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Abstract

Time Series Analysis is a valuable tool in making informed decisions. The Philip-

pines would greatly benefit in using this for crop production, especially rice and

corn, since the country is a large producer and consumer said products. The study

aims to develop a system that predicts rice and corn production using datasets

from Davao del Sur using SARIMA, Bayesian SARIMA, Holt-Winters, and LSTM.

The obtained models provide, at the lowest, an 8.42% MAPE for rice and 19.87%

MAPE for corn. In addition, the system developed allows the user to develop

their own models.

Keywords: Time series analysis, SARIMA, Bayesian SARIMA, Holt-Winters, LSTM
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I. Introduction

A. Background of the Study

The Philippines is a heavy consumer of rice and corn. The Department of Sci-

ence and Technology – Food and Nutrition Research Institute (DOST-FNRI) are

responsible for the examination of good consumption of the people. Based on the

Expanded National Nutrition Survey by the DOST-FNRI, the total meals an av-

erage family consumes in a day is composed of 39% of cereal and cereal products

[3]. Thus, we can safely conclude that rice and corn are both a major part of the

daily nourishment required by the Filipino.

On the other hand, as much as the Philippines consumes rice and corn, it is

also a significant producer of said products around the world. According to the

Food and Agricultural Organization of the United Nations, the Philippines is the

8th top producer of rice since 2016. In addition, the Philippines is among the top

20 countries which produced the highest amount of corn in 2020 [4].

There is no doubt that the Philippines is both a massive producer and consumer

of rice and corn. Yet despite this, the Philippines is still a heavy importer of rice,

amounting to up to 2.01 million tonnes of imports from overseas in 2020 alone [5].

This number does not even consider the effects of unforeseen events such as natural

disasters and international conflicts. According to the United States Department

of Agriculture, this import is expected to further rise to 3.4 million tonnes after

numerous factors such as rising fertilizer costs, the war on Ukraine, as well as the

recent typhoon Karding [6].

Because of the importance of rice and corn in Philippine nutrition, it is vital

that extensive research should be conducted to properly manage its supplies. One

such way is predicting the possible production rate of the products. There have

been existing studies with this purpose. A few examples would be a study on

rice prediction by G. Ramakrishna and R. V. Kumari in 2018 [7], and another

study which predicts a different crop by S. Dharmaraja et al. in 2020 [8]. Both
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studies have been successful in developing models for their respective subjects.

However, in the local context, there have been little to no research regarding

the topic despite its relevance. While there have been forecasting models that

have been created in other countries, the results may not always be applicable to

the Philippines. Thus, it is essential to create a model based on datasets in the

Philippines. One of the candidate locations for a preliminary analysis of the rice

and corn production in the Philippines is Davao del Sur. According to OpenStat

by the Philippine Statistics Authority (PSA), Davao del Sur accounts for about

35% of the production of rice in the Davao Region. This makes it an optimal

sample that can represent the region in question.

There are many existing methods to create the described model. Among them

are the Autoregressive Integrated Moving Average (ARIMA) and Autoregressive

Moving Average (ARMA) models, which are the most commonly used methodol-

ogy in dealing with univariate time series analysis. In addition, numerous other

approaches such as Exponential Smoothing (ES) and Long Short-Term Memory

(LSTM) are being more prevalent with more recent studies. Some of these studies

result in these methods outperfoming the traditional time series analysis models

such as ARIMA. Examples of these are the rice cultivation study by K. K. Paidi-

pati & Arjun Banik in 2019 [9] and the commodity price forecasting study by S.

Siami-Namini et al. 2018 [10]. However, these are not conclusive for all subjects.

Thus, using multiple methods are necessary for the special problem. These meth-

ods have existing foreign studies where they were implemented to make predictions

for production rates of other products to much success. Similarly, these methods

are the most applicable for the analysis of rice and corn production rates in the

Philippines.

B. Statement of the Problem

Despite being a significant producer of rice and corn, the Philippines currently has

no accessible tools to forecast the production of both crops in the Philippines [4].
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Some studies have been conducted in relation to the crops in other countries, but

different factors may make these tools inapplicable in the country. By developing

a model using local datasets, a forecasting system can be designed that thoroughly

takes into account the context in the Philippines.

C. Objectives of the Study

The study aims to develop a tool that can predict upcoming rice and corn pro-

duction. The tool has the following functionalities:

1. The tool receives the dataset and saves it into the system.

2. It develops different models from methodologies such as SARIMA, Bayesian

SARIMA, Holt-Winters, and LSTM methods.

3. Time series graphs are shown which includes the plots of the dataset, the

predicted model, and the resulting forecast for future years. All models used

display a graph to make it easier to compare.

4. The characteristics of all models are also be displayed including accuracy

metrics such as the Mean Absolute Deviation (MAD), Mean Squared Error

(MSE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared

Error (RMSE).

On the other hand, the user is able to do the following:

1. The user is able to view all the forecasts of all models: SARIMA, Bayesian

SARIMA, Holt-Winters, and LSTM.

2. The user is able to choose the end date of the predictions.

3. The user is able to add, edit, or remove records to the time series.

4. The user is able to select their own parameters for the different models. For

example, they can choose the parameters of SARIMA(p, d, q)(P,D,Q)m to

the model they create.
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5. The user is able to save and load their models into the system.

D. Significance of the Project

• Producers. The result of this study is helpful to the producers of rice and

corn in Davao del Sur since it provides an estimate to their possible yield.

Thus, preparation for harvest season or planting season can be easily re-

sponded to.

• Merchants. Having a projection of the rise and fall of production rate can

allow merchants to predict when the supply and possibly prices will fluctuate.

This can allow them to have the opportunity to preemptively import or

export more products based on the forecasted yield based on the model.

• The legislature. The study aims to provide a tool for projecting the produc-

tion rate of corn and rice in Davao del Sur. This tool is helpful as a point

of reference should lawmakers decide to implement new laws regarding pro-

duction such as import and export.

• Future researchers. The results of the study can be grounds for further study.

The study can be expanded to include the rice and corn production from

other regions of the Philippines or the entire country itself. In addition, it

can also be the foundation for future studies that involve other crops.

E. Scope and Limitations

1. The models is based on the data gathered from Davao del Sur only.

2. The dataset for this was obtained from the OpenSTAT website provided by

the Philippine Statistics Authority (PSA).

3. The models that are used by the study are only SARIMA, Bayesian SARIMA,

Holt-Winters, and LSTM.
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4. The models were developed using the programming languages Python and

R. Existing Python packages for model development and visualization may

be used to aid in development. In addition, some R libraries that may be

helpful to the study can be used to make models. Thus, implementing it

into the system also proves useful.

F. Assumptions

1. The dataset files are in csv format.

2. There are no missing values in the datasets.

3. The web application is deployed to the internet.

4. The users must have basic knowledge of computers to see the forecast.

5



II. Review of Related Literature

There have been some related research conducted in different countries around

the world surrounding the forecasting of production. Varying methods are used,

including ARIMA, Bayesian SARIMA, LSTM, and Exponential Smoothing, which

are all related to the special problem. However these studies are not without

limitations and constraints that differ with the current subject.

A. Related studies involving ARIMA

1. Empirical analysis for crop yield forecasting in India

A similar study by S. Dharmaraja et al. in 2020 [8] observed different methods

of forecasting crop yield in India. For the purpose of the study, they used bajra

(pearl millet) yield data in the Alwar district of Rajasthan from 1997 to 2016. The

methods they used time series analysis models such as ARIMA and ARIMAX, and

logistic regression such as simple and multiple regression. The study concludes

that generally, time series analysis models are significantly better. In particular,

the best performing model is the ARIMAX model.

This study aims to explore the crop yield not only using time series analysis

models using ARIMA and ARIMAX, but also other models such as linear regres-

sion model using both simple regression and multiple regression. Since the topic

also forecasts crop yield albeit a different plant, a lot of the methods used in this

study would be applicable for the special problem. The study was successful in

building a model that can make a projection for future crop yield with substantial

confidence. This also opens the possibility of exploring further various other mod-

els that can be utilized and developed in forecasting such as the linear regression

models. Should future researchers want to expand the scope of the special prob-

lem, then the methods introduced in this study can be the basis for alternative

methods that they may use.
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B. Related studies involving SARIMA

1. ARIMA model for forecasting of rice production in India by using

SAS

One such study is by G. Ramakrishna, and R. V. Kumari in 2018 [7] aimed to

develop a model based on ARIMA that can predict the amount of rice that India

is able to produce in a yearly basis. This was done to give an estimate for their

production rates in 2020. The study used a yearly rice production data between

1949 to 2016. It concluded that the best-fitting model is ARIMA(0,1,1), having

the minimum AIC and BIC. The ACF and PACF of the residuals using the model

had no pattern, thus provides a valid model for projection.

One key difference of the study from the special problem is its use of ARIMA

instead of SARIMA. The former does not consider seasonality in its data. The

dataset provided in the study only accounts for yearly rice production between

1949 and 2016. For this special problem, the dataset accounts for 1987 to 2022,

but gathers data in a quarterly basis. Thus, there may be seasonal factors such as

planting and harvest season and weather that are present in the special problem

that are not used in the study. However, the study by G. Ramakrishna et al. used

the appropriate model, since the nature of the dataset from their study does not

use quarterly data.

Despite these differences, the study may still be beneficial to the special prob-

lem. This is because of their similarities in other aspects. Since both studies deal

with time series analysis of rice involving a univariate dataset, practices and other

methods from this study apart from the models can be used in developing the

special problem, such as data preprocessing, analysis, among other things. This

can provide a more grounded foundation for the structure of the special problem

to have.
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2. Forecasting on the crude palm oil production in Malaysia using

SARIMA Model

Another study was made by S. A. M. Tayib et al. in 2021 [11] which tries to

forecast the production of crude palm oil in Malaysia using the SARIMA model.

The researchers obtained 5 years of monthly data of starting January 2014 up to

September 2019 for a total of 69 entries. The final model that is most applicable

is SARIMA(1, 0, 0)(0, 1, 1)12. The actual values of the dataset are within 95% of

the upper and lower confidence interval of the obtained model. Thus, the study

concludes that the model is significant.

The study is an optimal basis for building the framework of the special problem

because of its similarities. This study is arguably the closest study available that

the special problem can follow. This is because the subject matter of the two

are nearly identical. Both studies aim to forecast production yields of products

that come from natural resources, albeit palm oil being a manufactured product

and this process may influence the production rate. Both studies also utilize

the SARIMA model instead of the ARIMA model. This is because the study

uses monthly data that may be affected by seasonal changes such as reap and sow

seasons as well as different weathers. Thus, the SARIMA model is more applicable

for this topic, similar to the special problem.

C. Related studies involving ARMA

1. A guide to solar power forecasting using ARMA models

In 2019, B. Singh and D. Pozo [12] conducted involving the forecasting of solar

power. The model they chose to use is the ARMA model. The study is not

experimental, and the goal of the study is not to create the model itself. The

study was instead made simply as a framework for developing a forecasting model

using ARMA for future studies to reference to. The example that they have made

can predict future solar power yield in an hourly manner.
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This study provides an in-depth explanation to developing an ARMA model,

which is one of the models to be used. Its step-by-step nature, especially in the

methodology, will be very beneficial to the data analysis of the study once the re-

sults are already obtained. It provides a comprehensive view of the ARMA model,

including the model itself, preprocessing of the data, validation of the stationar-

ity of the time-series, parameter selection, and up to the prediction. While solar

power and crop yield are two different types of products, the application is still

applicable to since both deal with time series with cyclic datasets.

D. Related studies involving Holt-Winters

1. Forecasting of onion prices in Bangalore market: an application of

time series models

Moving on to Exponential Smoothing methods, a study by Areef et al. in 2020

aimed to predict the future prices of onions in Bangalore. The study employs mul-

tiple different methods for doing so. These methods include ANN and SARIMA,

as well as Exponential Smoothing methods such as Single ES, Double ES, and

Holt-Winters ES. The dataset used was obtained from the NHRDF (National Hor-

ticulture Research and Development Foundation) in India which contains monthly

prices from January 2003 to June 2018. The training set included the range Jan

2003 - Dec 2017, while the test set included from Jan 2018 - June 2018.

The top-performing models were chosen for each method first before comparing

with the other models. For SARIMA, SARIMA(1, 1, 0)(1, 1, 1) was found to be

the most effective having the highest R-square and lowest RMSE, MAPE, and

MAE. For ANN, ANN2 was found to be the most effective using the same metrics.

For Exponential Smoothing, unfortunately, the Holt-Winters model was found

to be the worst-performing, with the Single Exponential Smoothing as the most

successful model. When comparing the three top performers among each other,

ANN was the best-performing by having the least RMSE, MAPE, and MAE and

most R-square value.
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2. Modeling and forecasting number of confirmed and death caused

COVID-19 in IRAN: A comparison of time series forecasting meth-

ods

An extensive study by N. Talkhi et al. [13] in 2021 uses many models in creat-

ing a forecast for COVID-19 confirmed cases and deaths. These methods include

ARIMA, Holt-Winters, Hybrid, NNETAR, BSTS, TBATS, Prophet, MLP, ELM

network. Among these methods, the most important to the special problem us

are the Holt-Winters and ARIMA models. The dataset was taken from the Worl-

doeters website. This included daily data from February 20 to August 15, 2020.

Between all the models they used, the best-performing for forecasting con-

firmed cases was the MLP network model, which had the lowest overall error. On

the other hand, the Holt-Winters model was the best performing for forecasting

the deaths. Having low errors in forecasting, the study concludes that both the

MLP and Holt-Winters models are significantly effective in forecasting confirmed

cases and death of COVID-19 in Iran.

3. Long-Term Forecasting of Electrical Loads in Kuwait Using Prophet

and Holt–Winters Models

Another study which applied the Holt-Winters model is by A. Almazrouee in 2020

[14], which aims to forecast the peak loads of electricity consumption in Kuwait.

The study uses two models: the Holt-Winters model and the Prophet model. The

dataset was obtained from the Ministry of Electricity and Water of Kuwait which

contains records from January 2010 to May 2020.

Both models performed well having low error metrics such as RMSE, MAE,

MAPE, and high R2. Between the two models, Prophet performed slightly better,

with an R2 of 0.9942 compared to Holt-Winters’ 0.9694. However, the difference

between the two may be arguably negligible. The study concludes that both

models are effective methods for forecasting peak electrical loads of Kuwait.
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E. Related studies involving LSTM

1. Forecasting of rice cultivation in India - a comparative analysis with

ARIMA and LSTM-NN models

For LSTM, there is a study which also uses rice production as its main subject

matter. This is the study of K. K. Paidipati and Arjun Banik in 2019 [9]. For

this study, the researchers decided to use ARIMA and LSTM-NN. The main ob-

jectives of this research paper are (1) to create a model; and (2) to compare the

effectiveness of LSTM relative to ARIMA, since the former is a newer method. The

dataset they used come from the Department of Agricultural and Cooperation in

India, which contains univariate data 1950 from 2018. The elements they used are

the Area Under Cultivation, Agricultural Production, and Agricultural Yielding.

They used 1950-2005 as their training set and 2006-2018 as their testing/validation

set.

The review will focus on the Agricultural Production since this is the variable

most closely related to the special problem. The ARIMA model used for this is

ARIMA(0,1,1). This model is proven to be effective in creating a forecast as it has

an RMSE of 5.9814. However, the LSTM model outperforms the ARIMA model

by having an RMSE of 3.447. Thus, the study concludes that LSTM is a viable

alternative to traditional time series analysis methods such as ARIMA and can

even have better results given the right amount of data. This study is a good

starting point for the special problem in using LSTM as it uses the same subjects

(rice production), as well as compare it with the traditional time series analysis

such as ARIMA.

2. A Comparison of ARIMA and LSTM in Forecasting Time Series

Another study exists which aims to compare the performance of ARIMA and

LSTM models. Siami-Namini et al. conducted a study which applies both ARIMA

and LSTM models to the prices of certain commodities. The datasets were ob-

tained from Yahoo! Finance, the Federal Reserve Bank of St. Louis, and the
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International Monetary Fund (IMF) Website. [10] While the study also creates

models based on the two methods, it focuses more on the improvement to the

forecast when using LSTM instead of ARIMA.

As the study expects, LSTM performed considerably better than ARIMA. The

average RMSE of the models when given the stock market data for LSTM is 64.213,

while for ARIMA, 511.481. On the other hand, given economic-related data,

LSTM has an RMSE of 0.936 while ARIMA has an RMSE of 5.999. The observed

data shows an improvement of up to 87% when using LSTM instead of ARIMA.

Thus, the study concludes the effectiveness deep-learning-based algorithms in deal-

ing with time series data contrast to using only traditional Box-Jenkins methods.

This gives the special problem grounds to explore the capabilities of LSTM when

using different data.

3. LSTM Neural Network Based Forecasting Model for Wheat Pro-

duction in Pakistan

In 2019, S. A. Haider et al. [2] explored the ability of LSTM. The goal of the study

was to create a forecasting model using LSTM that can make future predictions to

the wheat production in Pakistan. To help asssessing the effectiveness of LSTM,

ARIMA and RNN models were also created as comparison. The datasets used

were obtained from the Federal Bureau of Statistics and the Economic Survey of

Pakistan in 2017. This dataset includes wheat production history from 1902 up to

2018. Based on this, the records from 1902-2008 were used as training set, while

2009-2018 were used as the test set.

The study compares each of the three methods by testing them for both the

raw data and the preprocessed data. From this, the model with the least RMSE,

MAE, and R-value is determined to be the best-performing among the three. The

results of the study show that the most effective of the three was the LSTM

with preprocessed data, followed by ARIMA, then RNN. LSTM had the least

RMSE and MAE with 792 and 729 respectively. Thus, the study concludes the
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effectiveness of LSTM as a competent new method of analyzing time series data.

F. Conclusion

In conclusion, recent studies have proven the effectiveness of using time series anal-

ysis in forecasting production rates. The validity of SARIMA, Bayesian SARIMA,

LSTM, and Winters have been used in current papers with meaningful success.

However, there are some constraints in the local context that limit the results of

these studies. In particular, there have been no recent studies in the Philip-

pines that analyze local crop production using these models on existing local

datasets. Furthermore, some of the studies presented used yearly obtained data

with ARIMA. This can be improved by introducing seasonality, since the rice and

corn production dataset present in Davao del Sur include quarterly data. Thus,

SARIMA could be better implemented. This special problem aims to resolve these

limitations as well as promote the development of data analytics in the Philippines

particularly in the field of agriculture.
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III. Theoretical Framework

A. Time Series Analysis

Current technologies allowed for the development of time series analysis. Through

this, not only trends based on existing data are observed, but also predictions for

future years that have not taken place yet.

Time Series Analysis is a modern way of analyzing trends in given a particular

dataset, usually univariate. Unlike older forms of statistical treatment, Time

Series Analysis involves inspecting currently available data to attempt to make

a prediction about the future. This process is called forecasting. Forecasting

is the creation of a model using finite past observations to make infinite future

predictions. This method is most used in economics through market analysis.

Even so, Time Series Analysis is a broad topic that can be applied to other fields

of statistics. [15]

There is no concrete sample size requirement for all time series analysis meth-

ods. However, J. Hanke and D. Wichern [16] suggests a minimum of 50 for gen-

eral time series methods. For Box-Jenkins models, which includes SARIMA and

ARMA, the suggested minimum number of observations is 50. [17]. For Exponen-

tial Smoothing, no study was found. Thus, it is assumed that the 50 suggested by

J. Hanke and D. Wichern will be sufficient. For LSTM, according to A. Alwosheel,

the minimum sample size is dependent on the parameters that will be used. [18]

B. Autoregressive Moving Average (ARMA) Model

One of the methods of forecasting using Time Series Analysis is using Autoregres-

sive Moving Average model (ARMA). ARMA models consists of two preexisting

models [19]:

1. Autoregressive (AR) - The AR model obtains the present or future values

using the regression of previous data points. The formula for the AR model
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is as follows. The parameter p is decided by the researcher.

yt = c+ ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + ϵt (1)

2. Moving Average (MA) - The MA model takes attempts to make a model

using the error of the previous data points instead. The formula for the MA

model is as follows. The parameter q is decided by the researcher.

yt = c+ ϵt + θ1ϵt−1 + θ2ϵt−2 + ...+ θqϵt−q (2)

The ARMA model incorporates both factors. Combining the two, an effec-

tive model can be made that takes the minimum number of parameters without

sacrificing accuracy. The formula is simply a combination of the two models:

yt = c+ ϕ1yt−1 + ...+ ϕpyt−p + ϵt + θ1ϵt−1 + ...+ θqϵt−q + ϵt (3)

ARMA has two parameters p and q which is decided by the researcher, yielding

ARMA(p, q), which are as follows:

1. p : the number of items to consider for the autoregressive part

2. q : the number of items to consider for the moving average part

C. Autoregressive Integrated Moving Average (ARIMA)

Model

Another existing method is by using the Autoregressive Integrated Moving Aver-

age model (ARIMA). Stationarity in a dataset represents no change in the mean

or variance over time. Thus, cyclic time series (i.e. those with seasonal trends)

can possibly still be stationary. Unlike ARMA, ARIMA attempts to remove non-

stationarity in a time series. Thus, ARIMA is capable of modeling using both
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stationary and non-stationary datasets. ARIMA has three parameters p, d, and

q. An ARMA(p, q) model is equivalent to an ARIMA(p, 0, q) model.

1. p : the number of items to consider for the autoregressive part

2. d : degree of differencing

3. q : the number of items to consider for the moving average part

D. Seasonal ARIMA (SARIMA) Model

A variation of ARIMA called Seasonal ARIMA (SARIMA) can be used. This

model considers cyclic behavior. Thus, datasets with seasonality such as quarterly

production of crops are more applicable to this model. [20] SARIMA is in the form

SARIMA(p, d, q)(P,D,Q)s, where:

1. p : the number of items to consider for the autoregressive part

2. d : degree of differencing

3. q : the number of items to consider for the moving average part

4. P : seasonal the number of items to consider for the autoregressive part

5. D : seasonal degree of differencing

6. Q : seasonal the number of items to consider for the moving average part

7. s : length of one season

E. Bayesian SARIMA Model

Bayesian SARIMA is a modification to the SARIMA model. It has similar param-

eters to the SARIMA model and only differs in parameter estimation. In Bayesian

SARIMA, the parameters are assumed to be a random variable with its own dis-

tribution instead of being a constant. Thus, the obtained parameter is simply an

estimate.
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F. Holt-Winters Exponential Smoothing

The Holt-Winters Exponential Smoothing model is an extension to the Simple

Exponential Smoothing (SES) model. The SES can take a univariate dataset and

make a singular prediction for for upcoming values based on the past records [21].

While the SES can only create predictions based on past records, the Holt-Winters

model also takes into account other factors that may be present in the time series

such as trend and seasonality. The formula for getting the current forecast is as

follows [22]:

Ft+k = Lt + kTt + St+k−M (4)

with components:

Lt = α
Yt

St−M

+ (1− α)(Lt−1 + Tt−1) (5)

Tt = β(Lt − Lt−1) + (1− β)Tt−1 (6)

St = γ
Yt

Lt

+ (1− γ)St−M (7)

where:

1. Ft+k is the forecast.

2. Lt is the level.

3. Tt is the trend.

4. St is the seasonality, with M seasons.

5. k is the number of forecasts.

G. Long Short-Term Memory Model

Long Short-Term Memory (LSTM) Model is a modified form of the Recurrent

Neural Network (RNN). LSTM is capable of making predictions given an input

similar to any neural network with the exception of having the ability to retain
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biases from previous iterations. Thus, it is found to be effective in time series

analysis such as forecasting. It addresses one of the problems faced with RNN by

separating the retained values into long-term and short-term memories to prevent

gradient vanishing. [23]

An LSTM model is comprised of multiple LSTM-cells units which can be

grouped into three parts: input gate, forget gate, and output gate. For every

recurrence in the LSTM cell:

1. The input gate determines the inputs from both new data and the retained

memory, as well as the processing necessary to get new values for the forecast,

short-term, and long-term memories.

2. The forget gate determines how much of the long-term and short-term mem-

ory is retained.

3. The output gate returns the output that will be used for the next iteration

of the LSTM cell.

Figure 1: A diagram representing an LSTM Cell [1]
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H. Accuracy Metrics

Four accuracy metrics will be used: Mean Absolute Deviation (MAD), Mean

Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Root Mean

Squared Error (RMSE).

The Mean Squared Error (MSE) is the average of the squares of the errors in

the time series. It is one of the most commonly used measures of accuracy. This

method takes into account the error for every point in the time series and is a

measure of how close the predicted values are to the actual values.

MSE =

∑n
t=1 (At − Ft)

2

n− 1
(8)

The Root Mean Squared Error (RMSE) is simply the root of the MSE. The

advantage of the RMSE is that the error is scaled to the units used in the dataset.

Thus, it is easier to interpret. The RMSE can be interpreted as the average

deviation between the actual values and the predicted values.

RMSE =
√
MSE (9)

The Mean Absolute Deviation (MAD) is the average of the absolute values

of each error. Unlike the MSE, each error is not squared. This is because the

factor being minimized using the MSE is the mean alone, while the MAD uses the

median. Thus, the MAD is better suited for forecasts that use predict using the

median. This makes it less strict towards large errors compared to the MSE and

RMSE.

MAD =

∑n
t=1 |At − Ft|

n
(10)

The Mean Absolute Percentage Error (MAPE) is the average of the percentage

error of each prediction. MAPE is the same as MAD in the sense that it takes

the absolute error of each entry, but differs with MAD by returning a percentage.

Since the error returns a percentage, it is not scaled nor limited to units of the
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data. This allows it to be comparable with other models that are scaled with

different units.

MAPE =

∑n

t=1
|At−Ft|
At

× 100

n
(11)

I. Existing Libraries

In applying these models, existing libraries can be used. For example, a paper

by Fulton in 2022 [24] discusses the Python library statsmodels for forecasting

time series using Bayesian estimation. The study is not experimental. It simply

describes how to use the statsmodels library and the different models it can create

based on the user’s input. It also includes examples of these models in action using

their dataset. For the examples, they use Bayesian estimation for approximating

the parameters of the time series models. At the end of the paper, it concludes

that Bayesian estimation is very possible using statsmodels. These libraries can be

helpful for developing the topic, since one of the models to be used in the special

problem is the Bayesian SARIMA. Using existing libraries will reduce the time

it takes researchers manually creating the algorithms from scratch. For ARIMA

models, libraries are also present for modelling, as demonstrated by A. S. Ahmar

and A. Saleh et. Al in 2018 [25] in R for forecasting CPI data.
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IV. Design and Implementation

A. Use Cases

Figure 2: Use Case Diagram

The figure displays the use case diagram for the system. There is only one

type of user, who has access to all of the functions available. The user is able to

see the summary of all models existing in the session. The details of each model

is also listed in the system. By default, the best models found by the researchers

are displayed in the system.

The user can also submit their own models. Each model type can be added,

with the user specifying the parameters they intend to use. Forecasts of each

model can also be viewed by the user. The user also has the option to save the

results into a JSON file, which can be reuploaded into the system.
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The dataset in the system can also be modified should there be changes or new

records in the data. The user can add, edit, and delete records for both rice and

corn datasets.

B. The Dataset

The dataset was obtained from the OpenSTAT website by the Philippine Statis-

tics Authority (PSA). OpenStat is a publicly-available database created by the

PSA to provide various datasets that may be helpful to researchers, such as pop-

ulation, economy, agriculture, among many others. The website provides not only

aggregated records for the entire Philippines, but also its components. This was

used to get the dataset for the study.

From this database, two time series were obtained for Davao del Sur: one for

rice and one for corn. Each set contains univariate quarterly records from the first

quarter of 1987 until the last quarter of 2022, for a total of 144 records for each.

Each dataset is in the form of a CSV file. The CSV file contains two columns: the

starting date of each quarter, and the volume of production in that quarter.

C. Experimental Setup

The models that were used are SARIMA, Bayesian SARIMA, Holt-Winters, and

LSTM. The dataset was split into training and testing groups with roughly 90:10

ratio, resulting in 1987-2020 as the training set and 2020-2022 as the testing set.

Each model uses the same metrics to compare with each other, such as the Root

Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean

Squared Error (MSE), and Mean Absolute Deviation (MAD). The model with the

least values of each of the metrics is considered the best-performing model among

the others.
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Figure 3: Diagram of the experimental setup based on Haider[2]
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1. SARIMA

SARIMA is an adaptation to ARIMA models when the data is found to have

seasonality. In this study, since the subject in question is crop production, fac-

tors such as growing and harvest seasons have a distinct effect in the time se-

ries. Thus, SARIMA is preferred over ARIMA. SARIMA takes the form of

SARIMA(p, d, q)(P,D,Q)s. To estimate both seasonal and non-seasonal param-

eters that will be used in the model, ACF and PACF plots were be used. This

ensures that the chosen model has the most significance among the others. After

obtaining the model, the researchers can proceed with model checking, where the

model is applied to test group. Lastly, forecasting can now be done, which is

compared to the other models used in the study.

To create the SARIMAmodel, the Arima function from the stats R library was

used. Then, the R codes were translated to fit into Python syntax and imported

using the rpy2 package. The parameters that were used are the order and seasonal

order.

2. Bayesian SARIMA

Bayesian SARIMA is the use of Bayesian Statistics in estimating the parameters of

the SARIMA model. The initial parameters were based on the best model found

using SARIMA. Then, the parameters are estimated using the training set. After

the parameters are estimated, the test set will be input into the obtained model.

The fitted values will be compared with the actual values to test the effectiveness

of the model.

To simplify this process, the system uses bayesforecast. bayesforecast is

an R library that implements all of the necessary methods for Bayesian Forecasting

by using the programming language Stan. Stan is a probabilistic language that

can be implemented in R using the package rstan. The function stan.sarima

was used in creating the model. Similar to SARIMA, implementing R codes into

python were done using the rpy2 package.
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3. Long Short-Term Memory

The LSTM model is an improvement to the RNN model that solves the gradient

vanishing problem brought about the RNN model.

In the study, existing libraries may be used in model development. For LSTM,

the Keras Python deep learning API developed by F. Chollet is applicable. The

library contains keras.layers.LSTM which were used to simplify the process. The

parameters that were used are the number of units, number of epochs, and the

window size.

4. Holt-Winters Exponential Smoothing

The Holt-Winters model is an extended form of the Simple Exponential model,

which adds seasonality and trend to the latter to accommodate seasonal univariate

datasets. The formula of Holt-Winters is as follows:

Ft+k = Lt + kTt + St+k−M (12)

with components:

Lt = α
Yt

St−M

+ (1− α)(Lt−1 + Tt−1) (13)

Tt = β(Lt − Lt−1) + (1− β)Tt−1 (14)

St = γ
Yt

Lt

+ (1− γ)St−M (15)

For the development of the Winters model, existing libraries were be used. One

such library is statsmodels, which is a free package that can be used to create

statistical models. In this library, the statsmodels.tsa.holtwinters class can

be used.

Given the nature of the Holt-Winters package, the parameters changed were

the type of Holt-Winters to be used (additive or multiplicative), and damping.
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D. System Architecture

The web application is implemented using the Django Framework from Python.

The SARIMA and Bayesian SARIMA models use stats and bayesforecast re-

spectively from R. Thus, R is also needed in the system, with rpy2 being the in-

terface. Lastly, the Holt-Winters model uses statsmodels, while while the LSTM

model uses keras. Other helper packages were also used in handling the data such

as pandas, numpy, and scikit-learn, and visualization using matplotlib

1. Python 3.11.3

(a) Django 4.1.7

(b) statsmodels 0.13.5

(c) keras 2.12.0

(d) numpy 1.23.5

(e) scikit-learn 1.2.2

(f) matplotlib 3.7.0

(g) rpy2 3.5.1

2. R 4.3.0

(a) stats 4.3.0

(b) forecast 8.21

(c) bayesforecast 1.0.1

(d) rstan 2.21.8

E. Technical Architecture

The web application is deployed using Docker. It was built using the Python base

image python:3.11.3-bullseye. The image runs on Debian 11.7, with Python

3.11.3 installed. After this, r-cran-rstan 2.21.8-1 was installed in the system
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to accommodate the R and rstan dependencies. The requirements enumerated

are as follows:

1. 2 GHz processor

2. 6 GB disk space

3. 4 GB of RAM

4. Debian-bullseye 11.7 OS

Since the system is a web application, most of the computing is done by the

server. Thus, minimal resources are needed when used by the user.

1. 2 GHz processor

2. 1 GB disk space

3. 2 GB of RAM

4. Any OS

5. Web Browser

27



V. Results

A. Landing Page

Figure 4 shows the index page of the web application. This serves as the first page

that the user sees upon entering the website. The landing page shows the basic

information of the system such as the title and description.

Figure 4: Landing Page

B. Model Page

Upon entering the website, the user can view a summary of all current models in

the system as in Figure 5. By default, the displayed models are the best models

found by the researchers.

On the left side is a display of all existing models for the dataset superimposed

into a single figure. It displays the test set, colored blue, with the highest line

weight, and the other models as displayed in the legend. It also shows forecast

of up to 2024 by default, but this can be extended up using the form below the

graph.

There are also four buttons that the user can interact with:

1. The reset button resets everything about the current dataset to its ini-

tial state. This includes deleting user-made models and reloading the re-
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searchers’ models and the dataset in question.

2. The upload button allows the user to submit a file that will be the basis of

creating a model. The file can be obtained by downloading a model from

this website.

3. The summary button displays a table of the accuracy metrics of each model

as seen in Figure 6. This includes the BIC, MSE, RMSE, MAD, and MAPE.

4. the edit dataset button directs the user to the edit dataset page, where the

user can view and modify the records in the stored dataset.

Figure 5: Graphical summary of all models

Figure 6: Tabulized summary of all models

Below the summary section are the individual models saved in the system. The

section displays a plot of the entire dataset, the predicted values for the test set,
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and the forecasted values. Similar to the summary, the range of prediction can be

chosen in this section.

Other relevant information are also displayed next to the model. This includes

the parameters used and the accuracy metrics. Each model type displays different

information since each has different parameters. For example in Figure 7, the

following are details of a SARIMA model.

There are also 3 buttons that the user can interact with:

1. The save button allows the user to download a JSON file that contains infor-

mation about the model. This can be submitted using the upload function

to restore a model.

2. The forecast button displays a table of the forecasted values and its respec-

tive errors as seen in Figures 8.

3. The delete button deletes the model.

Figure 7: Summary of a SARIMA model

The user can also create their own model from scratch. This prompts a popup

window in which the user can provide the parameters they wish to use, as seen in

Figure 9.
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Figure 8: Forecasted values of a SARIMA model

Figure 9: Add model popup
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C. Dataset Page

The dataset page displays the entire dataset of the chosen crop. In this page, the

user has multiple options:

1. The reload dataset button resets the dataset to its original state.

2. The test set year field sets the start year of the test set. By default, this is

2020.

3. The edit button shows a popup to edit the current record.

4. The add button shows a popup to add a new record. This record is auto-

matically added to the end of the time series.

5. The delete button deletes the last record in the dataset.

Figure 10: Edit dataset page

Figure 11: Edit dataset cont.
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VI. Discussions

A. Dataset

The format of the datasets for rice and corn are identical. Each contains the

volume of the quarterly production of the crops in Davao del Sur from 1987 to

2022. The data is univariate and has a total of 144 records. There were no missing

values from the dataset.

The dataset was split into train and test sets. The train set contained data

from the first quarter of 1987 until the last quarter of 2019. The test set contained

data from the first quarter of 2020 until the last quarter of 2022. This results in

a 90:10 test split.

One option for analysing time series datasets is using the Box-Cox Transfor-

mation. This allows the resiudals of the data to be normalized, and can be a way

to improve predictions. The Box-Cox transformation was applied to the datasets

before each model was created.

B. Model Development

Four models were used in the study: SARIMA, Bayesian SARIMA, Holt-Winters,

and LSTM. Each model was given the train set to develop a model based on

the different parameters it requires. The parameters for SARIMA were chosen

using the BIC of the dataset. Whichever set of order and seasonal order has the

lowest BIC was used. Similarly, Bayesian SARIMA used the same order obtained

in SARIMA for comparison. For the Holt-Winters model, the parameters were

whether to use additive or multiplicative for the trend and seasonal components

and if damping is necessary. For LSTM, different number of units, number of

epochs, and windows size were used. For both Holt-Winters and LSTM, the fit

with the best accuracy metrics are determined to be the best fitting models, with

the lowest being accepted.

For the rice dataset, the best-performing SARIMAmodel is SARIMA(1, 0, 1)(0, 1, 1)4
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Rice SARIMA Bayesian SARIMA Holt-Winters LSTM
MSE 9801282.49 26,966,930.43 25,602,666.24 35,237,159.42
RMSE 3130.7 5,192.97 5,059.91 5,936.09
MAD 2,557.38 4,026.39 4,199.35 4,513.46
MAPE 8.42% 11.43% 14.14% 16.52%

Table 1: Accuracy metrics for rice

with a BIC of 597.2791. This order and seasonal order were used for both SARIMA

and Bayesian SARIMA models. Using Holt-Winters, the most accurate model was

using multiplicative methods for both trend and seasonality, and no damping, with

an RMSE of 4199.35. Lastly, the best LSTM model used 128 units, 100 epochs,

and a window size of 12.

On the other hand, the corn dataset had different results. The best-performing

SARIMA model is SARIMA(0, 0, 0)(0, 1, 1)4 with a BIC of 1655.987. This order

and seasonal order were used for both SARIMA and Bayesian SARIMA models.

Using Holt-Winters, the most accurate model was using additive methods for both

trend and seasonality, and and damping, with an RMSE of 8,519.72. Similar to the

rice mode, the best LSTM model also used 128 units, 100 epochs, and a window

size of 12.

1. Accuracy Metrics

The predictions for the rice and corn datasets can be seen in Tables 1 and 3

respectively. The predictions were compared to the actual values of the test set.

The resulting metrics are displayed in Table 2 and 4 respectively.

In the rice dataset, the obtained models are slightly close to each other, with

the MAPE ranging only from 8-17%. It is also visible on the superimposed graph.

The best-performing model was SARIMA, with an MSE of 9801282.49, RMSE

of 3130.7, MAD of 2557.38, and MAPE of 8.42%. The worst-performing was the

LSTM, with an MSE of 32237159.42, RMSE of 5936.09, MAD of 4513.46, and

MAPE of 16.52%.

On the other hand, the corn dataset is more varied. the lowest MAPE is 19.87%
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Figure 12: Actual and fitted values of rice for each model

from SARIMA and as high as 90.05% for Bayesian SARIMA. This is also visible

on the superimposed plots. The SARIMA, Bayesian SARIMA, and Holt-Winters

models show signs of seasonality, while the LSTM is almost smooth and flat.

Similar to the rice dataset, the best-performing model was still SARIMA. Its

MSE was 15142729.35, RMSE of 3891.366, MAD of 3289.88, and MAPE of 19.87%.

The worst-performing was the Bayesian SARIMA, with an MSE of 295092944.09,

RMSE of 17178.27, MAD of 14369.57, and MAPE of 90.05%.

Figure 13: Actual and fitted values of corn for each model
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Corn SARIMA Bayesian SARIMA Holt-Winters LSTM
MSE 15142729.35 295,092,944.09 72,585,647.94 19,771,907.86
RMSE 3891.366 17,178.27 8,519.72 4,446.56
MAD 3,289.88 14,369.57 7,170.85 3,465.10
MAPE 19.87% 90.05% 44.68% 23.63%

Table 2: Accuracy metrics for corn

Based on the accuracy metrics, the MSE is difficult to interpret because of its

squared nature. However, using RMSE simplifies this. For example, the RMSE for

rice being 3891.366 for SARIMA means that the deviation between each predicted

and actual value is about 3891.366 tons. On the other hand, the MAD is more

lenient towards outliers. This explains the closeness of the MAD of each model.

Lastly, the MAPE represents a percentage of how far each error is from the actual

value, regardless of the unit of measure used. This allows the performance of

the rice and corn models to be compared from each other. Based on the results,

rice has lower MAPE for each model. Thus, it can be concluded that the models

created for rice are more accurate.

2. Forecasts

For both rice and corn dataset, there is minimal trend in the forecasts. The

predicted results tend to increase almost negligibly over the year. All models

appear to have seasonality, except for the forecasts of the LSTM in the corn

dataset, which appears to be flat.

C. Discussion

In general, the SARIMA model appears to be the top-performing for the datasets.

This is different from the findings of other researchers, since most findings tend to

have the LSTM perform the best. For example, a study by Paidpati and Banikk

[9] which compared LSTM and ARIMA, another Box-Jenkins model. Based on

their study, there is at least a 4% improvement in the MAPE, LSTM with 1.3686

compared to ARIMA with 5.6035. A different study is by Siami-Namini[10], which
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Period SARIMA Bayesian SARIMA Holt-Winters LSTM
2023 Q1 49,226.44 49,226.44 58,512.45 48,373.89
2023 Q2 15,006.40 15,006.40 8,731.23 18,929.13
2023 Q3 44,434.33 44,434.33 47,421.70 49,629.95
2023 Q4 33,477.57 33,477.57 28,704.05 26,818.98
2024 Q1 49,181.03 49,181.03 58,809.16 49,420.63
2024 Q2 14,807.79 14,807.79 8,775.50 17,459.73
2024 Q3 44,971.99 44,971.99 47,662.16 51,655.61
2024 Q4 32,939.11 32,939.11 28,849.59 25,416.26
2025 Q1 49,206.69 49,206.69 59,107.37 50,475.08
2025 Q2 14,825.71 14,825.71 8,819.99 16,395.64
2025 Q3 44,768.98 44,768.98 47,903.84 51,229.29
2025 Q4 33,081.86 33,081.86 28,995.88 25,898.76

Table 3: Forecasts for rice until 2025

Period SARIMA Bayesian SARIMA Holt-Winters LSTM
2023 Q1 20,515.73 20,515.73 15,572.16 18,417.49
2023 Q2 17,910.09 17,910.09 10,266.65 18,266.06
2023 Q3 35,414.64 35,414.64 29,636.95 18,211.68
2023 Q4 29,091.63 29,091.63 24,561.93 18,047.16
2024 Q1 20,275.08 20,275.08 15,800.39 17,948.42
2024 Q2 18,069.92 18,069.92 10,454.30 17,857.39
2024 Q3 35,550.87 35,550.87 29,934.28 17,812.61
2024 Q4 28,727.83 28,727.83 24,832.49 17,693.98
2025 Q1 21,451.17 21,451.17 16,020.39 17,604.31
2025 Q2 18,172.11 18,172.11 10,635.46 17,560.67
2025 Q3 35,671.02 35,671.02 30,220.32 17,543.03
2025 Q4 29,007.41 29,007.41 25,092.89 17,485.19

Table 4: Forecasts for corn until 2025
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shows an increase in the accuracy by up to 85%. For the Holt-Winters model, it

performed decently well albeit not being the most accurate. This is backed by

other related studies such as by Almazrouee[14] and Areef[26], where the Holt-

Winters is not the best fit, but has low error metrics.

Apart from obtaining best-fitting models, part of the objectives of the study

is the creation of a forecast system that can be accessed by all. The study meets

this objective since the system is a web application open to anyone with internet

access. The system serves as both a forecasting system for stakeholders that may

be either related to statistics or crop production, but may not be both. People

with a statistics background such as future researchers or other statisticians may

use the system to develop their own models using the web application to create

their own results. On the other hand, other stakeholders such as producers, the

legislature, and the merchants can stick to the obtained models provided by the

researcher. Thus, they will be able to see forecasts for the crops without any prior

background in time series analysis.
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VII. Conclusions

The web application developed in this study aims to conduct a time series anal-

ysis on the crop production of Davao del Sur. This was achieved by applying

SARIMA, Bayesian SARIMA, Holt-Winters, and LSTM methods using the rice

and corn productions of the region. In addition to finding the best models, the

web application also has the tools in order for the user to develop their own using

their own inputs.

Overall, the study achieves its utmost goal in the big picture– to increase

awareness in applying statistical methods in applicable fields in the Philippines.

Whether or not the best models were obtained, it proves that statistics can be

applied outside of the academe. The system also encourages people interested in

the topic both by making predictions and giving the users a chance to explore using

the functions of the web application. With this much capability, it is essential that

these methods are applied in the development of the country.
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VIII. Recommendations

There are still possible improvements that can be done in the system. For example,

the analysis may have some improvement if more preprocessing could have been

done.

In addition, using a different dataset can be a way of expanding the research

study. This can be in the form of using the rice and corn production of other

regions in the Philippines or even the Philippines as a whole. Another way of

expanding could be the use of different crops aside from rice and corn that are

available from different sources that may be valuable in the Philippines.

Some improvements may be to use other algorithms, as many new forms of

machine learning are developing over time. Due to time and resource constraints,

the study was limited to only four. However, other possible methods that could

be used are Prophet, ELM, and TBATS, as used by Talkhi [13].

40



IX. Bibliography

[1] S. yan, “Understanding lstm and its diagrams,”

[2] S. Haider, S. Naqvi, T. Akram, G. Umar, A. Shahzad, M. Sial, S. Khaliq,

and M. Kamran, “Lstm neural network based forecasting model for wheat

production in pakistan,” Agronomy, vol. 9, no. 2, 2019.

[3] Department of Science and Technology - Food and Nutrition Research Insti-

tute, “Expanded national nutrition survey,” 2018.

[4] Food and Agriculture Organization of the United Nations, “Crops and live-

stock products,” 2022.

[5] Bureau of Plant Industry - National Plant Quarantine Services Division -

Central, “2019-2022 rice arrival per origin (as of november 10, 2022).,” 2022.

[6] F. A. S. U. D. of Agriculture, “Philippines: Grain and feed annual,” 2022.

[7] G. Ramakrishna and R. V. Kumari, “Arima model for forecasting of rice pro-

duction in india by using sas,” International Journal of Applied Mathematics

and Statistical Sciences (IJAMSS), vol. 6, no. 4, 2018.

[8] S. Dharmaraja, V. Jain, P. Anjoy, and H. Chandra, “Empirical analysis for

crop yield forecasting in india,” Agricultural Research, vol. 9, no. 1, 2020.

[9] K. K. Paidipati and A. Banik, “Forecasting of rice cultivation in india–a

comparative analysis with arima and lstm-nn models,” EAI Endorsed Trans-

actions on Scalable Information Systems, vol. 20, no. 24, 2019.

[10] S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A comparison of arima

and lstm in forecasting time series,” in 2018 17th IEEE International Confer-

ence on Machine Learning and Applications (ICMLA), pp. 1394–1401, 2018.

41



[11] S. A. M. Tayib, S. R. M. Nor, and S. M. Norrulashikin, “Forecasting on

the crude palm oil production in malaysia using sarima model,” Journal of

Physics, vol. 1988, 2021.

[12] B. Singh and D. Pozo, “A guide to solar power forecasting using arma mod-

els,” IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe),

2019.

[13] N. Talkhi, N. A. Fatemi, Z. Ataei, and M. J. Nooghabib, “Modeling and fore-

casting number of confirmed and death caused covid-19 in iran: A comparison

of time series forecasting methods,” Biomed Signal Process Control, vol. 66,

2021.

[14] A. Almazrouee, A. Almeshal, A. Almutairi, M. Alenezi, and S. Alha-

jeri, “Long-term forecasting of electrical loads in kuwait using prophet and

holt–winters models,” Applied Sciences, vol. 10, no. 16, 2020.

[15] C. Shetty, “Time series models,” Towards Data Science, 2022.

[16] J. Hanke and D. Wichern, Business Forecasting. Pearson, 2008.

[17] M. Malaya, “Forecasting in business research using the arima box-jenkins

methodology,” DLSU Business and Economics Review, vol. 12, no. 1, 2001.

[18] A. Alwosheel, “Is your dataset big enough? sample size requirements when

using artificial neural networks for discrete choice analysis,” Journal of Choice

Modelling, vol. 28, pp. 167–182, 2018.

[19] Z. Zhang and J. Moore, Autoregressive Moving Average Models. 2015.

[20] R. Nau, “Introduction to arima: nonseasonal models,” Statistical forecasting:

notes on regression and time series analysis, 2020.
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X. Appendix

A. Source Code

1. Imports

import base64
from io import BytesIO
from datetime import datet ime
import math
import csv
import j son
import os

import matp lo t l ib . pyplot as p l t
import numpy as np
import pandas as pd
import pymc as pm
import seaborn as sns

import t en so r f l ow as t f
from sk l ea rn . p r ep roc e s s i ng import MinMaxScaler
from statsmode l s . t sa . s ea sona l import seasonal decompose
from statsmode l s . t sa . ho l tw in t e r s import ExponentialSmoothing
from keras . p r ep roc e s s i ng . sequence import Timeser iesGenerator
from keras . models import Sequent i a l
from keras . l a y e r s import Dense
from keras . l a y e r s import LSTM

import rpy2
import rpy2 . r o b j e c t s as r ob j e c t s
from rpy2 . r o b j e c t s . packages import importr , data

# r e p r o du c i b i l i t y
import os
t f . keras . u t i l s . set random seed (5)
os . environ [ ’PYTHONHASHSEED’]= s t r (5 )

2. General Utils

def ge t r package ( pkg name ) :
l i b d i r 1 = ’/ usr / l o c a l / l i b /R/ s i t e −l i b r a ry ’
l i b d i r 2 = ’/ usr / l i b /R/ s i t e −l i b r a ry ’
l i b d i r 3 = ’/ usr / l i b /R/ l i b r a ry ’

t ry :
re turn importr ( pkg name , suppres s messages=False , l i b l o c=l i b d i r 1 )

except :
t ry :

re turn importr ( pkg name , suppres s messages=False , l i b l o c=l i b d i r 2 )
except :

re turn importr ( pkg name , suppres s messages=False , l i b l o c=l i b d i r 3 )

de f get graph ( ) :
bu f f e r = BytesIO ( )
p l t . s a v e f i g ( bu f f e r , format=’png ’ )
bu f f e r . seek (0)
image png = bu f f e r . ge tva lue ( )
graph = base64 . b64encode ( image png )
graph = graph . decode ( ’ utf −8 ’)
bu f f e r . c l o s e ( )
p l t . c l o s e ( )

re turn graph

de f p lot model ( dataset data , t e s t s e t i n d e x , model ) :
t e s t s e t d a t e = datase t data . i l o c [ t e s t s e t i n d e x ] [ ’ Date ’ ]
n o o f p e r i o d s = (2050 − t e s t s e t d a t e . year + 1) ∗ 4
f o r e c a s t d a t e s = pd . date range ( s t a r t=t e s t s e t d a t e , pe r i ods=no o f pe r i od s , f r e q=”QS”)
p r ed i c t i o n s = model [ ’ f o r e c a s t s ’ ]

p l t . f i g u r e ( f i g s i z e =[15 , 7 . 5 ] )
p l t . p l o t ( data se t data [ ’ Date ’ ] , da ta se t data [ ’ Volume ’ ] )
p l t . p l o t ( f o r e c a s t da t e s , p r ed i c t i o n s )
p l t . xlim ( datetime ( year=in t (model [ ’ d i s p l a y s t a r t ’ ] ) − 1 , month=1, day = 1) , datet ime (

year=in t (model [ ’ d i sp lay end ’ ] ) , month=10, day = 1) )
p l o t t i t l e = ’ Quarter ly ’ + model [ ’ dataset ’ ] + ’ Production Volume o f Davao de l Sur

Using ’ + model [ ’ model name ’ ]
p l t . t i t l e ( p l o t t i t l e )
p l t . y l ab e l ( ’ Volume in Tons ’ )
p l t . x l ab e l ( ’ Date ’ )
p l t . x t i c k s ( r o t a t i on =45)
p l t . g r id (True )

return get graph ( )

de f get merged graphs ( sarima models , bayes ian models , winters models , lstm models , t e s t s e t ,
end year ) :

p l t . f i g u r e ( f i g s i z e =[15 , 7 . 5 ] )
p l o t t i t l e = ’ Quarter ly Pr ed i c t i on s o f Production Volume o f Davao de l Sur ’
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p l t . t i t l e ( p l o t t i t l e )
p l t . y l ab e l ( ’ Volume in Tons ’ )
p l t . x l ab e l ( ’ Date ’ )
p l t . x t i c k s ( r o t a t i on =45)
p l t . g r id (True )

p l t . p l o t ( t e s t s e t [ ’ Date ’ ] , t e s t s e t [ ’ Volume ’ ] , l i n ew idth=4, l a b e l=”Test Set ”)
p l t . l egend ( )

d a t e s t a r t = t e s t s e t [ ’ Date ’ ] [ t e s t s e t . index . s t a r t ]
n o o f p e r i o d s = ( end year − da t e s t a r t . year + 1) ∗ 4

i f ( l en ( sar ima models ) + len ( bayes ian models ) + len ( winters mode l s ) + len ( lstm models )
< 1) :

re turn get graph ( )

f o r model in sar ima models :
f o r e c a s t d a t e s = pd . date range ( s t a r t=dat e s t a r t , pe r i ods=no o f pe r i od s , f r e q=”

QS”)
p r ed i c t i o n s = [ ]
f o r i in range ( no o f p e r i o d s ) :

p r e d i c t i o n s . append (model [ ’ f o r e c a s t s ’ ] [ i ] )

p l t . p l o t ( f o r e c a s t da t e s , p r ed i c t i on s , l a b e l =”{0}”. format ( s t r (model [ ’ model name
’ ] ) ) )

p l t . l egend ( )

f o r model in bayes ian models :
f o r e c a s t d a t e s = pd . date range ( s t a r t=dat e s t a r t , pe r i ods=no o f pe r i od s , f r e q=”

QS”)
p r ed i c t i o n s = [ ]
f o r i in range ( no o f p e r i o d s ) :

p r e d i c t i o n s . append (model [ ’ f o r e c a s t s ’ ] [ i ] )

p l t . p l o t ( f o r e c a s t da t e s , p r ed i c t i on s , l a b e l =”{0}”. format ( s t r (model [ ’ model name
’ ] ) ) )

p l t . l egend ( )

f o r model in winter s mode l s :
f o r e c a s t d a t e s = pd . date range ( s t a r t=dat e s t a r t , pe r i ods=no o f pe r i od s , f r e q=”

QS”)
p r ed i c t i o n s = [ ]
f o r i in range ( no o f p e r i o d s ) :

p r e d i c t i o n s . append (model [ ’ f o r e c a s t s ’ ] [ i ] )

p l t . p l o t ( f o r e c a s t da t e s , p r ed i c t i on s , l a b e l =”{0}”. format ( s t r (model [ ’ model name
’ ] ) ) )

p l t . l egend ( )

f o r model in lstm models :
f o r e c a s t d a t e s = pd . date range ( s t a r t=dat e s t a r t , pe r i ods=no o f pe r i od s , f r e q=”

QS”)
p r ed i c t i o n s = [ ]
f o r i in range ( no o f p e r i o d s ) :

p r e d i c t i o n s . append (model [ ’ f o r e c a s t s ’ ] [ i ] )

p l t . p l o t ( f o r e c a s t da t e s , p r ed i c t i on s , l a b e l =”{0}”. format ( s t r (model [ ’ model name
’ ] ) ) )

p l t . l egend ( )

re turn get graph ( )

de f r e l o ad da t a s e t ( request , datase t ) :
da ta s e t da t e s = ”{0} da t a s e t da t e s ” . format ( datase t . lower ( ) )
dataset name = ”{0} da ta s e t da ta ” . format ( datase t . lower ( ) )
data se t data = pd . DataFrame ( )

r eques t . s e s s i o n [ da ta s e t da t e s ] = [ ]
r eques t . s e s s i o n [ dataset name ] = [ ]

c l e a r a l l mod e l s ( request , datase t . lower ( ) )

f i l ename = ” s t a t i c /{0} data . csv ” . format ( s t r . lower ( datase t ) )
with open ( f i l ename ) as f i l e :

r eader = csv . reader ( f i l e )
r e a d e r l i s t = [ ]
next ( reader )

f o r row in reader :
r e a d e r l i s t . append ( row )

data se t data = pd . DataFrame ( r e a d e r l i s t , columns=[ ’Date ’ , ’ Volume ’ ] )
da ta se t data [ ’ Volume ’ ] = pd . to numeric ( data se t data [ ’ Volume ’ ] )
da ta se t data [ ’ Date ’ ] = pd . to datet ime ( datase t data [ ’ Date ’ ] )

r eques t . s e s s i o n [ da ta s e t da t e s ] = datase t data [ ’ Date ’ ] . astype ( s t r ) . t o l i s t ( )
r eques t . s e s s i o n [ dataset name ] = datase t data [ ’ Volume ’ ] . t o l i s t ( )
r eques t . s e s s i o n . modi f ied = True

load bes t mode l s ( request , datase t . lower ( ) )

re turn data se t data

de f c l e a r a l l mod e l s ( request , datase t ) :
model types = [” sarima ” , ” bayes ian ” , ” winte r s ” , ” lstm ” ]

f o r model type in model types :
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new l i s t = [ model f o r model in reques t . s e s s i o n [ ” saved {0}”. format ( model type ) ]
i f model [ ’ dataset ’ ] . lower ( ) != datase t . lower ( ) ]

r eques t . s e s s i o n [ ” saved {0}”. format ( model type ) ] = new l i s t
r eques t . s e s s i o n . modi f ied = True

de f l oad bes t mode l s ( request , datase t ) :
mode l d i r = ’ s t a t i c / r e s u l t s / ’
best mode l s = os . l i s t d i r ( mode l d i r )
f o r f i l ename in best mode l s :

with open (”{0}{1}”. format ( model dir , f i l ename ) , ’ r ’ ) as j s o n f i l e :
mode l r e su l t s = json . load ( j s o n f i l e )
i f mode l r e su l t s [ ’ dataset ’ ] . lower ( ) == datase t :

s a v e j s o n t o s e s s i o n ( request , mode l r e su l t s )

de f s a v e j s o n t o s e s s i o n ( request , mode l r e su l t s ) :
mode l r e su l t s [ ’ id ’ ] = get t imestamp ( )
model type = mode l r e su l t s [ ’ model type ’ ]

r eques t . s e s s i o n [ ’ saved {0} ’ . format ( model type ) ] . append ( mode l r e su l t s )
r eques t . s e s s i o n . modi f ied = True

de f get MSE( actual , p r e d i c t i o n s ) :
t o t a l = 0

f o r i in range ( ac tua l . s i z e ) :
t o t a l += ( actua l [ i ] − p r ed i c t i o n s [ i ] ) ∗∗2

return t o t a l / ( ac tua l . s i z e − 1)

de f get RMSE( actual , p r e d i c t i o n s ) :
r e turn math . sq r t ( get MSE( actual , p r e d i c t i o n s ) )

de f get MAD( actual , p r e d i c t i o n s ) :
t o t a l = 0

f o r i in range ( ac tua l . s i z e ) :
t o t a l += math . fabs ( ac tua l [ i ] − p r ed i c t i o n s [ i ] )

r e turn t o t a l / ( ac tua l . s i z e )

de f get MAPE( actual , p r e d i c t i o n s ) :
t o t a l = 0

f o r i in range ( ac tua l . s i z e ) :
t o t a l += math . fabs ( ( ac tua l [ i ] − p r ed i c t i o n s [ i ] ) / ac tua l [ i ] )

r e turn ( t o t a l / ( ac tua l . s i z e ) ) ∗ 100

de f get t imestamp ( ) :
re turn s t r ( ( datet ime . now( ) − datetime . utcfromtimestamp (0) ) . t o t a l s e c ond s ( ) ∗ 1000 .0 )

3. SARIMA Source Code

def model sarima ( dataset data , dataset name , t r a i n s e t i d x , my order , my seasonal order ,
i s boxcox , lmbda ) :

r ba s e = get r package ( ’ base ’ )
r u t i l s = ge t r package ( ’ u t i l s ’ )
r g e n e r i c s = ge t r package ( ’ g ene r i c s ’ )

r s t a t s = ge t r package ( ’ s ta t s ’ )
r f o r e c a s t = ge t r package ( ’ f o r e c a s t ’ )
r b a y e s f o r e c a s t = get r package ( ’ baye s f o r eca s t ’ )

# I n i t i a l i z a t i o n
t e s t s e t d a t e = datase t data . i l o c [ −1 ] [ ’ Date ’ ]
n o o f f o r e c a s t s = (2050 − ( t e s t s e t d a t e . year + 1) + 1) ∗ 4
f o r e c a s t d a t e s = pd . date range ( s t a r t=t e s t s e t d a t e , pe r i ods=no o f f o r e c a s t s , f r e q=”QS

”)

t r a i n s e t s i z e = t r a i n s e t i d x
t r a i n s e t = datase t data [ 0 : t r a i n s e t s i z e ]
t e s t s e t = datase t data [ t r a i n s e t s i z e : ]

# −−−−−−−−−−−−−−−−−−−−−−
# Using rpy2 :
# Convert inputs
r o rd e r = r ob j e c t s . FloatVector ( [ my order [ 0 ] , my order [ 1 ] , my order [ 2 ] ] )
r s e a s o n a l o r d e r = r ob j e c t s . FloatVector ( [ my seasona l order [ 0 ] , my seasona l order [ 1 ] ,

my seasona l order [ 2 ] ] )
r n u l l = r ob j e c t s . r [ ’ as . nu l l ’ ] ( )

# import data , t ra in−t e s t s p l i t
r da t a s e t da t a = [ f l o a t ( i ) f o r i in data se t data [ ’ Volume ’ ] . va lues . t o l i s t ( ) ]
r d a t a s e t d a t a t s = r s t a t s . t s ( data = r base . as numeric ( r da t a s e t da t a ) , f requency =

4 , s t a r t = [ 1 9 8 7 , 1 ] )
r t r a i n s e t = r s t a t s . t s ( r d a t a s e t d a t a t s [ 0 : t r a i n s e t s i z e ] , f requency = 4 , s t a r t =

[ 1 9 8 7 , 1 ] )
r t e s t s e t = r s t a t s . t s ( r d a t a s e t d a t a t s [ t r a i n s e t s i z e : l en ( r d a t a s e t d a t a t s ) ] ,

f requency = 4 , s t a r t = [ 2 0 2 0 , 1 ] )

# boxcox transform
i f i s boxcox and lmbda == 0 :

r lambda = r f o r e c a s t . BoxCox lambda ( r t r a i n s e t )
lmbda = r lambda [ 0 ]

e l i f i s boxcox :
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r lambda = lmbda
e l s e :

r lambda = r n u l l

# # crea t e model
r model = r f o r e c a s t . Arima ( r t r a i n s e t , r o rder , r s e a s ona l o rd e r , r nu l l , True , False

, False , r lambda , False , ”ML”)

# ge t t i ng f i t t e d va lues
r new model = r f o r e c a s t . Arima ( r da t a s e t da t a t s , r o rder , r s e a s ona l o rd e r , r nu l l ,

True , False , False , r lambda , False , ”CSS−ML” , r model )
r o n e s t e p f o r e c a s t s = r s t a t s . f i t t e d ( r new model ) [ l en ( r t r a i n s e t ) : l en (

r d a t a s e t d a t a t s ) ]

# metr i c s and f o r e c a s t s
r me t r i c s = r g e n e r i c s . accuracy ( r o n e s t e p f o r e c a s t s , r t e s t s e t )
r f o r e c a s t s = r g e n e r i c s . f o r e c a s t ( r d a t a s e t da t a t s , model=r model , h=n o o f f o r e c a s t s )

# End o f rpy2
# −−−−−−−−−−−−−−−−−−−−−−

p r ed i c t i o n s = [ ]
f o r e c a s t s = [ ]

f o r x in r o n e s t e p f o r e c a s t s :
p r e d i c t i o n s . append (x )

f o r x in r f o r e c a s t s [ 1 ] :
f o r e c a s t s . append (x )

# Model Evaluat ion
model MSE = r me t r i c s [ 1 ] ∗ r me t r i c s [ 1 ]
model RMSE = r me t r i c s [ 1 ]
model MAPE = r me t r i c s [ 4 ]
model MAD = get MAD( t e s t s e t [ ’ Volume ’ ] . values , p r e d i c t i o n s )
model BIC = r model [ 1 5 ] [ 0 ]

f o r e c a s t d a t e s = pd . date range ( t e s t s e t [ ’ Date ’ ] [ t e s t s e t . index . stop −1] , pe r i ods=
no o f f o r e c a s t s , f r e q=”QS”)

p r e d i c t i o n s d f = pd . DataFrame (
{ ’Date ’ : t e s t s e t [ ’ Date ’ ] ,
’Volume ’ : p r e d i c t i o n s })

f o r e c a s t s d f = pd . DataFrame (
{ ’Date ’ : f o r e c a s t da t e s ,
’Volume ’ : f o r e c a s t s })

p r e d i c t p l o t = pd . concat ( [ p r ed i c t i o n s d f , f o r e c a s t s d f ] , i gno r e index=True )
graph = get graph ( )

re turn {
”graph” : graph ,
” p r ed i c t i o n s ” : p r ed i c t i on s ,
” f o r e c a s t s ” : f o r e c a s t s ,
” t e s t s e t ” : t e s t s e t ,
” b i c ” : model BIC ,
”mse” : model MSE ,
”rmse” : model RMSE ,
”mape” : model MAPE ,
”mad” : model MAD ,
”lmbda” : lmbda ,

}

4. Bayesian SARIMA Source Code

def model bayes ian ( dataset data , dataset name , t r a i n s e t i d x , my order , my seasonal order ,
i s boxcox , lmbda ) :

r ba s e = get r package ( ’ base ’ )
r u t i l s = ge t r package ( ’ u t i l s ’ )
r g e n e r i c s = ge t r package ( ’ g ene r i c s ’ )

r s t a t s = ge t r package ( ’ s ta t s ’ )
r f o r e c a s t = ge t r package ( ’ f o r e c a s t ’ )
r b a y e s f o r e c a s t = get r package ( ’ baye s f o r eca s t ’ )

# I n i t i a l i z a t i o n
t e s t s e t d a t e = datase t data . i l o c [ −1 ] [ ’ Date ’ ]
n o o f f o r e c a s t s = (2050 − ( t e s t s e t d a t e . year + 1) + 1) ∗ 4
f o r e c a s t d a t e s = pd . date range ( s t a r t=t e s t s e t d a t e , pe r i ods=no o f f o r e c a s t s , f r e q=”QS

”)

t r a i n s e t s i z e = t r a i n s e t i d x
t r a i n s e t = datase t data [ 0 : t r a i n s e t s i z e ]
t e s t s e t = datase t data [ t r a i n s e t s i z e : ]

n o o f i t e r a t i o n s = 5000

# −−−−−−−−−−−−−−−−−−−−−−
# Using rpy2 :
# Convert inputs
r o rd e r = r ob j e c t s . FloatVector ( [ my order [ 0 ] , my order [ 1 ] , my order [ 2 ] ] )
r s e a s o n a l o r d e r = r ob j e c t s . FloatVector ( [ my seasona l order [ 0 ] , my seasona l order [ 1 ] ,

my seasona l order [ 2 ] ] )
r n u l l = r ob j e c t s . r [ ’ as . nu l l ’ ] ( )

# import data , t ra in−t e s t s p l i t
r da t a s e t da t a = [ f l o a t ( i ) f o r i in data se t data [ ’ Volume ’ ] . va lues . t o l i s t ( ) ]
r d a t a s e t d a t a t s = r s t a t s . t s ( data = r base . as numeric ( r da t a s e t da t a ) , f requency =

4 , s t a r t = [ 1 9 8 7 , 1 ] )
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r t r a i n s e t = r s t a t s . t s ( r d a t a s e t d a t a t s [ 0 : t r a i n s e t s i z e ] , f requency = 4 , s t a r t =
[ 1 9 8 7 , 1 ] )

r t e s t s e t = r s t a t s . t s ( r d a t a s e t d a t a t s [ t r a i n s e t s i z e : l en ( r d a t a s e t d a t a t s ) ] ,
f requency = 4 , s t a r t = [ 2 0 2 0 , 1 ] )

# boxcox transform
i f i s boxcox and lmbda == 0 :

r lambda = r f o r e c a s t . BoxCox lambda ( r t r a i n s e t )
lmbda = r lambda [ 0 ]

e l i f i s boxcox :
r lambda = lmbda

e l s e :
r lambda = r n u l l

i f i s boxcox :
r d a t a t r a n s f = r f o r e c a s t . BoxCox( r t r a i n s e t , r lambda )

# cr ea t e model
r model = r bay e s f o r e c a s t . s tan sar ima ( t s=r da t a t r an s f , order=r order , s ea sona l=

r s e a s ona l o rd e r , p r i o r a r=r bay e s f o r e c a s t . normal (0 , 1 ) , pr ior ma=r bay e s f o r e c a s t .
normal (0 , 1 ) , p r i o r s i gma0=r bay e s f o r e c a s t . inverse gamma (0 . 0 1 , 0 . 0 1 ) , i t e r =
n o o f i t e r a t i o n s )

# ge t t i ng f i t t e d va lues
r d a t a f i t t e d = r g e n e r i c s . f o r e c a s t ( r da t a t r an s f , model=r model , h=len ( t e s t s e t ) )
i f i s boxcox :

r d a t a f i t t e d = r f o r e c a s t . InvBoxCox ( r d a t a f i t t e d [ 1 ] , r lambda )
e l s e :

r d a t a f i t t e d = r d a t a f i t t e d [ 1 ]

# metr i c s and f o r e c a s t s
r me t r i c s = r g e n e r i c s . accuracy ( r d a t a f i t t e d , r t e s t s e t )
r f o r e c a s t s = r g e n e r i c s . f o r e c a s t ( r d a t a s e t da t a t s , model=r model , h=n o o f f o r e c a s t s )

# End o f rpy2
# −−−−−−−−−−−−−−−−−−−−−−

p r ed i c t i o n s = [ ]
f o r e c a s t s = [ ]

f o r x in r d a t a f i t t e d :
p r e d i c t i o n s . append (x )

f o r x in r f o r e c a s t s [ 1 ] :
f o r e c a s t s . append (x )

# Model Evaluat ion
model MSE = r me t r i c s [ 1 ] ∗ r me t r i c s [ 1 ]
model RMSE = r me t r i c s [ 1 ]
model MAPE = r me t r i c s [ 4 ]
model MAD = get MAD( t e s t s e t [ ’ Volume ’ ] . values , p r e d i c t i o n s )

f o r e c a s t s t a r t = t e s t s e t [ ’ Date ’ ] [ t e s t s e t . index . stop −1] + pd . DateOffset (months=3)
f o r e c a s t d a t e s = pd . date range ( f o r e c a s t s t a r t , pe r i ods=no o f f o r e c a s t s , f r e q=”QS”)
p r e d i c t i o n s d f = pd . DataFrame (

{ ’Date ’ : t e s t s e t [ ’ Date ’ ] ,
’Volume ’ : p r e d i c t i o n s })

f o r e c a s t s d f = pd . DataFrame (
{ ’Date ’ : f o r e c a s t da t e s ,
’Volume ’ : f o r e c a s t s })

p r e d i c t p l o t = pd . concat ( [ p r ed i c t i o n s d f , f o r e c a s t s d f ] , i gno r e index=True )
graph = get graph ( )

re turn {
”graph” : graph ,
” p r ed i c t i o n s ” : p r ed i c t i on s ,
” f o r e c a s t s ” : f o r e c a s t s ,
” t e s t s e t ” : t e s t s e t ,
”mse” : model MSE ,
”rmse” : model RMSE ,
”mape” : model MAPE ,
”mad” : model MAD ,
”lmbda” : lmbda ,

}

5. Holt-Winters Source Code

def model winters ( dataset data , dataset name , t r a i n s e t i d x , trend , seasona l , damped ,
i s boxcox , lmbda ) :

# I n i t i a l i z a t i o n
t e s t s e t d a t e = datase t data . i l o c [ −1 ] [ ’ Date ’ ]
n o o f f o r e c a s t s = (2050 − ( t e s t s e t d a t e . year + 1) + 1) ∗ 4
f o r e c a s t d a t e s = pd . date range ( s t a r t=t e s t s e t d a t e , pe r i ods=no o f f o r e c a s t s , f r e q=”QS

”)

t r a i n s e t s i z e = t r a i n s e t i d x
t r a i n s e t = datase t data [ 0 : t r a i n s e t s i z e ]
t e s t s e t = datase t data [ t r a i n s e t s i z e : ]

# Checking Inputs
i f trend . lower ( ) in (”mul” ,” mu l t i p l i c a t i v e ”) :

trend = ”mul”
e l s e :

trend = ”add”

i f s ea sona l . lower ( ) in (”mul” ,” mu l t i p l i c a t i v e ”) :
s ea sona l = ”mul”

e l s e :
s ea sona l = ”add”
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# Creat ing Holt−Winters Model
i f i s boxcox :

i f lmbda == 0 :
lmbda = s t a t s . boxcox ( data se t data [ ”Volume ” ] ) [ 1 ]

d f data = s t a t s . boxcox ( t r a i n s e t [ ’ Volume ’ ] , lmbda=lmbda )
e l s e :

d f data = t r a i n s e t [ ’ Volume ’ ]

model = ExponentialSmoothing ( df data , s e a s ona l p e r i o d s =4, trend=trend , damped trend=
damped , s ea sona l=sea sona l )

mode l f i t = model . f i t ( )

# F i t t i ng with t e s t s e t
p r ed i c t i o n s = mode l f i t . f o r e c a s t ( l en ( t e s t s e t ) )
i f i s boxcox :

p r ed i c t i o n s = s p e c i a l . inv boxcox ( p r ed i c t i on s , lmbda )
p r ed i c t i o n s = pd . S e r i e s ( p r ed i c t i on s , index=t e s t s e t . index )

# Pred i c t ing fu tu r e va lues
f o r e c a s t s = mode l f i t . f o r e c a s t ( n o o f f o r e c a s t s )
i f i s boxcox :

f o r e c a s t s = s p e c i a l . inv boxcox ( f o r e c a s t s , lmbda )

# Model Evaluat ion
model MSE = get MSE( t e s t s e t [ ’ Volume ’ ] . values , p r e d i c t i o n s . va lues )
model RMSE = get RMSE( t e s t s e t [ ’ Volume ’ ] . values , p r e d i c t i o n s . va lues )
model MAPE = get MAPE( t e s t s e t [ ’ Volume ’ ] . values , p r e d i c t i o n s . va lues )
model MAD = get MAD( t e s t s e t [ ’ Volume ’ ] . values , p r e d i c t i o n s . va lues )

f o r e c a s t d a t e s = pd . date range ( t e s t s e t [ ’ Date ’ ] [ t e s t s e t . index . stop −1] , pe r i ods=
no o f f o r e c a s t s , f r e q=”QS”)

p r e d i c t i o n s d f = pd . DataFrame (
{ ’Date ’ : t e s t s e t [ ’ Date ’ ] ,
’Volume ’ : p r e d i c t i o n s })

f o r e c a s t s d f = pd . DataFrame (
{ ’Date ’ : f o r e c a s t da t e s ,
’Volume ’ : f o r e c a s t s })

p r e d i c t p l o t = pd . concat ( [ p r ed i c t i o n s d f , f o r e c a s t s d f ] , i gno r e index=True )
graph = get graph ( )

re turn {
”graph” : graph ,
” p r ed i c t i o n s ” : p r ed i c t i on s ,
” f o r e c a s t s ” : f o r e c a s t s ,
” t e s t s e t ” : t e s t s e t ,
”mse” : model MSE ,
”rmse” : model RMSE ,
”mape” : model MAPE ,
”mad” : model MAD ,
”lmbda” : lmbda ,

}

6. LSTM Source Code

def model lstm ( dataset data , dataset name , t r a i n s e t i d x , n inputs , n epochs , n uni t s ,
i s boxcox , lmbda ) :

# I n i t i a l i z a t i o n
a c t i v a t i on = ’ re lu ’
t e s t s e t d a t e = datase t data . i l o c [ −1 ] [ ’ Date ’ ]
n o o f f o r e c a s t s = (2050 − ( t e s t s e t d a t e . year + 1) + 1) ∗ 4
f o r e c a s t d a t e s = pd . date range ( s t a r t=t e s t s e t d a t e , pe r i ods=no o f f o r e c a s t s , f r e q=”QS

”)

t r a i n s e t s i z e = t r a i n s e t i d x
t r a i n s e t = datase t data [ 0 : t r a i n s e t s i z e ]
t e s t s e t = datase t data [ t r a i n s e t s i z e : ]

# Creat ing LSTM Model
lmbda = s t a t s . boxcox ( data se t data [ ”Volume ” ] ) [ 1 ]

i f i s boxcox :
i f lmbda == 0 :

lmbda = s t a t s . boxcox ( data se t data [ ”Volume ” ] ) [ 1 ]
t rans f vo lume = s t a t s . boxcox ( t r a i n s e t [ ’ Volume ’ ] , lmbda=lmbda )
d f data = pd . DataFrame({

’Date ’ : t r a i n s e t [ ’ Date ’ ] ,
’Volume ’ : t rans f vo lume ,

})
e l s e :

d f data = t r a i n s e t

s c a l e r = MinMaxScaler ( )
s c a l e r . f i t ( d f data . s e t i nd ex ( ’ Date ’ ) )
s c a l e d t r a i n = s c a l e r . transform ( d f data . s e t i nd ex ( ’ Date ’ ) )
s c a l e d t e s t = s c a l e r . transform ( d f data . s e t i nd ex ( ’ Date ’ ) )
d f data = s c a l e d t r a i n

generator = Timeser iesGenerator ( df data , df data , l ength=n inputs , b a t ch s i z e =1)
model = Sequent i a l ( )
model . add (LSTM( n unit s , a c t i v a t i on=act iva t i on , input shape=(n inputs , 1) ) )
model . add (Dense (1) )
model . compile ( opt imize r=’adam ’ , l o s s =’mse ’ )

e a r l y s t op = t f . keras . c a l l b a ck s . EarlyStopping ( monitor=’ l o s s ’ , pa t i ence=5)
model . f i t ( generator , epochs=n epochs , c a l l b a ck s=ea r l y s t op )
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# Fi t t i ng with t e s t s e t
t r a n s f p r e d i c t i o n r e s u l t s = [ ]
f i r s t e v a l b a t c h = df data [−n inputs : ]
p r i n t ( type ( f i r s t e v a l b a t c h ) )
cur rent batch = f i r s t e v a l b a t c h . reshape ( (1 , n inputs , 1) )

f o r i in range ( l en ( t e s t s e t ) ) :
cu r r ent pred = model . p r ed i c t ( cur rent batch ) [ 0 ]
t r a n s f p r e d i c t i o n r e s u l t s . append ( cur r ent pred )
cur rent batch = np . append ( cur rent batch [ : , 1 : , : ] , [ [ cu r r ent pred ] ] , ax i s=1)

p r e d i c t i o n r e s u l t s = s c a l e r . i nv e r s e t r an s f o rm ( t r a n s f p r e d i c t i o n r e s u l t s )
p r e d i c t i o n r e s u l t s = [ item [ 0 ] f o r item in p r e d i c t i o n r e s u l t s ]

p r e d i c t i o n s = pd . S e r i e s ( p r e d i c t i o n r e s u l t s , index = t e s t s e t [ ’ Date ’ ] )
i f i s boxcox :

p r ed i c t i o n s = s p e c i a l . inv boxcox ( p r ed i c t i on s , lmbda )
p r ed i c t i o n s = pd . S e r i e s ( p r ed i c t i o n s )

# Pred i c t ing fu tu r e va lues
f o r e c a s t r e s u l t s = [ ]
f i r s t e v a l b a t c h = np . array ( t r a n s f p r e d i c t i o n r e s u l t s [−n inputs : ] )
p r i n t ( type ( f i r s t e v a l b a t c h ) )
cur rent batch = f i r s t e v a l b a t c h . reshape ( (1 , n inputs , 1) )

f o r i in range ( n o o f f o r e c a s t s ) :
cu r r ent pred = model . p r ed i c t ( cur rent batch ) [ 0 ]
f o r e c a s t r e s u l t s . append ( cur r ent pred )
cur rent batch = np . append ( cur rent batch [ : , 1 : , : ] , [ [ cu r r ent pred ] ] , ax i s=1)

f o r e c a s t r e s u l t s = s c a l e r . i nv e r s e t r an s f o rm ( f o r e c a s t r e s u l t s )
f o r e c a s t r e s u l t s = [ item [ 0 ] f o r item in f o r e c a s t r e s u l t s ]

f o r e c a s t s = pd . S e r i e s ( f o r e c a s t r e s u l t s )
i f i s boxcox :

f o r e c a s t s = s p e c i a l . inv boxcox ( f o r e c a s t s , lmbda )

# Model Evaluat ion
model MSE = get MSE( t e s t s e t [ ’ Volume ’ ] . values , p r e d i c t i o n s . va lues )
model RMSE = get RMSE( t e s t s e t [ ’ Volume ’ ] . values , p r e d i c t i o n s . va lues )
model MAPE = get MAPE( t e s t s e t [ ’ Volume ’ ] . values , p r e d i c t i o n s . va lues )
model MAD = get MAD( t e s t s e t [ ’ Volume ’ ] . values , p r e d i c t i o n s . va lues )

f o r e c a s t d a t e s = pd . date range ( t e s t s e t [ ’ Date ’ ] [ t e s t s e t . index . stop −1] , pe r i ods=
no o f f o r e c a s t s , f r e q=”QS”)

p r e d i c t i o n s d f = pd . DataFrame (
{ ’Date ’ : t e s t s e t [ ’ Date ’ ] ,
’Volume ’ : p r e d i c t i o n s . va lues })

f o r e c a s t s d f = pd . DataFrame (
{ ’Date ’ : f o r e c a s t da t e s ,
’Volume ’ : f o r e c a s t s })

p r e d i c t p l o t = pd . concat ( [ p r ed i c t i o n s d f , f o r e c a s t s d f ] , i gno r e index=True )
graph = get graph ( )

p r ed i c t i o n s = p r ed i c t i o n s . va lues . t o l i s t ( )
f o r e c a s t s = f o r e c a s t s . va lues . t o l i s t ( )

re turn {
”graph” : graph ,
” p r ed i c t i o n s ” : p r ed i c t i on s ,
” f o r e c a s t s ” : f o r e c a s t s ,
” t e s t s e t ” : t e s t s e t ,
”mse” : model MSE ,
”rmse” : model RMSE ,
”mape” : model MAPE ,
”mad” : model MAD ,
”lmbda” : lmbda ,

}
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