UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

NATTA: In-silico Classification of Nanotoxicity Using
QSAR-Perturbation Based Model.

A special problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Heidi A. Puato
June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser | No

Available only to those bound by confidentiality agreement | No

ACCEPTANCE SHEET

The Special Problem entitled “NaTTA: In-silico Classification of Nan-
otoxicity Using QSAR-Perturbation Based Model.” prepared and submitted by Heidi
A. Puato in partial fulfillment of the requirements for the degree of Bachelor of Sci-
ence in Computer Science has been examined and is recommended for acceptance.

Perlita E. Gasmen, M.Sc. (cand.)

Adviser
EXAMINERS:
Approved Disapproved
1. Avegail D. Carpio, M.Sc.
2. Richard Bryann L. Chua, M.Sc.
3. Ma. Sheila A. Magboo, Ph.D. (cand.)
4. Vincent Peter C. Magboo, M.D.
5. Marbert John C. Marasigan, M.Sc. (cand.)
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.
Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean
College of Arts and Sciences

Abstract

Application of nanoparticles (NPs) in many different fields brought several benefits,
especially in biomedicine, physics, chemistry, and agriculture. However, nanoparticles
can exhibit toxic effects due to their very high surface-to-volume ratio causing harm
to biological systems and to their respective ecosystems. Nanotoxicity testing is an
important phase to determine the potential risks that NPs may bring. On the other
hand, the process to perform experimental assays often requires quite a lot of time and
resources. An alternative way to perform nanotoxicity testing is through in-silico test-
ing. In-silico methods are usually centered around the quantitative structure-activity
relationship (QSAR) modeling, however in this work, we refined the predictive capac-
ity of QSAR modeling by integrating the Perturbation Theory, which was a recent
novel method of testing nanotoxicity. Using different machine learning algorithms,
this work developed a QSAR-perturbation model to predict toxicity profiles of NPs
under diverse experimental conditions. The models were developed from a dataset of
5,437 NP-NP pairs derived from applying perturbation theory to 260 unique NPs. In
the results, XGBoost was the top performing model with 98.43% MCC value. This is
comparable to previous results in existing literature. The QSAR-PT model was then
employed in a web application as a final output.

Keywords: Nanoparticle, Nanotoxicity, QSAR model, Perturbation Theory

Contents
Acceptance Sheet
Abstract

List of Figures
List of Tables

I. Introduction

Background of the Study L.
Statement of the Problem
Objectives of the Study
Significance of the Project

Scope and Limitations

=\ =0 o w o

Assumptions
II. Review of Related Literature

ITII. Theoretical Framework
A. Nanotoxicity L
B. In-silico Nanotoxicological Testing
C. QSAR-Perturbation Model
D. Data Pre-processing oo
D..1 Synthetic Minority Oversampling Technique (SMOTE)
E. Machine Learning Algorithms
.1 Support Vector Machine
.2 Classification and Regression Tree

.3 Extreme Gradient Boosting

4 Artificial Neural Network

il

ii

vi

vii

~ W

(S8

IV.

F. Performance Metrics 15

F..1 Matthews Correlation Coefficient (MCC) 15
F..2 Area Under the Curve (AUC) 16
F.3 Accuracy 16
F..4 Precision. 16
F.5 Sensitivity / Recall oo 16
F..6 Specificity 16
G. Feature Importance 17
G..1 SHapley Additive exPlanations (SHAP) 17
Design and Implementation 18
A, Dataset 18
B. Model Implementation 18
C. UseCases i i it 20
D. System Architectureo 21
D..1 Django 21
D..2 Scikit-Learn oo oo 21
D..3 TensorFlow 21
E. Technical Architecture 22
Results 23
A. Date Pre-processingo 23
B. Model Building and Evaluation 24
B..1 Model Performance without SMOTE 25
B..2 Model Performance with SMOTE 25
C. Feature Importance 26
D. Web Application 27
D..1 HomePage 27

v

VL

VII.

VIII.

IX.

XI.

D.2 Test Page
D.3 ResultPage
D.4 About Pageo

Discussions

Conclusions

Recommendations

Bibliography

Appendix
A. Source Code

Acknowledgment

31

34

36

37

42
42

46

List of Figures

1

= W

(@)

10
11

Equation for getting perturbation values. 13
QSAR equation. 13
Flowchart of the model implementation. 20
Use-case diagram of the system. 20
I/O context diagram. 21
Correlation coefficient heatmap. 23
Feature importance using SHAP 27
Home Page. 28
Test Page. 29
Result Page 30
About Page 30

vi

List of Tables

1 The descriptors used in the PT-QSAR model. 19
2 Train and Test Set Class Distributions 24
3 Summary of performance metrics without using SMOTE. 25
4 Summary of performance metrics with SMOTE. 26

vil

I. Introduction

A. Background of the Study

Even before its popularity and known modern applications, nanotechnology has been
part of the world’s history as early as the fourth century AD. Relics, such as the
Lycurgus cup made by the roman civilizations, showed usage of materials containing
nanoparticles that causes the cup to exhibit dichroism [1]. On the other hand, modern
nanotechnology was formally introduced in 1959 by Richard Feynman. Since then,
continuous studies had been conducted which made it possible for its applications in
various discipline today [2].

Nanotechnology is defined as the understanding and practical application of ma-
terials that ranges from 1 to 100 nanometers called nanomaterials or nanoparticles
[3]. Due to their minute structure, the properties of nanoparticles (nanoparticles)
can have drastic alterations which enables nanostructured materials to have specific
performance or have new properties [1]. In line with this, production of engineered
nanomaterials (ENMs) for applications in biomedicine, agriculture, electronics, and
even in energy saving, became extensive in hopes of providing better solutions and
precise and customized treatments [5].

However, despite the immense benefits that ENMs provide, nanoparticles can ex-
hibit toxic effects due to their very high surface-to-volume ratio [6]. Nanoparticles
are extremely reactive. Moreover, they can penetrate cellular membranes and biolog-
ical barriers, and therefore poses a risk to biological systems and to their respective
ecosystems [0]. There are different ways to measure toxicity based on the information
one wants to gain. To measure toxicity based on cell viability CCsy is used. TCsxq
is used to know how much concentration will cause toxicity. Meanwhile, to know
the concentration of nanoparticles that will prevent root elongation of a plant 1Csq is

used, which is also known as the half maximal inhibitory concentration. These three

are just some examples on how toxicity is measures [7].

Ways to address the issue of nanotoxicity in the past were mainly composed of
in vivo and in vitro techniques. This means that toxicity test were performed on
cell cultures or in living organisms [8]. However, these methods are often expensive
and time-consuming, especially when one needs to obtain permissions to conduct the
tests [3]. To offer an alternative way, in-silico testing were introduced for cheaper and
more simpler process of testing nanotoxicity.

In-silico testing are computer-aided verification to classify whether a certain NP
is toxic or not. By implementing machine learning algorithms, predictive models that
could classify the toxicological profile of an NP were develop. Through this method,
cost can be minimized by reducing the need for conventional trial and error testing
done in laboratories [9].

To perform in-silico testing, the methodologies used are usually centered around
the quantitative structure-activity relationship (QSAR) modeling. QSAR modeling
is a method to predict the biological activity or toxicity of substances with the appli-
cation of mathematical statistics and knowledge of machine learning [10]. Essentially,
the concept of QSAR is that toxic effects of a substance can be predicted from its
relating molecular descriptors [10].

In relation to QSAR modeling, many past efforts have already tried implementing
the method. However, most of these studies are based on classical concepts and
resorted to linear analyses [7]. According to [!1], majority of published literature
applied the method only against a single biological system. Additionally, results
from classical QSAR modeling were shown to be inadequate. Hence, predicting using
nano-specific features are gaining momentum [11].

A very recent, promising way to refine the predictive capacity of QSAR modeling
and to address its one-to-one limitation is the integration of perturbation theory in

QSAR models [12]. In QSAR perturbation models, it introduces a case-case pairs

in which one case is used as a reference state, while the other is taken as the pre-
dicted output. The variables used to predict toxicity are called descriptors [7]. These
descriptors are the differences in the dynamics with regards to the physicochemi-
cal properties and experimental conditions of the nanoparticles being classified [12].
Through this technique, a specific case can be predicted based from the differing
experimental conditions a nanoparticle is subjected to.

In this project, a QSAR perturbation model was developed to facilitate an in-silico
classification of toxicological profiles of nanoparticles. The study used a dataset from
a previous research by [7]. The dataset was composed of 54,371 data points derived
from 260 unique nanoparticles. Each entry in the dataset included atleast one of
the five toxicity measures - 1Csy, CCsg, EC5q, TCsy, and LCs9. However, this study
aims to do a comprehensive examination on the nanoparticles that were measured
using ICsg, which is a measure of concentration of nanoparticles that will inhibit 50%
root elongation of plants. Using different machine learning algorithms, as well as a
deep learning methodology, this project developed a QSAR perturbation model that
addressed the limitation of classical QSAR modeling. In this way, risk assessment
of nanoparticles will be more economical and safe for both the researcher and the

environment.

B. Statement of the Problem

Current studies that support development of in-silico nanotoxicity classification use
classic QSAR modeling, which has a major limitation of making the analysis linear.
Therefore, most of the published literature were only focused on one-to-one approach.
In this study, the researcher explored the capabilities of the novel QSAR-perturbation
based models. To the best of the researcher’s ability, there are only extremely limited
available studies found that conducted classification of nanotoxicity using the said

novel method. The limited existing studies only employed Latent Dirichlet Allocation

(LDA) [13] [14] [15] and Artificial Neural Network (ANN) [7] algorithms in the models
they created. Thus, there are no known system yet that uses the discussed novel

methodology while using other machine learning algorithms.

C. Objectives of the Study

The main objective of this study is to develop a QSAR-perturbation based model that
could facilitate in-silico classification of nanotoxicity. Additionally, the final output
of this project is an application that allows its user to classify an NP as toxic or

non-toxic. Specifically, the study performed the following:

1. Use only the data that uses ICsy as measure of toxicity in the new state from

the dataset taken from [7].
2. Address the class imbalance using SMOTE.
3. Perform data normalization.
4. Split the dataset into 80% training set and 20% testing set.

5. Perform classification using Support Vector Machine (SVM), Classification and
Regression Tree (CART), Extreme Gradient Boosting (XGBoost), and Artificial

Neural Network (ANN).
6. Perform feature importance using SHAP.

7. Integrate the top performing resulting models in an application that can do the
following actions:
The system:

(a) Compute for the perturbation values based from the input data of the user

and the conditions set for the reference nanoparticle.

(b) Perform classification (non-toxic or toxic).
The user:

(a) Enter needed information (molar volume, size, electronegativity, and spec-

tral moments based on different measurements) of the sample nanoparticle.

(b) Enter the experimental conditions (type of NP, toxicity measure, endpoint,
shape, condition when size was taken, assay time, and coating agent) of

the reference nanoparticle.
(c) View the resulting toxicity classification.

(d) View the performance metrics of the classification models (accuracy, pre-
cision, sensitivity, specificity, area under the curve (AUC), and Matthews

Correlation Coefficient (MCC).

D. Significance of the Project

Traditional trial and error testing of nanotoxicity are often expensive, time-consuming,
and demands a great deal of effort to perform. In order to alleviate this situation,
in-silico testing is an alternative way to perform nanotoxicology testing. By applying
machine learning algorithms, toxicity assessments of nanoparticles can be done more
economical and user-friendly.

In another perspective, the output of this project may be used by future scientists
in their training in nanochemical testing. Additionally, the project may provide help
in the training of future professionals in using intelligent machines.

Academically, this paper will contribute in the growing knowledge of nanotech-
nology, as well as insight on the capabilities of the novel QSAR-pertubration based

model.

E. Scope and Limitations

1. The study only used a part of the dataset taken from a previous study by [7].

2. The part taken from the dataset are the data points that uses toxicity measure-
ment [Csp in the new state; wherein a value of greater than or equal 245.68 is

classified as non-toxic, meanwhile lower than the given value is considered toxic.
3. The study only used perturbation values as descriptors for classification.
4. The study only perform binary classification (toxic or non-toxic).

5. The study only used existing available python package/library tools for model

building and system integration.

F. Assumptions

The following points are the assumptions regarding the system application that will

be developed for the model created.
1. The nanoparticle of interest uses 1Cs5y as the measurement of toxicity.

2. The combination of inputs in the reference nanoparticle exists in the database

of the application.

3. The input data are not invalid inputs.

II. Review of Related Literature

Nanotechnology is considered as one of the most promising technologies of the 21st
century [3]. Since the formulation of its idea in 1959, the continued research and
steady investigations had led this scientific discipline to its popularity and modern
applications today [16]. Nanotechnology is defined as the application of the manip-
ulation of materials at a nanoscale [3]. Nanomaterials are the products of nanotech-
nology. It is mainly composed of particles in the range of 1-100 nanometers. Due to
their very small structure, scientists were able to engineer these nanoparticles to have
specific purpose and to exhibit new properties. Hence, it found its way in several
different applications in the industry [4].

At present, engineered nanomaterials can be encountered in many aspects in the
daily life. In food and agriculture, [17] showed the current applications of ENMs. In
food they are used as food additives, flavor enhancers, preservatives, and even as toxin
detector. On the other hand, in agriculture ENMs are used as fertilizers and pesti-
cides. Nanotechnology also has huge contributions in biomedicine, especially during
the outbreak of the COVID-19 pandemic. Using nanotechnology, drug delivery were
enhanced to navigate biological microenvironments, as well as to transcend biological
barriers in order to deliver therapeutics to specific cells and tissues in the body [18].
Moderna and Pfizer-BioNTech Covid-19 vaccines are some of the popular examples of
this application at present [18]. There are many other applications of the technology
in other scientific disciplines, hence production of ENMs became extensive [5].

Together with the productions and manipulations of new nanoparticles, serious
concerns regarding the applications of these particles have also risen in the last two
decades [8]. Because of their small structures, these nanoparticles can easily pass
through cell membranes and boundaries [6]. Moreover, they have very high surface-
to-volume ratio making them extremely reactive. Hence, these particles can exhibit

toxic effects to its intended endpoint [6]. In a study by [19], nanotoxicity can affect

its environment in three ways: (1) it can directly affect species, (2) it can cause
transformation in biological entities and activities upon contact with other pollutants,
and (3) it can provoke the non-living environment to undergo structural changes.
Therefore, it is necessary to perform nanotoxicity tests and risk assessments of these
particles before their massive production and release in the market.

Toxicity tests and risk assessments are usually done in laboratories using tradi-
tional in-vivo and in-vitro means [20]. In these methods, testing are either done using
cell cultures in glass containers (in-vitro) or using live samples such as animals, plants,
and whole cells (in-vivo). Evaluation through these methods can be expensive and
time-consuming. In order to perform such tests, one needs to consider the amount of
trials they needed to obtain substantial information. Furthermore, if the experiment
will require live samples the researchers would need to obtain permissions from gov-
erning bodies and could also raise potential ethical issues [10]. As a result, alternative
ways of testing were sought and one of them is in-silico testing.

In-silico nanotoxocity testing is the result of using computational power in the
classification of the toxicological profiles of nanoparticles. Equipped with abundant
amount of data from previous traditional nanotoxicological experiments, these data
can now be utilized for creation of in-silico based testings. In this way, the expensive
and meticulous process of toxicity and risk assessment will be reduced [9]. There are
several known methods in performing in-silico testing, but the most popular tech-
nique used by majority of published literatures were quantitative structure-activity
relationship (QSAR) modeling [11].

The concept of QSAR modeling is that physiological activity of particles can be
inferred from their associated chemical compositions [10]. In this context, toxic ef-
fects of nanoparticles can be modelled as a function of molecular descriptors that
a nanoparticles has. Molecular descriptors are the physicochemical properties of a

molecule, this include their molar volume, electronegativity, polarizability, size, spec-

tral moments, etc..

An example of a study that employed QSAR modeling was conducted by [21].
The study used metallic nanomaterials in order to predict its ecotoxicological effects
on Daphnia magna. Using six different supervised machine learning algorithms, the
researchers built predictive models that utilized a dataset split in 60:40 ratio. Results
showed that the top performing algorithm was the Random Forest with an accuracy
of 87% , specificity of 94%, and an AUC value of 96%.

In an another study by [22], they performed in-vitro and in-silico toxicity testing
of metal oxide nanoparticles to Escherichia coli. For the in-silico phase of their test-
ing, the researchers used Multiple Linear Regression (MLR). Their study found that
model 2 from seven models that they have created produced the best results when
pharmacological approach was considered. This meant that metallic oxide nanoparti-
cles induce cytotoxicity in E. coli as a result of an ’individual action’ when in mixture
rather than as an ’additive effect’ or ’synergistic effect’.

An in-silico approach was also applied in a toxicity classification study of super-
paramagnetic iron oxide nanoparticles (SPIONs) in stem-cell monitoring [23]. In the
study, the researchers used Auto-ML to perform nano-QSAR modeling. Nano-QSAR
modeling is similar to the classic QSAR with the exception of using nanofeatures
as variables to base the prediction. In the evaluation of the developed model, its
performance indicated a value of 91% accuracy, 93% precision, 91% recall, and 91%
fl-score. Further analysis showed that the attributes that heavily influenced the out-
come of the study were the physicochemical properties such as the size and magnetic
core of the nanoparticles. There are many more published literature that used QSAR
modeling, some of them used metal oxides nanoparticles and predicted their toxicity
using Monte Carlo optimization [21], and partial least squares regression [25] [20].

Despite the robust results of present NP risk assessments, classic QSAR modeling

has a major limitation of only producing one-to-one results. There is a diverse number

of bioindicators that nanoparticles may have the chance to interact with. Synergy
between these entities results to innumerable possibilities of biological behaviors [12].
Hence, a challenge to cover these unaccounted activities gave rise to a recent novel
method of testing nanotoxicity, which is the integration of perturbation theory to
QSAR.

Perturbation theory is a method used to improve an approximation by calculating
errors or deviations from an initial solution [12]. In line with this, its integration in
the classic QSAR model will allow the in-silico nanotoxicity testing to have multiple
input conditions and produce predictive models for a variety of response targets [27].

In QSAR-Perturbation model or PT-QSAR model , the structure of the paradigm
is replaced with case-case pairing from a one-to-one biological effect and a reference
chemical pairing [12]. This means that in the novel method, the pair consist of one
chemical used as a reference, and a second chemical used to calculate the molecular
descriptors and eventually be classified [7].

To the researcher’s knowledge, the very first published PT-QSAR model for nan-
otoxicity testing was by [13] in 2014. In the study, the researchers used the model
to predict cytotoxicity in nanoparticles under diverse experimental conditions. Their
dataset consist of 41 nanoparticles and generating the case-case pairing, the result-
ing final dataset has 1681 pairings. Then, it was randomly split into 75:25 ratio for
training and testing. To develop the predictive model, linear discriminant analysis
(LDA) was used together with a forward step-wise procedure for selecting variables .
Through this method, they were able to come up with a model equation that exhibited
the highest statistical significance with as few descriptors as possible. Performance
metrics showed that their equation 4 achieved the most promising results, with an
accuracy of 93.58% and an AUC value of 0.983. As an extension of the study, [11] also
used the same PT-QSAR model to test for ecotoxicity and cytotoxicity of uncoated

and coated nanoparticles.

10

In a similar study by [7], the researchers also used the same PT-QSAR model in an
attempt to create a unified predicitve model for nanotoxicity in nanoparticles. Using
a currated dataset from different previous assessments, the researchers used artificial
neural network as the ML algorithm to develop their model. As a results, the study
was able to obtain an overall accuracy of 98.5% and an AUC value of 0.999.

In a more recent study by [15], they also implemented a PT-QSAR model to pre-
dict genotoxicity of metal oxide nanoparticles. In their study, they used 78 unique
nanoparticles to generate 6084 NP-NP pairs. Similar to [13] and [1], the ML al-
gorithm used was also LDA and as a result they were able to have an accuracy of
97.81%.

To the best of the researcher’s ability, only these reviewed articles were found to
have used the novel method in developing an in-silico classification model for nan-
otoxicity assessment. Hence, the full capabilities of the said method is still under
discovery and further investigation. Given with the concepts behind nanotechnology,
the serious concerns that comes with it, and the methodologies to address the issue
of toxic effects, this study would like to expound more on the performance of apply-
ing computational power in the toxicity and risk assessment of nanoparticles, most

specifically in using the novel method PT-QSAR modeling.

11

III. Theoretical Framework

A. Nanotoxicity

Nanotoxicity is the harmful effects that nanoparticles can have on their intended
endpoint. Since nanoparticles are very small, it can be manipulated to have unique
physicochemical properties in order to be utilized for a specific purpose. However,
their small size makes them highly reactive which in turn can cause damage as a
result of toxicity. Thus, toxic and risk assessments are a must in order to come-up
with safe-by-design nanomaterials before its production and release. Nanotoxicity

can be measured depending on the information one want to obtain.

B. In-silico Nanotoxicological Testing

In-silico Nanotoxicological testing is a process of evaluating nanoparticles for their
toxic effects by utilizing computational power to perform simulations. In this course,
the process of toxic and risk assessment of nanoparticles are made simpler to perform.
To carry out this method, using qualitative structure-activity relationship (QSAR)
model is the most common approach. However, assessments done using this model
produces one-to-one results. Classic QSAR model outputs are usually only against
one biological target, and is limited to just one experimental condition. Hence, infor-
mation garnered from using this method lacks assessment powers if one is to consider
the diverse possible experimental conditions and biological entity that an NP can be

tested against.

C. QSAR-Perturbation Model

QSAR-Perturbation model or PT-QSAR model is the resulting technique of integrat-
ing the perturbation theory in classic QSAR modeling. Using this model, the limita-

tion of classic QSAR was addressed. By generating NP-NP pairs, the classification

12

of the nanoparticles are extended to consider the different experimental conditions it
is under and the several bio-target they are tested against. In [12], they provided a

protocol that can be followed in performing this novel method.

ADD;(¢c;) = DD;(¢;), . — DD;i(c;)

new ref

ADG;(PP) = Gy (PP),,,, — Gy (PP)

new ref

Figure 1: Equation for getting perturbation values.

To simplify the protocol, the main features used in this model are perturbation
values or simply the differences of the properties of each NP-NP pairs. Figure 1
are the equations used to calculate the perturbations values between each pair of
nanoparticles.

On the other hand, figure 2 represents the QSAR part of the model, which depicts
that the classification of the target variable is a function of the classification of the

reference NP, and their perturbation values.

Tox; (cj) =f [Tox,-(c]-)ref, ADDi(cj), ADka(PP)}

new

Figure 2: QSAR equation.

D. Data Pre-processing
D..1 Synthetic Minority Oversampling Technique (SMOTE)

SMOTE is an oversampling technique used to address class imbalance in the dataset.
Using SMOTE, the minority class in the dataset were increased by generating syn-
thetic samples. The data generated by using this technique are not duplicates of the
original dataset, but slightly different ones; hence the term ’synthetic’ [25]. SMOTE

works by drawing a random sample from the minority class and using these to create

13

a slightly different data points. Then, these synthetic data points are added to the

dataset to make it balanced [29)].

E. Machine Learning Algorithms
E..1 Support Vector Machine

Support Vector Machine (SVM) is a machine learning algorithm that is mainly used
for classification, regression, and outlier detection [30]. The goal of SVM is to find
a hyperplane that will segregate the support vectors in order to produce the most
optimal classification in an N-dimensional space (N-number of features) [31]. The
hyperplane can be multiple lines/boundaries depending on the number of features
used in the dataset. Support vectors are the data points that are closest to the

hyperplane. The position of these point will determine the location of the hyperplane.

E..2 Classification and Regression Tree

Classification and Regression Tree (CART) is a supervised machine learning algorithm
typically used to predict a target value from learned decision rules inferred from the
data [32]. Essentially, it is a decision tree, wherein nodes are split into sub-nodes
based on a threshold value. However, its difference with DT is that CART uses the
best homogeneity value as the basis of splitting rather than a threshold value of an
attribute [33]. To obtain the homogeneity value, CART uses Gini Index, wherein it
calculates the impurity for all possible splits. The split with the lowest Gini index or

impurity is deemed as the best split [34].

E..3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an open-source library that provides effi-
cient implementation of gradient boosting [35]. It is a tree-based algorithm that can

be used for classification and also regression problems [36]. In XGBoost, trees are

14

built in parallel, unlike in most gradient boosting algorithms where its is built se-
quentially [37]. Generally, XGBoost is an algorithm that build models by combining
the predictive power of multiple weaker ones in order to output a highly accurate

prediction and improve the robustness of the models.

E..4 Artificial Neural Network

Artificial Neural Network (ANN) is a deep learning algorithm, which is a subset of
machine learning. ANN is a computational model that tries to mimic how the human
brain works, hence human intervention are minimized [38]. ANN is composed of
three node layers that are interconnected with each other. The input layer, which
consist the input neurons, accepts the data and directly pass it onto the hidden layer.
The hidden layer are the inner layers that is responsible for receiving the data and
will perform the information gathering by weighing it according to the ANN’s internal
system. Lastly, the output layer is where the desired predictions are obtained [39]. By
going through these layers, predictions are made as the weighted sum of the neurons

in the neural network.

F. Performance Metrics
F..1 Matthews Correlation Coefficient (M CC)

MCC is a correlation coefficient between the predicted values and the true values.
It is usually used to summarize the confusion matrix from a resulting classification
model. In order to have a good classification model, the resulting MCC value must
be close to 1. This will also be the main metric that will be used in evaluating and

comparing the models to determine the best performing model.

(TP« TN) — (FP % FN)

MCC =
(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

15

F..2 Area Under the Curve (AUC)

AUC is a metric used to evaluate the performance of the model across possible clas-
sifications. With AUC, it can show the probability of the model to rank a random

positive example higher than a random negative example.

F..3 Accuracy

Accuracy is the ratio of correct predictions to the total number of input samples used

in the classifier.
TP+ TN
TP+TN+ FP+ FN

Accuracy =

F..4 Precision

Precision is the ratio of correct true positive predictions to the total number of correct

predictions made by the classifier.

TP

Precision = W

F..5 Sensitivity / Recall

Sensitivity is the true positive rate or the proportion of true positive predictions that

are actually predicted correctly.

TP

SenS@t'LU’Lty = m

F..6 Specificity

Specificity is the proportion of true false predictions that are actually predicted cor-

rectly.

TN

16

G. Feature Importance
G..1 SHapley Additive exPlanations (SHAP)

SHAP is a tool mainly used to determine the impact of a feature to the resulting value
of the target variable. It uses a model-agnostic approach, thus it is applicable to use
in any type of model in measuring the importance of each features used. In SHAP,
the dataset can be considered as the team and each feature is a player. Each of the
players have contribution to the team, and the resulting average absolute value of
their contribution can be considered as their importance to the team. Hence, SHAP
is a tool mainly used to add global or/and local explainability to a machine learning

model.

17

IV. Design and Implementation

A. Dataset

The dataset for this project was taken from [7]. It is composed of 260 unique nanopar-
ticles and was paired with each other to generate the NP-NP pairs. Only about 80%
of the resulting pairs were used by the original study. In this project, it only consider
the NP-NP pair that used (ICs) as its measure of toxicity in the new state. Hence,
the final dataset will be composed of 5,437 NP-NP pairs. The dataset has 10 de-
scriptors that were used as features for the creation of the models. Each descriptor,
except for the dummy classifier, are perturbation values computed from the NP-NP

pairings. Table 1 shows the description of each descriptors.

B. Model Implementation

To achieve the goal of this project, there are three main phases that constitutes the
main processes done in this study.

The first phase of the project is pre-processing. An exploratory data analysis was
conducted on the dataset to get to know the data and gain insights on the possible
correlations of the variables with each other. The dataset also has a class imbalance
that could result to low model performance. In order to address this issue, SMOTE
was applied. Additionally, normalization of values was also done to ensure that no
feature intrinsically influence the prediction due to difference in range. Finally, the
dataset was split into 80% training set and 20% testing set.

The second phase is the model building. In here, four ML algorithms was used
namely, SVM, CART, XGBoost, and ANN. All developed models were evaluated
using the performance metrics discussed in the previous chapter. Additionally, feature
importance using SHAP was also employed to determine the descriptor that has the

greatest impact on the classification.

18

Descriptors Concept

1 | DDV (m,) The change of the molar volume between the nanoparticles
used, being dependent on the measures of the toxic effects.
2 DDL(m.) Variation of size between the nanoparticles, being dependent

on the measures of toxic effects.

3 | DDu(ATO)b; | Difference of the spectral moment of order 1 (weighted by
atomic weight) between nanoparticles used, being dependent
on the bio-target.

4 | DDus(POL)ng | Change of the spectral moment of order 3 (weighted by po-
larizability) between nanoparticles used, being dependent on
the shape of nanoparticles.

5 DDE(d,,) Variation of the electronegativity between the nanoparticles
used, being dependent on the experimental condition the size
of the nanoparticles were measured.

6 | DDus(VAN)t, | Difference of the spectral moment of order 3 (weighted by
atomic van der Waals radius) between nanoparticles, being
dependent on exposure times.

7 | DDus(ATO)t, | Difference of the spectral moment of order 2 (weighted by
atomic weight) between nanoparticles, being dependent on
exposure times.

8 | DGus(HY D)s. | Difference of general spectral moment of order 2 (weighted by
hydrophobicity).

9 | DGus(PSA)s. | Difference of general spectral moment of order 5 (weighted by
polar surface area).

10 | Tox;(c;), Dummy classifier that describes the toxic effect of the refer-
ence NP.

Table 1: The descriptors used in the PT-QSAR model.

The last phase of this project was the application development which was be the
final output of the project. The application is a web-based app, and an I/O system
that enable users to enter the needed properties of their NP which then classified as
toxic or non-toxic.

Figure 3 shows the general flow of the processes done to come up with the final

output for this project.

19

Dataset

!

Data Pre-processing

l

Data Split

Jr
Training Testing Model Application
{80%) (20%) Evaluation Development

__Classification

Figure 3: Flowchart of the model implementation.

C. Use Cases

The resulting application is a system tailored for scientists/researchers whose exper-
tise lies in nanotechnology. They are the targeted users for the output of this study
since they are the ones who has access to the data needed to use the application.
Moreover, they also has the abilities to interpret the resulting prediction to generate
useful information.

The use-case diagram in figure 4 shows the following actions that the user can do

to interact with the application.

NanoToxicity Testing Application

s ™
Enter information about the input
7| nanoparticle.
. -~
s ™y

Set the experimental conditions for the
reference nanoparticle.

[T View the resulting toxicity classification.

p. A
User s ™
\ View the performance metrics of the
model.
p. A

Figure 4: Use-case diagram of the system.

20

D. System Architecture

The summary of the input and output of the system is shown in the context diagram

in figure 5.

Input data and reference conditions

>

User

<<

Prediction Result

Figure 5: I/O context diagram.

In the process of the application development, the following are the frameworks

and modules used.

D..1 Django

Django is an open-source web framework that is mainly used for easy development
of web applications. It is written in high-level Python language and promotes rapid

development and pragmatic design of applications.

D..2 Scikit-Learn

Scikit-learn is a Python module which is available for free. It is mainly used for data
analysis and machine learning. The module is simple to use and has efficient tools
which can help users whose domain of expertise is outside of data science. In this
project, this python module was used to develop the models for XGBoost, CART,
and SVM.

D..3 TensorFlow

TensorFlow is another open-source platform mainly used for machine learning. This

module has a rich system that can manage all aspects of machine learning. In par-

21

ticular, this project used "tf.keras”, which is a variant of TensorFlow, in developing

the model for ANN.

E. Technical Architecture

The system is built using the following components:

Visual Studio Code as IDE

Python 3.10.11

Django 4.2.1

Scikit-learn 1.2.2

TensorFlow 2.12.0

22

V. Results

A. Date Pre-processing

As part of the standard process of performing machine learning classification, the
dataset taken from the study of [7] was subjected to data pre-processing. To start
the pre-process the dataset was checked for possible correlations between each feature
variables. This was done in order to explore the dataset and gain an insight to
what does the data look like and have an idea on the possible effects it will have
on the resulting models. From figure 7, it can be seen that most of the variables
have strong positive correlations with one another. The variables which has the
strongest positive correlation were the third variable and the seventh variable with a
0.77 Pearson r value. Meanwhile, there are also some variables that exhibit strong
negative correlation. The seventh variable and the tenth variable has a correlation

value of -0.66 Pearson 7.

DDV (me) ﬁ 0.42 0.55(0.29 -@-0.13—0.18—0.11m

DDL{me) —u.42 0.16 0.34 0.19 0.41 0.22-0.15-0.29-0.24-0.32 0.75

DDuUul{ATO)bt -0.55 0.16 0.25 D.4E@-O.l[}0.09-0.02ﬁ _0.50

DDu3{POL)ns -0.29 0.34 0.25 0.23 0.26-0.11-0.09-0.17-0.12

1.00

- 0.25
DDE({dm]) . 0.19210.46 0.23 0.38-0.19-0.29-0.32-0.02
DDu3(VAN)ta 0. 41@-- 1.0 -0 190.27-0.30:0.40 - 0.00

DDu2({ATO)ta @ 0.22 0.26 0. 38- -0.060.01-0. OZE
-—0.25

DGu2{HYD)sc —-D.13-0.15-0.10—0.11-0.19—0.19-0.06 0.09 0.04

DGuUS(PSA)sc —0.18-0.29-0.09-0.09-0.29-0.27 0.01—0.000.06

TEi(cj)_rf —0.11-0.24-0.02-0.17-0.32-0.30-0.02 0.09 -0.00-0.01 —0.75

TEilcj)_nw —E-O 325 1—0.12-0.020.40@“ 0.04 0.06—0.01

—0.50

—1.00

DDV(me) -
DDL{me) -
DDul(ATO)bt -
DDu3(POL)ns -
DDE(dm) -
DDu3(VAN)ta -
DDuZ(ATOMa -
DGu2(HYD)sc -
DGu5(PSA)sc -
TEi(cj)_rf -
TEi(c)) nw -

Figure 6: Correlation coefficient heatmap.

After checking for correlations, the data was partitioned into an 80-20 split. The

80% of the data was used for training the models, while the 20% was used for testing

23

the resulting trained model. The final dataset used in the study was composed of
5,437 observations, wherein 4,781 were non-toxic while the remaining 656 were toxic.
Given these information, it is highly evident that there is a great imbalance between
the two classes. In order to address the uneven distribution of classes, SMOTE was
applied to even the number of toxic and non-toxic data points in the training set.

Table 2 summarizes the split and the distribution of classes in the dataset.

Non-toxic | Toxic

Train Set 3,840 509
SMOTE-enhanced train set 3,840 3,840
Test Set 941 147

Table 2: Train and Test Set Class Distributions

B. Model Building and Evaluation

After the pre-processing techniques were performed, the study proceeded in its sec-
ond phase. The classifiers used in the study were XGBoost, SVM, CART, and ANN.
Each classifiers were trained twice. In the first instance of training, the classifiers were
trained using the train set without SMOTE, while the second round of training used
the SMOTE-enhanced train set. After the models were built, the resulting perfor-
mance metrics of each models were compared. The models that used the imbalanced
train set were compared to those that used the SMOTE-enhanced set. Moreover,
each models were also compared to one another. These comparisons were done in
order to determine the effect of SMOTE on the predictive capabilities of the mod-
els, as well as to identify which model achieved the highest performance and thus the
best performing model. To make the comparison, the performance of the models were
evaluated using the different performance metrics mentioned in the previous chapters.
The main metric that will be used to base the best performing model is the Matthew’s
Correlation Coefficient (MCC). The MCC score tells how much the model is capable

in distinguishing between classes; however it will only generate a high quality score

24

if a model was able to correctly predict a high percentage of negative and positive

instances of data.

B..1 Model Performance without SMOTE

For the first round of training the models, the train set without SMOTE was used.
Table 3, shows the summary of the performance metrics achieved by each classifiers.
From the data presented in the table, XGBoost was the best performing model that
attained an AUC value of 98.19% and an MCC value of 97.23%. Then, it was followed
by SVM with an AUC and MCC value of 98.60% and 96.12%, respectively. Although,
the SVM model has a higher AUC score than XGBoost, the difference was very little

compared to their MCC scores. Therefore, XGBoost was rendered the best model.

Metrics SVM | XGBoost | CART | ANN
MCC 96.12% | 97.23% | 94.44% | 91.98%
AUC 98.60% | 98.19% | 96.67% | 94.63%
Accuracy | 99.08% | 99.36% | 98.71% | 98.16%
Precision | 99.68% | 99.47% | 99.05% | 98.42%

Recall 99.26% | 99.79% | 99.47% | 99.47%
Specificity | 97.96% | 96.60% | 93.88% | 89.80%

Table 3: Summary of performance metrics without using SMOTE.

B..2 Model Performance with SMOTE

For the second round of training, the models were trained using the SMOTE-enhanced
train set. From table 4, XGBoost remains the top performing model out of the
four classifiers. It boasted a 99.21% and 98.43% AUC and MCC value, respectively.
Additionally, looking at the other performance metrics it also achieved the highest
value out of all the other models.

Comparing the models obtained from the first round of training and the models

trained with SMOTE, the resulting predictive models from the training with SMOTE

25

Metrics SVM | XGBoost | CART | ANN
MCC 94.36% | 98.43% | 97.26% | 94.49%
AUC 98.63% | 99.21% | 98.77% | 97.25%
Accuracy | 98.62% | 99.63% | 99.36% | 98.71%
Precision | 99.78% | 99.79% | 99.68% | 99.26%

Recall 98.62% | 99.79% | 99.57% | 99.26%
Specificity | 98.64% | 98.64% | 97.96% | 95.24%

Table 4: Summary of performance metrics with SMOTE.

produced better results. Although, in some models the value of their MCC scores were
higher without SMOTE, the other performance metrics of the models with SMOTE
implies otherwise. Among all the models that was developed, XGBoost with SMOTE
was considered to be the best performing model which garnered the highest MCC

scores.

C. Feature Importance

Aside from the evaluation of the models, determining the impact of each features in
the resulting decision of each model was also part of the second phase. This process
was done through feature importance. In the study, impact of each features was
measured by employing SHAP. Through SHAP, the study was able to determine the
global importance of each feature and check which one has the most impact in the
resulting value of the target variable.

Figure 8 shows the resulting feature importance derived from performing SHAP.
The most significant feature for all four classifiers was DDpus(ATO)t,, the change in
spectral moment of order 2 weighted by atomic mass in reference to the assay time.
Meanwhile, the second important feature differ from some of the models. In SVM
and CART, the second decisive variable was DDV (m,), while for XGBoost and ANN
it was DDy (ATO)b;. However, even though there was difference in the order of the
top important features it was not that different from each other. In fact, it mostly

differ only by two to three levels. Nonetheless, through SHAP it was determined that

26

DDu2(ATO)ta
DDV(me)
DDul(ATO)bt
DDE(dm)
DDu3(VAN)ta
TEi(cj)_rf
DGuU5(PSA)sc
DDu3(POL)ns

DDL(me)

DGuU2(HYD)sc

0000 0025 0050 0075 0100 015 0150 0175
mean(|SHAP value|) (average impact on model output magnitude)

(a) SVM

DDu2(ATO)ta
DDV(me)
DDUL(ATO)bt
DDu3(POL)ns
DDL(me)
DDE(dm)
TEi(cj)_rf

DDu3(VAN)ta

DGu2(HYD)sc

mm Class 0
B Class 1

DGU5(PSA)sc

00 01 02 03 04 05
mean(|SHAP value|) (average impact on model output magnitude)

(c) CART

DDu2(ATO)ta
DDul(ATO)bt
DDE(dm)
DDV(me)
TEi(c])_rf
DDu3(POL)ns
DDL(me)

DDu3(VAN)ta

DGuU5(PSA)sc

DGU2(HYD)sc

0 1 2 3 i 5
mean(|SHAP value|) (average impact on model output magnitude)

(b) XGBoost

DDu2(ATO)ta
DDul(ATO)bt
DDV(me)
DDE(dm)
DDu3(VAN)ta
TEi(cj)_rf
DGU5(PSA)sc
DDL(me)
DGu2(HYD)sc

DDu3(POL)ns

B Class 0
000 0.05 0.10 015 020 025
mean(|SHAP value|) (average impact on model output magnitude)

(d) ANN

Figure 7: Feature importance using SHAP

the most decisive and important feature across the four models were the same.

D. Web Application

After the model building and evaluation, the last phase of the study was application

development.

D..1 Home Page

The home page is the first page or the landing page that the user of the application

will encounter when they navigated to the web application. The home page contains

27

the title of the application and a brief introduction on its background, as well as its
purpose. At the bottom of the introduction, a button that says ”Let’s Test” can be

clicked to navigate to the tester.

NANOTOXICITY TESTING WEB APPLICATION

Developed by: Heidi Puato

Figure 8: Home Page.

D..2 Test Page

When the user of the application clicked the button from the home page, they will be
directed to the test page. The test page contains the forms where the user will enter
the information of their nanoparticle. The left box on the page contains the fields
to be filled out by the user for the information about the nanoparticle they want to
classify. In each label of the field, a small question mark icon can be clicked to enable
a popover that shows a short description of what the fields are. On right side of the
page contains the box that houses the fields that prompt the users for the conditions
they want their reference particle to be subjected to. Once the user had filled out
all the fields, the gray button can be clicked to finally get a prediction. On the top
part of the page is a navbar that can be used to navigate to the other pages of the
application. The "Home” leads to the home page, " Test” leads to the test page, and

”About” leads to about page.

28

P NaTTA Home Test About
P

Nanoparticle of Interest

Fill out the needed information of your nanoparticle to test for toxicity. Set the experimental conditions for the reference nanoparticle.
DV(me): @ DL(me): @ l Type of Nanoparticle: Measure of Toxicity:

Reference Nanoparticle

Dy 1(ATO)b;: @ Dy 3(POLIns: ® Biosystem/Endpoint: Category of Shape: .
DE(dr): @ Dy 3(VAN)ts: © I Condition: ® Exposure/Assay Time:

-

Dy 2(ATO)tz: @ Gy 2(HYD)s: @ Coating Agent:

General spectral moment of order 5
(weighted by the polar surface area),
depending on the chemical structure
of the coating agent used

Gys(PSA)s @

Test for toxicity

Figure 9: Test Page.

D..3 Result Page

Once the user had clicked the gray button from the test page, they will be redirected to
the result page once the application completed the classification in the backend. The
result page consist also of two boxes. The left box is the classification results from the
XGBoost model, while the right box is the classification results from the CART model.
Both boxes contains the same set of information. The resulting classifications were
shown first to the user. The word "non-toxic” in green capital letters were written if
the resulting prediction was non-toxic, meanwhile "toxic” in red capital letters were
shown for toxic predictions. After the resulting classification, the performance metrics
of the model were also shown to the user, as well as the image of the ROC curve.

This will provide the user information on how well the models were trained.

D..4 About Page

In order for the users to gain more information about the purpose and the concepts
behind the application, the users may navigate to the about page which contains
these information. The users can go to the about page from the navbar. In the about

page, the users can read the explanations of the concepts behind the application that

29

P NaTTA Home Test About

'

[ONS TTN _ -]

Results of XGBoost Model Results of CART model
Classification: NON-TOXIC l Classification: NON-TOXIC
XGBoost Model Information CART Model Information
Roc e rocane
Performance Metrics f . Performance Metrics o e e e -

MCC Score: 98.42691593% MCC Score: 97.25572891%

AUC Score: 99.21345797% AUC Score: 98.76705199%

Accuracy: 99.63235294% Accuracy: 99.35661765%

Precision: 99.78746015% Precision: 99.68085106%

Specificity: 98.63945578% Specificity: 97.95918367%

Recall: 99.78746015% Recall: 99.5749203%

Figure 10: Result Page

may help them utilize the application in a manner suitable for them.

P NaTTA Home Test About

Definition of Terms and Concepts

QSAR Modeling

The concept of QSAR modeling is that physiological activity of particles can be in- ferred from their
associated chemical compositions. In this context, toxic effects of nanoparticles can be modelled as a
function of molecular descriptors that a nanoparticles has. Molecular descriptors are the
physicochemical properties of a molecule, this include their molar volume, electronegativity,
polarizabiliy, size, spectral moments, etc.

A

Perturbation Theory

P

Perturbation theory is a method used to improve an approximation by calculating errors or
deviations from an initial solution

QSAR-PT Modeling

QSAR-Perturbation model or PT-QSAR model is the resulting technique of integrating the
perturbation theory in classic QSAR modeling. Using this model, the limitation of classic QSAR was
addressed. By generating NP-NP pairs, the classification of the NPs are extended to consider the
different experimental conditions it is under and the several bio-target they are tested against.

Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an open-source library that provides efficient
implementation of gradient boosting. It is a tree-based algorithm that can be used for classification
and also regression problems. XGBoost is an algorithm that build models by combining the
predictive power of multiple weaker ones in order to output a highly accurate prediction and

improve the robustness of the models

Figure 11: About Page

30

VI. Discussions

The aim of this study was to create a predictive model that will classify nanoparticles
as either toxic or non-toxic. After the models were built, the top performing model/s
were integrated to a web application. The web application developed was named
NaTTA. NaTTA is a simple application that aims to predict the toxicological profile
of a nanoparticle based from the perturbation values computed from the input of the
user.

During the model development and its evaluation, the resulting models that used
SMOTE produced better models than the ones without. Although some models
achieved a higher AUC and MCC score without SMOTE, considering the other per-
formance metrics for each model, those using SMOTE has better overall metrics.
Through this comparison, the effect of SMOTE on the predictive capability of the
model is observed. Models trained using imbalanced dataset can have a tendency to
become bias towards the majority class. One way to work around this is to evaluate
the models using AUC score. The models trained with the imbalanced dataset in
this study achieved relatively high scores. However, comparing these to the AUC
scores achieved by the ones that used SMOTE, there is a significant increase in the
performance of each model, especially the ANN model. Additionally, this study de-
mands attention to the percentage of classification of negative data. Comparing the
specificity scores achieved by the two set of models, SMOTE boosted the performance
of the models to predict negative data points correctly. Considering the increase in
performances of the models, it confirms that SMOTE has an overall positive effect
on the performances of the models.

For the model that performed the best in classification, both XGBoost models from
the two rounds of training achieved the highest performance in their respective batch.
However, comparing the two XGBoost models, the one that used SMOTE outperform

the other, and thus the best model. Comparing the resulting values of its metrics

31

to previous studies [7][13][11], the XGBoost with SMOTE displayed a comparable
performance. Furthermore, it actually exceeded the models by the previous studies.
On the other hand, it is important to note that the scope of their studies are more
encompassing unlike the limited and more focused scope of this one.

In the feature importance of the models used in the study, the results showed that
the most important feature from each of the classifiers used was DDpus(ATO)t,. All
four types of models got the same results. One possibility as to why it has the most
impact in the value of the target variable can be attributed to its strong correlation
to the target variable. From the EDA performed prior to the model development,
DDpus(ATO)t, exhibit a strong negative correlation with the target variable. Another
thing that can be observed from the EDA analysis is that the other variables that
also displayed strong correlations also placed high rankings in the feature importance.
But note that their correlations with DDpus(ATO)t, is much stronger than the target
variable. Nonetheless, these correlations can be considered the reasons why these
features indirectly became the subsequent most important features after the first one.

Comparing the resulting feature importance to the study of [7], their results con-
verge with the findings of this study. In their paper, they determined the most
significant factors affecting NP toxicity by calculating sensitivities of each feature.
A high sensitivity score correlates to a high degree of impact on the target variable.
DDus(ATO)t, was also the penultimate descriptor in terms of importance in their
study. This descriptor accounts for the decrease in the physichochemical proper-
ties in molecular regions of two bonds or less. Additionally, this descriptor shows
that toxicity of nanoparticles are time-dependent as it considers the assay times the
nanoparticles were tested.

Examining the subsequent important features after DDuy(ATO)t,, in different
orders DDuy(ATO)b;,, DDV (me), and DDE(d,,) were the other descriptors that

placed high rankings. These results are also consistent with the study of [7]. As

32

mentioned in the previous section of the study, nanoparticles are highly reactive due
to their minute size. They can penetrate the barrier or the protective membranes
of their endpoint. However, if their molar volume and atomic weight increases, their
size also increases. Consequently, this decreases their chance to pass through the
membranes. Therefore, descriptors that has relation to the size of the nanoparticle
are expected to have high impact on its toxicity.

On the other hand, DDFE(d,,) is the descriptor that characterizes the difference in
electronegativity. Electronegativity is the tendency to attract electrons in a molecule.
In the study of [14], their results showed that increase in electronegativity causes
toxicity to diminish. In line with this, the same descriptor in this study exhibits
a parallel behavior and is calculated to be one of the most decisive feature of the
models.

As the final output of the study, two models were used in the development of
the application. The models used were the XGBoost and CART models that used
SMOTE. These two models were used because they performed significantly better

than the remaining other two models in terms of their MCC scores.

33

VII. Conclusions

Nanoparticles (NPs) are materials ranging from 1-100 nanometers. Due to their
minute structure, scientists were able to engineer these materials to have specific
purpose and exhibit new properties. Application of NPs found its way in different
aspects of our life and has brought several benefits, especially in medicine, food,
and agriculture. However, the major concern over these materials also stem from
its very small structure. NPs are extremely reactive materials because of their high
surface-to-volume ratio. Hence, it can exhibit toxic effects to its intended endpoint.

Nanotoxicity testing became an important phase to determine the potential risks
NPs may bring. Initially, conventional experimental methods were used in testing,
but these methods were expensive and time-consuming. Thus, in-silico methods be-
came the alternative. In-silico nanotoxicity tests are usually centered around (QSAR)
modeling, but in this work, Perturbation theory was integrated in an attempt to refine
the predictive capability of the QSAR modeling.

The study used four different classifiers to develop the predictive models namely
- SVM, XGBoost, CART, and ANN. As the first step of model building, the imbal-
ance in the dataset was first addressed using SMOTE in order to eliminate possible
bias towards the majority class. Two rounds of training were conducted in order to
determine the effect of SMOTE on the models. As expected, there was a decrease in
some of the metrics used due to the application of SMOTE, however it improved the
AUC scores and some of the other metrics of the models. The final results showed
that XGBoost with SMOTE displayed the best performance out of all the models.

For feature importance, the models were evaluated using SHAP to determine the
impact of each features in the final decision of the models. The final results showed
that DDuy(ATO)t, was the most important feature across all four types of models.
This was to be expected since in the EDA, the same feature exhibited the strongest

correlation out of all descriptors to the target variable. However, it is notable that

34

DDus(ATO)t, is also strongly correlated to other variables and thus the succeeding
important features according to SHAP were also the same descriptors.

For the output of the project, the web application was entitled NaTTA which
was short for NanoToxicity Testing Application. It was developed using the Python
language and Django framework. The application is easy to use and has a simple
and intuitive design, which enables user to conveniently test the toxicological profile

of their nanoparticle.

35

VIII. Recommendations

The following are some of the recommended ways to improve the findings of this

study.

e Try other methods of handling the imbalanced dataset, or try a different dataset

that has a more balanced distribution of classes.

Use a dataset with a larger number of observations.

Develop classification models using a different set of machine learning algo-

rithms.

Use a different tool for feature importance such as LIME, permutation impor-

tance, and Leave One Feature Out (LOFO).

Perform a focused study on the other toxicity measures aside from 1C,
On the other hand, the web application can also be improved in the following ways:

e Incorporate an explainable AI (XAI) in order give insights to the user how the

model in the application came up with the classification.

e Make the application accessible to mobile phones and other low powered devices

for user’s convenience.

36

IX. Bibliography

1]

S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, “The his-
tory of nanoscience and nanotechnology: From chemical-physical applications

to nanomedicine,” Molecules, vol. 25, 2020.

K. Azzaoui, M. Barboucha, B. Hammouti, and R. Touzani, “Nanotechnol-
ogy:history and various applications, a mini review,” EHEI Journal of Science

and Technology, vol. 02, 2022.

L. Leon, E. Chung, and C. Rinaldi, Nanoparticles for Biomedical Applications
Fundamental Concepts: Biological Interactions and Clinical Applications. Else-

vier, 2020.

M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, and Z. Issaabadi, “An introduction

to nanotechnology,” Interface Science and Technology, vol. 28, 2019.

M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, and Z. Issaabadi, “Applications of

nanotechnology in daily life,” Inteface Science and Technology, vol. 28, 2019.

A. V. Singh, P. Laux, A. Luch, C. Sudrik, S. Wiehr, A.-M. Wild, G. Santomauro,
J. Bill, and M. Sitti, “Review of emerging concepts in nanotoxicology: opportu-

nities and challenges for safer nanomaterial design,” Tozicology Mechanisms and

Methods, vol. 29, 2019.

R. Concu, V. V. Kleandrova, A. Speck-Planche, and M. N. D. S. Cordeiro, “Prob-
ing the toxicity of nanoparticles: a unified in silico machine learning model based

on perturbation theory,” Nanotozicology, vol. 11, 2017.

A. Zeilinska, B. Costa, M. V. Ferreira, D. Miguéis, J. M. S. Louros, A. Durazzo,
M. Lucarini, P. Eder, M. V. Chaud, M. Morsink, N. Willemen, P. Severino,

A. Santini, and E. B. Souto, “Nanotoxicology and nanosafety: Safety-by-design

37

[10]

[11]

[12]

[13]

[15]

and testing at a glance,” International Journal of Environmental Research and

Public Health, vol. 17, 2020.

N. R. Stillman, M. Kovacevic, 1. Balaz, and S. Hauert, “In silico modelling of
cancer nanomedicine, across scales and transport barriers,” npj Computational

Materials, vol. 6, 2020.

H.-J. Huang, Y.-H. Lee, Y.-H. Hsu, C.-T. Liao, Y.-F. Lin, and H.-W. Chiu,
“Current strategies in assessment of nanotoxicity: Alternatives to in vivo animal

testing,” International Journal of Molecular Sciences, vol. 22, 2021.

[. Furxhi, F. Murphy, M. Mullins, A. Arvanitis, and C. A. Poland, “Nanotox-

W

icology data for in silico tools: a literature review,” Nanotoxicology, vol. 14,

2020.

K. Roy, Ecotozxicological QSARs. Humana New York, NY, 2021.

F. Luan, V. V. Kleandrova, H. Gonzalez-Diaz, J. M. Ruso, A. Melo, A. Speck-
Planche, and M. N. D. S. Cordeiro, “Computer-aided nanotoxicology: assessing
cytotoxicity of nanoparticles under diverse experimental conditions by using a

novel gstr-perturbation approach,” Nanoscale, vol. 6, 2014.

V. V. Kleandrova, F. Luan, H. Gonzalez-Diaz, J. M. Ruso, A. Speck-Planche, and
M. N. D. S. Cordeiro, “Computational tool for risk assessment of nanomaterials:
Novel gstr-perturbation model for simultaneous prediction of ecotoxicity and
cytotoxicity of uncoated and coated nanoparticles under multiple experimental

conditions,” Environmental Science and Technology, vol. 48, 2014.

A. K. Halder, A. Melo, and M. N. D. Cordeiro, “A unified in silico model based on
perturbation theory for assessing the genotoxicity of metal oxide nanoparticles,”

Chemosphere, vol. 244, 2020.

38

[16]

[17]

[18]

[21]

[23]

M. Napagoda, D. Jayathunga, and S. Witharana, Introduction to Nanotechnol-

ogy. Singapore: Springer Nature Singapore, 2023.

X. He, H. Deng, and H. min Hwang, “The current application of nanotechnology

in food and agriculture,” Journal of Food and Drug Analysis, vol. 27, 2019.

A. C. Anselmo and S. Mitragotri, “Nanoparticles in the clinic: An update post

covid-19 vaccines,” Bioengineering Translational Medicine, vol. 6, 2021.

A. Sarkar, D. Sarkar, and K. Poddar, Nanotoxicity: Sources and Effects on

Environment. Cham: Springer International Publishing, 2019.

C. Domingues, A. Santos, C. Alvarez-Lorenzo, A. Concheiro, 1. Jarak, F. Veiga,
I. Barbosa, M. Dourado, and A. Figueiras, “Where is nano today and where is
it headed? a review of nanomedicine and the dilemma of nanotoxicology,” ACS

Nano, vol. 16, 2022.

S. Balraadjsing, W. J.G.M.Peijnenburg, and M. G.Vijvera, “Exploring the po-
tential of in silico machine learning tools for the prediction of acute daphnia

magna nanotoxicity,” Chemosphere, vol. 307, 2022.

S. Kar, K. Pathakoti, D. Leszczynska, P. B. Tchounwou, and J. Leszczynski, “In
vitro and in silico study of mixtures cytotoxicity of metal oxide nanoparticles to

escherichia coli: a mechanistic approach,” Nanotoxicology, vol. 16, 2022.

M. I. Kotzabasaki, I. Sotiropoulos, , and H. Sarimveis, “Qsar modeling of the
toxicity classification of superparamagnetic iron oxide nanoparticles (spions) in
stem-cell monitoring applications: an integrated study from data curation to

model development,” The Royal Society of Chemistry, vol. 10, 2020.

39

[24] J. Cao, Y. Pan, Y. Jiang, R. Qi, B. Yuan, Z. Jia, J. Jiang, and Q. Wang,
“Computer-aided nanotoxicology: Risk assessment of metal oxide nanoparticles

via nano-gsar,” Green Chemistry, vol. 22, 2020.

[25] J. Roya and K. Roy, “Risk assessment and data gap filling of toxicity of metal
oxide nanoparticles (meox nps) used in nanomedicines: a mechanistic gsar ap-

proach,” Environmental Science: Nano, vol. 9, 2022.

[26] T. Wanga, D. P. Russo, D. Bitounis, P. Demokritou, X. Jia, H. Huang, and
H. Zhu, “Integrating structure annotation and machine learning approaches to

develop graphene toxicity models,” Carbon, vol. 204, 2023.

[27] B. Ortega-Tenezaca, V. Quevedo-Tumailli, H. Bediaga, J. Collados, S. Arrasate,
G. M. adn Cristian R Munteanu, M. N. D. S. Cordeiro, and H. Gonzalez-Diaz,

“Ptml multi-label algorithms: Models, software, and applications,” Current

Topic in Medicinal Chemsitry, vol. 20, 2020.

28] J. Korstanje, “Smote.” https://towardsdatascience.com/
smote-fdce2f605729#: ~ : text=SMOTEY20is%20a%20machine’20learning,

with%20this’%20type’200f%20data., 2021.

[29] S. Satpathy, “Overcoming class imbalance using smote tech-
niques.” https://www.analyticsvidhya.com/blog/2020/10/

overcoming-class-imbalance-using-smote-techniques/, 2021.

[30] “Support vector machines.” https://scikit-learn.org/stable/modules/

svm.html.
[31] R. Gandhi, “Support vector machine — introduction to ma-
chine learning algorithms.” https://towardsdatascience.com/

support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca:

2018.

40

https://towardsdatascience.com/smote-fdce2f605729#:~:text=SMOTE%20is%20a%20machine%20learning,with%20this%20type%20of%20data.
https://towardsdatascience.com/smote-fdce2f605729#:~:text=SMOTE%20is%20a%20machine%20learning,with%20this%20type%20of%20data.
https://towardsdatascience.com/smote-fdce2f605729#:~:text=SMOTE%20is%20a%20machine%20learning,with%20this%20type%20of%20data.
https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-using-smote-techniques/
https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-using-smote-techniques/
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/svm.html
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47

[32] “Decision trees.” https://scikit-learn.org/stable/modules/tree.html.

[33] B. Dutta, “A classification and regression tree (cart)
algorithm.” https://www.analyticssteps.com/blogs/

classification-and-regression-tree-cart-algorithm, 2021.

[34] S. Dobilas, “Cart: Classification ~ and regression trees for
clean but powerful models.” https://towardsdatascience.com/

cart-classification-and-regression-trees-for-clean-but-powerful-models,

2021.
[35] J. Brownlee, “Extreme gradient boosting (xgboost) en-
semble in python.” https://machinelearningmastery.com/

extreme-gradient-boosting-ensemble-in-python/, 2020.

[36] S. Dobilas, “Xgboost: Extreme gradient boosting — how to improve
on regular gradient boosting?.” https://towardsdatascience.com/
xgboost-extreme-gradient-boosting-how-to-improve-on-regular-gradient-boosting

2021.

[37] Nvidia, “Xgboost.” https://www.nvidia.com/en-us/glossary/

data-science/xgboost/.

[38] IBM, “What are mneural networks?.” https://www.ibm.com/topics/

neural-networks.

[39] Techopedia, “Artificial neural network (ann).” https://www.techopedia.com/

definition/5967/artificial-neural-network-ann, 2022.

41

https://scikit-learn.org/stable/modules/tree.html
https://www.analyticssteps.com/blogs/classification-and-regression-tree-cart-algorithm
https://www.analyticssteps.com/blogs/classification-and-regression-tree-cart-algorithm
https://towardsdatascience.com/cart-classification-and-regression-trees-for-clean-but-powerful-models
https://towardsdatascience.com/cart-classification-and-regression-trees-for-clean-but-powerful-models
https://machinelearningmastery.com/extreme-gradient-boosting-ensemble-in-python/
https://machinelearningmastery.com/extreme-gradient-boosting-ensemble-in-python/
https://towardsdatascience.com/xgboost-extreme-gradient-boosting-how-to-improve-on-regular-gradient-boosting-5c6acf66c70a
https://towardsdatascience.com/xgboost-extreme-gradient-boosting-how-to-improve-on-regular-gradient-boosting-5c6acf66c70a
https://www.nvidia.com/en-us/glossary/data-science/xgboost/
https://www.nvidia.com/en-us/glossary/data-science/xgboost/
https://www.ibm.com/topics/neural-networks
https://www.ibm.com/topics/neural-networks
https://www.techopedia.com/definition/5967/artificial-neural-network-ann
https://www.techopedia.com/definition/5967/artificial-neural-network-ann

X. Appendix

A. Source Code

Listing 1: Model Training (nano_models.py)

#Packages 777 #XGBOOST” 7 ”

import seaborn as sns #for matrix #XGBoost

import pandas as pd # for data manipulation model = XGBClassifier ()

import matplotlib.pyplot as plt #for model. fit (X_train, y_train)
graph visualization

from sklearn.model_-selection import # make predictions for test data

train_test_split # will be used for data split y_pred = model.predict(X_test)
from sklearn.preprocessing import LabelEncoder

for preprocessing # Evaluate predictions

from imblearn.over_sampling import SMOTE accuracy = accuracy-score(y_test ,y_pred)*100
#for imbalance precision = precision_score(y-test ,y_pred)*100

from xgboost import XGBClassifier , fl = fl_score(y-test ,y_pred)=*100
plot_importance #for training recall = recall_score(y-test ,y_pred)=100

from sklearn.model_selection import GridSearchCV confusion_.mat = confusion_matrix (y-test ,y_pred)
#for hyperparameter tuning

import joblib # for saving algorithm and fprl, tprl, threshl = roc_curve(y-test, y_pred,
preprocessing objects pos_-label=1)

!pip install shap random_probs = [0 for i in range(len(y-test))]

import shap #for feature importance p-fpr, p-tpr, - = roc-curve(y-test, random_probs,

pos_-label=1)

from sklearn.metrics import accuracy-score auc_-score = roc_auc.score(y-test, y_pred)

from sklearn.metrics import precision_-score

from sklearn.metrics import fl_score mcc = matthews_corrcoef(y-test, y_-pred)

from sklearn.metrics import recall_score

from sklearn.metrics import roc_auc_score x_-pred = model. predict (X_train)

from sklearn.metrics import roc_curve conf = confusion_matrix(y-train ,x_pred)

from sklearn.metrics import matthews_corrcoef print (conf)

from sklearn.metrics import confusion_matrix
Printing the Results

#load data print (” Accuracy:” ,accuracy)
from google.colab import files print (? Precision:” , precision)
import io print (?Fl—score:” ,fl)
print (" Recall/Sensitivity:” ,recall)
uploaded = files .upload () print ("MCC:” ,mcc)
dataset = pd.read_csv(io.BytesIO (uploaded print (" Confusion Matrix”)
["IC50.¢csv’])) # the name of the file print (confusion_mat)
uploaded must be the same in this line
of code #Confusion Matrix
#dataset = pd.read_csv (’IC50.csv’) sns . heatmap (confusion_mat , annot=True, fmt=’g’,
print (dataset) cmap="Blues ’)
plt.xlabel (’Predicted)
#pre—process plt.ylabel (’Actual’)

plt .show ()
dataset .info ()

dataset .isna ().sum() # AUC score and plot of ROC curve
correlation = dataset.corr () print ("AUC Score:” ,auc_score)
plt.plot(fprl, tprl, label='ROC curve (area =
creating a colormap %.2f)’ %auc_score)
colormap = sns.color_palette(” Spectral”, plt.plot ([0, 1], [0, 1], linestyle=’ T, lw=2,
as_cmap=True) color="r’, label='Random guess ’)
sns . heatmap(correlation ,annot=True,fmt=".2f", plt.title (’"ROC curve’)
cmap=colormap , linewidths=0.1, vmax=1.0, plt.xlabel (’False Positive Rate’)
vmin=—1.0, square=True) plt.ylabel (’True Positive Rate’)
plt.grid ()
#normalize data plt.legend ()
for column in dataset.columns: plt .show ()
dataset [column] = (dataset [column] — dataset
[column].min()) / (dataset[column].max() — #feature importance using shap
dataset [column].min()) shap.initjs ()
print (dataset) explainer = shap.TreeExplainer (model)
shap_values = explainer.shap_values(X_test)
y = dataset [TEi(cj)-nw’] shap.summary_plot (shap_values, X_test, plot_type="bar”)
X = dataset.drop (['TEi(cj)-nw’], axis=1)
#save model
split data into train and test sets joblib .dump(model, ’xg_-model.pkl’)
seed = 7
test_size = 0.20 VN HESVMY 7
X_train, X_test, y-train, y_-test =
train_test_split (X, y, test_size=test_size , #SVM
random_state=seed) from sklearn.svm import SVC #for training
classifier = SVC(kernel = ’'rbf’, random_state = seed)
#SMOTE classifier.fit (X_train, y_train)
oversample = SMOTE(random_state=seed)
X_train, y-train = oversample.fit_-resample # make predictions for test data
(X_train, y-train) y-pred = classifier.predict(X_test)

42

Evaluate predictions

accuracy = accuracy.score(y_test ,y_pred)*100
precision = precision_score(y_-test ,y_-pred)*100
fl = fl_score(y-test ,y_pred)=*100

recall = recall_score(y-test ,y_pred)=*100

confusion_.mat = confusion_matrix (y-test ,y_pred)

fprl, tprl, threshl =
pos_label=1)

random_probs = [0 for i in range(len(y-test))]

p-fpr, p-tpr, - = roc_curve(y-test, random_probs,
pos_-label=1)

auc-score = roc-auc.score (y-test ,

roc_curve (y-test , y_pred,

y-pred)

mcc = matthews_corrcoef(y-test, y_pred)
Printing the Results

print (” Accuracy:” ,accuracy)

print (” Precision:” ,precision)

print (”Fl—score:” ,fl)

print (” Recall/Sensitivity:” ,recall)
print ("MCC:” , mcc)

print (" Confusion Matrix”)

print (confusion_mat)

#Confusion Matrix

sns . heatmap (confusion_mat , annot=True, fmt=’g’,
cmap="Blues ’

plt.xlabel (’Predicted ”)

plt.ylabel (> Actual ’)

plt.show ()

AUC score and plot of ROC curve

print ("AUC Score:” ,auc_score)

plt.plot (fprl, tprl, label="ROC curve (area =
%.2f)’ %auc_score)

plt.plot ([0, 1], [0, 1], linestyle="——", lw=2,
color="r"’ label='Random guess ’)

plt.title (’'ROC curve ’)

plt.xlabel (’False Positive Rate’)

plt.ylabel (’True Positive Rate’)

plt.grid ()

plt.legend ()

plt.show ()

#feature importance using shap

shap.initjs ()
explainer = shap.KernelExplainer (
classifier .predict , shap.sample(X_train ,3))
shap_values = explainer.shap_-values(X_test)
shap.summary_plot (shap_-values , X_test,
plot_type="bar”)

#save model

joblib .dump(classifier , ’svm_model.pkl’)

#9 HCART? 77

#CART

from sklearn.tree import DecisionTreeClassifier
#for training

cart = DecisionTreeClassifier(criterion="gini’,
splitter="best ’)

cart . fit (X_train, y_train)

make predictions for test data

y-pred = cart.predict(X_test)

Evaluate predictions

accuracy = accuracy.score(y_test ,y_pred)*100
precision = precision_score(y_test ,y_pred)*100
fl = fl_score(y-test ,y_pred)*100

recall = recall_score(y-test ,y_pred)=*100
confusion_.mat = confusion_matrix (y-test ,y_pred)

fprl, tprl, threshl =
pos_label=1)
random_probs = [0 for i in
p-fpr, p-tpr, - =
pos_label=1)
auc_score = roc.auc._score (y-_-test ,

roc_curve (y-test , y_pred,
range (len(y_-test))]
roc_curve (y-test , random_probs,

v-pred)

mcc = matthews_corrcoef(y-test, y_pred)
Printing the Results

print (” Accuracy:” ,accuracy)

print (” Precision:” , precision)

print (”Fl—score:” ,fl)

print (” Recall/Sensitivity:” ,recall)
print ("MCC:” , mcc)

print (” Confusion Matrix”)

print (confusion_-mat)

#Confusion Matrix

sns.heatmap (confusion_mat , annot=True, fmt=’g’,
cmap='Blues)

plt.xlabel (’Predicted)

plt.ylabel (’Actual’)

plt .show ()

AUC score and plot of ROC curve

print ("AUC Score:” ,auc_score)

plt.plot (fprl, tprl, label="ROC curve (area =
%.2f)’ %auc_score)

plt.plot ([0, 1], [0, 1], linestyle="——", lw=2,
color="r’, label="Random guess’)

plt.title (’'ROC curve)

plt.xlabel (’False Positive Rate’)

plt.ylabel (’True Positive Rate’)

plt.grid ()

plt.legend ()

plt .show ()

#feature importance using shap

shap.initjs ()

explainer = shap.TreeExplainer (cart, X_train)

shap_values = explainer .
shap.summary_plot (shap_values ,

shap_values (X_test)
X_test)

Feature importance
importance = cart.feature_importances_
for i,v in enumerate(importance):

print (' Feature: %0d, Score: %.5f° % (i,v))
plt.bar ([x for x in range(len(importance))],
plt .show ()

importance)

#save model
joblib .dump(cart, ’cart_model.pkl’)
777 HANN-Keras”””

import keras

import tensorflow as tf
from tensorflow .keras.models
from tensorflow.keras.layers

import Sequential
import Dense

#Build the model
ann = tf.keras.Sequential ([

tf.keras.layers.Dense (128, activation=’'relu’),
tf.keras.layers.Dense (256, activation=’'relu’),
tf.keras.layers.Dense (256, activation=’'relu’),
tf.keras.layers.Dense(1l, activation=’sigmoid’)

1 because its a binary classification

D

#Compile the model

ann.compile (
loss = tf.keras.losses.binary_crossentropy ,
optimizer = tf.keras.optimizers.Adam(

learning_rate = 0.02),
metrics = |
tf.keras.metrics.BinaryAccuracy (name=’accuracy ’) ,
tf.keras.metrics.Precision (name=’"precision ’) ,
tf.keras.metrics.Recall (name="recall ’)
]
)
ann. fit (X_train, y_train, batch_size = 10, epochs = 100)

y-pred =
y-pred =

ann. predict (X_test)
(y-pred > 0.5)

Evaluate predictions

accuracy = accuracy-score(y_test ,y_pred)*100
precision = precision_score(y-test ,y_pred)*100
fl = fl_score(y-test ,y_pred)=*100

recall = recall_score(y-test ,y_pred)=*100
confusion_.mat = confusion_matrix(y-test ,y_pred)

fprl, tprl, threshl =
pos_label=1)

random_probs = [0 for i in range(len(y-test))]

p-fpr, p-tpr, - = roc_curve(y-test, random_probs,
pos_-label=1)

auc_score = roc_auc_score (y-test ,

roc_curve (y-test , y_pred,

y-pred)

mcc = matthews_corrcoef(y-test, y_pred)
Printing the Results

print (" Accuracy for ANN is:” ,accuracy)
print (" Precision for ANN is:” ,precision)

print ("Fl—score for ANN is:” fl)
print (" Recall for ANN is:” ,recall)
print ("MCC:” ,mcc)

43

print (” Confusion Matrix”)
print (confusion_mat)

#Confusion Matrix

sns.heatmap (confusion_-mat , annot=True, fmt=’g’,
cmap="Blues ")

plt.xlabel (’Predicted)

plt.ylabel ("Actual ’)

plt .show ()

AUC score and plot of ROC curve

print ("AUC Score:” ,auc_score)

plt.plot (fprl, tprl, label="ROC curve (area =
%.2f)° %auc_score)

plt.plot ([0, 1], [0, 1], linestyle="——", lw=2,
color="r"’ label="Random guess ’)

plt.title (’'ROC curve ’)

Listing 2: models.py
from django.db import models

Create your models here.

class Features(models.Model):

vall = models.FloatField (max_length=30)
val2 = models.FloatField (max_length=30)
val3 = models.FloatField (max_length=30)
val4d = models.FloatField (max_length=30)
val5 = models.FloatField (max_length=30)
val6 = models.FloatField (max_-length=30)
val7 = models.FloatField (max_length=30)
val8 = models.FloatField (max_length=30)
val9 = models.FloatField (max_length=30)

vall0 = models. FloatField (max_length=30)

NP_TYPE = (

('AG’, Ag’),
('NIFE~’ "NiFe2047) ,
(’AL>, ’AI2037),

"BI’, ’Bi2037),
(’CO’, ’Co07),
(’CR>, ’Cr2037),
(’FE’, ’Fe203’),
(’IN’, ’In203°),
(LA’ , ’La203’),
(°’NO’, ’NiO’),
(’SB’, ’Sb2037),
(’SN’, ’Sn02’),
(°T1’, ’TiO2’),
(v, ’'vV203’),
(W wos)
(’Y’, 'Y203°),
(’ZN’, ZnO’),
(’ZR’, ZrO2”),
(C’PT?, Pt’)

)

TOXMEASURE = (
(’cc, ’CCs07) ,
(’LC’, ’LC50’),
(’EC’, 'EC50°)

)

ENDPOINT = (

(’RAW’ , 'RAW 264.7 (M)’),

(’A°, 'AbB49 (H)’),

(’HACAT’ , ’HaCaT (H)’),

(’DR’, ’Danio rerio (embryos)’),

(’PS’, ’Pseudokirchneriella subcapitata ’)

)

SHAPE = (

Listing 3: forms.py

from django import forms

from .models import x*

from django.db import models

from django.db.models import fields

from django.forms import Numberlnput

from django.forms import widgets, ModelForm

class FeatureForm (forms.ModelForm):
class Meta:
model = Features
fields = ” __all__"”

plt.xlabel (’False Positive Rate’)
plt.ylabel (’True Positive Rate’)
plt.grid ()

plt.legend ()

plt .show ()

#feature importance using shap
shap.initjs ()
explainer = shap.KernelExplainer (ann. predict ,
shap .sample(X_train ,7))
shap_values = explainer.shap_values(X_test)
shap.summary_plot (shap_values, X_test, plot_type="bar”)

#save model

joblib .dump(ann, ’ann_model.pkl’)

(’SPHERE’ , ’spherical 7),
(’IRREG’, ’irregular '),
(’POLY’, ’polyhedral’),
(’N/A’, ’"n/a’)

)

CONDITION = (
(’WATER’ , ’'H20’),
(’DRY’, ’'Dry’),
(’DULBECCO’ , DMEM)

)

ASSAY_TIME = (
(’FOUR’, ’4’),
(’TWOFOUR’ , ’247),
(’FOUREIGHT’ , ’48’),
(’SEVENTWO’ , ’72°),
(’NINESIX’, '967),
’ONETWENTY’ , ’1207),
(’ONESIXTYEIGHT’ , ’1687)

)

COAT = (
(’PDAD’ , ’'PDADMAC’) ,
(U, uC)
(’OLE’, ’oleate’)

)

class Reference(models.Model):

np = models. CharField (choices=NP_.TYPE, max_length=15,
null=False)

me = models. CharField (choices=TOXMEASURE, max_length=15,
null=False)

bt = models. CharField (choices=ENDPOINT, max_length=15,
null=False)

ns = models. CharField (choices=SHAPE, max_length=15,
null=False)

dm = models. CharField (choices=CONDITION, max_length=15,
null=False)

ta = models. CharField (choices=ASSAY_TIME, max_length=15,
null=False)

sc = models.CharField (choices=COAT, max_length=15,
null=False)

fl1 = models. FloatField (max_-length=100, null=False)
f2 = models. FloatField (max_-length=100, null=False)
f3 = models. FloatField (max_-length=100, null=False)
f4 = models. FloatField (max_-length=100, null=False)
f5 = models. FloatField (max_length=100, null=False)
f6 = models.FloatField (max_length=100, null=False)
f7 = models.FloatField (max_length=100, null=False)
f8 = models.FloatField (max_length=100, null=False)
f9 = models.FloatField (max_length=100, null=False)

f10 = models. FloatField (max_length=100, null=False)

widgets = {

>vall ’: NumberInput(attrs={"class
’form—control '}),

‘val2 7: NumberInput (attrs={’class
’form—control '}),

’val3 ’: NumberInput(attrs={"class
’form—control ’}),

val4 ’: NumberInput(attrs={"class
’form—control '}),

val5 ’: NumberInput(attrs={"class
’form—control '}),

44

val6 ’: NumberInput(attrs={"class ’:
form—control ’}),

‘val7 ’: NumberInput (attrs={’class
’form—control ’}),

‘val8 7 NumberInput (attrs={"class
’form—control ’}),

).

).

Listing 4: views.py

from django.shortcuts render
from .models import x*

from .forms import
import joblib
import numpy as np
from tensorflow.keras.models

import

*

import load_-model

Create your views here.
def home(request):

return render (request ,”

nanotest /home. html”)

def test(request):

form = FeatureForm
data = {”form”:form}
return render (request ,” nanotest/test.html”,

def about(request):

return render (request ,” nanotest/about.html”)

def predict(request):

cls=joblib .load (’xg-model.pkl’)
cls= load-model (’ann_keras_model .h5")
lis =[]

val0l = request .POST.get (’vall’)
vall = float(valOl)
val02 = request .POST.get (’val2’)
val2 = float (val02)
val03 = request .POST.get (’val3’)
val3 = float (val03)
val04 = request .POST. get (’val4d’)
vald = float (val04)
val05 = request .POST.get (’val5’)
vals = float (val05)
val06 = request .POST.get (’val6)
val6 = float (val06)
val07 = request .POST. get (’val7’)
val7?7 = float(val07)
val08 = request .POST.get (’val8’)
val8 = float (val08)
val09 = request .POST.get (’val9)

val9 float (val09)
val010 = request .POST.get (’vall0’)
vallO float (val010)

data)

45

>val9 ’: Numberlnput(attrs={"class ’:
’form—control ' }),
’vallO *: NumberInput (attrs={"class

’form—control '}),

).

#normalize input

vall = (vall — (—9.599)) / (10.666 — (—9.599))

val2 = (val2 — (—103.384)) / (71.316 — (—103.384))

val3 = (val3 — (—421.105)) / (394.078 — (—421.105))
vald = (vald — (—301.826)) / (67.751 — (—301.826))

vals = (vals — (—1.345)) / (1.197 — (—1.345))

val6 = (val6 — (—114.686)) / (87.55 — (—114.686))

val7 = (val7 — (—57605.281)) / (38894.4 — (—57605.281))
val8 = (val8 — (—1127.534)) / (35.027 — (—1127.534))
val9 = (val9 — (—355915832.7)) / (28233130.49 —

(—355915832.7))
vall0 (vallo — (—1)) / (1 — (—1))

.append(vall)
.append(val2)
.append(val3)
.append(val4)
.append(valb)
.append(val6)
.append(val7)
.append(valg)
lis .append(val9)
lis .append(vall0)
print (lis)

lis
lis
lis
lis
lis
lis
lis
lis

data_array = np.asarray (lis)
arr= data_array.reshape(1,10)
print (arr)

ans cls.predict (arr)

print (ans)

ans = (ans > 0.5)

print (ans)

finalans=""

if (ans==1):
finalans="Your

elif (ans==0):
finalans ’Your

print (finalans)

nanoparticle is NON-TOXIC’

nanoparticle is TOXIC’

return render (request, ”"nanotest/result.html” {’ans’:
finalans ,” vall”:val0l, ”"val2”:val02,” val3”:val03, ”vald”:
val04 ,” val5”:val05 ,” val6”:val06 ,” val7”:val07, ”val8”:

val08 ,” val9”:val09, ”vall0”:val010,})

XI. Acknowledgment

After many years of learning, finally my journey as a student is coming to an end. For
almost two decades, the school had been a second home to me, it is where I learned a
lot of life lessons, gained extraordinary experiences, and unforgettable memories. As
I close this chapter of my life, first I would like to express my gratitude to everyone
who supported me and gave me the strength to reach this important milestone.

To my parents, Dad and Mama, thank you for everything. Finally we have made
it! To my sister, who have my back whenever I am in a pinch, and to my older
brothers who gave me advices when I needed it, thank you very much.

Next, to my friends who helped me survive being a student. Thank you for
accepting me. To my best friend, Nicole who kept me in line during high school, and
to Gwen and Lady who are my lifesavers in college. You guys played a big part in
my life and has a huge space in my heart.

To all my professors during my stay in UPM, thank you for imparting your knowl-
edge to us. I am forever grateful for all the lessons and the considerations I am given.
To Ma’am Perl, thank you for being a great mentor during the formulation of this
SP. Moreover, thank you for being a kind and approachable adviser, as well as for the
moral support all throughout this project . I also extend my gratitude to Sir John
and Jahaziel, who were my collaborators for this SP. Through this collaboration, I
gained new experiences and was able to meet a new friend.

Lastly, everything that I was able to achieve was because of the help of Almighty
God. Lord thank you for giving me the strength that I need to surpass all the
hardships and obstacles that hindered my way. I also thank you for letting me meet
the right people who completed this chapter of my life. Thank you for answering my
prayers, as well as for being the mightiest rock that kept me safe all throughout my

journey.

46

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Theoretical Framework
	Nanotoxicity
	In-silico Nanotoxicological Testing
	QSAR-Perturbation Model
	Data Pre-processing
	Synthetic Minority Oversampling Technique (SMOTE)

	Machine Learning Algorithms
	Support Vector Machine
	Classification and Regression Tree
	Extreme Gradient Boosting
	Artificial Neural Network

	Performance Metrics
	Matthews Correlation Coefficient (MCC)
	Area Under the Curve (AUC)
	Accuracy
	Precision
	Sensitivity / Recall
	Specificity

	Feature Importance
	SHapley Additive exPlanations (SHAP)

	Design and Implementation
	Dataset
	Model Implementation
	Use Cases
	System Architecture
	Django
	Scikit-Learn
	TensorFlow

	Technical Architecture

	Results
	Date Pre-processing
	Model Building and Evaluation
	Model Performance without SMOTE
	Model Performance with SMOTE

	Feature Importance
	Web Application
	Home Page
	Test Page
	Result Page
	About Page

	Discussions
	Conclusions
	Recommendations
	Bibliography
	Appendix
	Source Code

	Acknowledgment

