="30" height="30”
class="d—inline —block align—text—top” style="margin—right: 10px;”>
Toxicheck — Nanotoxicity Classification System
</div>
</nav>

<div class="container—fluid”>
<div class="row”>
<!—— Left Panel —>
<div class="card col-md—6">
<h2 style="margin—bottom: 12px”’>Input Form</h2>
<form action="predict” method="post” id = ”form”>
{% csrf_token %}

<div class="row pb—3">
<div class="col-md—4">
<label title="NP Type specifies whether the nanomaterial is Organic (0)
or Inorganic (1).” >

NP Type :</label>
<input type="number” class="form—control” name="NP Type”
placeholder="Enter 0 or 17 value="{{nptype}}” min = ”0” max="1" required>
</div>

<div class="col—md—4">
<label title="Diameter specifies the size of the nanomaterial in nanometers.” >

Diameter (nm) :</label>
<input type="number” class="form—control” name="Diameter”
placeholder="Enter 1 to 957" value="{{diameter}}” min = ”1” step="any” required>
</div>

<div class="col-md—4">
<label title="Concentration specifies the amount of the nanomaterial
being applied to the cell —based assay. It is measured in micrometers.” >

Concentration (m) :</label >
<input type="number” class="form—control” name="Concentration”
placeholder="Enter 0 to 15000” value="{{concentration}}” min = 707
step="any” required>
</div>
</div>

<div class="row pb—3">
<div class="col—md—4">
<label title="Colloidal stability specifies whether the nanomaterial
is colloidally stable (1) or not (0). Being stable allows increased
diffusive capability in the brain microenvironment.” >

Colloidal Stability :</label>
<input type="number” class="form—control” name="Colloidal Stability Checked”
placeholder="Enter 0 or 1” value="{{colloidal}}” min = ”0” max="1" required>
</div>

<div class="col-md—4">
<label title="Surface charge specifies whether the nanomaterial has a
negative (0) or a positive (1) charge. This property determines cellular
uptake, biodistribution , and interaction with other biological environments.” >

Surface Charge :</label>
<input type="number” class="form—control” name="Positive Control”
placeholder="Enter 0 or 17 value="{{positive}}” min = ”0” max="1" required>
</div>

<div class="col—-md—4">

59

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

<label title="Cell culture specifies whether the cell used in the assay
is a primary cell (0) or a cell line (1). Primary cells are isolated from
parental tissues , while cell lines are cultures from primary cells.”>
Cell Culture :</label>
<input type="number” class="form—control” name="Cell Culture”
placeholder="Enter 0 or 17 value="{{culture}}” min = 70” max="1" required>
</div>
</div>
<div class="row pb—3">
<div class="col-—md—4">
<label title="Cell type specifies whether the cell used in the assay
is a human cell (0) or an animal cell (1).”>

Cell Type :</label >
<input type="number” class="form—control” name="Cell Type”
placeholder="Enter 0 or 1”value="{{celltype}}” min = ”0” max=”"1" required>
</div>
<div class="col—-md—4">
<label title="Cell age specifies whether the cell used in the assay is
adult (0) or still embryonic (1).” >
Cell Age :</label>

<input type="number” class="form—control” name="Cell Age”

placeholder="Enter 0 or 17 value="{{age}}” min = 70” max="1"
</div>
<div class="col-md—4">

<label title="Exposure time specifies
is exposed to the cell —based assay in hours.”>
Exposure Time (Hrs) :</label >
<input type="number” class="form—control”
placeholder="Enter 1 to 336”7
</div>
</div>

value="{{exposuretime}}”

<span title="This field prints non—toxic or toxic
prediction on the assay’s cell viability after
Prediction {{ans}}

being exposed

<button type="submit” class="btn button” style="background:

min =

required >

the amount of time the nanoparticle

name="Exposure Time”

”1” required >

depending on the model’s
to the nanomaterial.” >

#2365C2;

color: white;”>Submit</button>
<a href="{% url ’predict’ %}’ class="btn button” style="background: #2365C2;
color: white; margin—left: 8px;”>Reset
</form>
</div>
<!—— Right Panel —>
<div class="card col—md—6">
<h2 style="margin—bottom: 12px”>Model Details </h2>
 This section shows the performance metrics
of GA-RF with SMOTE.
<div id="output”>
<div class="row pb—2">
<div class="col—-md—4">
Accuracy: {{accuracy}}%
</div>
<div class="col-md—4">
Precision: {{precision}}%
</div>
<div class="col-—md—4">
Recall: {{recall}}%
</div>
</div>
<div class="row pb—2">
<div class="col—md—4">
F1 Score: {{f1}}%
</div>
<div class="col—-md—8">
MCC: {{mcc}}
</div>
</div>

</div>
</div>
</div>
</div>
</body>
<footer class="text—center text—lg—start text—dark”>
<!—— Section: Links —>
<section class="d—flex justify —content—between p—3 text—white”
style="background—color: #2365C2">
<!— Left >
<div class="me—5">
If you have questions and/or feedback, reach us through:

60

182 </div>

183

184 <!—— Right —>

185 <div>

186
187 <i class="fa fa—google” aria—hidden="true’></i>

188 </div>

189 </section>

190

191 <!—— Section: Contacts —>

192 <section class="">

193 <div class="container text—center text—md-start mt—4”>

194 <div class="row md—3">

195 <div class="col-md—5 col—lg—5 col—x1—5 mx—auto mb—4">

196 <h6 class="text—uppercase fw—bold”>System Project </h6>

197 <p>

198 Toxicheck simulates the effect of a nanomaterial as described by its
199 physicochemical properties to the cell viability of a cell —based assay.
200 </p>

201 </div>

202

203 <div class="col-md—5 col—lg—5 col—xl—-5 mx-auto mb-md—0 mb—4">
204 <h6 class="text—uppercase fw—bold”>Contact Information </h6>
205 <p><i class="fa fa—envelope’></i>

206 jebarcellano@up .edu.ph — John Derick Barcellano </p>

207 <p style="margin—top:—15px;” >

208 <i class="fa fa—phone”’></i> 463 977 294 5883</p>

209 </div>

210 </div>

211 </div>

212 </section>

213 </footer>

214 </html>

6. CSS: main.css

1 body({

2 color: black;

3 background—color: white;
1}

5

6 footer{

7 background—color: #ECEFF1;

8)

9

10 .card{

11 background: #fff;

12 width: 45%;

13 border—radius: 20px;

14 padding: 25px;

15 margin: 25px;

16 text—align: left;

17 box—shadow: Opx Opx 10px rgba(0,0,0,0.3);
18 transition: all 300ms ease;
19 }
20
21 .card: hover{
22 box—shadow: none;
23}
24
25 .fa{
26 margin—right: 5px;
27}

28

29 a{

30 text—decoration: none;

31

32

33 label{

34 margin—bottom: 8px;

35}

7. Django: apps.py

1 from django.apps import AppConfig
2

3 class NcsConfig(AppConfig):

4 default_auto_-field = ’django.db.models.BigAutoField’
5 name = ’toxicheck’

8. Django: urls.py

1 from django.contrib import admin
2 from django.urls import path, include
3 from toxicheck import views

4

61

Nelio i el

©ONTD U WN -

urlp

atterns = |

path (’admin/’, admin.site.urls),

path(’’, views.index, name = ’home’),

path (’predict ’, views.predict, name = ’predict’),

9. Django: views.py

from

#A

django.shortcuts import render

Importing Libraries

import math

import joblib

import pickle

import pandas as pd

import matplotlib

import matplotlib.pyplot as plt
import seaborn as sns

from
from
from
from
from
from
from
from
from

genetic-selection import GeneticSelectionCV

imblearn.over_sampling import SMOTE

scipy import stats

sklearn . metrics import accuracy.-score, precision_score, fl_score, recall_score
sklearn . metrics import confusion_matrix, roc_auc.score, roc._curve

sklearn . metrics import matthews_corrcoef

sklearn. model_selection import GridSearchCV, train_test_split , StratifiedKFold
sklearn . preprocessing import LabelEncoder, MultiLabelBinarizer , StandardScaler
sklearn .ensemble import RandomForestClassifier

matplotlib.use(’Agg’)

Importing the Model

N
model = joblib.load (’garf—1.pkl’)

def

predict (request):
Calculating Metrics
dataset = pd.read_csv (’np.csv’)
Splitting Data into Predictors and Response
predictors = dataset.iloc[:, 0:9]

response = dataset.iloc [:, 9]

Train and Test Split

seed = 2
test_size = 0.20
X_train , _test , y_-train, y_-test = train_test_split(predictors, response,

test_size=test_size ,
random_state=seed)

Make Predictions
y-pred = model.predict (X_test)

Calculating Metrics

accuracy = ("%.2f"% (accuracy.-score(y-test ,y_pred)=*100))

precision = ("%.2{"% (precision_score (y-test ,y_-pred,average="weighted ’)*100))
f1 = ("%.21"% (fl_score(y-test ,y_pred,average='weighted ’)*x100))

recall = (?%.2f"% (recall_score(y-test ,y_pred,average="weighted’)*100))

mce = ("%.4f"% matthews_corrcoef(y_-test, y_pred))

fpr, tpr, thresholds = roc_curve (y-test ,y_pred)

auc = roc-auc-score(y_-test, y_pred)

Plot the ROC curve

fig , ax = plt.subplots ()

ax.plot (fpr, tpr, label="ROC Curve (area = %.2f)’ % auc)
ax.plot ([0, 1], [0, 1], linestyle="——", lw=2, color="r’
ax.set_title (’ROC Curve’)

ax.set_xlabel (’False Positive Rate’)

ax.set_ylabel (’True Positive Rate’)

ax.grid (True)

ax.legend ()

plt.savefig(’static/roc_curve.png’)

plt.close (fig)

label="Random guess ’)

Generate confusion matrix

cm = confusion_matrix(y_-test, y_pred)
fig , ax = plt.subplots ()
sns.heatmap (cm, annot=True, fmt=’g’, cmap=’Blues’, ax=ax)

ax.set_xlabel (’Predicted ”)

ax.set_ylabel (7Actual)
plt.savefig(’static/confusion_matrix.png’)
plt.close (fig)

context = {
’accuracy ’:accuracy ,
’precision ’': precision ,
‘recall ": recall ,
Tf1 0 f1

’auc ’:auc,

’mcc’: mcc,

}

if request.method=="POST’:

62

83 temp={}

84 temp ['NP Type’]=float (request .POST. get ('NP Type’))

85 temp [’ Diameter’]=float (request .POST. get (’Diameter ’))

86 temp [’ Concentration’]=float (request .POST. get (’Concentration ’))

87 temp [’ Cell Culture’]=float (request .POST.get (> Cell Culture’))

88 temp [’ Cell Type’]=float (request .POST.get (’Cell Type’))

89 temp [’ Cell Age’]=float (request.POST.get (’Cell Age’))

90 temp [’ Exposure Time’]=float (request .POST. get (’Exposure Time’))

91 temp [’ Colloidal Stability Checked’]=float (request .POST.get(’ Colloidal Stability Checked’))
92 temp [’ Positive Control’]=float (request .POST.get(’Positive Control’))
93 testdata=pd.DataFrame({’x’:temp}).transpose()

94 sorteddata=testdata [[’NP Type’,’Diameter’,’ Concentration’,’ Cell Culture’,
95 ’Cell Type’,’ Cell Age’,’ Exposure Time’,

96 ’Colloidal Stability Checked’,’ Positive Control ']]
97

98 score = model. predict (sorteddata)[0]

99 if score == O0:

100 ans = ”"Non—Toxic”

101 else:

102 ans = ”Toxic”

103

104 # ——— Calculating Metrics

105 dataset = pd.read_csv(’np.csv’)

106

107 # Splitting Data into Predictors and Response

108 predictors = dataset.iloc[:, 0:9]

109 response = dataset.iloc [:, 9]

110

111 # Train and Test Split

112 seed = 2

113 test_size = 0.20

114 X_train, X_test, y-train, y_-test = train_test_split(predictors, response,
115 test_size=test_size ,
116 random_state=seed)
117

118 # Make Predictions

119 y-pred = model. predict (X_test)

120

121 # Calculating Metrics

122 accuracy = ("%.2f’% (accuracy.score(y-test ,y_pred)=*100))

123 precision = ("%.2f"% (precision_score (y-test ,y_pred,average='weighted’)*x100))
124 f1 = ("%.2f"% (fl_score(y-test ,y_pred,average='weighted’)*100))

125 recall = ("%.2f"% (recall_score(y-test ,y_pred,average="'weighted ’)*x100))
126 mcec = ("%.4f"% matthews_corrcoef(y_-test, y_pred))

127 fpr, tpr, thresholds = roc_curve(y-test ,y_pred)

128 auc = roc_auc.score(y-test , y_pred)

129

130 # Plot the ROC curve

131 fig , ax = plt.subplots ()

132 ax.plot (fpr, tpr, label="ROC Curve (area = %.2f)’ % auc)

133 ax.plot ([0, 1], [0, 1], linestyle="——’', lw=2, color='r’, label='Random guess’)
134 ax.set_title (’ROC Curve’)

135 ax.set_xlabel (’False Positive Rate’)

136 ax.set_ylabel (’True Positive Rate’)

137 ax.grid (True)

138 ax.legend ()

139 plt.savefig(’static/roc_curve.png’)

140 plt.close (fig)

141

142 # Generate confusion matrix

143 cm = confusion_matrix (y-test , y_-pred)

144 fig , ax = plt.subplots ()

145 sns.heatmap (cm, annot=True, fmt=’g’, cmap=’'Blues’, ax=ax)

146 ax.set_xlabel (’Predicted ”)

147 ax.set_ylabel (7Actual’)

148 plt.savefig(’static/confusion_matrix.png’)

149 plt.close (fig)

150

151 context = {

152 ’ans ’:ans,

153 ’accuracy ’:accuracy ,

154 ’precision ’': precision ,

155 ’recall ":recall ,

156 Tf1 0 f1,

157 auc ’:auc,

158 ’mcc’: mcc,

159 ‘nptype ’: temp[’NP Type’],

160 diameter ’: temp|[’Diameter '],

161 ’concentration ’: temp[’ Concentration '],

162 culture ’: temp[’ Cell Culture’],

163 ‘celltype ’: temp[’ Cell Type’],

164 age ’: temp[’ Cell Age’],

165 ’exposuretime ': temp |’ Exposure Time’],

166 colloidal ’: temp|[’ Colloidal Stability Checked’],

167 ’positive ’: temp[’ Positive Control’],

168 1

169 return render (request, ’toxicheck/homepage.html’, context)

170 return render (request, ’toxicheck/homepage.html’, context)

171

172 def index(request):

173 return render (request, ’toxicheck/index.html’,)

63

XI. Acknowledgment

Words cannot express my gratitude to Lady Edronalee, Cornelius, Ivan, and Heidi.
They were the people who helped me immensely during the development of this
project and gave me the hope that I needed to finish it. Thank you for teaching and
guiding me throughout this process. I sincerely cannot thank you enough.

I extend my sincerest appreciation to my thesis adviser, Ms. Perlita Gasmen, for
her guidance, encouragement, and patience whenever I make mistakes. Thank you
for supporting me and pushing me to do my best.

To Sir John Bagnol and his advisee, Kryzze Lee, who provided the inspiration
and resources for my topic. Thank you for helping me understand the key concepts
of this study and giving me your support as we collaborate on our projects.

To my family and my friends on campus, who constantly reminded me that I
could do this. I would like to express my gratitude to all of you for supporting me in
different ways and for pushing me to never give up when I was in my lowest moments.

To my other friends and my best friend, Dizon, you were also a big part of my
inspiration to finish this project. You might not be aware of this, but I valued every
minute that you gave me when I wanted to unwind.

And to God, for whom I am deeply thankful, for blessing me with all these people
who are there to support me. Even though I am not the most religious person, He
still did not abandon me throughout this journey.

Finally, I would like to acknowledge all individuals who have played a part, no
matter how big or small, in inspiring me during my college life. This endeavor would
not have been possible without all of your contributions and support. And for that,

I am truly grateful to all of you.

64

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Nanomaterials
	Testing Approaches
	Machine Learning

	Theoretical Framework
	Nanomaterial Toxicity
	In-Silico Toxicological Testing
	Quantitative Structure-Activity Relationship

	Synthetic Minority Oversampling Technique (SMOTE)
	Feature Scaling
	Hyperparameter Tuning
	Machine Learning
	Feature Selection
	Classifiers

	Performance Metrics
	Accuracy
	Precision
	Recall
	F1 Score
	Receiver Operating Characteristic (ROC)
	Area Under the Curve (AUC)
	Matthew's Correlation Coefficient (MCC)

	Design and Implementation
	Dataset
	General Workflow
	Data Preprocessing
	Feature Selection using Genetic Algorithm
	Model Implementation
	Model Evaluation and Application

	Use-Case Diagram
	Context-Free Diagram
	System Architecture
	Technical Architecture

	Results
	Data Preprocessing
	Feature Selection using Genetic Algorithm
	Data Splitting and Class Balancing using SMOTE
	Feature Scaling
	Hyperparameter Tuning using Grid Search
	Model Evaluation
	Model Performance with SMOTE and Genetic Algorithm
	Model Performance with Feature Scaling
	Model Performance with All Applied

	Web-Based Application
	Landing Page
	Input Form Page
	Results View

	Discussions
	Conclusions
	Recommendations
	Bibliography
	Appendix
	Source Code

	Acknowledgment

