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Abstract

Suicide is death caused by injuring oneself with the intent to die. Suicidal ten-

dency is a certain set of behavior that an individual exhibits when being suicidal,

which includes posting cryptic messages in social media. This is a study that uses

the Suicide and Depression Dataset and applies NLP and preprocessing techniques

to transform the data. Machine learning models are then used to predict the class

of the entries. Logistic Regression is the best performing model with an accuracy

score of 93.24%. The best performing model is integrated and used in a Discord

bot application.

Keywords: Machine Learning, Natural Language Processing, Hashing Vectorizer, Tok-

enizer, Stemming
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I. Introduction

A. Background of the Study

Suicide is death by injuring oneself with the intent to die, while a suicide attempt

is when someone harms themselves with any intent to end their life, but they do

not die as a result of their actions. Suicide is a leading cause of death and is a

serious public health issue.

According to WHO, more than 700,000 people due to suicide every year, which

converts to 1 in every 100 deaths. Crucially, it is also tagged as the fourth leading

cause of death in people aged 15-29 years old. In the Philippines, there were 44

cases of suicide per month during the period from January to October 2022, and

of the 40 suicide deaths reported, 23 (which is about 58%) were below 30 years

old, according to data from Atlantic Fellows. This stems mostly from the lack of

access to mental health care for young Filipinos, especially in remote areas, which

denies early detection and intervention. Attempted suicide and suicide death rates

has seen a sharp increase during the COVID-19 pandemic.

The link between suicide and mental disorders (depression, and alcohol use

disorders) is well-established in high income countries. Many suicides however,

occur impulsively in moments of crisis with a breakdown in the ability to deal with

life stresses, such as a financial crisis, breakup, loss of a family member, chronic

illness, or academic and workspace stress. Experiencing conflict, disaster, violence,

abuse, or loss and a sense of isolation are also strongly associated with suicidal

behaviour, Suicide rates are also high in people who experience discrimination

(LGBTQ+ members, migrants, prisoners, etc.). However as of currently, the

strongest risk factor in suicide is a previous suicide attempt.

Since the introduction of social media people have been increasingly using on-

line means to express their suicidal tendencies. Teenagers in particular, use social

channels to express suicidal intentions, seek advice from online forums, and even

participate in suicide pacts. Anonymity is provided via online communication,
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allowing people to openly communicate their thoughts and experiences as they

currently undergo through it in the real world [1].

These online platforms enable early suicide detection and prevention. Analyz-

ing and examining online posts for suicidal tendencies prompted the development

of new forms of prospective health care solutions and early suicide detection sys-

tems. This is accomplished by detection of suicidal ideas in text entries using NLP

(Natural Language Processing) methodology and machine learning techniques.

NLP is an interdisciplinary domain which is concerned with understanding nat-

ural languages as well as using them to enable human-computer interaction. It

combines linguistic and artificial intelligence to understand human inputs on a

natural linguistic level. Machine learning on the other hand, is a major branch

of artificial intelligence that deals with the design and development of algorithms

capable of identifying complex patterns of experimental data without considering

a predetermined equation as a model and making intelligent decisions.

The study uses NLP along with multiple binary classification techniques (a

subset of machine learning) in order to build a model that can take user inputted

text as an input and predict suicidal intentions or tendencies. The study uses

a labelled data set containing posts that are binary classified as suicide, or non-

suicide. Furthermore, the study includes the generated best-performing model

into Discord. Discord is an American VoIP and instant messaging social platform.

It is chosen as the platform for the study because it is currently an emerging social

media platform that is now commonly used as a voice and messaging platform,

specifically for groups of people. According to Statista, there are 456 million

active users on the platform as of 2022. It is also a platform that is primarily

used by younger audiences, with data from Similar Web showing 35.49% of total

Discord users being with the 18-24 years old age group and 32.23% from 25-34

years old age group. Discord is also chosen as it offers a rich, open source API

that is commonly used among the platform by users, and that has the necessary

features to implement the application. The study utilizes Discord bot from the
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developer portal in order to implement a classifier that can detect suicidal intent

from messages across a certain server.

B. Statement of the Problem

Suicide and suicide attempts cause serious emotional, physical, and economic im-

pacts. People who attempt suicide and survive may experience serious injuries

that can have long-term effects on their health. They may also experience depres-

sion and other mental health concerns. Also, suicide can be detrimental to the

well-being and health of related people such as family, friends, relatives, colleagues,

and the general community itself, which can lead to them fostering thoughts and

ideas related to suicide as well.

One of the key interventions for preventing suicide is early detection. Early

identification of suicidal thoughts, will be crucial in managing and following up on

people undergoing a mental disorder, or a drastic life event that they are having

a difficulty handling by themselves. Fostering socio-emotional life skills especially

in adolescents, along with accessibility to services which caters to one’s mental

health is also important factors of reducing risk of suicide. However, this is not

the case for most people. Especially in countries like the Philippines, according

to Atlantic Fellows, lack of access and awareness on mental health problems is

an increasing risk factor for suicidal thoughts especially among people aged 15-

29. Social media however, provides a form of therapy and a space for people to

express their feelings, and experiences, and sometimes cryptic messages that may

be a cry for help, or suicidal expression. This platform allows us to extend our

reach further to people experiencing suicidal thoughts, and allows us to create

solutions that can provide early intervention for a lot of people.

As such, the project aims to utilize the online platform in detecting suicidal

tendencies in user messages on a social messaging platform. The project aims

to use NLP for processing the text, and to fit the processed text into a binary

classification model. The project then aims to embed the generated model in a

3



Discord bot as a suicide detection tool in an actual social messaging platform.

C. Objectives of the Study

The objectives of this study is divided into two parts:

1. Create a machine learning model:

(a) Apply preprocessing steps to the data to be processed using NLP. Steps

include lowercasing of all text, removal of emoticons and of all non-

alphabet characters, and label encoding.

(b) Apply NLP methodology to the preprocessed data. Removing of stop

words, tokenization of strings, and using hashing vectorizer to convert

the data numerically to be inputted in to the binary classifier models.

(c) Use 80-20 train-test split for the data, and train the model using Logis-

tic Regression, Naive Bayes, and XGBoost machine learning techniques

for binary classification.

(d) Test the models using the data and derive accuracy, precision, and

recall.

(e) Identify the best performing model based on the aforementioned met-

rics.

(f) Export the best performing model to be used for the Discord detection

bot

2. Use the Discord Developer features for model integration:

(a) Create a Discord bot using the Discord Developer Portal and grant

necessary permissions, access, integrations, and auth tokens.

(b) Once the bot is created, import the generated model via the Discord

API, and integrate within the message function to evaluate every mes-

sage sent.
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(c) Detect and flag users that sent a message expressing suicidal intent.

(d) Configure the Discord bot using API commands to send messages of

flagged users to a text channel that can only be accessed by certain

roles for notification (e.g moderator)

D. Significance of the Project

This study serves as an application of NLP and machine learning techniques in

order to aid in suicidal intent detection, and an application to a common social

messaging platform (Discord) for possible early action and intervention:

1. Discord users – One of the main benefactors of this project. Users that are

currently undergoing through a phase of breakdown has a chance of using

this social messaging platform in order to express suicidal and depressive

thoughts. The messages can then be detected by the Discord bot and the

user will receive necessary help. Discord moderators or the roles assigned

to oversee the notifications, will then be able to identify users within their

server that might be in need of support and assistance, and will prompt

them to create an evidence-based decision to provide intervention for the

user.

2. Psychologists and Psychiatrists – They are considered as the experts in

the field. This project can serve as an aiding resource for early detection

of suicidal intent, and therefore enabling the experts to provide appropriate

intervention measures as early as possible.

3. Students of Medicine and Computing Sciences – This project can be

viewed as an application of computing sciences in the health sciences field,

which will be inevitably more prominent within the upcoming years, and

therefore will serve as an example or a point of improvement that can be

studied further.
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4. Instructors of Medicine and Computing Sciences – This project can

serve as a reference material to demonstrate potential solutions that ad-

dress medical problems and also the capabilities of the computing sciences

to provide grounds and a platform to apply the solutions.

5. Researchers – This study serves as an alternative proposed solution that

can inspire researchers to take on a similar approach with problems with

the same nature. Also, this can be a foundation that can motivate further

study and research within the area, and also motivate researchers to further

enhance, modify, or add new features to this currently existing project.

E. Scope and Limitations

1. This project can only process text that are written in the English language,

accommodating other languages for the model would require further study

and a new approach.

2. This end product of this project is only usable on the social platform Discord,

which is chosen as it provides a rich, open source API library that suits

the requirements of the application, and its compatibility with the Python

language, which is the same language used to develop the machine learning

models.

F. Assumptions

1. The users that use the system mainly converse using the English language.

2. The server owner, which the application grants access to control the chan-

nel where the application sends the messages, uses the system with proper

discretion and consideration of the users.

6



II. Review of Related Literature

A. Social Media and Suicide

The introduction of social media within the recent years have provided a new

avenue for people to express their feelings, thoughts, hardships, and experiences.

Along with this, it has also been a place for people to post their suicidal thoughts

and tendencies. The provided anonymity of social media is something that people

find as a safe space and it encourages them to be more open about the life events

they are going through [1]. Among all of these, social media users also find a

sense of sympathy and relation with users that harbor similar thoughts or ideas, a

study conducted by Swedo et al. [2] found that exposure to these groups that are

labelled as ”suicide clusters” significantly increase suicidal ideation and attempt

rates. Such examples of these are pacts that are formed within these clusters that

convinces the affected users more to push through with their suicidal tendencies. A

study by Miyagi et al. [3] exhibits an example of this setting, the study analyzed

suicidal posts as a true sign or call of help for affected people, and can be an

avenue of early intervention. But at the same time, can be abused by people

to further convince the affected users to push through with the ideations, which

happened within the Zama suicide pact slayings. This is precisely one of the

ordeals that the study is trying to solve. This study shows that the efficacy

of social media intervention can be undermined by these kind of events and is

motivating researchers and experts to work towards finding methods of earlier

detection of suicidal tendencies in social media.

B. Suicidal Text Detection using NLP and Machine Learn-

ing

Given the context of suicidal posts in social media, there has been a focus of

studying the possibility of utilizing social media posts for early detection and in-

tervention of suicidal thoughts. Ji et al. [4] specifically reviewed several machine
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learning approaches in detecting suicidal ideation through text. It compared four

classification methods namely logistic regression, random forest, gradient boosting

decision tree, and XGBoost. In addition, it also used a deep learning approach

to the problem. The study found that all methods produced satisfactory results,

but also pointed out the main hurdles of this certain area such as data deficiency,

lack of intention understanding, annotation bias, and data imbalance. Chater-

jee et al. [5] conducted a similar study, putting focus on the preprocessing of

text and emphasizing the importance of extracting only the important parts nec-

essary for the classification algorithm. It used similar classification methods as

the aforementioned study, with the exception of using support vector machine in

place of gradient boosting decision tree. The study expounded on the prevalence

of the use of social media in suicidal thoughts expression, and the importance

of reinforcement through the use of modern technology and tools to empower

early detection. Wang et al. [6] another study that employed NLP and machine

learning for suicide thoughts detection, did a comparison study involving logistic

regression, support vector machine, and convolutional neural network (CNN) in

predicting suicidal ideation. While CNN gained the most favorable results in the

study, the study was quite limited on the feature extraction and text preprocessing

part. The classification methods that are employed for most of the literature were

support vector machine, logistic regression, random forest, and boosting methods.

As for the study by Nordin et al. [7], they emphasized on the possible increase in

performance that is brought by using ensemble learning techniques, in this case,

gradient boosting. Their study has shown that gradient boosting has outper-

formed random forest in terms of model performance, but only by a very small

margin (0.02%). This shows that classification methods perform mostly similar

to ensemble learning techniques. The works mentioned support the foundation of

using NLP with machine learning for suicide text detection. In particular, the use

of classification methods and deep learning were very prevalent among the stud-

ies. The preprocessing steps and the application of NLP are emphasized to be the
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most cruicial steps of the process, and that the models perform similar in terms

of performance and is very dependent on data quality, data imbalance, as well as

feature selecting. Among the studies, the common limitations are the lack of data

that can further introduce a more complex way of interpreting suicidal thoughts,

the sheer data imbalance because of the magnitude of social media, possibilities

of annotation bias, and also the fact that NLP itself is still relatively limited in

terms of understanding robust human expressions.

C. Application of Suicidal Text Detection in Social Media

Platforms

The ultimate goal of developing a suicidal detection tool is to integrate it with so-

cial media or messaging platforms to enable early intervention for possibly affected

users. Wu et al. [8], used NLP techniques such as Long Short-Term Memory and

Bidirectional Encoder to develop a model for suicide detection. This was then

applied to common social media sites in Taiwan. The study however, also lists

out the limitations of the said integration. Initially, NLP only processes textual

language, so its detection is only limited to posts that it can process, meaning that

suicidal intent that is posted through means of images, and video graphics is out

of range for detection. Lastly, machine learning still has a limited understanding

of complex human language, and therefore longer and more detailed textual posts

become very hard to interpret using their developed model. A study by Sarsam

et al. [9] offers some solution to the complexity limitation. Their model utilized

NRC Affect Intensity Lexicon which classifies the text into eight major emotions,

and then the results show that suicidal ones are exclusive to fear, sadness, and

negative sentiments. However, this approach would require text to be lexicon-

accurate, and excessive filtering of words may lead to an over-generalization of

text to be related to suicide even when it does not fit the criteria. There is also

a more domain-specific application and approach to this idea, as presented in the

study done by Morrow et al. [10]. The study used the NLP based classifier to
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extract vocabulary and text closely associated to suicidal risk in clinical notes

from electronic health records (EHR). This however, while being more accurate,

is limited to being too controlled. The text data that would be extracted from

this would be far too rigid, since there is a set convention on how to record text

from a medical specific domain, and therefore the approach would see less success

when applied to a social media environment where the textual inputs are dynamic

and free form. There are many applications of the suicide detection tool idea as

a concept to allow for early detection and intervention. However, legal issues in

data privacy means that these models cannot be simply integrated to social me-

dia platforms and start reading users’ textual inputs. Discord however, offers a

feature that allows these plugins to be integrated easily, with the permissions, to

be assessed and granted by the users themselves, and precisely the reason why the

platform is currently viewed by the current study to be the most suitable for the

objectives.
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III. Theoretical Framework

A. Suicide

Suicide is death caused by injuring oneself with the intent to die. Other associated

terms with suicide are suicide attempt, and suicide intent. Suicide attempt is when

a person make an effort to end one’s life but is unable to do so, while suicide intent

is when a person expresses signs and risk factors of committing suicide.

These are the common suicide risk factors

1. Individual Risk Factors

(a) Previous suicide attempt

(b) History of depression and other mental illnesses

(c) Serious illness such as chronic pain

(d) Criminal/legal problems

(e) Job/financial problems or loss

(f) Impulsive or aggressive tendencies

(g) Substance use

(h) Current or prior history of adverse childhood experiences

(i) Sense of hopelessness

(j) Violence victimization and/or perpetration

2. Relationship Risk Factors

(a) Bullying

(b) Family/loved one’s history of suicide

(c) Loss of relationships

(d) High conflict or violent relationships

(e) Social isolation
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3. Community Risk Factors

(a) Lack of access to healthcare

(b) Suicide cluster in the community

(c) Stress of acculturation

(d) Community violence

(e) Historical trauma

(f) Discrimination

4. Societal Risk Factors

(a) Stigma associated with help-seeking and mental illness

(b) Easy access to lethal means of suicide among people at risk

(c) Unsafe media portrayals of suicide

Along with that, here are the most common preventive measures for suicide.

1. Individual Protective Factors

(a) Effective coping and problem-solving skills

(b) Reasons for living (for example, family, friends, pets, etc.)

(c) Strong sense of cultural identity

2. Relationship Protective Factors

(a) Support from partners, friends, and family

(b) Feeling connected to others

3. Community Protective Factors

(a) Feeling connected to school, community, and other social institutions

(b) Availability of consistent and high quality physical and behavioral health-

care
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4. Societal Protective Factors

(a) Reduced access to lethal means of suicide among people at risk

(b) Cultural, religious, or moral objections to suicide

B. Natural Language Processing

Natural language processing (NLP) refers to the branch of computer science—and

more specifically, the branch of artificial intelligence or AI—concerned with giving

computers the ability to understand text and spoken words in much the same way

human beings can.

In this study, we incorporate various techniques of NLP in processing our text

data

1. Tokenization - Tokenization is essentially splitting a phrase, sentence, para-

graph, or an entire text document into smaller units, such as individual words

or terms called tokens. This allows us to perform feature extraction and se-

lection on the dataset and to quantify the tokens for the machine learning

models.

2. Stemming - Stemming is a natural language processing technique that low-

ers inflection in words to their root forms, hence aiding in the preprocessing

of text, words, and documents for text normalization. The study will utilize

Porter stemming for processing the tokenized data. This algorithm is con-

sidered as a truncating algorithm, which is more focused on removing affixes

from text. Figure 4 provides an example on how the stemmer processes text.

3. Text Normalization - A technique that reduces a given text to its canonical

form. For this study, several steps to normalize text are applied.

(a) Removal of Emoticons and other Non-Alphabetical Characters

(b) Porter stemming algorithm for finding the root word

(c) Lowercasing of all text for uniformity

13



4. Removal of Stop Words - Stop words are words in any language which

are most commonly used, but does not add contextual significance to the

meaning of the text. Removing stop words from the text would allow for a

more efficient processing of data, and allows the models to concentrate on

the more important words that predict our target variable.

5. Hashing Vectorizer - Hashing Vectorizer converts a text document into

a matrix of token occurrences, which is a sparse matrix which contains fre-

quency of the tokens (the words). It is also known as the hashing trick as it

utilizes feature hashing to store token occurences.

Figure 1: Sample Code for Hashing Vectorizer (From sklearn’s website)

14



C. Machine Learning Models

1. Logistic Regression- Logistic regression is a supervised learning algorithm

used to predict a dependent categorical target variable. It is an algorithm

which predicts the output of a categorically dependent variable. Therefore,

Logistic Regression works well with binary classification problems, where

the outcome is dichotomous. The classifier also gives out the probabilistic

values that lie between 0 and 1, which is the binary values that represents

the two categories of the target variable. Logistic Regression is a significant

machine learning algorithm because it has the ability to provide probabilities

and classify new data using continuous and discrete datasets.

2. Naive Bayes - The Näıve Bayes classifier is a popular supervised machine

learning algorithm used for classification tasks such as text classification. It

belongs to the family of generative learning algorithms, which means that it

models the distribution of inputs for a given class or category.

In statistics, naive Bayes classifiers are considered as simple probabilistic

classifiers that apply Bayes’ theorem. This theorem is based on the proba-

bility of a hypothesis, given the data and some prior knowledge. The naive

Bayes classifier assumes that all features in the input data are independent of

each other, which is often not true in real-world scenarios. However, despite

this simplifying assumption, the naive Bayes classifier is widely used because

of its efficiency and good performance in many real-world applications.

3. Extreme Gradient Boosting - Extreme Gradient Boosting, or also known

as XGBoost is an optimized distributed gradient boosting library designed

for efficient and scalable training of machine learning models. It is an ensem-

ble learning method that combines the predictions of multiple weak models

to produce a stronger prediction. XGBoost stands for “Extreme Gradient
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Boosting” and it has become one of the most popular and widely used ma-

chine learning algorithms due to its ability to handle large datasets and

its ability to achieve state-of-the-art performance in many machine learning

tasks such as classification and regression.

D. Performance Metrics and Indicators

The performance metric is a quantified assessment that determines the success of

a certain process. For the context of Machine Learning, the models are evaluated

using the metrics accuracy, precision, f1 score, and recall. These values would

mainly be computed using information derived from the confusion matrix

Figure 2: The Confusion Matrix

1. Accuracy - A metric that is commonly used in classification problems and

to evaluate a classification model’s performance. It is an evaluation metric

that measures the correct predictions made by a model relative to the total

predictions that it made.

Figure 3: Accuracy Formula
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2. Precision - A common metric that is used to evaluate a classification model’s

performance. It is the ratio of the correctly identified positives to the total

number of positives (whether identified correctly or not). It gives us a clearer

idea if the model’s positive predictions are actually positive.

Figure 4: Precision Formula

3. Recall - A metric that evaluates how much of the actual positives have been

correctly identified by the model. It provides us the information about how

well the model is at determining the positive values of the data.

Figure 5: Recall Formula

4. F1 Score - Is a machine learning evaluation metric that similarly with ac-

curacy, evaluates the general performance of a model. The difference is, F1

score utilizes the precision and recall scores to generate a better quantifica-

tion of the model’s performance.
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Figure 6: F1 Score Formula

E. Discord Developer Portal

Discord is a free communications app that lets you share voice, video, and text chat

with friends, game communities, and developers. It is a VoIP methodology-based

platform which delivers voice and multimedia sessions over internet protocol net-

works. The users can interact within their own specific groups known as ”servers”.

The servers have their own moderators, which can set roles and manage users, as

well as create multiple text and voice channels. Discord also allows the users to

contribute to the application via creating bots with rich functionalities, or even

entertainment from games through a platform called the Discord Developer Portal

The Discord Developer Portal is an environment with rich functionalities to

create entities that can be utilized in various ways within the Discord platform.

It features Bots and Apps creation, which are empowered by API and OAuth2

integrations, and Game Creation using Rich Presence and GameSDK. Discord was

chosen over other social media platforms because the API features are the most

suitable for the application of the study. It offers a comprehensive Python library

which allows for easy modularization of commands, and automation of responses

via API. It is also an open-source tool that can be easily accessed by developers,

as well as a tool that is commonly used within the platform itself, allowing for

a more practical solution to the problem. The library being Python also helps

provide security for versions and compatibility for the models when imported, as

the models were also trained using the Python language.
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For the study, the developers uses the Bot Python API feature to develop the

suicide detection bot. The API feature allows for integration within a specific

Discord server and to execute necessary commands for suicide detection.
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IV. Design and Implementation

A. Description of the Dataset

The study uses a labelled dataset that was collected from two subreddits of the

Reddit platform named ”Depression” (January 1, 2009 - January 2, 2021) and

”SuicideWatch” (December 16, 2008 - January 2, 2021). The non-suicide entries

are gathered from the ”Teenagers” subreddit.

The dataset consists of 232,074 data points, which then have 4 columns, a

blank-headed column, but contains the index, an column named ”unnamed: 0”, a

column named ”text” which contains the actual text from the post, and lastly a

column named ”class” which contains whether the given text is labelled as suicide

or non-suicide. The data is also equally split between data labelled suicide and

non suicide with both having 116,037 entries.

Figure 7: Dataset Information

B. Data Visualization

1. Histogram
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The x-axis within this histogram is the amount of words per data point,

which corresponds to the length of the entire text when counted by words.

Figure 8: Histogram of Word Length for Entire Dataset

Figure 9: Histogram of Word Length for Entire Non-Suicide Entries
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Figure 10: Histogram of Word Length for Entire Suicide Entries

For all of the categories, the text majorly lies below 1000 words. Suicide

entries have more entries that lies between 1000 to 2000 words compared to

non-suicide entries but only by an insignificant amount. It is also seen by

the generated range of the histogram that there are some text entries which

exceed 2000 words, but are miniscule in amount compared to the majority

of the data points.

2. Wordcloud

Wordcloud is a visual representation of word frequency and word prominence

from a source text. In the study, Wordcloud visualization is used to have a

general idea of the commonly occuring text within the overall text, suicide

text, and non-suicide text.
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Figure 11: Wordcloud for Entire Dataset

Figure 12: Wordcloud for Non-Suicide Entries
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Figure 13: Wordcloud for Suicide Entries

This wordcloud shows the prominent words that appears all throughout the

entire dataset, and also the word prominence for the two classes the model is

targeting to classify. There are words that appear on all the wordclouds but

differ in frequency. Words such as ”want” appear in all the wordclouds but

appear most frequent in the suicide dataset. Words such as ”love”, ”think”,

and ”don’t” are also some of the words that appear on all the wordclouds

with varying frequency.

There are also words that are significantly prominent or uniquely prominent

to the suicide wordcloud that does not appear in the non-suicide wordcloud

and vice versa. Words from the suicide wordcloud such as ”die”, ”nothing”

and words from the non-suicide wordcloud such as ”filler”, ”school”, ”friend”

are some of the words that appear in greater prominence from their respec-

tive counterpart wordcloud. This shows that word frequency is a significant

to determine suicide or non-suicide entries.
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C. Corpus Construction

The next step is creating a list of all the words within the text to be ana-

lyzed. By simply splitting the text and not applying any other preprocessing

techniques, we get a total of 30,616,417 words and 521,930 distinct words

within the dataset.

Figure 14: Corpus Construction (Without Preprocessing)

Several preprocessing techniques are then applied to the data. The emoticons

within the text are removed using regular expressions. The text is then

trimmed of all punctuation marks attached to them and then all lower cased.

Finally, the corpus list is filtered out for empty entries, non-english words,

and stop words. After processing, we reduce the total number of text in the

list to 11,392,232 words and 28,811 distinct words.
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Figure 15: Corpus Construction (After Processing)

D. Preprocessing Techniques

1. Setting Up the Tokenizer Function

The tokenizer function splits the text and apply all necessary filtering and

processing. The tokenizer function would first remove all emoticons from the

text, and lowercase everything. The next step is to apply Porter stemming,

which is a process of obtaining the root word for the text, in order to derive

the proper frequency from words with similar ideas. The last steps would

be to remove punctuation and non-alphabet characters and filter out stop

words that would not be weighted for the study.
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Figure 16: The Tokenizer Function

2. Label Encoding

Label encoding is simply assigning a numerical value for the categories that

the model is predicting. For the study, it is simply assigning binary values

0 for non-suicide and 1 for suicide

Figure 17: Label Encoding

3. Feature Extraction
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For the feature extraction, the study used sklearn’s Hashing Vectorizer.

Hashing Vectorizer converts a text document into a matrix of token occur-

rences, which is a sparse matrix which contains frequency of the tokens (the

words). It is also known as the hashing trick as it utilizes feature hashing to

store token occurences.

Figure 18: Sample Code for Hashing Vectorizer (From sklearn’s website)

As seen in the sample code, the Hashing Vectorizer converted the sample

corpus text to a sparse matrix consisting of 4 documents and 16 features
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(4 rows and 16 columns). Hashing Vectorizer’s main advantage is it is low

memory scalable, making it ideal for working with relatively large datasets,

such as the one used in the study, with 11,393,232 tokens to store. The

hashing also works as a frequency counter, and would be a great tool for

quantifying the data.

The main problem when using Hashing Vectorizer (or any other hashing

algorithms in general) is the possibility of hash collisions. The issue is ad-

dressed in two ways within the study. First, the study utilized a large feature

space in order to make sure that each token will have its own hash function.

Second, the parameter ”alternate sign” is set to False in order to avoid hav-

ing negative values due to hash collisions which would eventually affect the

performance of the machine learning models.

This step utilizes our tokenizer function as the text processor. The hash-

ing vectorizer would then be setup with 2**21 n features (which would be

large enough to ensure no hash collisions) and alternate sign as false. The

tokenizer function is set as the value for the tokenizer parameter.

Figure 19: The Hashing Vectorizer

E. Train Test Split and Vectorization

The dataset is split 80% for training and 20% for test. After doing the split, the

Hashing Vectorizer function is used to transform the text data into numeric data

that will be used to train the classification models.
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Figure 20: Train Test Split and Vectorization

F. Performance Metrics and Evaluation

The models are evaluated using accuracy, precision, f1 score, and recall. The afore-

mentioned metrics can be found by using values from the confusion matrix, which

is part of the output of the evaluation. The confusion matrix that contains the

actual values of the predictions would also be generated to assist with comparing

the different models and evaluating which model would be most suitable for the

output application.

G. Application Development

This study aims to construct a Discord bot, which is an automated program that

runs specific tasks on the social media platform Discord. The bot is able to read

messages being sent to the specific server and determine whether the message being

sent contains suicidal intent or not. The identification is done by integrating the

best performing model within the bot code and configuring the bot to display the

user, message, and the probability result generated by the model. The use case

diagram below demonstrates the roles of the intended users for the bot.
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Figure 21: Use Case Diagram

The creation of the bot is done through the Discord Developer Portal, which is

a platform provided by Discord that allows developers to use their API to create

automated programs that would assist Discord servers in all ways possible. This

portal allows us to create a bot that also uses their own authentication for ease

of development. Below is a screenshot of the bot creation window of the Discord

Developer Portal.
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Figure 22: Discord Developer Portal Bot Creation

The bot creation feature provided by Discord also allows the developer to

select the necessary permissions and actions that the bot must be able to execute

to perform its intended purpose. This also addresses the need for consent among

the future server owners and Discord users that would be using the bot. Below

are the available features that can be enabled for the bot.

Figure 23: Bot Permissions for Discord
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Finally, the bot can be invited to the server and can be coded for the suicide

detection tool. The coding integrates the best performing model among the selec-

tion. Below is a screenshot of the test Discord server where I added the created

bot.

Figure 24: Bot Inside the Test Server

H. Programming Language

The data manipulation and model creation were developed primarily using Python’s

scikit-learn library. Python allows for access to versatile tools needed for manipu-

lation of strings, data preprocessing, visualization of data, quantifying data, and

statistical tools for model creation and evaluation.

The Logistic Regression is executed by using the LogisticRegression package

from sklearn. linearmodel, the model is setup with the liblinear (Library for Large

Linear Classification) solver to accomodate for the data dimensions. For Naive

Bayes, the MultinomialNB package from sklearn.naive bayes is utilized, setting

the vectorizer to not accomodate negative values is crucial for the Naive Bayes

package to work. Lastly, the Extreme Gradient Boosting is done by using the
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XGBClassifier from xgboost as a separate python package. The XGBoost is used

with eval metric as error for binary classification.

The bot is developed by using Discord py, which is a Python library that ex-

haustively implements Discord’s API. This is used to configure commands, receive

and send messages, and to maintain bot functionality. Python is the code used

for coding the functionalities of the entire bot.
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V. Results

A. Machine Learning Models

Presented in this section is the result of training the machine learning models

for binary classification of suicide and non-suicide based on text data. There

are 3 models that are designed, trained, tested, and evaluated for performance

metrics. The results are then analyzed and interpreted in order to determine if

the NLP and preprocessing techniques applied to the text allowed the machine

learning algorithms to produce a satisfactory performance that will be viable for

real life applications. Comparison of evaluation results has also been done to

decide whether Logistic Regression, Naive Bayes, or XGBoost would be the best

performer for the data that we produced for model creation.

The section below would also show the confusion matrix along with the perfor-

mance metrics results for each model, with a brief description of how it performed

in general with our data. The data is split 80-20 for all models, amounting to

185,659 total training data and 46,415 testing data.

1. Logistic Regression

Accuracy Precision F1 Score Recall

Logistic

Regression
93.24% 93.86% 93.20% 92.55%

Table 1: Logistic Regression Performance Metrics

Logistic Regression performed great, correctly identifying 43,276 entries out

of a total of 46,415. The Logistic Regression classifier also correctly identi-

fied 21,502 out of 23,234 suicide entries, which is 92.55%. It also correctly

identified 21,774 out of 23,181 non-suicide entries, which is 93.90%. While it
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performed slightly better at determining non-suicide entries, it is only by a

very small margin and the performance for detecting both suicide and non-

suicide entries are still relatively high. The confusion matrix for Logistic

Regression is shown below.

Figure 25: Logistic Regression Confusion Matrix

2. Naive Bayes

Accuracy Precision F1 Score Recall

Naive

Bayes
76.24% 67.95% 80.74% 99.46%

Table 2: Naive Bayes Performance Metrics

Naive Bayes performed significantly worse than the previous model, only

correctly identifying 35,388 out of the total 46,415 entries in the dataset. It is
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notable though that the Naive Bayes classifier has a significant advantage in

determining suicide entries, being able to identify all but 126 suicide entries,

thus having a very high recall score. However, the model showed relatively

poor performance in detecting non-suicide entries. Only identifying 12,280

out of 23,181 entries which is only 53%. Despite the near-perfect performance

in identifying suicide entries, the low performance on detecting non-suicide

entries impacts the precision score of the model, which in turn drags down

its total f1 score. The confusion matrix for Naive Bayes is shown below.

Figure 26: Naive Bayes Confusion Matrix

3. XGBoost

Accuracy Precision F1 Score Recall

XGBoost 91.27% 93.16% 91.09% 89.12%

Table 3: XGBoost Performance Metrics
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XGBoost performed relatively well. It is able to identify 42,365 entries out

of 46,415 correctly. Contrary to the Naive Bayes model, XGBoost performed

better at identifying non-suicide entries, correctly identifying 21,660 entries

out of 23,181 total non-suicide entries. While Naive Bayes is still significantly

better at identifying suicide entries, XGBoost still performed relatively well

in this regard, being able to identify 20,705 suicide entries out of 23,234.

Despite performing worse in identifying suicide entries than Naive Bayes,

the performance of the model in identifying non-suicide entries allowed it to

maintain a significantly higher f1 score than Naive Bayes, but slightly worse

than Logistic Regression. The confusion matrix for XGBoost is shown below.

Figure 27: XGBoost Confusion Matrix

Below is the summary of all metric scores of all the models involved
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Accuracy Precision F1 Score Recall

Logistic

Regression
93.24% 93.86% 93.20% 92.55%

Naive

Bayes
76.24% 67.95% 80.74% 99.46%

XGBoost 91.27% 93.16% 91.09% 89.12%

Table 4: Summary of Metric Scores for All Models

B. Discord Application

1. Creating the Application and the Bot

The way we approached the Discord Application is that we embed the model

in a bot that would allow it to perform automated tasks in a Discord server.

Therefore, creating the bot is the initial step to start the process. The

Discord Developer portal provides the feature to create an application space,

where we can generate the bot with the necessary permissions.

Figure 28: Application Creation Page
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Figure 29: Bot Creation Page

2. Configuring the Bot Permissions

This step allowed us to specify what specific permissions the bot needs in

order to perform its functionalities. This would also display to the users the

activities that the bot is able to perform within the server such as reading

messages, managing channels, or joining voice calls. This allows the users

to practice discretion when inviting specific bots to their servers. Our bot

needed to be able to manage server and channels, as well as have permissions

for all text related features in order to perform its functionalities well

Figure 30: Scope Selection Page
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Figure 31: Setting up Necessary Bot Permissions

3. Inviting the Bot to the Server

After setting up the scope and permissions, Discord automatically generated

a URL to allow us to select a server to add the bot into. Discord automati-

cally popped up the servers that you have permissions to add members into,

and we simply selected the server where the bot needs to join. After se-

lection, an authorize page popped up notifying the administrator about the

permissions the bot needs in order to operate in the server. Once authorized,

the bot will then enter the server as another user.
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Figure 32: Generated URL Page: Server Selection Screen

Figure 33: Generated URL Page: Server Authorization
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Figure 34: The Server Welcome Message after Bot Joins

4. Implementing the bot features

This section will individually describe the bot features

(a) The help command

This is a standard command to display the commands and features

available for user input

Figure 35: Help Command
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(b) The info command

A command that displays to the user a brief description about the bot

Figure 36: Info Command

(c) The assign command

A command that accepts a currently existing text channel within the

server as a parameter. Sets this channel as the default channel to

receive the suicidal warning messages. This is set as a server owner

only accessible channel for safeguard of usage. Any member that is not

the server owner will not be able to reassign channels.

Figure 37: Assign Command
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When there is a currently assigned channel, the bot will then start to au-

tomatically track the messages being sent within the server, and will send

warning messages accordingly, if the model predicts a possible suicidal intent

message. The warning message will contain the user that sent the message,

the message itself, and the probability in which the classifier predicts that

it might be suicidal.

Figure 38: Sample Bot Output
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VI. Discussions

The suicide detection dataset is nothing short of a challenge for the researcher.

The large amount of data that it contained presented itself well for the researcher

to apply numerous preprocessing techniques in order to only extract the powerful

predicting features, in this case the important words, that would be impactful in

the model performance. This dataset also reflected the challenge of working with

social media extracted data. The informal language of social media, along with the

use of emoticons and sudden punctuations, created a lot of inconsistency within

the data. It is noted during the preprocessing steps that the volume of data was

significantly reduced after removal of emoticons, punctuations, non-english words,

and stop words.

The study also compared three machine learning models for predicting the

entries. Logistic Regression, Naive Bayes, and Extreme Gradient Boosting (XG-

Boost) are all fed with a vectorized text data using the Hashing Vectorizer func-

tion. Logistic Regression came out as the best model. Logistic Regression works

well with sparse matrices, which is what the Hashing Vectorizer produces. The

output variable is also binary, which is a very common use for Logistic Regres-

sion since it performs well with binary classification problems. Naive Bayes per-

formed relatively poor among its other competitors in this comparison. Based on

the wordcloud, various different words are appearing frequently which is different

from both the suicide and non-suicide entries, which meant that there is a high

probability that the training data would have a disparity with the test data in

terms of the frequency distribution. Non-representation of this might be a factor

why the Naive Bayes model performed inferior to the others. Also, Naive Bayes is

good as a classifier but bad as an estimator. So in terms of the probability value,

the probability output from the Logsitic Regression model is more reliable. How-

ever, Naive Bayes did earn the highest recall score, but at the cost of a fall off in

precision score, which signifies a large amount of false positive tagging. XGBoost

also performed well with the dataset. It performed slightly worse than Logistic

46



Regression, but it also obtained high metric scores for a faster running time. XG-

Boost’s boosting ability and also its efficient handling of missing values makes it

a valuable alternative to Logistic Regression, and might even perform better with

a higher quality dataset.

The model despite performing well within the dataset, is not perfect. During

the testing phase of the application, there are some common themes and textual

patterns observed that made the model underpeform, or produce a wrong predic-

tion. For instance, the model did not take into account perspectives in speech,

which makes topic about suicide, even though not about the actual person sending

the message, can be tagged as suicidal for that person. Talking about a form of

media, like a movie, with content that are related to suicide would also be tagged

as suicidal for the sender, despite not being supposed to be flagged. On the other

hand, there are also scenarios which some suicidal texts are not being identified.

These occured most commonly on expressions, and niche language that are not

generally used for common speech. Expressions such as ”kicking the bucket” or

”six feet under”, are not being identified because the words themselves individu-

ally are not closely related to suicide. Addressing these problems would require

new approaches. For the false positive problem, additional preprocessing steps

and nlp techniques can be explored to consider speaker perspective, or sentiment

analysis. For the false negative problem, this is more reliant on the data itself.

Data with more language adaptations, or data from a certain niche or subset of

people that might be exposed to some language nuances will put weight to some

of the more cryptic expressions. However, this must be done in a way that will not

compromise the classification using common words, or not to put too much weight

on its individual words, as putting too much weight on the words themselves, can

be the cause for another false positive problem.

Creating the bot has been quite an interesting challenge. After the models

were saved, the first issue was a version conflict with my local version of Python

packages. After updating my sklearn package, the model was then loaded and is
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ready to be embedded in the bot. The actual creation of the bot and inviting it

to the server is a relatively straightforward task since they are features that are

provided by Discord directly. Working with the API is where the development

becomes a bit challenging. One of the challenges encountered is that, the bot

reads it own messages as well, since the bot sends the warning message along

with the text itself, it flags its own warning message as suicidal and then it loops

infinitely until the program crashes. It was worked around by filtering out bot

messages on the on message event. Configuration of the help page was also a

bit of a challenge since Discord has a default help constructed for each bot. The

method done for this is to remove the default help command provided by the bot

package and override it with a custom-made help function, which also allowed us

to improve more on its formatting.
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VII. Conclusions

To conclude, the dataset was preprocessed using various NLP and preprocess-

ing techniques such as tokenization, stemming, removal of stop words, removal of

non-english words, removal of emojis, label-encoding, and converted to quantifi-

able vectorized data using Hashing Vectorizer, and is used by three classification

machine learning models which are Logistic Regression, Naive Bayes, and XG-

Boost. Logistic Regression performed the best among all of the three models with

metric scores of 93.24% accuracy score, 93.86% precision score, 93.20% F1 score,

and 92.55% recall score. Following closely second is the XGBoost model, and

taking the third and last place by a significant margin would be the Naive Bayes

model.

It is shown the preprocessing heavily impacted performance and scalability of

the methods. Not only did preprocessing remove noise, but it also formatted the

data that is easily interpretable by the models. However, choosing nlp and prepro-

cessing techniques is an area where there is still a vast potential of improvement

and other preprocessing steps can allow different models to shine depending on

how the data is quantified. As we have seen in the results, despite the three clas-

sification techniques performing considerably well in general for text classification

problems, data representation can significantly impact a model’s performance like

Naive Bayes in this study.

The Discord bot is currently run locally. It reads every message sent to the

server it is a member of and it can detect and flag messages that have a suicidal

tendency. A warning message will then be sent to a text channel of the user’s

choice. It can also run some additional commands such as help for instructions on

how the bot works, and info for a brief description of the bot and its functionali-

ties.
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VIII. Recommendations

1. Dataset Exploration

The dataset is vast and can be used for a multitude of other applications aside

the suicide and non-suicide classifier. The dataset can be explored further

for sentiment analysis, and also for finding reoccuring topics between suicide

and non-suicide social media posts.

2. Feature Extraction/Selection

With various techniques further emerging from NLP, there are other alter-

natives that can be used for the dataset, such as word2vec, LDA, CountVec-

torizer, etc. These tools can be used to further enhance the data quality,

or to represent the data in a different way that can allow other models to

perform good predictions.

3. Other Possible Datasets

The study that is performed is still quite limited in terms of scope, and

also cannot capture the entire sentimentality of the social media post. Fu-

ture study in this field should consider working with datasets with other

languages, since social media is something that can be accessed worldwide.

Other improvements would also take the emoticons into account (as these

are also expression of emotion for the person), and also analyzing image and

other multimedia messages.

4. Other Applications

The main application for this study is the Discord bot, which was made

possible because of Discord’s API which allows for developers to create bots

for server use. However, the application of models like these can also be

expanded for other social media platforms. These can also be implemented

in a web application for predicting suicidal text in forums, blogs, or other

forms of website. It is also possible to implement this as a stand alone
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application that can assist domain experts in early suicide intent detection.

These are just some of the other applications that can be derived from this

project.
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X. Appendix

A. Source Code

#inc lude <iostream>

us ing namespace std ;

i n t main{
cout << ”He l lo world ! ” << endl ;
r e turn 0 ;

}

# −∗− coding : utf −8 −∗−
””” sp . ipynb

Automatica l ly generated by Colaboratory .

Or i g ina l f i l e i s l o ca t ed at
https :// co lab . r e s ea r ch . goog le . com/ dr ive /16B9athQmuShzDV nVPf9j55KbuCXqmL7

∗∗IMPORT DEPENDENCIES∗∗
”””

import numpy as np
import pandas as pd
import matp lo t l ib . pyplot as p l t
from sk l ea rn import metr i c s
from sk l ea rn import p r ep roc e s s i ng
from sk l ea rn . metr i c s import confus ion matr ix , ConfusionMatrixDisplay , accuracy score , p r e c i s i o n s c o r e , f 1 s c o r e , r e c a l l s c o r e
from tqdm import tqdm
import n l tk
import re
import p i c k l e
import torch
import s t r i n g

n l tk . download ( ’ words ’ )
n l tk . download ( ’ stopwords ’ )

from nl tk . stem . por t e r import PorterStemmer
from nl tk . corpus import stopwords

from sk l ea rn . f e a t u r e e x t r a c t i o n . t ext import Hash ingVector i zer

from sk l ea rn . l i n ea r mode l import Log i s t i cReg r e s s i on
from sk l ea rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

from wordcloud import WordCloud , STOPWORDS

”””∗∗IMPORT DATASET∗∗”””

tqdm . pandas ( )
df = pd . r ead csv ( ’/ content / dr ive /MyDrive/SP/ Su i c i d e De t e c t i on . csv ’ , eng ine=’python ’ , encoding=’utf −8 ’ , on bad l i n e s =’warn ’ )
# d i sp l ay ( df )
p r in t ( df . count ( ) )

”””∗∗SAMPLE CORPUS∗∗”””

corpus = [
’ This i s the f i r s t document . ’ ,
’ This document i s the second document . ’ ,
’And th i s i s the th i rd one . ’ ,
’ I s t h i s the f i r s t document ? ’ ,

]

v e c t o r i z e r = HashingVector i zer ( n f e a t u r e s =2∗∗4)
X = ve c t o r i z e r . f i t t r a n s f o rm ( corpus )
p r in t (X, ’\n ’ )
p r in t (X. shape , ’\n ’ )

”””∗∗EXPLORATORY DATA ANALYSIS∗∗”””

df . head ( )
df . drop ( columns=[”Unnamed : 0” ] )
df . count ( )
d f s u i c i d e = len ( df [ df [ ” c l a s s ”]==” su i c i d e ” ] )
d f n on su i c i d e = len ( df [ df [ ” c l a s s ”]==”non−s u i c i d e ” ] )

p r in t ( df . head ( ) )
p r in t (” Total data po in t s : ” + ”\n” + s t r ( df . count ( ) ) + ”\n”)
p r in t (” Total data po in t s f o r s u i c i d e : ” + s t r ( d f s u i c i d e ) )
p r in t (” Total data po in t s f o r non−s u i c i d e : ” + s t r ( d f n on su i c i d e ) )

# HISTOGRAMS
# df [ ’ text ’ ] . s t r . s p l i t ( ) .map( lambda x : l en (x ) ) . h i s t ( )

d f n on su i c i d e= df [ df [ ’ c l a s s ’]== ’non−su i c i d e ’ ]
d f n on su i c i d e [ ’ text ’ ] . s t r . s p l i t ( ) .map( lambda x : l en (x ) ) . h i s t ( )

d f s u i c i d e= df [ df [ ’ c l a s s ’]== ’ su i c i d e ’ ]
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d f s u i c i d e [ ’ text ’ ] . s t r . s p l i t ( ) .map( lambda x : l en (x ) ) . h i s t ( )

df [ ’ text ’ ] . s t r . s p l i t ( ) .map( lambda x : l en (x ) ) . h i s t ( )

””” df [ ’ text ’ ] . s t r . s p l i t ( ) .map( lambda x : l en (x ) ) . h i s t ( range =[8000 ,10000])

∗∗TEXT SPLITTING (RAW)∗∗
”””

stop = stopwords . words ( ’ eng l i sh ’ )

corpus =[ ]
new= df [ ’ text ’ ] . s t r . s p l i t ( )
new=new . va lues . t o l i s t ( )
corpus=[word f o r i in new f o r word in i ]
corpus = l i s t ( f i l t e r (None , corpus ) )

p r in t (” Total number o f words : ” + s t r ( l en ( corpus ) ) )
p r in t (” Total number o f d i s t i n c t words : ” + s t r ( l en ( s e t ( corpus ) ) ) )

”””∗∗TEXT SPLITTING (WITH PROCESSING)∗∗”””

co rpus c l ean = [ ]

r e g r ex pa t t e rn = re . compile ( pattern = ” [”
u”\U0001F600−\U0001F64F” # emoticons
u”\U0001F300−\U0001F5FF” # symbols & pic tographs
u”\U0001F680−\U0001F6FF” # transpor t & map symbols
u”\U0001F1E0−\U0001F1FF” # f l a g s ( iOS )

”]+” , f l a g s = re .UNICODE)

f o r i in corpus :
c l e an t e x t = reg r ex pa t t e rn . sub ( r ’ ’ , i )
no punc c l ean t ex t = c l e an t e x t . t r a n s l a t e ( s t r . maketrans ( ’ ’ , ’ ’ , s t r i n g . punctuation ) )
no punc c l ean t ex t = no punc c l ean t ex t . r ep l a c e (” ’” , ””)
co rpus c l ean . append ( no punc c l ean t ex t . lower ( ) )

co rpus c l ean = l i s t ( f i l t e r (None , co rpus c l ean ) )
words = se t ( n l tk . corpus . words . words ( ) )
c l e an t e x t = [ ]

f o r word in co rpus c l ean :
i f word in words and word not in stop :

c l e an t e x t . append (word )

p r in t (” Total number o f words : ” + s t r ( l en ( c l e an t e x t ) ) )
p r in t (” Total number o f d i s t i n c t words a f t e r p ro c e s s i ng : ” + s t r ( l en ( s e t ( c l e an t e x t ) ) ) )

”””∗∗WORDCLOUD∗∗”””

# WORDCLOUD

stop words = se t (STOPWORDS)

text = ” ” . j o i n ( cat f o r cat in c l e an t e x t )

wordcloud = WordCloud( stopwords=stop words , max words=200)
wordcloud . generate ( text )

p l t . imshow( wordcloud , i n t e r p o l a t i o n =’ b i l i n e a r ’ )
p l t . ax i s (” o f f ”)
p l t . show ( )

”””∗∗WORD COUNT∗∗”””

# from c o l l e c t i o n s import Counter
# import operator
# import i t e r t o o l s

# counts = Counter ( c l e an t e x t )
# count s so r t ed = d i c t ( so r t ed ( counts . i tems ( ) , key=operator . i t emget t e r ( 1 ) , r e v e r s e=True ) )

# sor t ed data = pd . DataFrame ( counts sor ted , index =[0 ] )
# # pr in t ( so r t ed data . head ( ) )
# top 50 = sor t ed data . va lue counts ( ) [ : 5 0 ]
# pr in t ( top 50 )

# top 50 . p l o t ( kind=’bar ’ , f i g s i z e =(10 ,8))
# p l t . t i t l e ( ’Top 50 words occur ing in dataset ’ )

”””∗∗WORDCLOUD FOR SUICIDAL TEXT∗∗”””

# d f s u i c i d e= df [ df [ ’ c l a s s ’]== ’ su i c i d e ’ ]
# new = d f s u i c i d e [ ’ text ’ ] . s t r . s p l i t ( )
# new=new . va lues . t o l i s t ( )
# co rpu s s u i c i d e =[word f o r i in new f o r word in i ]
# co rpu s s u i c i d e = l i s t ( f i l t e r (None , c o r pu s s u i c i d e ) )

# pr in t (” Total number o f words : ” + s t r ( l en ( c o r pu s s u i c i d e ) ) )
# pr in t (” Total number o f d i s t i n c t words : ” + s t r ( l en ( s e t ( c o r pu s s u i c i d e ) ) ) )

# corpus c l ean = [ ]

# reg r ex pa t t e rn = re . compile ( pattern = ” [”
# u”\U0001F600−\U0001F64F” # emoticons
# u”\U0001F300−\U0001F5FF” # symbols & pic tographs
# u”\U0001F680−\U0001F6FF” # transpor t & map symbols
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# u”\U0001F1E0−\U0001F1FF” # f l a g s ( iOS )
# ”]+” , f l a g s = re .UNICODE)

# fo r i in c o r pu s s u i c i d e :
# c l e an t e x t = reg r ex pa t t e rn . sub ( r ’ ’ , i )
# no punc c l ean t ex t = c l e an t e x t . t r a n s l a t e ( s t r . maketrans ( ’ ’ , ’ ’ , s t r i n g . punctuation ) )
# no punc c l ean t ex t = no punc c l ean t ex t . r ep l a c e (” ’” , ””)
# corpus c l ean . append ( no punc c l ean t ex t . lower ( ) )

# corpus c l ean = l i s t ( f i l t e r (None , co rpus c l ean ) )
# words = se t ( n l tk . corpus . words . words ( ) )
# c l e an t e x t = [ ]

# f o r word in co rpus c l ean :
# i f word in words and word not in stop :
# c l e an t e x t . append (word )

# # pr in t (” Total number o f words a f t e r p ro c e s s i ng : ” + s t r ( l en ( co rpus c l ean ) ) )
# pr in t (” Total number o f d i s t i n c t words a f t e r p ro c e s s i ng : ” + s t r ( l en ( s e t ( c l e an t e x t ) ) ) )

# text = ” ” . j o i n ( cat f o r cat in c l e an t e x t )

# wordcloud = WordCloud( stopwords=stop words , max words=200)
# wordcloud . generate ( text )

# p l t . imshow( wordcloud , i n t e r p o l a t i o n =’ b i l i n e a r ’ )
# p l t . ax i s (” o f f ”)
# p l t . show ( )

”””∗∗WORDCLOUD FOR NON−SUICIDAL TEXT∗∗”””

# d f non su i c i d e= df [ df [ ’ c l a s s ’]== ’non−su i c i d e ’ ]
# new = d f non su i c i d e [ ’ text ’ ] . s t r . s p l i t ( )
# new=new . va lues . t o l i s t ( )
# co rpu s non su i c i d e =[word f o r i in new f o r word in i ]
# co rpu s non su i c i d e = l i s t ( f i l t e r (None , c o rpu s non su i c i d e ) )

# pr in t (” Total number o f words : ” + s t r ( l en ( co rpu s non su i c i d e ) ) )
# pr in t (” Total number o f d i s t i n c t words : ” + s t r ( l en ( s e t ( c o rpu s non su i c i d e ) ) ) )

# corpus c l ean = [ ]

# reg r ex pa t t e rn = re . compile ( pattern = ” [”
# u”\U0001F600−\U0001F64F” # emoticons
# u”\U0001F300−\U0001F5FF” # symbols & pic tographs
# u”\U0001F680−\U0001F6FF” # transpor t & map symbols
# u”\U0001F1E0−\U0001F1FF” # f l a g s ( iOS )
# ”]+” , f l a g s = re .UNICODE)

# fo r i in co rpu s non su i c i d e :
# c l e an t e x t = reg r ex pa t t e rn . sub ( r ’ ’ , i )
# no punc c l ean t ex t = c l e an t e x t . t r a n s l a t e ( s t r . maketrans ( ’ ’ , ’ ’ , s t r i n g . punctuation ) )
# no punc c l ean t ex t = no punc c l ean t ex t . r ep l a c e (” ’” , ””)
# corpus c l ean . append ( no punc c l ean t ex t . lower ( ) )

# corpus c l ean = l i s t ( f i l t e r (None , co rpus c l ean ) )
# words = se t ( n l tk . corpus . words . words ( ) )
# c l e an t e x t = [ ]

# f o r word in co rpus c l ean :
# i f word in words and word not in stop :
# c l e an t e x t . append (word )

# # pr in t (” Total number o f words a f t e r p ro c e s s i ng : ” + s t r ( l en ( co rpus c l ean ) ) )
# pr in t (” Total number o f d i s t i n c t words a f t e r p ro c e s s i ng : ” + s t r ( l en ( s e t ( c l e an t e x t ) ) ) )

# text = ” ” . j o i n ( cat f o r cat in c l e an t e x t )

# wordcloud = WordCloud( stopwords=stop words , max words=200)
# wordcloud . generate ( text )

# p l t . imshow( wordcloud , i n t e r p o l a t i o n =’ b i l i n e a r ’ )
# p l t . ax i s (” o f f ”)
# p l t . show ( )

”””∗∗PREPROCESSING AND NLP∗∗”””

de f p r ep r o c e s s t e x t ( t ext ) :

po r t e r = PorterStemmer ( )

de f word check (word ) :
word processed = por te r . stem (word )
word processed=””. j o i n ( l e t t e r f o r l e t t e r in word i f l e t t e r . i s a l pha ( ) )
re turn word processed

r eg r ex pa t t e rn = re . compile ( pattern = ” [”
u”\U0001F600−\U0001F64F” # emoticons
u”\U0001F300−\U0001F5FF” # symbols & pic tographs
u”\U0001F680−\U0001F6FF” # transpor t & map symbols
u”\U0001F1E0−\U0001F1FF” # f l a g s ( iOS )

”]+” , f l a g s = re .UNICODE)

stop = stopwords . words ( ’ eng l i sh ’ )

t ext = reg r ex pa t t e rn . sub ( r ’ ’ , t ext )
t ext = text . lower ( )
re turn [ word check (word ) f o r word in text . s p l i t ( ) i f word not in stop ]
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# df [ ’ text ’ ] = df [ ’ text ’ ] . p rog r e s s app ly ( p r ep r o c e s s t e x t )
# pr in t ( df )
# df . t o c sv ( ’ Su i c i d e De t e c t i on Prep roc e s s ed . csv ’ )

df [ ” c l a s s ” ] = df . apply ( lambda x : 1 i f x [ ’ c l a s s ’ ] == ’ su i c i d e ’ e l s e 0 , ax i s=1)

# d i sp l ay ( df )

vect = HashingVector i zer ( decode e r ro r=’ ignore ’ , n f e a t u r e s =2∗∗21 ,
p r ep roc e s so r=None , t ok en i z e r=prep roc e s s t ex t , a l t e r n a t e s i g n=False )

X = df [ ” text ” ] . t o l i s t ( )
y = df [ ’ c l a s s ’ ]

”””∗∗TRAIN−TEST SPLIT∗∗”””

X train , X test , y t ra in , y t e s t = t r a i n t e s t s p l i t (X, y , t e s t s i z e =0.2 , random state=1)

X tra in = vect . transform ( X tra in )
X tes t = vect . transform ( X test )

”””∗∗LOGISTIC REGRESSION∗∗”””

l og r eg = Log i s t i cReg r e s s i on ( s o l v e r =’ l i b l i n e a r ’ )
l o g r eg . f i t ( X train , y t r a i n )

y pred = log r eg . p r ed i c t ( X tes t )

cm = con fus i on matr ix ( y t e s t , y pred )
d i sp = Confus ionMatrixDisplay ( con fus i on matr ix=cm, d i s p l a y l a b e l s =[ ’Non−Suic ide ’ , ’ Su ic ide ’ ] )
d i sp . p l o t ( )
d i sp . ax . s e t t i t l e (” Log i s t i c Regress ion Confusion Matrix ”)
p l t . show ( )

ac = accu racy s co r e ( y t e s t , y pred )
p r e c i s i o n = p r e c i s i o n s c o r e ( y t e s t , y pred )
f 1 s c o r e r e s u l t = f 1 s c o r e ( y t e s t , y pred )
r e c a l l = r e c a l l s c o r e ( y t e s t , y pred )

p r in t (”LOGREG \n”)
p r in t ( ’ Accuracy : %.2 f%%’ % ( ac ∗100))
p r in t ( ’ P r e c i s i on : %.2 f%%’ % ( p r e c i s i o n ∗100))
p r in t ( ’ F1 Score : %.2 f%%’ % ( f 1 s c o r e r e s u l t ∗100))
p r in t ( ’ Reca l l : %.2 f%%’ % ( r e c a l l ∗100))
p r in t(”=====================”)

model save name = ’ c l a s s i f i e r −LOGREG. pt ’
path = F”/ content / dr ive /MyDrive/SP/{model save name}”
torch . save ( logreg , path )

”””∗∗NAIVE−BAYES∗∗”””

from sk l ea rn . na ive bayes import MultinomialNB

c l a s s i f i e r = MultinomialNB ( )
c l a s s i f i e r . f i t ( X train , y t r a i n )

y pred = c l a s s i f i e r . p r ed i c t ( X tes t )

cm = con fus i on matr ix ( y t e s t , y pred )
d i sp = Confus ionMatrixDisplay ( con fus i on matr ix=cm, d i s p l a y l a b e l s =[ ’Non−Suic ide ’ , ’ Su ic ide ’ ] )
d i sp . p l o t ( )
d i sp . ax . s e t t i t l e (” Naive Bayes Confusion Matrix ”)
p l t . show ( )

ac = accu racy s co r e ( y t e s t , y pred )
p r e c i s i o n = p r e c i s i o n s c o r e ( y t e s t , y pred )
f 1 s c o r e r e s u l t = f 1 s c o r e ( y t e s t , y pred )
r e c a l l = r e c a l l s c o r e ( y t e s t , y pred )

ac = c l a s s i f i e r . s co r e ( X test , y t e s t )
p r e c i s i o n = p r e c i s i o n s c o r e ( y t e s t , y pred )
f 1 s c o r e r e s u l t = f 1 s c o r e ( y t e s t , y pred )
r e c a l l = r e c a l l s c o r e ( y t e s t , y pred )
p r in t (”NAIVE BAYES \n”)
p r in t ( ’ Accuracy : %.2 f%%’ % ( ac ∗100))
p r in t ( ’ P r e c i s i on : %.2 f%%’ % ( p r e c i s i o n ∗100))
p r in t ( ’ F1 Score : %.2 f%%’ % ( f 1 s c o r e r e s u l t ∗100))
p r in t ( ’ Reca l l : %.2 f%%’ % ( r e c a l l ∗100))
p r in t(”=====================”)

model save name = ’ c l a s s i f i e r −NB. pt ’
path = F”/ content / dr ive /MyDrive/SP/{model save name}”
torch . save ( c l a s s i f i e r , path )

”””∗∗XGBOOST∗∗”””

from xgboost import XGBClass i f ier

model = XGBClass i f ier ( eva l me t r i c =’ er ror ’ )
model . f i t ( X train , y t r a i n )

y pred = model . p r ed i c t ( X tes t )
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cm = con fus i on matr ix ( y t e s t , y pred )
d i sp = Confus ionMatrixDisplay ( con fus i on matr ix=cm, d i s p l a y l a b e l s =[ ’Non−Suic ide ’ , ’ Su ic ide ’ ] )
d i sp . p l o t ( )
d i sp . ax . s e t t i t l e (”XGBoost Confusion Matrix ”)
p l t . show ( )

ac = accu racy s co r e ( y t e s t , y pred )
p r e c i s i o n = p r e c i s i o n s c o r e ( y t e s t , y pred )
f 1 s c o r e r e s u l t = f 1 s c o r e ( y t e s t , y pred )
r e c a l l = r e c a l l s c o r e ( y t e s t , y pred )
p r in t (”XGBOOST \n”)
p r in t ( ’ Accuracy : %.2 f%%’ % ( ac ∗100))
p r in t ( ’ P r e c i s i on : %.2 f%%’ % ( p r e c i s i o n ∗100))
p r in t ( ’ F1 Score : %.2 f%%’ % ( f 1 s c o r e r e s u l t ∗100))
p r in t ( ’ Reca l l : %.2 f%%’ % ( r e c a l l ∗100))
p r in t(”=====================”)

model save name = ’ c l a s s i f i e r −XGBOOST. pt ’
path = F”/ content / dr ive /MyDrive/SP/{model save name}”
torch . save (model , path )

import d i s co rd
from d i s co rd . ext import commands , ta sks
import os
from dotenv import load dotenv
import torch

from sk l ea rn import metr i c s
from sk l ea rn import p r ep roc e s s i ng
from sk l ea rn . metr i c s import confus ion matr ix , a c cu racy s co r e
from sk l ea rn . l i n ea r mode l import Log i s t i cReg r e s s i on

from tqdm import tqdm
import n l tk
import re
import p i c k l e
import torch

from nl tk . stem . por t e r import PorterStemmer
from nl tk . corpus import stopwords

from sk l ea rn . f e a t u r e e x t r a c t i o n . t ext import Hash ingVector i zer

load dotenv ( )
TOKEN = os . getenv ( ’TOKEN’ )
PATH = ’C:\\ Users\\Ronel l \\Desktop\\mafubot\\ c l a s s i f i e r . pt ’

bot = commands . Bot ( command prefix=’$ ’ , i n t en t s=d i s co rd . In t en t s . a l l ( ) )
bot . remove command (” help ”)

@bot . group ( invoke without command= True )
async de f help ( ctx ) :

embed= d i s co rd .Embed( t i t l e =”Help ” , d e s c r i p t i o n=”L i s t o f commands”)
embed . a dd f i e l d (name=”$as s i gn ” , value=”$as s i gn [ channel−name ] ( Acc e s s i b l e only by s e rv e r owner ) . Ass igns the given channel name as the d e f au l t channel to r e c e i v e s u i c i d a l t ext warning messages ”)
embed . a dd f i e l d (name=”$ i n f o ” , value=”Shows bot in format ion and d i s c l a ime r ”)
embed . a dd f i e l d (name=”$help ” , value=”shows t h i s page ”)
await ctx . send (embed=embed)

de f update channe l id ( channel ) :
g l oba l CHANNEL ID
CHANNEL ID = channel . id

@bot . event
async de f on message ( message ) :

me s s ag e i t e r ab l e = [ ]
me s s ag e i t e r ab l e . append (message . content )
de f p r ep r o c e s s t e x t ( t ext ) :

po r t e r = PorterStemmer ( )

de f word check (word ) :
word processed = por te r . stem (word )
word processed=””. j o i n ( l e t t e r f o r l e t t e r in word i f l e t t e r . i s a l pha ( ) )
re turn word processed

r eg r ex pa t t e rn = re . compile ( pattern = ” [”
u”\U0001F600−\U0001F64F” # emoticons
u”\U0001F300−\U0001F5FF” # symbols & pic tographs
u”\U0001F680−\U0001F6FF” # transpor t & map symbols
u”\U0001F1E0−\U0001F1FF” # f l a g s ( iOS )

”]+” , f l a g s = re .UNICODE)

stop = stopwords . words ( ’ eng l i sh ’ )

t ext = reg r ex pa t t e rn . sub ( r ’ ’ , t ext )
t ext = text . lower ( )
re turn [ word check (word ) f o r word in text . s p l i t ( ) i f word not in stop ]

vect = HashingVector i zer ( decode e r ro r=’ ignore ’ , n f e a t u r e s =2∗∗21 ,
p r ep roc e s so r=None , t ok en i z e r=prep roc e s s t ex t , a l t e r n a t e s i g n=False )

X = vect . transform ( mes s ag e i t e r ab l e )
model = torch . load (PATH)
mode l pred i c t i on = model . p r ed i c t (X)
mode l p r obab i l i t y p r ed i c t i on = model . p r ed i c t p roba (X)
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i f message . author . bot == False :
p r i n t(’======================’ + ’\n\n ’ )
p r in t ( ’ Message : ’ + message . content )
p r in t ( ’ p r ed i c t i on value : ’ + s t r ( mode l pred i c t i on ) )
p r in t ( mode l p r obab i l i t y p r ed i c t i on )
p r in t ( ’Non−s u i c i d e p r obab i l i t y p r ed i c t i on : %.2 f%%’ % ( mode l p r obab i l i t y p r ed i c t i on [ 0 ] [ 0 ] ∗ 1 0 0 ) )
p r in t ( ’ Su i c ide p r obab i l i t y p r ed i c t i on : %.2 f%%’ % ( mode l p r obab i l i t y p r ed i c t i on [ 0 ] [ 1 ] ∗ 1 0 0 ) )
p r in t ( ’\n\n ’ + ’======================’)
# pr in t ( s t r ( mode l p r obab i l i t y p r ed i c t i on [ 0 ] [ 1 ] ) + ” new”)

i f mode l p red i c t i on [ 0 ] == 1 and message . author . bot == False :

channel = bot . ge t channe l (CHANNEL ID)
i f channel i s None :

pass

i f channel i s not None :
await channel . send ( ’ Heads up ! ’ + s t r ( message . author ) + ’ has been detected sending a message with a po s s i b l e s u i c i d a l i n t en t \n ’ +

’Message : ’ + message . content + ’\n ’
’ P robab i l i t y : %.2 f%%’ % ( mode l p r obab i l i t y p r ed i c t i on [ 0 ] [ 1 ] ∗ 1 0 0 )
)

p r in t(”===========================”)

i f message . content == ” h e l l o ” :
await message . channel . send (” He l lo ! ” )

await bot . process commands ( message )

@bot . command( )
async de f h e l l o ( ctx ) :

await ctx . channel . send ( ’ Hel lo ’ )

@bot . command( )
async de f a s s i gn ( ctx , channel name ) :

i f ctx . message . author == ctx . gu i l d . owner :
channel = d i s co rd . u t i l s . get ( ctx . gu i l d . channels , name=channel name )
update channe l id ( channel )
await ctx . channel . send ( ’ Channel ’ + channel name + ’ s u c c e s s f u l l y as s i gned ! ’ )

e l s e :
await ctx . channel . send ( ’ Sorry , only the s e rv e r owner has ac c e s s to t h i s act ion ’ )

@bot . command( )
async de f i n f o ( ctx ) :

channel = d i s co rd . u t i l s . get ( ctx . gu i l d . channe ls )
update channe l id ( channel )
await ctx . channel . send ( ’Welcome ’ + s t r ( ctx . message . author ) + ’ ! ’ + ’\n\n ’ +

’ This i s SPBot ! A machine l e a rn i ng powered s u i c i d a l t ext c l a s s i f i c a t i o n bot that de t e c t s and f l a g s p o s s i b l e s u i c i d a l messages from use r s \n ’ +
’ This bot uses a Log i s t i c Regress ion model to eva luate messages being sent with in the s e rv e r and sends out warning messages whenever i t d e t e c t s a s u i c i d a l message \n\n ’ +

’To s t a r t us ing the f e a t u r e s o f the bot , p l e a s e s t a r t by us ing the $as s i gn [ channel−name ] command in order to de s i gnate a channel where the warnings are sent \n ’ +
’Note that only the s e rv e r owner may use the $as s i gn command . I t i s done to sa feguard the usage o f the command \n ’
’ Using a p r i va t e channel f o r admin r o l e s i s recommended f o r optimal usage \n\n\n ’ +

’DISCLAIMER: \n\n ’ +
’ This model does not p r ed i c t s u i c i d a l i n t en t 100% of the time \n ’ +
’The model der ived from t e s t i n g only pred i c t ed s u i c i d a l messages 93.24% f o r a l l data \n ’ +
’ This bot/ t oo l i s a l s o not meant to r ep l a c e ac tua l d i a gno s i s from domain exper t s but ra the r as an ea r l y de t e c t i on t oo l \n\n ’ +

’ I f you f e e l that you need help , p l e a s e immediately contact a hea l th p r o f e s s i o n a l f o r proper d i a gno s i s and recupe ra t i on plan . ’

)

bot . run (TOKEN)
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