
University of the Philippines Manila

College of Arts and Sciences

Department of Physical Sciences and Mathematics

An Application for Denoising Images with

Spatially Correlated Noise Using a

Wavelet-based Algorithm

A special problem in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Cornelius Athus R. Enriquez

July 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser No

Available only to those bound by confidentiality agreement No



ACCEPTANCE SHEET

The Special Problem entitled “An Application for Denoising Images
with Spatially Correlated Noise Using a Wavelet-based Algorithm” prepared and
submitted by Cornelius Athus R. Enriquez in partial fulfillment of the requirements
for the degree of Bachelor of Science in Computer Science has been examined and is
recommended for acceptance.

Perlita E. Gasmen, M.Sc. (cand.)
Adviser

Alex C. Gonzaga, Ph.D.
Co-Adviser

EXAMINERS:
Approved Disapproved

1. Avegail D. Carpio, M.Sc.
2. Richard Bryann L. Chua, M.Sc.
3. Ma. Sheila A. Magboo, Ph.D. (cand.)
4. Vincent Peter C. Magboo, M.D.
5. Marbert John C. Marasigan, M.Sc. (cand.)
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.

Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences

Department of Physical Sciences and Mathematics
and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean

College of Arts and Sciences

i



Abstract

This project presents an image denoising application based on wavelet-based algo-

rithms for the removal of spatially correlated noise. The application offers users a

user-friendly interface to denoise images using various algorithms specifically designed

for spatially correlated noise mitigation. Experimental evaluations using PSNR and

SSIM as metrics demonstrate the effectiveness of the proposed application in reducing

spatially correlated noise while maintaining image quality.

Keywords: Image Denoising, Wavelet-based denoising, Structured Noise2Void, Deep CNN,

Denoising application
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I. Introduction

A. Background of the Study

During this digital age, with the rise in the quantity of digital photos taken every day,

there is a growing desire for more accurate and visually appealing images [1]. However,

the quality of images acquired by modern cameras are still invariably reduced by noise,

resulting in bad visual image quality. Because of this, the search for the best technique

for reducing the noise of images without compromising quality has also been going

on through these years.

Several techniques for removing image noise have been developed, including ma-

chine learning and deep learning models like the most frequently used Convolutional

Neural Networks (CNN). Another technique that has been used for image denoising

is wavelet transform. Images are converted into wavelets and on these wavelets, high

frequency components, which are usually noise, are isolated or removed, resulting in

a clean image.

However, most of these techniques assumes that the noise is independent Gaussian.

Therefore, some of these developed algorithms might not be very effective if the noise

does not assume independence like if they are spatially correlated [2].

Spatially correlated noise is a noise that has a correlation between pixels, violating

the independence assumption for noise. This type of noise can appear on images that

previously developed algorithms and image processing software are not specialized on

denoising which could lead to lower quality resulting images.

Among the few developed image denoising techniques that specializes on spatially

correlated noise are Structured Noise2Void by Broaddus et al. [3] and a wavelet-based

algorithm proposed by Gonzaga [4]. Results showed that these algorithms performed

better than thresholding under the presence of spatially correlated noise.
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B. Statement of the Problem

Algorithms for denoising images, particularly images with spatially correlated noise

have been developed. Nevertheless, there are only few implementations of these tech-

niques that enables them to be actually used. Respectively, Gonzaga’s [4] wavelet-

based algorithm, which is proven to be effective in attenuating spatially correlated

noise, has not yet been implemented, including any variation of it.

C. Objectives of the Study

Broadly, the objective of this study is to develop an image noise suppression appli-

cation that will address spatially correlated noise through a wavelet-based algorithm

where users can upload images, choose an algorithm, and save the resulting clean

image. Simulated noise with horizontal correlation was generated and used to test

the effectiveness of the algorithm with PSNR and SSIM as metrics. The application

also features the use of other denoising algorithm, particularly DCNN and Structured

Noise2Void.

Specifically, the research proposes an image denoising application that allows user

to

1. Upload the image they wish to denoise in the accepted image formats.

2. Select the denoising algorithm from Deep CNN, Structured Noise2Void, and the

proposed algorithm, Wavelet-based Algorithm.

3. Adjust denoising configurations for Wavelet-based Algoritm.

4. Start denoising and view the noisy and resulting image.

5. Save the resulting denoised image.

2



D. Significance of the Project

Many studies have been done on image denoising, resulting to algorithms that perform

well on their purpose. However, most of these algorithms have the assumption that

the image noise is a white noise, or spatially uncorrelated and uniformly distributed.

Moreover, many image processing software also assumes Gaussian noise, which could

lead to poor quality on the resulting image. This study focuses on denoising spatially

correlated noise using wavelet transform, exploring a fast and new way of denoising

images.

E. Scope and Limitations

The study focuses on developing an algorithm for removing spatially correlated noise

on images. Consequently, the project is subject to the following scope and limitation:

1. In evaluating the wavelet-based algorithm, the noisy images used are clear im-

ages subjected to generated spatially correlated noise.

2. The simulated noise have horizontal correlation.

3. The software developed will accept limited number of image formats: jpg, jpeg,

and png.

4. Input images for the application should contain spatially correlated noise.

F. Assumptions

The following are the assumptions regarding the image, and the application developed.

1. Images used in testing the algorithm are subject to spatially correlated noise,

particularly with horizontal correlation.
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2. Inputs for the application will be image files, specifically in the format of jpg,

jpeg, and png.

3. Images contain spatially correlated noise.

4



II. Review of Related Literature

Image denoising is indeed a crucial process in various fields, including photography

and medical imaging. In a study conducted by Cui et al. [5], image denoising was

applied to Positron Emission Tomography (PET) scan images to enhance their quality

and aid in accurate diagnosis. The removal of noise from these images is imperative

for obtaining clear and reliable results.

However, it is important to acknowledge that image denoising techniques are not

flawless and can have certain limitations. One of the compromises associated with

denoising is the potential loss of details, such as edges. This is primarily because

denoising methods often target high-frequency components that may contain edge

information. The removal of noise in these frequency components can inadvertently

result in the smoothing or blurring of edges, impacting the overall sharpness and fine

details of the image [1].

Therefore, when applying image denoising techniques, it is essential to strike a

balance between noise reduction and preserving important image features. Different

denoising algorithms and parameters can be explored to find an optimal trade-off

between noise removal and detail preservation, depending on the specific requirements

of the application or analysis.

A wavelet is a waveform that represents a signal in both the time and frequency

domains. In the past, Fourier Transform (FT) was widely used for signal analysis.

However, FT does not retain the temporal information of a signal. Wavelet Trans-

form (WT), on the other hand, overcomes this limitation by preserving the duration

of a signal. It achieves this by decomposing the original signal into different fre-

quency components, allowing for a more detailed examination of these components

and facilitating transformations [6].

One of the key advantages of wavelet transform is its versatility in analyzing

various types of data that can be converted into signals or wavelets. This includes

5



audio, video, and image data. By applying wavelet transform to these different types

of data, it becomes possible to gain insights into their frequency characteristics and

explore their temporal and spectral properties more effectively. The ability to analyze

such diverse forms of data makes wavelet transform a valuable tool in many fields,

including signal processing, image processing, and data compression.

Wavelet transform indeed plays a crucial role in image processing and offers ef-

fective solutions to various image-related problems. Some of the key applications of

wavelet transform in image processing include image compression, restoration and

denoising, as well as edge and defect detection [7].

Images can be treated as signals, and wavelet transform provides a powerful ap-

proach to analyze different components of an image. The high-frequency components,

representing the fine details in an image, and the low-frequency components, repre-

senting the overall approximation or global features, are transformed into wavelets.

This decomposition allows for efficient processing of images, as wavelet transform

operates on signals or wavelets.

By decomposing an image into its wavelet components, image compression tech-

niques can be applied, selectively retaining or discarding certain wavelet coefficients

based on their importance. This enables effective compression without significant loss

of image quality.

Wavelet transform also aids in image restoration and denoising by manipulating

the wavelet coefficients. By applying appropriate thresholding or filtering techniques

to the wavelet coefficients, noise can be reduced or eliminated, resulting in a clearer

and more visually pleasing image.

Additionally, wavelet transform is valuable for edge and defect detection in im-

ages. Edge information is often represented by high-frequency components, making it

accessible through wavelet analysis. Defects or anomalies in images can be identified

by analyzing the wavelet coefficients and identifying significant deviations.
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The use of machine learning methods, particularly Convolutional Neural Networks

(CNNs), has gained popularity in image denoising research. These techniques lever-

age the power of deep learning models to learn from existing images and effectively

recognize and eliminate noise.

A study by Tian [8] introduced a Deep Convolutional Neural Network (CNN)

called the batch-renormalization denoising network (BRDNet). This novel network

achieved significant improvements in denoising performance, as measured by the Peak

Signal-to-Noise Ratio (PSNR), surpassing other methods such as Block Matching and

3D Filtering.

Another approach proposed by Cheng [9] involved the development of a novel

framework combining a CNN called NBNet with a subspace attention (SSA) module.

The SSA module, based on subspace projection, contributed to the denoising perfor-

mance of the network. The combined model demonstrated excellent results in terms

of Structural Similarity Index (SSIM) and PSNR.

In the context of medical imaging, Usui et al. [10] utilized CNNs with transfer

learning to denoise CT (Computed Tomography) images for the purpose of dose

reduction. Transfer learning allowed the model to leverage knowledge gained from

pre-trained networks, enabling effective denoising even with limited training data.

These studies highlight the effectiveness of CNN-based approaches in image de-

noising tasks. The utilization of deep learning models, coupled with innovative net-

work architectures and additional modules, has shown promising results in enhancing

denoising performance across various domains, including general image denoising and

medical image processing.

Aside from CNNs, other neural networks were also used. In the study of Wang

et al. [11], Back Propagation Neural Network was utilized optimized with whale

optimization algorithm in comparison to other filtering algorithms Median filtering,

Neighborhood average filtering and Wiener filtering, achieving better results. This

7



new optimization algorithm was mainly used to help in neural network training.

Another technique was proposed by Bnou [12], where wavelet denoising based on

an unsupervised learning model was used in which an unsupervised dictionary learn-

ing model K-SVD was trained on the wavelet decomposition of the noisy image. This

presents a new possibility of using the wavelet transform of images for training ma-

chine learning algorithms, as these algorithms could react differently between learning

an actual image or its wavelet transform.

Much research on denoising images assumes that the noise is independent or

sparsely distributed across the image. For example, Lee & Jeong [13] required the

assumption of the pixel-wise noise independence to implement their algorithm. More-

over, Cheng [9] mentioned that traditional image and signal denoising methods as-

sumes independent noise. Few research explicitly point out the assumption of uncor-

related noise and even fewer actually focuses on denoising spatially correlated noise.

This could pose a problem as denoising techniques that are effective on uncorrelated

noise might not be for noise that are correlated. Aelterman conducted experiments on

suppressing correlated and uncorrelated image noise and concluded that specialized

algorithms should be used in cases where correlated noise is present on images [2] [3].

Among these few research is the study by Broaddus et al. [3] which used Structured

Noise2Void as opposed to Noise2Void that assumes independent noise. Upon eval-

uation using two datasets, Strucn2v showed considerable improvement compared to

standard and other blind spot based techniques.

For horizontally correlated images, practical approaches have been used. Jones

and Nellist [14] used an algorithm was developed to remove noise and drift from scan-

ning transmission electron microscope images which resulted in a 30% improvement

in the signal-to-noise ratio.

The collection of studies discussed above has shed light on various ideas and

techniques related to image denoising. It has been observed that Convolutional Neural

8



Networks (CNNs) are widely employed and considered the predominant technique in

image denoising. The contributions and effectiveness of CNNs, both independently

and in conjunction with other methods, have been thoroughly explored.

Despite the dominance of CNNs, wavelet transform remains a relevant technique

in image denoising, as evidenced by studies incorporating it into their research. This

review has revealed the continued importance of wavelet transform in addressing

spatially correlated noise reduction.

Furthermore, this review has identified existing algorithms that can serve as bench-

marks for comparison with the algorithm being developed. By leveraging these es-

tablished methods, the researcher can gauge the performance and efficacy of their

proposed approach.

It is worth noting that the review has highlighted a gap in the literature pertain-

ing to wavelet denoising specifically targeting spatially correlated image noise. This

signifies an unexplored area within the field of image denoising, which the researcher

intends to address through their work.

By delving into wavelet transform and focusing on spatially correlated noise, this

project aims to contribute to the existing knowledge and provide insights into this

understudied aspect of image denoising.
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III. Theoretical Framework

A. Image Noise

Noise is an unwanted part of an image [15]. We can often see them in images as

scattered black and white dots, kind of like a sprinkle of salt and pepper. This type

of noise is a Gaussian noise, which is the most common. There are also different types

of noise, like quantization noise and speckle noise. The images below show examples

of the mentioned types of noise. [16].

Figure 1: Gaussian noise

Figure 2: Quantization noise
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Figure 3: Speckle noise

A noisy image is composed of the original, clear image, and the noise. It can be

modeled as

g = f + e

where g is the observed noisy MxN image, f is the clear image, and e represents the

mean-zero Gaussian noise.

B. Spatially Correlated Noise

Assumptions on noise states that it is normal, independent, and identically distributed

across the image [17]. However, spatially correlated noise can still exist, violating

the independence assumption. Speckle noise, which was mentioned above, is one

example of a spatially correlated noise [16]. According to the paper ”A survey of

spatially correlated noise reduction in images” by D. Dabov, A. Foi, V. Katkovnik,

and K. Egiazarian [18], spatially correlated noise can be caused by a variety of factors,

including sensor defects, optical distortions, and quantization errors. When dealing

with correlated noise, denoising algorithm designed for Gaussian white noise might

not be very effective. Jansen [19] found that Generalized Cross Validation (GCV) for

white noise was not very effective in eliminating correlated noise. The figure below is
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an example of an image denoised using GCV. Dabov et al. [18] also note that spatially

correlated noise can have a significant impact on the visual quality of an image, and

can make it difficult to perform tasks such as image recognition and compression.

They suggest that the use of spatially adaptive filtering techniques, such as non-local

means, patch-based filtering, and Bayesian methods can be an effective way to remove

this type of noise from images.

Figure 4: Left: image with artificial correlated noise. Right: denoised image using
level-dependent wavelet thresholding

B.1 Horizontally Correlated Noise

Certain types of spatially correlated noise exhibit specific orientations, such as hor-

izontally correlated and vertically correlated noise. These types of noise can occur

due to various reasons. Horizontally correlated noise, in particular, is often observed

in microscopy images, including those generated by Scanning Electron Microscopy

(SEM) [20]. In SEM, beams of electrons are scanned across the specimen, gradually

creating a magnified image [21]. This scanning process can introduce horizontally

correlated noise into the resulting image due to variations in factors during each pass

of the electron beam [20]. Figure 5 shows an example of image taken using a scanning

transmission electron microscope where horizontal noise and drift can be seen [14].

12



Figure 5: Image produced by Scanning Electron Microscopy (SEM)

C. Fourier Transform

The Fourier Transform provides frequency information of a signal, including their fre-

quencies and magnitude. However, it does not include the time component. Because

of this, they are only suitable for signals that do not change over time, as they cannot

provide information on frequency and magnitude of signals during a certain period

in time. On the other hand, there is Short-Time Fourier Transform (STFT) that

gives frequency over time information by dividing the signal into smaller windows

of stationary portions. Nevertheless, STFT still cannot tell us the frequencies on a

specific time instance. This problem is solved by the Wavelet Transform

D. Wavelet Transform

The Wavelet Transform is a powerful tool for analyzing signals and images, allowing

for a localized representation of both frequency and time information. Unlike the

Fourier Transform, which uses sinusoidal functions as basis functions, the Wavelet

Transform employs wavelets as the basis functions.

13



The formula for the Continuous Wavelet Transform (CWT) can be expressed as:

F (τ, s) = 1√
|s|

∫ +∞
−∞ f(t)ψ∗ ( t−τ

s

)
dt

Here, f(t) represents the input signal, and ψ(t) is the mother wavelet. The CWT

decomposes the signal into a set of coefficients F (τ, s), which provide information

about the signal at different time (τ) and scale (s) levels.

The scale parameter s controls the width of the wavelet, allowing us to analyze

different frequency components of the signal. By adjusting the scale, we can focus on

high-frequency details or low-frequency trends in the signal. The inverse of the scale,

1/s, represents the frequency of the wavelet.

The translation parameter τ determines the position of the wavelet in the time

domain. It allows us to shift the wavelet along the signal to capture different temporal

features.

The conjugate complex ψ∗ of the mother wavelet is used in the transform to handle

complex wavelet functions, such as the Morlet wavelet.

By applying the CWT, we obtain a representation of the signal in the time-

frequency domain, where we can identify localized features and analyze the signal

at different scales. The CWT is particularly useful for analyzing signals with non-

stationary properties, as it adapts to changes in frequency content over time.

D.1 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is a variation of the Wavelet Transform

that operates on discrete-time signals or discrete images. It decomposes the signal or

image into different levels, revealing its frequency components at various scales. The

DWT is widely used in image compression, denoising, and feature extraction.

The formula for the DWT can be expressed as:

D[a, b] = 1√
b

∑p−1
m=0 f [tm]ψ

[
tm−a

b

]
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In this formula, f [tm] represents the input signal or pixel values of the image at

the discrete time or position index tm. The DWT decomposes the signal or image

into a set of coefficients D[a, b], where a and b represent the translation and scaling

parameters, respectively.

The translation parameter a controls the position of the wavelet in the signal or

image. It determines the starting point of the analysis window for each level of the

transform. By shifting the wavelet across the signal or image, the DWT captures

different localized features.

The scaling parameter b determines the scale or size of the analysis window. It

represents the number of samples or pixels over which the wavelet is applied. By

adjusting the scale, the DWT can analyze the signal or image at different frequency

resolutions. A smaller scale corresponds to a higher-frequency analysis, while a larger

scale captures lower-frequency components.

The DWT is performed by applying a set of low-pass and high-pass filters to

the signal or image. The low-pass filter extracts the approximation or low-frequency

components, while the high-pass filter reveals the detail or high-frequency compo-

nents. This decomposition process is repeated iteratively to obtain multiple levels of

approximation and detail coefficients.

The choice of wavelet function used in the DWT determines the properties of the

decomposition. Different wavelets, such as the Haar wavelet, Daubechies wavelets,

and Coiflets, offer different trade-offs between time and frequency localization. The

selection of an appropriate wavelet depends on the specific application requirements.

In image processing, the DWT can be applied as a two-dimensional transform,

analyzing both the rows and columns of the image. This allows for efficient compres-

sion and denoising techniques, as the DWT separates the image into its approximate

and detail components, where the high-frequency components often represent edges

or noise.
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E. PSNR and SSIM

Metrics are necessary to assess the effectiveness of different image processing algo-

rithms. Some of these metrics include Peak Signal-to-Noise Ratio (PSNR) and Struc-

tural Similarity Index Method (SSIM).

E.1 PSNR

The Peak Signal-to-Noise Ratio (PSNR) is indeed a commonly used measure in image

quality assessment. It provides an indication of the image quality by comparing the

maximum possible power of an image to the power of the noise that distorts it. PSNR

is typically expressed in decibels (dB) and is often used in image and video denoising

applications.

The formula for calculating PSNR is as follows:

PSNR = 10 · log10
(
peakval2

MSE

)
dB

In this formula, ”peakval” represents the maximum possible value of the image

data. For unsigned 8-bit integer data, the maximum value is 255. The MSE (Mean

Squared Error) is a measure of the average squared difference between the original

image and the denoised image.

By applying this formula, the PSNR value can be calculated to assess the quality

of the denoised image. Higher PSNR values indicate better image quality, as they

reflect a higher ratio between the peak power and the noise power.

It is important to note that the typical range of PSNR values can vary depending

on the image format and the specific application. For 8-bit images, PSNR values

typically range from 30 to 50 dB, while for 16-bit images, the range is usually between

60 and 80 dB in image and video denoising applications [22].
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E.2 SSIM

The Structural Similarity Index (SSIM) is a widely used measure for evaluating the

similarity between two images, considering the factors of luminance, contrast, and

structure. It assesses the correlation of these characteristics on a local level and ag-

gregates the outcomes across the entire image to obtain an overall similarity score [23].

The SSIM index offers valuable insights into whether an image denoising algorithm

has not only effectively removed noise but also preserved essential image details.

Mathematically, the SSIM can be expressed as follows:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ

Here, l(x, y), c(x, y), and s(x, y) represent the comparisons of luminance, con-

trast, and structure, respectively, between the two images denoted as x and y. The

parameters α, β, and γ control the relative importance of each component in the

overall similarity score. The utilization of SSIM as a quantitative metric offers a

comprehensive evaluation of the performance of the image denoising algorithm.

F. Wavelet-based algorithm for diminishing spatially corre-

lated noise

The wavelet-based algorithm used as the implementation for denoising spatially cor-

related noise is be based on the algorithm proposed by Gonzaga [4] which is as follows:

This algorithm combines the advantages of wavelet thresholding, which removes

noise by shrinking the wavelet coefficients, and Wiener filtering, which further en-

hances the denoising performance by considering the statistical properties of the noise

and the image.

By iteratively updating the estimates of the noise-free coefficients and applying

Wiener filtering, the algorithm progressively refines the denoised image until con-
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Algorithm 1 Wavelet-based algorithm for attenuating spatially correlated noise

1: Obtain the two-dimensional wavelet transform of the image.
2: Obtain an estimate of V ar(Wg(j,m, n)).
3: Obtain initial estimates of Wf by thresholding.
4: Obtain values of error terms by taking the difference Wg −Wf .
5: Estimate V ar(We(j,m, n)).
6: Estimate Wf by Wiener filtering.
7: Go to Step 4 and iterate until the difference of successive estimates of Wf are

arbitrarily small.
8: Obtain f by taking the inverse wavelet transform of the final estimate of Wf in

Step 7.

vergence is reached. The quality of the denoised image improves as the difference

between successive estimates becomes smaller.

G. Django Framework

Django framework is a powerful web development framework that follows the Model-

View-Controller (MVC) architectural pattern. Django offers a comprehensive set of

tools and features to facilitate the development of web applications.

The Django framework comprises several key components that contribute to the

efficient and structured development of web applications:

• Model: The Model component represents the data structure and defines the

database schema. It includes the models that map to database tables and

encapsulate the business logic for data manipulation.

• View: The View component handles the logic and processes user requests. It

retrieves data from the model, applies necessary transformations or operations,

and prepares the data to be rendered in the template.

• Template: The Template component defines the presentation layer and is re-

sponsible for generating the user interface. It contains HTML files with em-

bedded template tags and variables that dynamically render the data received
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from the view.

• URL Dispatcher: The URL Dispatcher maps incoming requests to appropriate

views based on predefined URL patterns. It enables proper routing and naviga-

tion within the application, ensuring that each request is directed to the correct

view

• Forms: Django provides a built-in form handling mechanism that simplifies the

validation and processing of user input. Forms help ensure data integrity and

provide a user-friendly interface for input validation.

By utilizing the Django framework, developers can take advantage of its robust

features, such as built-in security measures, user authentication, session management,

and database abstraction. These features contribute to the overall reliability and

scalability of the web application.
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IV. Design and Implementation

A. Wavelet-based Algorithm

Gonzaga’s wavelet-based algorithm [4] was modified to specialize for spatially corre-

lated noise. Thus, the resulting algorithm designed is as follows:

Algorithm 2 Wavelet-based algorithm for attenuating spatially correlated noise

1: Obtain the two-dimensional wavelet transform of the image.
2: Obtain initial estimates of Wf by thresholding on the horizontal coefficients.
3: Estimate Wf by Wiener filtering.
4: Obtain f by taking the inverse wavelet transform of the final estimate of Wf in

Step 3.

The first step in the denoising process involved obtaining the wavelet coefficients of

a single-channel noisy image using a two-dimensional wavelet transform. This trans-

formation effectively separated the image into two components: the approximation

coefficients and the detail coefficients. The approximation coefficients represent the

low-frequency components of the image, while the detail coefficients encompass the

high-frequency components, which are further categorized into horizontal, vertical,

and diagonal details.

To reduce the impact of horizontal noise, a soft thresholding function was applied

specifically to the horizontal detail coefficients. This process effectively removed un-

wanted noise in the horizontal direction, enhancing the clarity of the image. Sub-

sequently, Wiener filtering, a statistical estimation technique, was employed on the

entire image. This filtering method further suppressed residual noise and other types

of noise present in the image, resulting in a cleaner representation.

Finally, to reconstruct the denoised image, an inverse wavelet transform was per-

formed on the modified coefficients. This transformation restored the image by com-

bining the denoised approximation and detail coefficients, resulting in a high-quality

representation with reduced noise.
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By employing these denoising techniques in sequence—wavelet transform, soft

thresholding, Wiener filtering, and inverse wavelet transform—it is possible to effec-

tively enhance an image by mitigating various types of noise and improving its overall

quality.

B. Use Cases

Figure 6: Use Case Diagram of System

The above use case diagram describes the functionalities that users can access

in the system. First, noisy image can be uploaded. The application should only

accept image files in the upload section. Next, the user can select the denoising

algorithm that they can use to denoise the image and edit configurations based on

the selected algorithm. Lastly, after finalizing the configurations, the denoised image
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should appear beside the original noisy image that users can download or save.

Figure 7: IPO diagram of the system

To simplify how the system works, above is an IPO diagram where the inputs,

process, and output of the system is illustrated. Inputs include the noisy image in

the acceptable format, uploaded by the user, together with the choice of denoising

algorithm to denoise the image with. For the process, depending on the algorithm

chosen, a specific implementation of an algorithm will be used with the image as an

input. Lastly, after the application implemented the chosen algorithm, the resulting

denoised image will be the output, displayed on the page and can also be downloaded

by the user.

C. System Architecture

To develop the web application, the Django Framework was employed, enabling the

division of the system into the application and presentation layers.

C.1 Presentation Layer

The presentation layer comprises the templates, which are HTML files specifically

designed to facilitate seamless user interaction with the application. These templates

define the structure and layout of the web pages, allowing the presentation of dynamic

content and the incorporation of user interface elements. Through the use of HTML,

22



CSS, and JavaScript, the presentation layer ensures a visually appealing and user-

friendly experience.

C.2 Application Layer

The application layer encompasses the views, which play a crucial role in handling

request processing, input retrieval, and manipulation. Views act as the intermedi-

ary between the user’s actions and the underlying business logic of the application.

They receive and process requests from the presentation layer, perform necessary

operations, and generate appropriate responses. This layer also includes the URLs

that map incoming requests to specific views, enabling proper routing and navigation

within the application.

By separating the application and presentation layers, Django provides a clear

and organized structure for web development. This separation allows for modular

development, easier maintenance, and better code reuse. The Django Framework’s

built-in functionalities and conventions streamline the development process, enabling

a better focus on implementing the algorithms and creating an engaging user interface.

D. Technical Architecture

To run Python scripts for applying image noise to the dataset, training, evaluating,

and saving models, Google Colab Virtual Environments were used with the following

specifications:

1. CPU: 2-core Xeon 2.2GHz

2. Memory: 13 GB

3. Disk: 130 GB

The technical architecture of the application is built using the Python program-

ming language. It is an image processing application that incorporates various image
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denoising techniques, such as wavelet denoising and machine learning. The following

Python libraries were utilized:

1. PIL (Python Imaging Library): This library is used to handle image files, allow-

ing conversion of images into a format suitable for image processing. It provides

functions for reading, manipulating, and saving images.

2. Keras: Keras is a popular deep learning library that provides high-level APIs

for building and training neural networks. In the context of image denoising,

Keras is used to load pre-trained models and make predictions on the input

images.

3. PyWavelets (pywt): PyWavelets is a library that provides various wavelet trans-

forms and utilities for signal and image processing. In image denoising, pywt

is utilized to decompose the input images into different wavelet coefficients,

allowing for the removal of noise and reconstruction of the denoised image.

4. NumPy: NumPy is a fundamental library for numerical computing in Python.

It provides powerful array and matrix operations, making it suitable for rep-

resenting and manipulating images as arrays. NumPy is widely used in image

processing tasks, including image denoising, due to its efficiency and conve-

nience.

5. Skimage: Skimage, short for scikit-image, is an image processing library that

provides a collection of algorithms for image manipulation and analysis. It offers

various functions and utilities for image denoising, including the calculation

of evaluation metrics such as PSNR (Peak Signal-to-Noise Ratio) and SSIM

(Structural Similarity Index). These metrics are used to assess the quality of

the denoising algorithm’s output.
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6. n2v: The n2v library is specifically designed for training and applying the Struc-

tured Noise2Void (N2V) model. This model is used for denoising images cor-

rupted by structured noise. The n2v library provides functionalities for data

preparation, model training, and prediction using the N2V model.

This technical architecture enables efficient image processing and denoising capa-

bilities within the application.
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V. Results

A. Denoising images

A.1 Dataset

In order to evaluate the image denoising algorithm, the CIFAR-10 dataset from Keras

was utilized. The CIFAR-10 dataset consists of 60,000 RGB images with a resolution

of 32x32 pixels. Among these images, 50,000 belong to the training set, while the

remaining 10,000 are assigned to the test set. Originally designed for image classi-

fication tasks, this dataset was repurposed for this paper to serve as a collection of

clean images that would be subjected to simulated correlated noise.

Figure 8: CIFAR-10 Dataset

A.2 Spatially Correlated Noise

To simulate image noise with horizontal correlation, a specific approach was adopted.

This involved applying a convolution operation to introduce noise onto the image.

The process entailed convolving random Gaussian noise with a 1 by 3 noise kernel
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across different color channels.

The random Gaussian noise component served as a source of random variation,

mimicking the inherent noise present in real-world images. The 1 by 3 noise kernel

was specifically designed to introduce horizontal correlation to the noise pattern.

By convolving the random Gaussian noise with the 1 by 3 noise kernel, the result-

ing noise pattern exhibited horizontal correlation. This means that the noise vari-

ations in adjacent pixels along the horizontal direction were statistically correlated,

creating a specific noise pattern characteristic.

Figure 9: Simulated Horizontally Correlated Noise

A.3 Evaluation of Wavelet-based Algorithm

Figure 10 present an example of denoised images obtained using the wavelet-based

algorithm. The algorithm operates only on single-channel images, thus, RGB images

are divided in to three channels where the algorithm was applied simultaneously.

To further evaluate the algorithm statistically, it was applied to the test dataset

of CIFAR-10 where the average PSNR and SSIM was measured.

As can be seen on Table 1, the wavelet-based denoising algorithm a good average

PSNR of 27.1327 and a standard deviation of 0.9485. For mean SSIM, the algorithm
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Figure 10: Image denoised using Wavelet-based Algorithm

Table 1: Evaluation of the Algorithm
Metrics Value
PSNR (Mean) 27.1327
PSNR (Std) 0.9485
SSIM (Mean) 0.9201
SSIM (Std) 0.0290

also got a good value of 0.9201 where 1 means identical to the ground truth im-

age. These metrics signifies that the proposed algorithm has a good and consistent

performance across the dataset.

B. Screenshots of the System

The following are the screenshots of the system showing the different functionalities

available and sequence for using the application.

The home page (Figure 11) describes the application and the integrated algorithms

that can be used for denoising images. It also contains a button that redirects to the

denoising tool.

Figure 12 shows a page that includes a form where the user can upload the image

to be denoised, choose the technique to be used, and alter configurations for wavelet-

based denoising algorithm. Tooltips can also be activated upon hover to guide users

on what to input for the configurations.

28



Figure 11: Home Page

Figure 12: Input page

The input page (Figure 13) also includes a modal that can be activated to show

the instructions for using the system.

When the inputs are valid and the denoise button is clicked, it will start a loader

that signifies the start of the denoising process. Once done, the user will be redirected

to the results page.

The results page (Figure 15) will display the algorithm that was used. Then, it

will show the input image together with the denoised image on the right. A download

button below the processed image will be available to download the denoised image.
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Figure 13: Input page instructions

Figure 14: Loading

Also, a button to denoise another image will be available to redirect the user again

to the denoise page.
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Figure 15: Results page

VI. Discussions

A. Objectives

The results of this Special Problem demonstrate the successful achievement of all

the objectives outlined in the paper. A fully functional web application was suc-

cessfully developed, incorporating three algorithms. The application encompasses all

the desired functionalities, allowing users to effectively utilize the noise attenuating

algorithms and achieve desired results.

The successful fulfillment of these objectives underscores the significance and ef-

fectiveness of the implemented algorithms, as well as the development of the web

application as a practical tool for image noise suppression.
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B. Challenges

During the development of this special problem, several challenges were encountered.

Firstly, training the machine learning models required significant computational re-

sources and a large image dataset. The training process was computationally inten-

sive, necessitating substantial time and computing power.

Secondly, integrating the trained models into the system posed difficulties. Saving

and loading the models encountered compatibility issues with different environments,

requiring multiple iterations to ensure seamless integration.

Lastly, the image processing pipeline presented its own set of challenges. From the

moment images were uploaded to the system to the point of display and user-driven

saving, numerous steps were involved. Each step in the process had the potential to

introduce some degradation to the processed images, thereby impacting the overall

quality.

Addressing these challenges required careful consideration and troubleshooting

to optimize the training process, ensure compatibility across different environments,

and minimize degradation in image processing steps. Overcoming these hurdles was

essential to deliver a robust and reliable system capable of effectively reducing image

noise.

C. Significance of the Application

When training machine learning models to denoise images, they are typically unaware

of the specific characteristics of the noise that needs to be removed. As a result, this

lack of knowledge can lead to suboptimal accuracy and errors. However, utilizing

algorithms that specialize in certain noise characteristics can greatly improve perfor-

mance. This highlights the importance of exploring alternative algorithms that not

only offer faster processing times but also deliver better performance under specific

conditions.
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The aforementioned demonstrates the necessity of employing different algorithms

for different types of noise. Consequently, the system recognizes the significance

of providing users with a range of algorithms to choose from when reducing image

noise. Different algorithms may exhibit varying performance depending on the specific

conditions, making it crucial to grant users the freedom to test and determine which

algorithm best suits their particular situation.
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VII. Conclusions

In conclusion, this study aimed to compare three denoising algorithms by apply-

ing horizontally-correlated noise to an image dataset. The models were trained and

tested, and the results indicated that the Wavelet-based algorithm outperformed the

other algorithms in terms of both Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity Index (SSIM). This finding suggests that the Wavelet-based algorithm is

particularly effective in reducing spatially-correlated noise in images.

Furthermore, the denoising application successfully integrated all three algorithms,

allowing users to utilize them for removing spatially correlated noise from their own

images. This integration provides users with a practical tool to improve the quality

of their images by eliminating unwanted noise.

Overall, this study highlights the effectiveness of the Wavelet-based algorithm in

denoising images and underscores the importance of providing users with multiple

algorithm options to address different noise characteristics. The successful develop-

ment and integration of these algorithms into the denoising application demonstrate

the practical applicability and usefulness of this research.
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VIII. Recommendations

This Special Problem acknowledges the significance of having prior knowledge about

the characteristics of the noise to be removed from an image. Building upon this

understanding, an improvement that can be proposed is the development of a classi-

fication model capable of extracting the specific characteristics of noise present in an

image.

By training a classification model on a dataset that includes different types and

characteristics of noise, it can learn to classify and identify the specific noise com-

ponents present in an image. This model can then be used to provide insights into

the type and characteristics of noise affecting an image, enabling a more tailored and

targeted denoising approach.

Implementing such a classification model would enhance the denoising process by

providing valuable information about the nature of the noise. This knowledge can

then be leveraged to select or customize denoising algorithms or techniques that are

most suitable for the identified noise characteristics. Ultimately, this approach would

contribute to improved denoising accuracy and the ability to effectively remove the

specific noise components present in an image.

Integrating a noise classification model into the existing denoising system would

further enhance its capabilities, providing users with a more automated and intelligent

solution for noise removal.
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X. Appendix

A. Source Code

train.py
1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import cv2

5 import pickle

6 import time

7 import ssl

8 import urllib

9 import os

10 import zipfile

11 from sklearn import model_selection

12 from sklearn.linear_model import LogisticRegression

13 from skimage.metrics import structural_similarity as ssim

14 from skimage.metrics import peak_signal_noise_ratio as psnr

15 from scipy.ndimage import gaussian_filter

16 from scipy import signal

17 from keras.datasets import cifar10

18

19 from scipy.ndimage import convolve

20 from keras.datasets import mnist

21 from keras.models import Sequential

22 from keras.layers import Dense, Conv2D, MaxPooling2D, UpSampling2D

23 from tensorflow.keras.models import save_model

24

25 from n2v.models import N2V, N2VConfig

26 from n2v.internals.N2V_DataGenerator import N2V_DataGenerator

27 from n2v.utils.n2v_utils import manipulate_val_data, autocorrelation

28 from csbdeep.utils import plot_history

29

30 # Load the CIFAR-10 dataset

31 (x_train, _), (x_test, _) = cifar10.load_data()

32

33 # Print the shapes of the data arrays

34 print(’x_train shape:’, x_train.shape)

35 print(’x_test shape:’, x_test.shape)

36

37 # Normalize the image data

38 x_train = x_train.astype(’float32’) / 255.0

39 x_test = x_test.astype(’float32’) / 255.

40

41 # Adding horizontally correlated noise to the training images

42 purenoise_train = []

43 noise_kernel = np.array([[1, 1, 1]]) / 3 # horizontal correlations

44 a_train, b_train, c_train, _ = x_train.shape

45

46 for i in range(a_train):

47 noise = np.random.rand(b_train, c_train, 3) * 1.5

48 noise = np.multiply(noise, noise_kernel)

49 purenoise_train.append(noise)

50

51 purenoise_train = np.array(purenoise_train)

52 purenoise = purenoise_train - purenoise_train.mean()

39



53

54 x_train_noisy = x_train + purenoise_train

55

56 # Adding horizontally correlated noise to the test images

57 purenoise_test = []

58 noise_kernel = np.array([[1, 1, 1]]) / 3 # horizontal correlations

59

60 a_test, b_test, c_test, _ = x_test.shape

61

62 for i in range(a_test):

63 noise = np.random.rand(b_test, c_test, 3) * 1.5

64 noise = np.multiply(noise, noise_kernel)

65 purenoise_test.append(noise)

66

67 purenoise_test = np.array(purenoise_test)

68 purenoise = purenoise_test - purenoise_test.mean()

69

70 x_test_noisy = x_test + purenoise_test

71

72 # Configurations for the Deep CNN model to be trained

73 dcnn_model = Sequential([

74 # encoder network

75 Conv2D(

76 32,

77 3,

78 activation=’relu’,

79 padding=’same’,

80 input_shape=(None, None, 3)),

81 MaxPooling2D(2,

82 padding=’same’),

83 Conv2D(

84 16,

85 3,

86 activation=’relu’,

87 padding=’same’),

88 MaxPooling2D(

89 2,

90 padding=’same’),

91 # decoder network

92 Conv2D(16,

93 3,

94 activation=’relu’,

95 padding=’same’),

96 UpSampling2D(2),

97 Conv2D(

98 32,

99 3,

100 activation=’relu’,

101 padding=’same’),

102 UpSampling2D(2),

103 # output layer

104 Conv2D(

105 3,

106 (3, 3),

107 activation=’sigmoid’,

108 padding=’same’)

109 ])

110

111 dcnn_model.compile(optimizer=’adam’, loss=’binary_crossentropy’)

112 dcnn_model.summary()

113
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114 # Train the model

115 start_time = time.time()

116

117 history_dcnn=dcnn_model.fit(x_train_noisy, x_train, epochs=20, batch_size=256, validation_data=(x_test_noisy, x_test))

118

119 end_time = time.time()

120 training_time_dcnn = end_time - start_time

121

122 # Save the underlying Keras model and weights

123 save_model(dcnn_model.keras_model, ’dcnn.h5’)

124 dcnn_model.keras_model.save_weights(’dcnn_weights.h5’, overwrite=True, save_format=None, options=None)

125

126 # Configurations for the

127 # train_steps_per_epoch is set to (number of training patches)/(batch size), like this each training patch

128 # is shown once per epoch.

129 config = N2VConfig(x_train_noisy,

130 unet_kern_size=3,

131 unet_n_first=64,

132 unet_n_depth=3,

133 train_steps_per_epoch=128,

134 train_epochs=20,

135 batch_norm=True,

136 train_batch_size=128,

137 n2v_perc_pix=0.198,

138 n2v_patch_shape=(32,32),

139 n2v_manipulator=’normal_withoutCP’,

140 n2v_neighborhood_radius=5,

141 single_net_per_channel=False,

142 structN2Vmask=[[0, 1, 1, 1, 0]])

143

144 # Let’s look at the parameters stored in the config-object.

145 vars(config)

146

147 # a name used to identify the model --> change this to something sensible!

148 model_name = ’n2v_2D’

149 # the base directory in which our model will live

150 basedir = ’models’

151 # We are now creating our network model.

152 model = N2V(config, model_name, basedir=basedir)

153

154

155 start_time = time.time()

156

157 history = model.train(x_train_noisy, x_test_noisy)

158

159 end_time = time.time()

160 training_time_n2v = end_time - start_time

161

162 # Save the underlying Keras model

163 save_model(model.keras_model, ’n2v_model.h5’)

164 model.keras_model.save_weights(’n2v_weights.h5’, overwrite=True, save_format=None, options=None)

wavelet-based algorithm.py
1 import numpy as np

2 import pywt

3 from google.colab import files

4 import matplotlib.pyplot as plt

5 import matplotlib.image as mpimg

6 from keras.datasets import mnist

7 from scipy.signal import wiener
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8 from keras.datasets import cifar10

9 from skimage.metrics import structural_similarity as ssim

10 from skimage.metrics import peak_signal_noise_ratio as psnr

11 from scipy.ndimage import convolve

12

13 (x_train, _), (x_test, _) = cifar10.load_data()

14

15 # normalize the image data

16 x_train = x_train.astype(’float32’) / 255

17 x_test = x_test.astype(’float32’) / 255

18

19 # Get the number of samples in the dataset

20 train_num_samples = x_train.shape[0]

21 test_num_samples = x_test.shape[0]

22

23 x_train = x_train[:train_num_samples]

24 x_test = x_test[:test_num_samples]

25 np.save(’x_train.npy’, x_train)

26 np.save(’x_test.npy’, x_test)

27

28 # Separate the RGB channels for all images

29 x_train_red = x_train[:, :, :, 0]

30 x_train_green = x_train[:, :, :, 1]

31 x_train_blue = x_train[:, :, :, 2]

32

33 np.save(’x_train_red.npy’, x_train_red)

34 np.save(’x_train_green.npy’, x_train_green)

35 np.save(’x_train_blue.npy’, x_train_blue)

36

37 # Separate the RGB channels for all images

38 x_test_red = x_test[:, :, :, 0]

39 x_test_green = x_test[:, :, :, 1]

40 x_test_blue = x_test[:, :, :, 2]

41

42 np.save(’x_test_red.npy’, x_test_red)

43 np.save(’x_test_green.npy’, x_test_green)

44 np.save(’x_test_blue.npy’, x_test_blue)

45

46 # Function for adding horizontally correlated noise to each of the channels of

47 # the images

48 def createNoise(shape):

49 # Assuming you have the shape of the image: (b_train, c_train)

50 # Assuming you want to generate sparse noise with a scale factor of 0.3

51

52 # Generate separate sparse noise for each channel

53 noise_r = np.zeros(shape)

54 noise_g = np.zeros(shape)

55 noise_b = np.zeros(shape)

56

57 # Define the number of non-overlapping regions

58 num_regions = 100

59 noise_kernel = np.array([[1, 1, 1]]) / 7 # horizontal correlations

60

61 # Generate random non-overlapping regions for each channel

62 for _ in range(num_regions):

63 region = np.random.rand(512, 512) < 0.0005 # Define the sparsity level (adjust as needed)

64 noise_r[region] = np.random.rand() * 500

65 noise_g[region] = np.random.rand() * 500

66 noise_b[region] = np.random.rand() * 500

67 noise_r = convolve(noise_r, noise_kernel)

68 noise_g = convolve(noise_g, noise_kernel)
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69 noise_b = convolve(noise_b, noise_kernel)

70 # Combine the separate noise channels into a single noise image

71 return np.stack((noise_r, noise_g, noise_b), axis=-1), noise_r, noise_g, noise_b

72

73 from scipy.ndimage import convolve

74 noise_kernel = np.array([[1, 1, 1]]) / 3 # horizontal correlations

75

76 purenoise_train_combined = []

77 purenoise_train_correlated_r = []

78 purenoise_train_correlated_g = []

79 purenoise_train_correlated_b = []

80 a_train, b_train, c_train, _ = x_train.shape

81

82 for i in range(a_train):

83 combined, noise_r, noise_g, noise_b = createNoise(noise_kernel, (b_train, c_train))

84 purenoise_train_combined.append(combined)

85 purenoise_train_correlated_r.append(noise_r)

86 purenoise_train_correlated_g.append(noise_g)

87 purenoise_train_correlated_b.append(noise_b)

88

89 purenoise_train = np.array(purenoise_train_combined)

90 purenoise_train = purenoise_train - purenoise_train.mean()

91 x_train_noisy = x_train + purenoise_train

92

93 purenoise_train_r = np.array(purenoise_train_correlated_r)

94 purenoise_train_r = purenoise_train_r - purenoise_train_r.mean()

95

96 purenoise_train_g = np.array(purenoise_train_correlated_g)

97 purenoise_train_g = purenoise_train_g - purenoise_train_g.mean()

98

99 purenoise_train_b = np.array(purenoise_train_correlated_b)

100 purenoise_train_b = purenoise_train_b - purenoise_train_b.mean()

101

102 x_train_noisy_r = x_train_red + purenoise_train_r

103 x_train_noisy_g = x_train_green + purenoise_train_g

104 x_train_noisy_b = x_train_blue + purenoise_train_b

105

106

107 purenoise_test_combined = []

108 purenoise_test_correlated_r = []

109 purenoise_test_correlated_g = []

110 purenoise_test_correlated_b = []

111 a_test, b_test, c_test, _ = x_test.shape

112

113 for i in range(a_test):

114 combined, noise_r, noise_g, noise_b = createNoise(noise_kernel, (b_test, c_test))

115 purenoise_test_combined.append(combined)

116 purenoise_test_correlated_r.append(noise_r)

117 purenoise_test_correlated_g.append(noise_g)

118 purenoise_test_correlated_b.append(noise_b)

119

120 purenoise_test = np.array(purenoise_test_combined)

121 purenoise_test = purenoise_test - purenoise_test.mean()

122 x_test_noisy = x_test + purenoise_test

123

124 purenoise_test_r = np.array(purenoise_test_correlated_r)

125 purenoise_test_r = purenoise_test_r - purenoise_test_r.mean()

126

127 purenoise_test_g = np.array(purenoise_test_correlated_g)

128 purenoise_test_g = purenoise_test_g - purenoise_test_g.mean()

129
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130 purenoise_test_b = np.array(purenoise_test_correlated_b)

131 purenoise_test_b = purenoise_test_b - purenoise_test_b.mean()

132

133 x_test_noisy_r = x_test_red + purenoise_test_r

134 x_test_noisy_g = x_test_green + purenoise_test_g

135 x_test_noisy_b = x_test_blue + purenoise_test_b

136

137

138 # Wavelet-based Algorithm

139 # 1. Obtain the two-dimensional wavelet transform of the image

140 coeffs_r = []

141 coeffs_g = []

142 coeffs_b = []

143

144 for r,g,b in zip(x_test_noisy_r,x_test_noisy_g,x_test_noisy_b):

145 coeff_r = pywt.wavedec2(r, ’db8’, mode=’constant’, level=1)

146 coeff_g = pywt.wavedec2(g, ’db8’, mode=’constant’, level=1)

147 coeff_b = pywt.wavedec2(b, ’db8’, mode=’constant’, level=1)

148 coeffs_r.append(coeff_r)

149 coeffs_g.append(coeff_g)

150 coeffs_b.append(coeff_b)

151

152 wf_final_r = []

153 wf_final_g = []

154 wf_final_b = []

155

156 for r, g, b in zip(coeffs_r, coeffs_g, coeffs_b):

157 # 2. Obtain initial estimates of Wf by thresholding

158 thresh = 0.1

159 approx_r, (h1_r, v1_r, d1_r) = r

160 approx_g, (h1_g, v1_g, d1_g) = g

161 approx_b, (h1_b, v1_b, d1_b) = b

162

163 h1_thresh_r = pywt.threshold(h1_r, thresh, mode=’soft’)

164

165 h1_thresh_g = pywt.threshold(h1_g, thresh, mode=’soft’)

166

167 h1_thresh_b = pywt.threshold(h1_b, thresh, mode=’soft’)

168

169 # 3. Estimate Wf by Wiener filtering.

170 wiener_power= 0.005

171 approx_r = wiener(approx_r,3,wiener_power)

172 approx_g = wiener(approx_g,3,wiener_power)

173 approx_b = wiener(approx_b,3,wiener_power)

174

175 denoised_r = (approx_r, (h1_thresh_r, v1_r, d1_r))

176 denoised_g = (approx_g, (h1_thresh_g, v1_g, d1_g))

177 denoised_b = (approx_b, (h1_thresh_b, v1_b, d1_b))

178

179 wf_final_r.append(pywt.waverec2(denoised_r, ’db8’, mode=’constant’))

180 wf_final_g.append(pywt.waverec2(denoised_g, ’db8’, mode=’constant’))

181 wf_final_b.append(pywt.waverec2(denoised_b, ’db8’, mode=’constant’))

182

183

184 wf_final = []

185

186 for r, g, b in zip(wf_final_r, wf_final_g, wf_final_b):

187 wf_final.append(np.stack((r,g,b), axis=-1))

188

189 psnrs = []

190 ssims = []
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191

192 for gt, wf in zip(x_test, wf_final):

193 psnrs.append(psnr(gt,wf))

194 ssims.append(ssim(gt,wf,multichannel=True))

195

196 print("PSNR mean: ", np.mean(psnrs))

197 print("PSNR std: ", np.std(psnrs))

198 print("SSIM mean: ", np.mean(ssims))

199 print("SSIM std: ", np.std(ssims))

views.py
1 import io

2 import os

3 import pickle

4

5 import keras

6 import numpy as np

7 import pywt

8 from django.conf import settings

9 from django.core.files.base import ContentFile

10 from django.core.files.storage import FileSystemStorage

11 from django.db.models.signals import post_delete

12 from django.dispatch.dispatcher import receiver

13 from django.shortcuts import redirect, render

14 from keras.models import load_model

15 from PIL import Image as Img

16 from scipy.signal import fftconvolve, wiener

17 from tensorflow.keras.models import load_model

18

19 from .forms import ImageUploadForm

20 from .models import UploadedImage

21

22

23 @receiver(post_delete, sender=UploadedImage)

24 def post_save_image(sender, instance, *args, **kwargs):

25 """ Clean Old Image file """

26 try:

27 instance.image.delete(save=False)

28 except:

29 pass

30

31 def process_image(request):

32 if request.method == ’POST’:

33 form = ImageUploadForm(request.POST, request.FILES)

34 if form.is_valid():

35 images = UploadedImage.objects.all()

36 images.delete()

37 uploaded_image = form.cleaned_data[’image’]

38 filename, file_extension = os.path.splitext(uploaded_image.name)

39 image = Img.open(uploaded_image)

40 choice = form.cleaned_data[’choice’]

41 if choice == ’wba’:

42 thresh = form.cleaned_data[’thresh’]

43 wiener_power = form.cleaned_data[’wiener_power’]

44 processed_image = wavelet(image, thresh, wiener_power, filename, file_extension)

45 elif choice == ’dcnn’:

46 processed_image = dcnn(image, filename, file_extension)

47 else:

48 processed_image = noise2void(image, filename, file_extension)

49 UploadedImage.objects.create(image=uploaded_image, processed_image=processed_image, algo_choice=choice)
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50

51 return redirect(’image_result’)

52 else:

53 form = ImageUploadForm()

54

55 return render(request, ’denoise/upload.html’, {’form’: form})

56

57 def show_result(request):

58 image = UploadedImage.objects.first()

59 return render(request, ’denoise/denoise.html’, {’image’: image})

60

61 def wavelet(image, thresh, wiener_power, filename, file_extension):

62 rgb_image = np.array(image.convert("RGB"))

63 input_image = rgb_image.astype(’float32’)/ 255.0

64 input_image = np.array(input_image)

65 image_r = input_image[:, :, 0]

66 image_g = input_image[:, :, 1]

67 image_b = input_image[:, :, 2]

68 coeff_r = pywt.wavedec2(image_r, ’db8’, mode=’constant’, level=1)

69 coeff_g = pywt.wavedec2(image_g, ’db8’, mode=’constant’, level=1)

70 coeff_b = pywt.wavedec2(image_b, ’db8’, mode=’constant’, level=1)

71

72 output_image = denoise_wba(coeff_r,coeff_g,coeff_b, thresh, wiener_power)

73 output_image = (output_image*255.0).astype(’uint8’)

74

75 image = Img.fromarray(output_image)

76 image_file = io.BytesIO()

77 image.save(image_file, format=’PNG’)

78 image_file.seek(0)

79

80 content_file = ContentFile(image_file.read(), name = filename + "_denoised" + file_extension)

81 return content_file

82

83 def denoise_wba(coeffs_r, coeffs_g, coeffs_b, thresh, wiener_power):

84 approx_r, (h1_r, v1_r, d1_r) = coeffs_r

85 approx_g, (h1_g, v1_g, d1_g) = coeffs_g

86 approx_b, (h1_b, v1_b, d1_b) = coeffs_b

87

88 h1_thresh_r = pywt.threshold(h1_r, thresh, mode=’soft’)

89

90 h1_thresh_g = pywt.threshold(h1_g, thresh, mode=’soft’)

91

92 h1_thresh_b = pywt.threshold(h1_b, thresh, mode=’soft’)

93

94 approx_r = wiener(approx_r,3,wiener_power)

95 approx_g = wiener(approx_g,3,wiener_power)

96 approx_b = wiener(approx_b,3,wiener_power)

97

98 threshed_r = (approx_r, (h1_thresh_r, v1_r, d1_r))

99 threshed_g = (approx_g, (h1_thresh_g, v1_g, d1_g))

100 threshed_b = (approx_b, (h1_thresh_b, v1_b, d1_b))

101

102 wf_final_r = (pywt.waverec2(threshed_r, ’db8’, mode=’constant’))

103 wf_final_g = (pywt.waverec2(threshed_g, ’db8’, mode=’constant’))

104 wf_final_b = (pywt.waverec2(threshed_b, ’db8’, mode=’constant’))

105

106 wf_final = (np.stack((wf_final_r,wf_final_g,wf_final_b), axis=-1))

107 return wf_final.astype(’float32’)/np.max(wf_final)

108

109

110 def dcnn(image, filename, file_extension):
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111 rgb_image = np.array(image.convert("RGB"))

112 input_image = rgb_image.astype(’float32’)/ 255.0

113

114 input = []

115 input.append(input_image)

116 input = np.array(input)

117 loaded_model = load_model(’denoise/dcnn_model.h5’)

118 loaded_model.load_weights(’denoise/dcnn_weights.h5’)

119

120 prediction = loaded_model.predict(input)

121

122 output_image = prediction[0]

123 output_image = (output_image*255.0).astype(’uint8’)

124 image = Img.fromarray(output_image)

125 image_file = io.BytesIO()

126 image.save(image_file, format=’PNG’)

127 image_file.seek(0)

128 content_file = ContentFile(image_file.read(), name = filename + "_denoised" + file_extension)

129 return content_file

130

131 def noise2void(image, filename, file_extension):

132 rgb_image = np.array(image.convert("RGB"))

133 input_image = rgb_image.astype(’float32’) / 255.0

134

135 input = []

136 input.append(input_image)

137 input = np.array(input)

138

139 keras.utils.get_custom_objects()[’n2v_abs’] = n2v_abs

140 keras.utils.get_custom_objects()[’n2v_mse’] = n2v_mse

141

142 loaded_model = load_model(’denoise/n2v_model.h5’)

143 loaded_model.load_weights(’denoise/n2v_weights.h5’) # Load the N2V weights

144

145 prediction = loaded_model.predict(input)

146

147 output_image = prediction[0]

148 output_image = (output_image*255.0).astype(’uint8’)

149 image = Img.fromarray(output_image)

150 image_file = io.BytesIO()

151 image.save(image_file, format=’PNG’)

152 image_file.seek(0)

153 content_file = ContentFile(image_file.read(), name = filename + "_denoised" + file_extension)

154 return content_file

155

156 def n2v_abs(y_true, y_pred):

157 return keras.backend.mean(keras.backend.abs(y_true - y_pred))

158

159 def n2v_mse(y_true, y_pred):

160 return keras.backend.mean(keras.backend.square(y_true - y_pred))

161

162 def about(request):

163 return render(request, ’denoise/about.html’)

forms.py
1 from django import forms

2 from .models import UploadedImage

3 from django.core.validators import MinValueValidator, MaxValueValidator, FileExtensionValidator

4

5 class ImageUploadForm(forms.Form):
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6 image = forms.ImageField(validators=[FileExtensionValidator([’jpg’, ’jpeg’, ’png’])])

7 CHOICES = (

8 (’wba’, ’Wavelet-Based Algorithm’),

9 (’dcnn’, ’Deep Convolutional Neural Network’),

10 (’n2v’, ’Structured Noise2Void’),

11 )

12 choice = forms.ChoiceField(choices=CHOICES,widget=forms.Select(attrs={’class’: ’form-select’, ’id’: ’algo’}))

13 thresh = forms.FloatField(

14 required=False,

15 widget=forms.NumberInput(attrs={’class’: ’hidden-field’}),

16 validators=[MinValueValidator(0), MaxValueValidator(255)],

17 initial=0.5)

18 wiener_power = forms.FloatField(

19 required=False,

20 widget=forms.NumberInput(attrs={’class’: ’hidden-field’}),

21 validators=[MinValueValidator(0), MaxValueValidator(1)],

22 initial=0.005

23 )

urls.py
1 from django.urls import path

2 from . import views

3

4 urlpatterns = [

5 path(’’, views.process_image, name=’image_upload’),

6 path(’result/’, views.show_result, name=’image_result’),

7 path(’about/’, views.about, name=’about’),

8 ]

about.html
1 {% load static %}

2

3 {% load widget_tweaks %}

4

5 <!doctype html>

6 <html lang="en">

7

8 <head>

9 <!-- Required meta tags -->

10 <meta charset="utf-8">

11 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

12

13 <!-- Bootstrap CSS -->

14 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/css/bootstrap.min.css"

15 integrity="sha384-xOolHFLEh07PJGoPkLv1IbcEPTNtaed2xpHsD9ESMhqIYd0nLMwNLD69Npy4HI+N" crossorigin="anonymous">

16

17 <title>EndNoise</title>

18 <link rel="icon" href="{% static ’denoise.ico’ %}">

19 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.4.1/font/bootstrap-icons.css">

20 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.1/dist/css/bootstrap.min.css" rel="stylesheet"

21 integrity="sha384-+0n0xVW2eSR5OomGNYDnhzAbDsOXxcvSN1TPprVMTNDbiYZCxYbOOl7+AMvyTG2x" crossorigin="anonymous">

22 <link rel="stylesheet" type="text/css"

23 href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.2/css/all.min.css">

24

25 <style>

26 .footer-with-bg {

27 background-image: url(’{% static "bg1.jpg" %}’);

28 background-repeat: no-repeat;

29 background-size: cover;
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30 background-position: center bottom;

31 position: fixed;

32 bottom: 0;

33 left: 0;

34 width: 100%;

35 height: 600px;

36 /* Adjust the height as per your image dimensions */

37 z-index: -1;

38 /* To ensure the footer content is displayed on top */

39 }

40 </style>

41 </head>

42

43 <body>

44

45 <nav class="navbar navbar-expand-lg navbar-dark bg-dark" style="padding-top:0;padding-bottom: 0;">

46 <a class="navbar-brand" href="{% url ’image_upload’ %}"><img src="{% static ’endnoise.png’ %}" style="height: 50px;"

47 alt=""></a>

48 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNavAltMarkup"

49 aria-controls="navbarNavAltMarkup" aria-expanded="false" aria-label="Toggle navigation">

50 <span class="navbar-toggler-icon"></span>

51 </button>

52 <div class="collapse navbar-collapse" id="navbarNavAltMarkup">

53 <div class="navbar-nav">

54 <a class="nav-link " href="{% url ’image_upload’ %}">Home</a>

55 <a class="nav-link active" href="{% url ’about’ %}">About<span class="sr-only">(current)</span></a>

56 </div>

57 </div>

58 </nav>

59 <main role="main">

60

61 <div class="jumbotron">

62 <div class="container">

63 <h1 class="display-3">EndNoise</h1>

64 <p>This is an application for diminishing spatially correlated noise on images using different algorithms</p>

65 <p><a class="btn btn-dark btn-lg" href="{% url ’image_upload’ %}" role="button">Start Denoising &raquo;</a></p>

66 </div>

67 </div>

68

69 <div class="container">

70 <div class="row">

71 <div class="col-md-4">

72 <h2>Wavelet-based Algorithm</h2>

73 <p>This algorithm divides the images into different color channels (R, G, B) and decompose each into wavelets

74 that will be subject to denoising.</p>

75 </div>

76 <div class="col-md-4">

77 <h2>Deep CNN</h2>

78 <p>This machine learning method was trained on images with spatially correlated noise to be able to

79 effectively attenuate this type of noise.</p>

80 </div>

81 <div class="col-md-4">

82 <h2>Structured Noise2Void</h2>

83 <p>Another machine learning method but specializes more on spatially correlated noise.</p>

84 </div>

85 </div>

86

87 <hr>

88

89 </div> <!-- /container -->

90
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91 </main>

92 <script src="https://cdn.jsdelivr.net/npm/jquery@3.5.1/dist/jquery.slim.min.js"

93 integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj"

94 crossorigin="anonymous"></script>

95 <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/js/bootstrap.bundle.min.js"

96 integrity="sha384-Fy6S3B9q64WdZWQUiU+q4/2Lc9npb8tCaSX9FK7E8HnRr0Jz8D6OP9dO5Vg3Q9ct"

97 crossorigin="anonymous"></script>

98

99 </body>

100

101 </html>

denoise.html
1 {% load static %}

2

3 {% load widget_tweaks %}

4

5 <!doctype html>

6 <html lang="en">

7

8 <head>

9 <!-- Required meta tags -->

10 <meta charset="utf-8">

11 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

12

13 <!-- Bootstrap CSS -->

14 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/css/bootstrap.min.css"

15 integrity="sha384-xOolHFLEh07PJGoPkLv1IbcEPTNtaed2xpHsD9ESMhqIYd0nLMwNLD69Npy4HI+N" crossorigin="anonymous">

16

17 <title>EndNoise</title>

18 <link rel="icon" href="{% static ’denoise.ico’ %}">

19 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.4.1/font/bootstrap-icons.css">

20 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.1/dist/css/bootstrap.min.css" rel="stylesheet"

21 integrity="sha384-+0n0xVW2eSR5OomGNYDnhzAbDsOXxcvSN1TPprVMTNDbiYZCxYbOOl7+AMvyTG2x" crossorigin="anonymous">

22 <link rel="stylesheet" type="text/css"

23 href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.2/css/all.min.css">

24

25 <style>

26 .footer-with-bg {

27 background-image: url(’{% static "bg1.jpg" %}’);

28 background-repeat: no-repeat;

29 background-size: cover;

30 background-position: center bottom;

31 position: fixed;

32 bottom: 0;

33 left: 0;

34 width: 100%;

35 height: 600px;

36 /* Adjust the height as per your image dimensions */

37 z-index: -1;

38 /* To ensure the footer c

39 ontent is displayed on top */

40 }

41

42 .center-align {

43 display: flex;

44 justify-content: center;

45 align-items: center;

46 }

47 </style>
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48 </head>

49

50 <body>

51

52 <nav class="navbar navbar-expand-lg navbar-dark bg-dark" style="padding-top:0;padding-bottom: 0;">

53 <a class="navbar-brand" href="{% url ’image_upload’ %}"><img src="{% static ’endnoise.png’ %}" style="height: 50px;"

54 alt=""></a>

55 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNavAltMarkup"

56 aria-controls="navbarNavAltMarkup" aria-expanded="false" aria-label="Toggle navigation">

57 <span class="navbar-toggler-icon"></span>

58 </button>

59 <div class="collapse navbar-collapse" id="navbarNavAltMarkup">

60 <div class="navbar-nav">

61 <a class="nav-link active" href="{% url ’image_upload’ %}">Home<span class="sr-only">(current)</span></a>

62 <a class="nav-link" href="{% url ’about’ %}">About</a>

63 </div>

64 </div>

65 </nav>

66 <div class="container"

67 style="margin-top: 3%;margin-bottom: 5%; padding: 3%; border: 1px solid black; background-color: white;">

68 <h5>Your image has been successfully denoised using

69 {% if image.algo_choice == ’wba’ %}

70 Wavelet-based Algorithm

71 {% elif image.algo_choice == ’dcnn’ %}

72 Deep CNN

73 {% else %}

74 Structured Noise2Void

75 {% endif %}.

76 </h5>

77 <div class="row">

78 <div class="col-md-6">

79 <div class="text-center">

80 <label>Uploaded Image</label>

81 </div>

82 <div class="d-flex justify-content-center">

83 <div class="image-box">

84 <img src="{{ image.image.url }}" alt="Uploaded Image" class="img-fluid">

85

86

87 </div>

88 </div>

89 </div>

90 <div class="col-md-6">

91 <div class="text-center">

92 <label>Processed Image</label>

93 </div>

94 <div class="d-flex justify-content-center">

95 <div class="image-box">

96 <img src="{{ image.processed_image.url }}" alt="Processed Image" class="img-fluid">

97 <div class="center-align">

98 <a id="download-link" href="{{ image.processed_image.url }}" download="image.jpg"

99 style="display: none;"></a>

100 <button id="download-button" class="btn btn-dark" style="margin: 10px;"><i class="bi bi-download"></i>

101 Download Image</button>

102 </div>

103 </div>

104 </div>

105 </div>

106 </div>

107 <div class="row">

108 <div class="col-md-12 text-center mt-4">
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109 <a class="btn btn-dark" href="{% url ’image_upload’ %}">Denoise another image</a>

110 </div>

111 </div>

112 </div>

113 <footer class="footer-with-bg">

114 </footer>

115 <script src="https://cdn.jsdelivr.net/npm/jquery@3.5.1/dist/jquery.slim.min.js"

116 integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj"

117 crossorigin="anonymous"></script>

118 <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/js/bootstrap.bundle.min.js"

119 integrity="sha384-Fy6S3B9q64WdZWQUiU+q4/2Lc9npb8tCaSX9FK7E8HnRr0Jz8D6OP9dO5Vg3Q9ct"

120 crossorigin="anonymous"></script>

121

122 <script>

123 document.getElementById("download-button").addEventListener("click", function () {

124 var downloadLink = document.getElementById("download-link");

125 downloadLink.click();

126 });

127 </script>

128 </body>

129

130 </html>

upload.html
1 {% load widget_tweaks %}

2 {% load static %}

3

4 <!doctype html>

5 <html lang="en">

6

7 <head>

8 <!-- Required meta tags -->

9 <meta charset="utf-8">

10 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">

11

12 <!-- Bootstrap CSS -->

13 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet"

14 integrity="sha384-9ndCyUaIbzAi2FUVXJi0CjmCapSmO7SnpJef0486qhLnuZ2cdeRhO02iuK6FUUVM" crossorigin="anonymous">

15

16 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/css/bootstrap.min.css"

17 integrity="sha384-xOolHFLEh07PJGoPkLv1IbcEPTNtaed2xpHsD9ESMhqIYd0nLMwNLD69Npy4HI+N" crossorigin="anonymous">

18 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.10.5/font/bootstrap-icons.css">

19 <title>Endnoise</title>

20 <link rel="icon" href="{% static ’denoise.ico’ %}">

21 <style>

22 body {

23 font-family: sans-serif;

24 background-color: #ffffff;

25 }

26

27 .file-upload {

28 background-color: #ffffff;

29 width: 600px;

30 margin: 0 auto;

31 padding: 20px;

32

33 }

34

35 .file-upload-btn {

36 width: 100%;
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37 margin: 0;

38 color: #fff;

39 background: #1FB264;

40 border: none;

41 padding: 10px;

42 border-radius: 4px;

43 border-bottom: 4px solid #15824B;

44 transition: all .2s ease;

45 outline: none;

46 text-transform: uppercase;

47 font-weight: 700;

48 }

49

50 .file-upload-btn:hover {

51 background: #1AA059;

52 color: #ffffff;

53 transition: all .2s ease;

54 cursor: pointer;

55 }

56

57 .file-upload-btn:active {

58 border: 0;

59 transition: all .2s ease;

60 }

61

62 .file-upload-content {

63 display: none;

64 text-align: center;

65 }

66

67 .file-upload-input {

68 position: absolute;

69 margin: 0;

70 padding: 0;

71 width: 100%;

72 height: 100%;

73 outline: none;

74 opacity: 0;

75 cursor: pointer;

76 }

77

78 .image-upload-wrap {

79 margin-top: 20px;

80 border: 4px dashed #1FB264;

81 position: relative;

82 }

83

84 .image-dropping,

85 .image-upload-wrap:hover {

86 background-color: #1FB264;

87 border: 4px dashed #ffffff;

88 }

89

90 .image-title-wrap {

91 padding: 0 15px 15px 15px;

92 color: #222;

93 }

94

95 .drag-text {

96 text-align: center;

97 }
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98

99 .drag-text h3 {

100 font-weight: 100;

101 text-transform: uppercase;

102 color: #15824B;

103 padding: 60px 0;

104 }

105

106 .file-upload-image {

107 max-height: 200px;

108 max-width: 200px;

109 margin: auto;

110 padding: 20px;

111 }

112

113 .remove-image {

114 width: 200px;

115 margin: 0;

116 color: #fff;

117 background: #cd4535;

118 border: none;

119 padding: 10px;

120 border-radius: 4px;

121 border-bottom: 4px solid #b02818;

122 transition: all .2s ease;

123 outline: none;

124 text-transform: uppercase;

125 font-weight: 700;

126 }

127

128 .remove-image:hover {

129 background: #c13b2a;

130 color: #ffffff;

131 transition: all .2s ease;

132 cursor: pointer;

133 }

134

135 .remove-image:active {

136 border: 0;

137 transition: all .2s ease;

138 }

139

140 .footer-with-bg {

141 background-image: url(’{% static "bg1.jpg" %}’);

142 background-repeat: no-repeat;

143 background-size: cover;

144 background-position: center bottom;

145 position: fixed;

146 bottom: 0;

147 left: 0;

148 width: 100%;

149 height: 600px;

150 /* Adjust the height as per your image dimensions */

151 z-index: -1;

152 /* To ensure the footer content is displayed on top */

153 }

154

155 .fixed-top-right {

156 position: fixed;

157 top: 80px;

158 right: 20px;
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159 }

160 </style>

161 </head>

162

163 <body>

164

165 <nav class="navbar navbar-expand-lg navbar-dark bg-dark" style="padding-top:0;padding-bottom: 0;">

166 <a class="navbar-brand" href="{% url ’image_upload’ %}"><img src="{% static ’endnoise.png’ %}"

167 style="height: 50px;" alt=""></a>

168 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNavAltMarkup"

169 aria-controls="navbarNavAltMarkup" aria-expanded="false" aria-label="Toggle navigation">

170 <span class="navbar-toggler-icon"></span>

171 </button>

172 <div class="collapse navbar-collapse" id="navbarNavAltMarkup">

173 <div class="navbar-nav">

174 <a class="nav-link active" href="{% url ’image_upload’ %}">Home<span

175 class="sr-only">(current)</span></a>

176 <a class="nav-link" href="{% url ’about’ %}">About</a>

177 </div>

178 </div>

179 </nav>

180 <button type="button" class="btn btn-dark fixed-top-right" data-toggle="modal" data-target="#exampleModal">

181 <i class="bi bi-question-lg"></i>

182 </button>

183 <!-- Modal -->

184 <div class="modal fade" id="exampleModal" tabindex="-1" aria-labelledby="exampleModalLabel" aria-hidden="true">

185 <div class="modal-dialog">

186 <div class="modal-content">

187 <div class="modal-header">

188 <h5 class="modal-title" id="exampleModalLabel">How to use</h5>

189 <button type="button" class="close" data-dismiss="modal" aria-label="Close">

190 <span aria-hidden="true">&times;</span>

191 </button>

192 </div>

193 <div class="modal-body">

194 1. Upload your image. The file extensions accepted for now are only .jpg, .jpeg, and .png. <br>

195 2. Select a denoising algorithm. <br>

196 3. Depending on your choice, some configurations are needed. There are also default values you can

197 use! <br>

198 4. Denoise and save your denoised image!

199 </div>

200 <div class="modal-footer">

201 <button type="button" class="btn btn-secondary" data-dismiss="modal">Close</button>

202 </div>

203 </div>

204 </div>

205 </div>

206

207

208 <script class="jsbin" src="https://ajax.googleapis.com/ajax/libs/jquery/1/jquery.min.js"></script>

209 <div class="file-upload" style="margin-top: 20px; border: 1px solid black;">

210 <form method="post" enctype="multipart/form-data">

211 {% csrf_token %}

212 <div class="mb-3">

213 <label class="form-label" for="{{ form.file_field.id_for_label }}">Upload your image</label>

214 <input type="file" class="form-control" id="{{ form.file_field.id_for_label }}"

215 name="{{ form.image.name }}">

216 </div>

217

218 <div class="mb-3">

219 <label class="form-label" for="{{ form.choice.id_for_label }}">Choose an algorithm</label>
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220 {% render_field form.choice class+="form-control" id=form.choice.id_for_label %}

221 </div>

222 <div id="integer_input">

223 <div class="mb-3">

224 <!-- {{ form.thresh.label_tag }} -->

225 <label class="form-label" for="{{ form.thresh.id_for_label }}">Correlation</label>

226 <!-- <button type="button" class="btn btn-secondary" data-toggle="tooltip" data-placement="right" title="Tooltip on

right">

227 Tooltip on right

228 </button> -->

229 <i class="bi bi-question-circle" data-toggle="tooltip" data-placement="right" title="Adjust this to depending on how

230 correlated the noise is.

231 Higher value for higher correlation.

232 Range: 0 to 255"></i>

233 {% render_field form.thresh class+="form-control" id=form.thresh.id_for_label %}

234

235 <div class="mb-3">

236 <!-- {{ form.thresh.label_tag }} -->

237 <label class="form-label" for="{{ form.wiener_power.id_for_label }}">Noise level</label>

238 <i class="bi bi-question-circle" data-toggle="tooltip" data-placement="right" title="Adjust this to depending on

how

239 much noise is present on the image.

240 Higher value for higher amount of noise.

241 Range: 0 to 1"></i>

242 {% render_field form.wiener_power class+="form-control" id=form.wiener_power.id_for_label %}

243 </div>

244 </div>

245 </div>

246 <div class="d-flex align-items-center">

247 <button id="upload-button" type="submit" class="btn btn-dark" onclick="handleUpload()">Denoise</button>

248 <div class="ml-auto" id="spinner" role="status" style="display: none;">

249 <div class="spinner-grow" role="status" aria-hidden="true"></div>

250 </div>

251 </div>

252 </form>

253 </div>

254 <footer class="footer-with-bg">

255

256 </footer>

257

258

259

260 <script src="https://cdn.jsdelivr.net/npm/jquery@3.5.1/dist/jquery.slim.min.js"

261 integrity="sha384-DfXdz2htPH0lsSSs5nCTpuj/zy4C+OGpamoFVy38MVBnE+IbbVYUew+OrCXaRkfj"

262 crossorigin="anonymous"></script>

263 <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/js/bootstrap.bundle.min.js"

264 integrity="sha384-Fy6S3B9q64WdZWQUiU+q4/2Lc9npb8tCaSX9FK7E8HnRr0Jz8D6OP9dO5Vg3Q9ct"

265 crossorigin="anonymous"></script>

266 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/js/bootstrap.bundle.min.js"

267 integrity="sha384-geWF76RCwLtnZ8qwWowPQNguL3RmwHVBC9FhGdlKrxdiJJigb/j/68SIy3Te4Bkz"

268 crossorigin="anonymous"></script>

269

270

271 <script>

272 function handleUpload() {

273 // Show the spinner

274 $("#spinner").show();

275

276 // Delay the form submission to display the spinner

277 setTimeout(function () {

278 $("#upload-form").submit(); // Replace "upload-form" with the ID of your form
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279 }, 500); // Adjust the delay duration as needed

280 }

281 $(document).ready(function () {

282 // Function to handle the show/hide logic

283 function handleFieldVisibility() {

284 var selectedChoice = $("#algo").val();

285 if (selectedChoice === "wba") {

286 $("#integer_input").show(); // Show the additional fields

287 } else {

288 $("#integer_input").hide(); // Hide the additional fields

289 }

290 }

291

292 // Call the function on page load

293 handleFieldVisibility();

294

295 // Call the function when the choice field value changes

296 $("#algo").on("change", function () {

297 handleFieldVisibility();

298 });

299 });

300

301

302 function removeUpload() {

303 $(’.file-upload-input’).replaceWith($(’.file-upload-input’).clone());

304 $(’.file-upload-content’).hide();

305 $(’.image-upload-wrap’).show();

306 }

307 $(’.image-upload-wrap’).bind(’dragover’, function () {

308 $(’.image-upload-wrap’).addClass(’image-dropping’);

309 });

310 $(’.image-upload-wrap’).bind(’dragleave’, function () {

311 $(’.image-upload-wrap’).removeClass(’image-dropping’);

312 });

313

314 </script>

315

316

317 </body>

318

319 </html>
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