
University of the Philippines Manila

College of Arts and Sciences

Department of Physical Sciences and Mathematics

A Blockchain-based Patient-centered Patient

Generated Health Data Sharing Decentralized

App

A special problem in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Julius Allen A. Reyes

June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser No

Available only to those bound by confidentiality agreement No

ACCEPTANCE SHEET

The Special Problem entitled “A Blockchain-based Patient-centered Pa-
tient Generated Health Data Sharing Decentralized App” prepared and submitted by
Julius Allen A. Reyes in partial fulfillment of the requirements for the degree of
Bachelor of Science in Computer Science has been examined and is recommended for
acceptance.

Marbert John C. Marasigan, M.Sc. (cand.)
Adviser

EXAMINERS:
Approved Disapproved

1. Avegail D. Carpio, M.Sc.
2. Richard Bryann L. Chua, M.Sc. (cand.)
3. Perlita E. Gasmen, M.Sc. (cand.)
4. Ma. Sheila A. Magboo, Ph.D. (cand.)
5. Vincent Peter C. Magboo, M.D.
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.

Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences

Department of Physical Sciences and Mathematics
and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean

College of Arts and Sciences

i

Abstract

With the advancements in wearable technology, use of Patient Generated Health

Data has been on the verge of making it to the normal. They provide a way for

patients to generate their own health data, which gives them awareness on the state of

their health, and communicate it to doctors for diagnosis. However, with traditional

systems, sharing data that includes private and sensitive data can be unsafe and

their data might be targeted by malicious entities. Thus, a need to develop a system

where secure data sharing can be done is needed. Blockchain technology has been

on a steady rise in the past few years, boasting security and performance advantages

compared to traditional systems. To address these, this paper proposes a patient-

centered blockchain-based system that takes advantage of the built-in security and

privacy features of Blockchain.

Keywords: Patient-Centered, Patient Generated Health Data, Blockchain, Ethereum

Contents

Acceptance Sheet i

Abstract ii

List of Figures vi

List of Tables vii

I. Introduction 1

A. Background of the Study . 1

B. Statement of the Problem . 2

C. Objectives of the Study . 2

D. Significance of the Project . 3

E. Scope and Limitations . 3

F. Assumptions . 4

II. Review of Related Literature 5

A. Electronic Health Records . 5

B. Patient Generated Health Data 6

C. Security in Traditional Health Data Sharing Systems 6

D. Blockchain Technology . 7

E. Applications of Blockchain Technology in Health Data Sharing Sys-

tems . 9

F. Synthesis . 12

III. Theoretical Framework 13

A. Patient Generated Health Data 13

A..1 Mobile Health Applications 13

A..2 Wearables . 14

iii

B. Blockchain . 15

B..1 Blockchain Transaction Process 15

B..2 Blockchain Architecture . 16

B..3 Consensus Mechanisms . 17

B..4 Characteristics of Blockchain 18

B..5 Types of Blockchain Networks 19

C. Ethereum . 19

C..1 Smart Contracts . 20

C..2 Decentralized Applications . 21

IV. Design and Implementation 22

A. Use Cases . 22

B. Database Design . 24

C. System Architecture . 25

D. Technical Architecture . 25

V. Results 26

A. User Registration and Authentication 26

B. Patients . 27

B..1 Patient Data . 27

B..2 Access Requests . 30

C. Doctors . 33

D. Transaction Logs . 38

VI. Discussions 41

A. Objectives and Addressed Problems 41

B. Gas Cost Estimation . 41

C. Security Analysis . 42

D. Significance . 42

iv

E. Issues and Challenges . 43

F. Differences with Main References 43

G. Contributions . 44

VII. Conclusions 45

VIII. Recommendations 46

IX. Bibliography 47

X. Appendix 52

A. Smart Contract . 52

B. Django Files . 53

C. Templates . 56

XI. Acknowledgment 61

v

List of Figures

1 Use Case Diagram . 22

2 Activity Diagram . 23

3 Log-in page . 26

4 Registration page . 27

5 Patient Dashboard . 28

6 Patient Data Form . 28

7 Patient Data Updated . 29

8 Patient Data History . 30

9 A Doctor’s Access Request to the Patient’s Data 31

10 Access Request Approved . 31

11 Access Request Revoked . 32

12 Access Request History . 33

13 Doctor Dashboard . 34

14 Requesting Access . 34

15 Access Requested . 35

16 No Access! . 36

17 Access Request Approved . 36

18 Patient’s Data and History . 37

19 Request Removed . 38

20 Patient Data Transaction Log . 38

21 Access Request Transaction Log . 39

22 Access Granted Transaction Log . 39

23 Access Revoked Transaction Log . 40

vi

List of Tables

1 Data Structure for Patient Generated Health Data 24

2 Data Structure for Access Requests 24

vii

I. Introduction

A. Background of the Study

With the advancements to healthcare and wireless technologies, smartphones, and

wearable technology, and with how the world continues to go digital [1], Patient

generated health data have been a thing of interest for healthcare institutions. Patient

generated health data are basically health-data that are generated by the patients

themselves [2] and is often used to recognize and diagnose the patient based from the

vital data collected in their PGHD. These can include health and treatment history,

biometric data from sensors, symptoms, and lifestyle choices. PGHD collection is

mostly done through the use of home health equipment and/or mobile and wearable

devices, often accompanied by an application on mobile devices [3].

Patients themselves are the ones who are responsible for capturing, recording,

and/or collecting these data correctly. As a result, patients have full control on their

own data and it is in their discretion on how they will share the data with their doctors

[4]. From a research standpoint, it can be seen that PGHD of the greatest interest

often include vital signs, stress levels, mood, physical activity, weight, diet, blood

levels, medications, sleep patterns, tabacco and alcohol use, as well as environmental

exposures.

As interest in PGHD grows, even tech giants such as Samsung and Apple have

adopted the use of it [4]. These companies have since integrated PGHD in their

devices and with it developed major digital health initiatives. One such example is

Apple’s ”HealthKit” features, which is now integrated into their operating system, the

iOS, as of iOS8. Apple also have partnerships with the Mayo Clinic and the EPIC

electronic health record with the aim of further improving and developing digital

health.

Blockchain is a decentralized and distributed ledger that handles and records

1

transactions between members on a ledger, often without a central authority gov-

erning over it. Blockchain technology, in recent years, have successfully penetrated

different fields, mostly due to how popular cryptocurrencies are. Over the years, due

to the need of a more patient-centered approach when it comes to healthcare sys-

tems, blockchain have been a topic of interest [5]. Medical data is very important

in healthcare, these data are very sensitive, and often confidential, which makes it a

prime target for malicious attacks. It has been more than ever important to secure

all of these data. Here is where blockchain comes in, as blockchain is very robust

against attacks and failures, and it also provides different methods of access control,

making blockchain a good framework for healthcare data.

B. Statement of the Problem

According to a study done by Deering, et al. [6] the privacy and security related

issues and concerns of the usage of Patient Generated Health Data can be narrowed

down to the following: Authenticity of the patient, provenance of the data, tracking

of the data from source going to providers and staff, patient authorization of the data,

and the patient knowing the identity of providers and staff accessing the data.

C. Objectives of the Study

The objective of the study is to create a patient-centered patient generated health

data sharing system with the following specifications:

1. The patient can:

(a) Create an account on the system.

(b) Log-in and access their account.

(c) Upload their PGHD.

2

(d) Access their PGHD.

(e) Edit/Update their PGHD.

(f) Access their PGHD’s history.

(g) Grant access/Revoke access to their PGHD to other people.

2. The doctor can:

(a) Create an account on the system.

(b) Log-in and access their account.

(c) Request for access to the PGHD of their patients.

(d) Access the PGHD of their patients.

(e) Access the PGHD history of their patients

D. Significance of the Project

Secure usage of digital data can be tricky, especially in healthcare scenarios, where

data is sensitive and confidential. One thing that prevents healthcare institutions from

developing health informatics are the patients’ concerns with regards to privacy and

security. Blockchain-based systems, on the other hand, by nature, include security

properties and features that essentially makes it so that data stored in the blockchain

are impervious to tampering. Adoption of blockchain into healthcare systems may

prove to be the answer to the privacy and security concerns of these systems, allowing

widespread usage of digital data in healthcare systems without the drawbacks in

security and privacy.

E. Scope and Limitations

1. The patient generated health data only includes biometric data, symptoms, and

lifestyle choices and health and treatment history.

3

2. The system only focuses on the privacy and security between the sharing of

patient generated health data.

3. Communication between the patient and the doctors, consultations, and/or

check-ups are not handled by the system and is to be done outside the system.

4. Other documents other than patient generated health data such as x-rays, pre-

scriptions, etc. are not supported by the system.

F. Assumptions

1. Doctors registered in the system are real doctors.

2. The study assumes that the patient inputs true and correct data.

3. Both the patients and the doctors are in healthcare institutions that use the

system.

4. Only patient generated health data and no other documents are stored into the

blockchain network.

5. Due to the lack of accessible Wearable API, PGHD is to be inputted to the

system manually.

4

II. Review of Related Literature

A. Electronic Health Records

Electronic Health Records, or EHRs in short, is simply a comprehensive, agglomer-

ation of a patient’s health data, as well as past healthcare data, albeit electronically

[7]. It not only contains data that are relevant to the patient’s health, but also to

that certain patient’s treatment as well. Due to the electronic nature of EHRs, it

can be made easily and readily available to other people [8]. EHRs are also much

more effective than just being a medium of information. According to Carey, et al.

[9] EHRs have more benefits such as lower costs, provides an advantage in record

keeping, ensures the mobility of the records, as well as having an impact in improving

healthcare quality.

This technology, however, does not come without concerns. Several studies have

shown that the use of EHRs can raise privacy, security, and even ethical issues.

Keshta, et al. [10] found out through certain studies that when asked whether they

feel safe and secure with their health data, close to half of the respondents stated that

they were worried about the privacy and security of their data, while the remaining

half were either satisfied with the security or had no care at all about the subject.

There have also been ethical concerns with the use of EHRs. Time-saving measures,

such as copy-and-pasting of previous entries into the current EHRs can lead into use-

less and repetitive entries or even inaccuracies, as well as bloat in information [11].

Due to EHRs being mostly computer-assisted, physicians can lose focus and blindly

follow the information as they appear on the computer, without actually catering to

the patient’s current demands or needs.

5

B. Patient Generated Health Data

Patient Generated Health Data, or PGHD in short, are basically health-related data

that is generated and gathered from the patient themselves, that is often used to help

address a health concern [2]. These PGHDs include, but are not limited to, health

and treatment histories, patient-reported outcomes, and biometric sensor data. This

has become possible with the recent advancements in the field of wireless technology,

smartphone, and IoTs.

Usage of PGHD have resulted in a lot of benefits for patients using them [12].

Having the patients generate their health data themselves gives the patient a lot

more awareness on the state of their health. This awareness more often that not can

result into the patient being more engaged in taking care of their health. PGHDs

also prove to be a game changer in improving health outcomes of patients.

PGHDs, however, does not come without its problems [12]. Due to PGHDs being

a relatively new technology, not a lot use them, be it doctors or patients. This results

into a limited widespread use and acceptance among doctors and patients. Technical

issues also come into play, as not everyone has a means to connect to the internet,

a major requirement for PGHDs, as well as the lack of applications that supports

PGHD in other languages, which might pose a language barrier problem to some

patients. As with all things digital, patients also reported privacy and confidentiality

concerns on their collected data on how it is being shared and basically just where

their data goes through.

C. Security in Traditional Health Data Sharing Systems

One particular approach in applying security into EHR systems is through the use of

cryptography. In 2013, the US Department of Health and Human Services released the

Omnibus Final Rule [13]. In it, significant modifications were made to the privacy

and security standards under the Health Insurance Portability and Accountability

6

Act, or HIPAA for short. These new standards and regulations were motivated by

the need to ensure the security, confidentiality, integrity, and privacy of patients’ data

in electronic health records, as well as in other data formats.

The HIPAA designated ways in which health information can be secured through

the use of cryptography. The use of encryption has proven to improve the security of

electronic health records, especially when electronic health records are shared between

a patient and their doctor. This exchange has some policies which it needs to adhere

to, as well as being needed to be recorded [13]. Security breach concerns has also

been tackled and prevented with the use of digital signatures. Digital signatures

are applied to electronic health records as another layer of security and effectively

prevents breaches of security.

Other approaches to security in EHR systems consists of using more traditional

techniques, such as usage of antivirus software, cloud computing, preliminary risk

assessment, use of RFIDs, [13] and even the usage of Firefox, as Firefox have been

found out to be very effective in securing the network of an organization, as well as

being able to ensure that health information is protected on the network [14]. Firefox

has been used widely to provide security and protection to information technology

systems of healthcare organizations.

D. Blockchain Technology

The term “blockchain” has more often than not, a lot of different definitions. One

widely used definition for blockchain is that of a tamper resistant digital ledger im-

plemented in a distributed network, often referred to as a “distributed ledger”, and

usually does not have a central governing authority in the system [15]. Due to the

distributed nature of blockchain, each member of the blockchain network has a copy

of the ledger. Blockchain enables a group of users to records transactions in a dis-

tributed ledger within that community. This makes it so that no transaction can be

7

modified or tampered with once it is published.

In 2008, a user by the name of Satoshi Nakamoto posted about Bitcoin in a

cryptography mailing list. The idea of blockchain was combined with other technolo-

gies and concepts to create cryptocurrencies, with Bitcoin being the first recorded

blockchain-based cryptocurrency in existence [15]. In 2009, the first functional version

of Bitcoin was announced. Main characteristics of Bitcoin include faster transaction

speeds, low cost, and anonymity. Bitcoin can be acquired through different means,

such as through bitcoin mining, purchasing bitcoin, and trading other things for them.

Being a product of blockchain, bitcoin is considered to be the world’s first decentral-

ized currency, where the currency is not issued by a central authority (banks) and is

not governed by government rules. Nowadays, Bitcoin have been widely accepted as

a form of payment by a lot of companies [16].

After Bitcoin, Ethereum was first introduced in a paper by Buterin, with the goal

of addressing the limitations of Bitcoin. Ethereum presents a blockchain network

with a Turing-complete language. It allows anyone to create their own set of rules for

ownership, and transactions. This is done through the utilization of smart contracts,

a set of rules that are only executed if certain criteria are met [17].

Potential fields of uses for Ethereum include token systems, insurance, identity

and reputation systems, cloud computing, etc. The most important use of Ethereum,

however, is in decentralized applications, or dApps for short. Many dApps are preva-

lent today such as Golem, Augur, and Civic, to name a few [10].

A decentralized application, simply, is a type of distributed open-source software

application that runs on a peer-to-peer blockchain network, instead of a single com-

puter. dApps are free from the control of a central governing authority. Nowadays,

dApps can be a variety of applications, ranging from finance, to gaming, and to social

media.

Throughout the years, blockchain has been applied to several fields, mostly due to

8

its properties [18]. Its immutable property ensures that the data within the blockchain

network are irreversible and cannot be modified or tampered with once it is uploaded

to the blockchain. This ensures the integrity and authenticity of the data. Its dis-

tributed nature means that every member of the network has their own copy of the

ledger. This is important because in a distributed ledger, every member will have to

participate in the changes within the network. This is important for its decentralized

nature, as in a blockchain network, there is no centralized governing authority. This

promotes transparency in the network, meaning every change in the network can be

traced, this also eliminates a single point of failure in the network. This also leads

into the consensus mechanism in blockchain. This simply means that for something

to happen in the network, a consensus must first be reached. A certain number of

members (or everyone) must first approve that something before it can happen. All

in all, several, if not all of these properties are taken advantage of in the application

of blockchain technology in healthcare systems.

E. Applications of Blockchain Technology in Health Data

Sharing Systems

With the advancements on blockchain technology throughout the years, several stud-

ies now aim to address the security and privacy concerns that comes with dealing

with health data. With this, several studies have come up with proposed systems

using different blockchain platforms and techniques with the aim of combating the

security and privacy concerns of traditional health data sharing systems.

In order to combat the privacy and security concerns that come with traditional

EHR sharing systems, Tanwar, et. Al [19] proposes a hyperledger-based electronic

health records sharing system that uses blockchain in order address security and pri-

vacy concerns that comes with EHR sharing. The study also includes a proposed

Access Control Policy Algorithm to aid in data accessibility in between healthcare

9

providers, as well as to address the concerns of the patients when it comes to giving

doctors access to their EHR. The Access Control Policy Algorithm makes it so that

the doctors and/or the laboratories have to ask for access to the patient when they

need to access their EHR, the patient can now then allow access to their EHR, and

revoke access when their consultation period is done. The admin also has control on

the members where they can remove members from the network when they are to do

something malicious.

HealthChain is an EHR system built upon consortium blockchain technology made

up of hospitals, insurance providers, and government agencies, with the aim of over-

coming the disadvantages that comes with traditional EHR systems [20]. An instance

of chaincode will regulate the permissions of the members, and a designated orderer

establishes consensus which uses Proof of Authority as consensus protocol on trans-

actions of EHRs and then disseminate blocks to peers. The HealthChain succeeds in

creating a system where EHRs can be stored and shared to members, while also hav-

ing features such as privacy preservation, improved security, and high throughput.

Shuaib, et al. [21] proposes a permissioned hyperledger-based healthcare data

sharing system that integrates Blockchain technology, decentralized file system and

threshold signature to address problems such as single point of failure and security

problems which stems from the use of traditional database systems. The decentral-

ized file system provides much better security than most traditional centralized file

systems while still being able to provide the same level of performance, if not more.

The system uses IBFT as a consensus protocol which is the basis of the threshold

signature, while the decentralized file system is based on InterPlanetary File System

(IPFS).

Niu, et al. [22] proposes a sharing scheme for electronic health records based on

permission blockchain technology for the purpose of eliminating violations of patient

privacy. The permission system consists of 4 different types of users namely: patient,

10

doctor, cloud server, and searcher, each with their own set of permissions and access.

The encrypted electronic health records also are able to be searched in the system

with the use of keywords and ciphertext.

Hashim, et al. [23] proposes yet another approach for a blockchain-based elec-

tronic health record sharing system, the MedShard. MedShard is a blockchain-based

electronic health records sharing system which aims to address the scalability issues

that comes with most blockchain systems due to the consensus algorithm and ledger

replication using blockchain sharding. It uses transaction-based sharding that uses

Proof of Authority for consensus, with the previously visited caregivers of the patient

as the validating nodes. This makes it so that when a patient visits a caregiver, the

caregiver creates a digital signature, which it then broadcast to registered nodes in

the network, caregivers that were previously visited by the patient will verify the

node, and then respond by searching through their local database for any previous

records, while still adhering to any signed consent by the patient. PoA consensus is

then used to reach an agreement on the validity of the shard, and once a transaction

has been reached, the shard is discarded.

Dubovitskaya, et al. [24] proposes ACTION-EHR. ACTION-EHR is a permission

blockchain-based system for EHR data sharing and integration. The system is built

upon the Hyperledger fabric and data sharing transactions are implemented using

chaincode. Each member hospital will have to provide a blockchain node integrated

with its own EHR system that will form the blockchain network. A web-based inter-

face is also used to allow patients and doctors to have EHR sharing transactions. The

actual EHR data is stored and encrypted in a HIPAA-compliant cloud-based storage.

The system uses PKI-based asymmetric encryption as well as digital signatures to

ensure the security of shared EHR data.

Ktari, et al. [25] proposes an IoMT-based Platform for E-health Monitoring based

on Blockchain. The main objective of the system is to be able to directly and securely

11

share a patient’s PGHD directly from their wearables, smartwatches, or smartphones

to their doctors, hospitals, pharmacy, or even insurance companies. The system makes

use of blockchain as a way to securely store the data gathered from the patients, as

well as for encryption of the data about to be shared. The system also makes it so

that only the patient and their attending doctor or physician have the rights to access

the patient’s data. The system makes use of Raspberry Pi 3 to facilitate the data

transfer from a mobile app that collected the data from a patient’s wearables, which

is then sent to the blockchain system for storage and sharing.

F. Synthesis

With the rise of wireless technology and the Internet of Things, patient generated

health data continues to be more and more used nowadays. With digital data how-

ever, comes the question of privacy and confidentiality. Several studies have utilized

blockchain technology in order to combat these concerns. Blockchain was mostly used

for its privacy-preserving and security capabilities, ensuring that the patient has the

right and complete control of their data. Blockchain was also utilized for performance

improvements. Several proposals each discussed their own approaches to combat the

concerns that comes with the usage of PGHD. All in all, blockchain, with its improve-

ments and advancements throughout the years, prove to be a big aid in addressing

the security and privacy shortcoming of healthcare technology.

12

III. Theoretical Framework

A. Patient Generated Health Data

Patient Generated Health Data, or PGHD in short, is commonly defined as health

data generated by and from the patient themselves. Nowadays, the vast majority of

PGHD are generated through the use of mobile health applications or mHealth apps

in short, with the use of wearables such as smartwatches such as Fitbit, or wearable

medical devices such as a continuous glucose monitoring device [12].

Patient Generated Health Data contains, but is not limited to data about a pa-

tient’s health and treatment history, symptoms, biometric data, lifestyle choices, and

other clinically relevant information to assist in addressing health concerns.

Patient Generated Health Data used in the system include the age, height, weight,

blood pressure (systolic and diastolic), blood sugar, symptoms, and diet of the patient.

A..1 Mobile Health Applications

Mobile Health Applications or mHealth apps, are a type of mobile applications that

are related to health knowledge and research. They are often used by health care

professionals as well as patients in order to improve health treatments and public

health [26]. These applications use the data collected by certain sensors, such as

those from wearable devices, to handle the identification of various health parameters

related to a patient’s health, such as physical activity, and health state. It is also

possible to recognize vital parameters of a patient’s health through mobile sensors,

allowing the application to recognize a patient’s daily activities and lifestyle. The

applications are ready to use in order to help patients to regulate or prevent some

chronic diseases, such as obesity, diabetes, and cardiovascular accidents as well as help

them with the control of health-related habits such as diet, exercise, sleep, smoking

cessation, relaxation, and medication adherence. All in all, mHealth apps have several

13

purposes, such as diagnosis of heart rate problems, and controlling a glucose meter

used by diabetic patients. These applications provide easy access to information

related to health conditions or treatment; describe, show, or communicate potential

medical conditions to their health care provider.

A..2 Wearables

Wearables as medical technologies are becoming more and more an integral part of

personal analytics, being able to measure physical status, physiological parameters.

They do not only promise to help people pursue a healthier life style, but also pro-

vide continuous medical data that can be used to actively track metabolic status,

diagnosis, and treatment [27]. Advances in the miniaturization of flexible electron-

ics, biosensors, microfluidics, and AI algorithms have led to wearable devices that can

generate real-time medical data within the Internet of things. Wearables have already

been impacting health care and medicine by enabling health monitoring outside of

health care institutions and prediction of health events [28].

Various kinds of wearables have now been developed for various parts of our bodies.

Data are collected from these wearables to the Internet or mobile devices through

Bluetooth, WiFi, LTE, 3G, 4G, or 5G connections. The medical data can be sent to

a healthcare provider to receive therapeutic feedback or acted upon automatically by

other devices in the network [27].

A popular type of wearables are smartwatches. Smartwatches are basically an ex-

tension of smartphones, having basically the same capabilities as them, albeit limited.

Smartwatches nowadays are fitted with sensors that can collect health data from the

user. This feature is usually accompanied by mHealth apps in the user’s smartphones

which can display the collected data, and even send them to a doctor or health care

professionals in real time.

14

B. Blockchain

Blockchain, simply is a decentralized, shared, immutable data structure in a network

[29]. Each and everyone in the network shares the blockchain and has their own copy

of it. The blockchain assist in handling the process of recording transactions and

assets in the network. An asset can be virtually anything, be it a tangible object

such as material things, or an intangible object, such as intellectual properties or

rights to a property. Being of immutable property, blockchain essentially makes it

difficult to modify, change, or tamper the system, making it a lot more secure. Every

recorded transaction in the blockchain is recorded as a block. This block contains all

the details of the transaction.

B..1 Blockchain Transaction Process

The process of a blockchain handling transactions include steps such as [30]

1. The transaction is recorded, containing digital signatures from each party in-

volved in the transaction and their relevant details.

2. The members of the network are notified of the transaction and examines it. The

members will examine the transaction to make sure that it is a valid transaction,

using different algorithms. This process occurs among all the members of the

network.

3. Once a transaction is verified and accepted, the transaction will now be recorded

into a block. The block contains its own unique hash, as well as the hash of

the block before it, allowing the members of the network to identify where the

block is located in the blockchain.

4. After the block is created and completed, the block is now added to the blockchain.

The unique hash makes sure that the blocks are placed in their proper chrono-

logical order.

15

Afterwards, the transaction is now deemed as completed. Each member of the

ledger will now have a copy of the block.

B..2 Blockchain Architecture

Blockchain, from its name, is simply a chain of blocks, which contains a complete

record of transactions, which each block holding a number of transactions [31]. The

blockchain consists of five layers, namely [32]:

1. Hardware layer: consists of hardware, i.e. computers in the network, network

connections, data servers.

2. Data layer: made up of blocks containing information, each block is connected

to the previous block. The genesis block, or the first block in the network, is

not connected to the previous block, since it is the first block. This is the layer

where data in the network is managed.

3. Network layer: handles the communication between the different members of

the blockchain network. Also referred to as the propagation layer, due to this

layer is where blocks are created and is added into the blockchain.

4. Consensus layer: a single member cannot add a transaction into the blockchain,

as all members of the network need to validate and accept it first. This layer

lowers the risk of fraudulent and/or malicious transactions from being recorded

and added into the blockchain.

5. Application layer: allows the use of blockchain for a variety of purposes or

applications. Allows users to interact with the blockchain network.

A block in the blockchain consists of two major parts: the block header, and the

block body. The block header consists of [31]:

1. Block version: indicates which set of block validation rules to follow.

16

2. Merkle tree root hash: hash value of the transactions contained in the block.

3. Timestamp: the current time listed as seconds in the universal time, originat-

ing from January 1, 1970.

4. nBits: target threshold of a valid block hash.

5. Nonce: a 4-byte field, usually starts at 0 and increases for every hash calcula-

tion.

6. Parent block hash: 256-bit hash value that points to the previous block in

the blockchain.

For the block body, it consists of two parts, namely [31]:

1. Transaction Counter: a number that represents the number of transactions

stored in the block.

2. Transactions: the transactions themselves.

The maximum number of transactions that can be stored in a block depends on

the size of the block, as well as the size of the transactions themselves.

B..3 Consensus Mechanisms

Blockchain uses consensus mechanisms as a way to identify which members of the

network are allowed to added a block into the blockchain. Different types of consensus

mechanisms use in blockchain are the following [33]:

1. Proof of Work: members are required to solve and give a solution for a

complex cryptographic hash problem. Here, miners compete with each other to

solve the problem first and get a reward. This consensus mechanism requires a

lot of computing power and uses up a lot of resources.

17

2. Proof of Stake: the validator that validates the next block is chosen based

on the number of stake they have in the network. The chance to become a

validator is directly proportional to their stake.

3. Proof of Activity: a combination of the PoS and PoW algorithms. It starts

with the PoW algorithm and once the block is almost mined, it switches to the

PoS algorithm.

4. Proof of Elapsed Time: generates a random wait time for each node, where

each node must sleep for that duration. The node with the shortest wait time

wins the block, allowing it to add a new block to the blockchain.

5. Delegated Proof of Stake: an evolution of the Proof of Stake algorithm.

Allows stockholders to vote those who want to add a block to the blockchain.

B..4 Characteristics of Blockchain

The blockchain architecture have the following characteristics [34]:

1. Decentralization: transactions in the blockchain network are validated by

most of the members of the network, eliminating the need for a central governing

authority.

2. Immutability: each block in the network are linked to the previous block,

meaning that any attempt to modify or tamper a block will affect all succeeding

blocks before being able to modify that certain block, making it hard for an

attacker to do malicious attacks.

3. Transparency: changes in the network are publicly available and visible to

ensure transparency and security within the members of the network.

4. Traceability: since all of the information about a transaction is easily available,

each transaction is easily traceable.

18

B..5 Types of Blockchain Networks

There are three major types of blockchain networks [35]:

1. Permissionless blockchain: also know as a public blockchain, of which bit-

coin is the best example of. Virtually anyone can access and use it. Anyone

can write and do transactions as long as they are following the rules of the

blockchain. This type of blockchain powers up most of the popular digital

currency in the market right now.

2. Permissioned blockchain: also known as a private blockchain. These kinds

of blockchain acts as such of a private ecosystem. Users cannot easily join the

network or do transactions, until they receive some sort of permission to be able

to do these things. More often than not, these kind of blockchain belongs to an

individual or an organization, where they are the central governing authority in

charge of the permissions.

3. Consortium blockchain: also known as a federal blockchain. Instead of

giving power to a single person or entity, it is instead given to a group of people

or organizations which forms a consortium or a federation. Main examples are

Qourum, Hyperledger, and Corda.

C. Ethereum

Ethereum was first mentioned and describe by a cryptocurrency researcher named

Vitalik Buterin in a proposal in 2013. The proposal suggested the addition of a

scripting language for programming Bitcoin. The development of Ethereum was

funded in a crowdfunding of cryptocurrency tokens. In July 30, 2015, the Etherium

first came online [36].

Ethereum is an open-source, distributed ledger based on blockchain technology.

Etherium has its own cryptocurrency named Ether and its own programming language

19

named Solidity. Ethereum enables developers to develop and build decentralized

applications or dApps in short. Miners mine Ether tokens which serves as a currency

to be used to pay for usage on the Ethereum network. Ethereum also supports the

use of smart contracts, which are a type of digital contract. Ethereum is Bitcoin’s

main competitor.

C..1 Smart Contracts

Smart contracts were first proposed in the 1990s by Nick Szabo [37]. Smart contract

clauses will be automatically be executed once predefined conditions are met. Smart

contracts containing transactions are essentially stored, replicated, and updated in

distributed blockchain networks. Its main difference from conventional contracts is

its automation, resulting in much shorter execution time and lower costs.

Other advantages that smart contracts have when compared to conventional con-

tracts include:

1. Reducing risks: stemming from the immutability property of blockchain,

smart contracts cannot be altered once they are issued.

2. Cutting down administration and service costs: due to blockchains being

decentralized by nature, it eliminates the need of an administration to verify

smart contracts, as they can be automatically triggered once their conditions

are met.

3. Improving the efficiency of business procedures: again, due to smart

contracts’ automation, turnaround time can be significantly reduced, resulting

into more efficient business processes.

Smart contracts in the Ethereum platform are usually written in Turing-complete

languages such as Solidity, Serpent, Low-level Lisp-like Language, and Mutan. Ethereum

compiles smart contracts using these languages into machine code, which can then be

20

loaded into the Ethereum Virtual Machine and run. Ethereum uses an account-based

model, where each member is identified by their digital wallet. Ethereum also adopts

the use of PoW as its consensus mechanism.

C..2 Decentralized Applications

Decentralized Applications are a new type of application, that is decentralized in

nature [38]. dApps interact with smart contracts by transactions, and provide services

around them. In theory, a single smart contract can be considered as a dApp itself.

dApps can be characterized by four properties as follows [39]:

1. Open Source: due to the nature of blockchain, dApps need to keep their

source codes open source.

2. Internal Cryptocurrency Support: as cryptocurrency are required in a

blockchain in order to be able to do transactions, dApps also uses them to

quantify all credits and transactions among members of the system.

3. Decentralized Consensus: consensus is needed among the members to pro-

mote transparency.

4. No Central Point of Failure: A fully decentralized system should have no

central point of failure due to all components of the application is hosted and

executed in the blockchain.

21

IV. Design and Implementation

A. Use Cases

The system has two users: the patient and the doctor.

Figure 1: Use Case Diagram

The patient has full ownership of their data. Both the patient and the doctor can

create an account in the system and access it. They can also update their account

22

details.

The patient can upload and access their PGHD into the system. The patient can

also update it. The patient also has control on who can access their PGHD, allowing

them to grant/revoke a doctor’s access to their PGHD.

The doctor can view all of the patient’s PGHD they have access to. If they want

to access a certain patient’s PGHD, they need to request for access first from the

patient.

Figure 2: Activity Diagram

23

B. Database Design

Since the data inputted by the patients and viewed by the doctors are relatively

small, the system opted to use on-chain blockchain database. The on-chain database

is where patients can input their details and generated data, and update them. The

doctors can also read and view the details of the patients that they have access to.

Data was stored on-chain to solve interoperability issues.

The on-chain database is also where the smart contracts for access requests are

stored.

The data structure for patient generated health data can be seen in the table

below:

Field name Data Type Description
name string Patient’s name
age uint256 Patient’s age

height uint256 Patient’s height (in kg)
weight uint256 Patient’s weight (in cm)
systolic uint256 Patient’s Systolic Blood Pressure (in mmHg)
diastolic uint256 Patient’s Diastolic Blood Pressure (in mmHg)

bloodsugar uint256 Patient’s Blood Sugar Level (in mg/dL)
symptoms string Symptoms the patient are experiencing

diet string Current diet of the patient
timestamp uint256 Unix timestamp when the data was created

Table 1: Data Structure for Patient Generated Health Data

The data structure for access requests can be seen in the table below:

Field name Data Type Description
doctor address Doctor’s address
patient address Patient’s address
granted bool True if access is granted, False otherwise

Table 2: Data Structure for Access Requests

24

C. System Architecture

The system is a decentralized application built upon the Etherium blockchain net-

work. Solidity was used as the programming language to write the smart contracts.

Ganache was used to deploy a local blockchain network and Remix was used to test

and deploy the smart contracts alongside Ganache. Web3.py was used for the system

to interact with the Ethereum blockchain.

To build the web app, Django was used for the backend, while Bootstrap was used

for the frontend.

D. Technical Architecture

To sync with the Ethereum blockchain, the following minimum requirements must be

met by the computer:

� CPU with at least 2 cores

� 4GB RAM minimum with an SSD, at least 8GB RAM minimum with an HDD

� 8 Mbit/s bandwidth

The recommended requirements on the other hand are as follows:

� CPU with 4+ cores

� 16GB RAM

� SSD with at least 500GB space

� 25+ MBit/s bandwidth

25

V. Results

A. User Registration and Authentication

Once the user accesses the web app, they will be greeted with the log-in page. The

log-in page works for both patients and doctors. In order to log-in to the system, the

user simply has to provide their registered email address as well as the password to

their account.

Figure 3: Log-in page

If the user does not have an account yet, they can instead proceed to the regis-

tration page. In the registration page, the user can input their first and last names,

username, email address, ethereum address, and password. The user can also deter-

mine whether they are a patient or a doctor. Once the user submits their registration,

their account is created and can proceed to logging in.

26

Figure 4: Registration page

B. Patients

B..1 Patient Data

Once a patient has logged in, they will be greeted with their dashboard. In their

dashboard, they will be able to see their personal information, current health data,

and the doctors with requests to their data.

27

Figure 5: Patient Dashboard

Should the patient wish to update their health data, they can click the Update

button. After clicking, a modal with a form will appear, in the form, the patient can

input their health data.

Figure 6: Patient Data Form

28

After submitting their data, the patient will be redirected back to their dashboard

and their health data will show the updated values. A timestamp will automatically

be added based on the time the patient submitted their data.

Figure 7: Patient Data Updated

When the patient already has existing health data and updates it, the old data

will be stored as part of the patient’s data history. Old data are kept in order to see

the trend in a patient’s health. The old data are stored such that the latest data are

shown first. In order to access the patient’s data history, the patient can click on the

View Health History button

29

Figure 8: Patient Data History

B..2 Access Requests

Once a doctor has requested for access to a patient’s data, the doctor’s details will

show up in the Doctor Access section of the dashboard. In here, the patient can see

the doctor’s name as well as their ethereum address, the request’s status, and a button

to approve/revoke access to the doctor. Access request’s status will be pending by

default.

30

Figure 9: A Doctor’s Access Request to the Patient’s Data

Should the patient want to give the doctor access to their data, the patient can

simply click the Approve button. The access request’s status will be changed to

granted, and the Approve button will change into a Revoke button. The doctor can

now access their data and its history.

Figure 10: Access Request Approved

31

Once consultation with the doctor ends, the patient can now then revoke the

doctor’s access to their data, they can achieve this simply by clicking the Revoke

button.

Figure 11: Access Request Revoked

Once an access request is revoked, the access requests will be stored as part of the

patient’s access request history. The access request history are kept for provenance

purposes. In order to access the access request history, the patient can simply click

on the View Access History button. Once clicked, a modal will appear with a table

of previous access requests along with the requesting doctor’s name and ethereum

address.

32

Figure 12: Access Request History

C. Doctors

Once a patient has logged in, they will be greeted with their dashboard. In their

dashboard, they will be able to see their personal information, the access request

form, and the patients they have access requests to.

33

Figure 13: Doctor Dashboard

If the doctor wants to request access to one of their patients, they can simply

input the patient’s ethereum address to the access request form. The reason for using

ethereum addresses for requesting is due to it being unique, and patients can have

the same names.

Figure 14: Requesting Access

34

Once the doctor clicks the submit button, their Access Requests section of the

dashboard will be updated with the new access request. In here, the doctor can see

the name and address of the patient they requested to, the request’s status, which is

pending by default, and a button to view the patient’s data, that when pending will

have a red color, signaling the doctor has no access.

Figure 15: Access Requested

If the doctor presses the View Patient’s Data button even if their request is still

pending, a modal will appear that says they currently has no access to the patient’s

data.

35

Figure 16: No Access!

However, if the doctor’s request is approved, the status of the request will be

updated to granted and the button to view the patient’s data will turn green, signaling

that the doctor now has access.

Figure 17: Access Request Approved

36

If the doctor wants to view the patient’s data, they can simply click the View

Patient’s Data button, and they will be redirected to the patient’s data and history

page.

In there, the doctor can view the patient’s current and previous health data, with

the latest data showing up first.

Figure 18: Patient’s Data and History

Once the consultation with the patient ends, and the patient revokes the doctor’s

access to their data, the access request will be removed from the doctor’s dashboard.

37

Figure 19: Request Removed

Should the patient have another consultation with the doctor, the doctor can

request for access to the patient’s data again.

D. Transaction Logs

Figure 20: Patient Data Transaction Log

38

After a patient has updated their data, their inputted data will be sent to the

blockchain, and their corresponding data in the blockchain will be updated. The

transaction log shows from whom the transaction is, in this case the patient, as well

as the patient’s inputs and the smart contract function that is called.

Figure 21: Access Request Transaction Log

After a doctor has requested access to the patient’s data, their request will be sent

to the blockchain. The transaction log shows that the transaction is from the doctor,

as well as the patient’s address from whom they want to request access to.

Figure 22: Access Granted Transaction Log

39

Figure 23: Access Revoked Transaction Log

The above figures both show the transaction logs that happens when a patient

grants and revokes access to their data. In both logs, we can see the address of

the doctor whom access is being granted and revoked, as well as a timestamp that

contains the time when the access request is granted or revoked.

40

VI. Discussions

The blockchain application developed is a sharing platform for patients to share

their patient-generated health data to their doctors, with the aid of the Ethereum

blockchain for its access control capabilities. This section mainly discusses whether

the developed application was able to fulfill all the objectives and address the stated

problems.

A. Objectives and Addressed Problems

The developed application’s main objective was to provide a platform for patient’s

to share their patient-generated health data to doctors, through an access control

mechanism using Ethereum blockchain and Solidity smart contracts. For a doctor to

access the patient’s data, they first must request access to the patient. The patient

can then approve the request, allowing the doctor to access their data. After the con-

sultation is done, the patient can revoke the doctor’s access to their data, preventing

the doctor from accessing their data further.

The developed application was able to successfully meet the said objectives, along

with other functionality such as user registration and authentication. Through the

use of access control, the system was able to address concerns on the safety, security

and privacy of their data, as they have full control on who is able to access their data.

B. Gas Cost Estimation

Gas consumption is often seen as a metric for the smart contract’s efficiency. This

means that more complex functions often leads to higher gas consumption when

calling the function.

Figures 20, 21, 22, and 23 shows the estimated gas cost for each of the functions

in the smart contract. However, these are in terms of Wei, in order to get the gas

41

cost in terms of Ether, they need to be converted first.

C. Security Analysis

� Transparency - One major concern of patients when it comes to using digital

data like PGHD is knowing who can access and is accessing their data. This is

addressed by recording access requests in the blockchain, that, with blockchain’s

immutable nature, guarantees that the patient can always see true information

on who can access their data.

� Provenance - As said in the previous section, every access request is recorded

in the blockchain, complete with information such as the doctor, as well as

the timestamps of when it was granted or revoked. This allows the patients to

always have a complete and accurate history in order to track who has previously

accessed their data in the past.

� Immutability - The main reason why the blockchain platform was used. Blockchain’s

immutable nature basically makes the system immune to tampering or fabri-

cation of data. This means that malicious doctors cannot simply manipulate

access requests in order to gain access to patient’s data without the patient

knowing.

� Integrity of Data - Blockchain’s immutability also guarantees that the patient

data that both the patient and the doctor can see are true and accurate to what

the patient inputted, since no malicious users can modify the patient’s data,

which can lead to misdiagnosis of the patient’s condition by the doctor.

D. Significance

With advancements to wearable technology and more digitalization of data. It is

inevitable that patient-generated health data will be used more and more. Once

42

more healthcare institutions and doctors adopt the use of PGHD, it will soon become

the norm. The developed application provides a platform for the use of PGHD. With

the implementation of Ethereum blockchain technology and smart contracts to the

system, the application gives full control of a patient’s data to the patient themselves.

With the immutability and other properties of blockchain, the patients can be rest

assured that their data is safe and secured with the system.

E. Issues and Challenges

With blockchain technology and smart contracts being relatively new technology to

the developer, several challenges were faced during the development of the application.

Major challenges include figuring out how to implement Ethereum blockchain into the

web application, which was addressed through thorough learning of the Ethereum net-

work and testing using libraries such as Web3.py, as well as programming in Solidity,

as it is fundamentally different to other programming languages used by the developer

in the past, there was a learning curve before the developer was able to program using

solidity properly and be able to find and patch all possible loopholes in the smart

contract as much as possible.

F. Differences with Main References

The main difference of the developed application with proposed systems used for

reference is the use of patient-generated health data. PGHD was chosen to be used

since in the Philippines, healthcare institutions are the ones who handles the patient’s

electronic health records, which prevents the patient to have full control over their

data. Since the PGHD comes and is generated from patient themselves, the patient

owns this data, and allows them to have full control over it. The application also

introduces access requests, which the patient can approve and revoke, giving the

control on who can access their health data.

43

G. Contributions

The main contributions of the developed application includes:

1. An Ethereum blockchain-based sharing platform where patients can securely

share their PGHD to doctors.

2. An Access Control Scheme that focuses on the patient, allowing the patient to

have full control on who can access their PGHD, as well as track those with

access.

3. An application that enjoys Ethereum and blockchain’s security and privacy-

preserving features, which addresses concerns over use and sharing of digital

data.

44

VII. Conclusions

The developed system was built as platform for patients to be able to share their

PGHD to their doctors. Through the system, patients can input their PGHD, and

doctors can request access to it. Patients can then approve and revoke access to their

data. This gives them full control over who can access their data, as only doctors

whose access requests are approved can access their data. The patient can also track

which doctors can access their data, giving the full transparency.

In order to achieve a secure system, blockchain technology was integrated to the

system. Blockchain allows data to be stored more securely compared to traditional

centralized databases. With the nature of blockchain, tampering and malicious at-

tempts to access data can prove to be close to or completely impossible.

Lastly, with the development of the application, due to the lack of healthcare

systems that use PGHD, the developer hopes that the system can serve as a platform

that allows PGHD to be used more and more in the future, and eventually being a

norm, as well as to further showcase the security and privacy capabilities of blockchain,

when it comes to healthcare systems.

45

VIII. Recommendations

Due to the nature of the Ethereum network being public and anyone has access to

it, a private blockchain network such the Hyperledger Fabric can be used to further

secure the application and the patient’s data.

Other programming languages can be used for smart contract development can

also be used, especially those with built-in and more robust access control features,

such as OpenZeppelin.

For a more secure system, the use of digital identity for both patients and doctors

can be used, especially for verifying if the doctors really are doctors, as the current

system assumes that all doctors are real doctors.

Once more Wearable APIs are made publicly available, an automated way of

inputting PGHD to the system can be implemented.

Lastly, for better user experience and UI, the frontend can be improved further.

46

IX. Bibliography

[1] S. Dua, “Digital communication management: The world is going digital,” In-

ternational journal of recent research aspects, vol. 4, no. 3, pp. 50–53, 2017.

[2] H. S. Jim, A. I. Hoogland, N. C. Brownstein, A. Barata, A. P. Dicker, H. Knoop,

B. D. Gonzalez, R. Perkins, D. Rollison, S. M. Gilbert, et al., “Innovations in

research and clinical care using patient-generated health data,” CA: a cancer

journal for clinicians, vol. 70, no. 3, pp. 182–199, 2020.

[3] “What are patient-generated health data?,” Jan 2018.

[4] W. A. Wood, A. V. Bennett, and E. Basch, “Emerging uses of patient generated

health data in clinical research,” Molecular oncology, vol. 9, no. 5, pp. 1018–1024,

2015.

[5] M. Hölbl, M. Kompara, A. Kamǐsalić, and L. Nemec Zlatolas, “A systematic

review of the use of blockchain in healthcare,” Symmetry, vol. 10, no. 10, p. 470,

2018.

[6] M. J. Deering, E. Siminerio, and S. Weinstein, “Issue brief: Patient-generated

health data and health it,” Office of the National Coordinator for Health Infor-

mation Technology, vol. 20, 2013.

[7] A. Hoerbst and E. Ammenwerth, “Electronic health records,” Methods of infor-

mation in medicine, vol. 49, no. 04, pp. 320–336, 2010.

[8] “Benefits of ehrs,” Oct 2017.

[9] D. J. Carey, S. N. Fetterolf, F. D. Davis, W. A. Faucett, H. L. Kirchner, U. Mir-

shahi, M. F. Murray, D. T. Smelser, G. S. Gerhard, and D. H. Ledbetter, “The

geisinger mycode community health initiative: an electronic health record–linked

47

biobank for precision medicine research,” Genetics in medicine, vol. 18, no. 9,

pp. 906–913, 2016.

[10] I. Keshta and A. Odeh, “Security and privacy of electronic health records: Con-

cerns and challenges,” Egyptian Informatics Journal, vol. 22, no. 2, pp. 177–183,

2021.

[11] L. S. Sulmasy, A. M. López, and C. A. Horwitch, “Ethical implications of the

electronic health record: in the service of the patient,” Journal of general internal

medicine, vol. 32, no. 8, pp. 935–939, 2017.

[12] A. Omoloja and S. Vundavalli, “Patient generated health data: Benefits and chal-

lenges,” Current Problems in Pediatric and Adolescent Health Care, p. 101103,

2021.

[13] C. J. Wang and D. J. Huang, “The hipaa conundrum in the era of mobile health

and communications,” JAMA, vol. 310, no. 11, pp. 1121–1122, 2013.

[14] R. Collier, “New tools to improve safety of electronic health records,” 2014.

[15] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technology overview,”

arXiv preprint arXiv:1906.11078, 2019.

[16] E. P. E. Deepika and E. R. Kaur, “Cryptocurrency: Trends, perspectives and

challenges,” International Journal of Trend in Research and Development, vol. 4,

no. 4, pp. 4–6, 2017.

[17] D. Vujičić, D. Jagodić, and S. Randic, “Blockchain technology, bitcoin, and

ethereum: A brief overview,” in 2018 17th international symposium infoteh-

jahorina (infoteh), pp. 1–6, IEEE, 2018.

[18] “Features of blockchain,” May 2022.

48

[19] S. Tanwar, K. Parekh, and R. Evans, “Blockchain-based electronic healthcare

record system for healthcare 4.0 applications,” Journal of Information Security

and Applications, vol. 50, p. 102407, 2020.

[20] Y. Xiao, B. Xu, W. Jiang, Y. Wu, et al., “The healthchain blockchain for elec-

tronic health records: development study,” Journal of Medical Internet Research,

vol. 23, no. 1, p. e13556, 2021.

[21] K. Shuaib, J. Abdella, F. Sallabi, and M. A. Serhani, “Secure decentralized

electronic health records sharing system based on blockchains,” Journal of King

Saud University-Computer and Information Sciences, vol. 34, no. 8, pp. 5045–

5058, 2022.

[22] S. Niu, L. Chen, J. Wang, and F. Yu, “Electronic health record sharing scheme

with searchable attribute-based encryption on blockchain,” IEEE Access, vol. 8,

pp. 7195–7204, 2019.

[23] F. Hashim, K. Shuaib, and F. Sallabi, “Medshard: Electronic health record

sharing using blockchain sharding,” Sustainability, vol. 13, no. 11, p. 5889, 2021.

[24] A. Dubovitskaya, F. Baig, Z. Xu, R. Shukla, P. S. Zambani, A. Swaminathan,

M. M. Jahangir, K. Chowdhry, R. Lachhani, N. Idnani, et al., “Action-ehr:

patient-centric blockchain-based electronic health record data management for

cancer care,” Journal of medical Internet research, vol. 22, no. 8, p. e13598, 2020.

[25] J. Ktari, T. Frikha, N. Ben Amor, L. Louraidh, H. Elmannai, and M. Hamdi,

“Iomt-based platform for e-health monitoring based on the blockchain,” Elec-

tronics, vol. 11, no. 15, p. 2314, 2022.

[26] I. M. Pires, G. Marques, N. M. Garcia, F. Flórez-Revuelta, V. Ponciano, and

S. Oniani, “A research on the classification and applicability of the mobile health

applications,” Journal of personalized medicine, vol. 10, no. 1, p. 11, 2020.

49

[27] A. K. Yetisen, J. L. Martinez-Hurtado, B. Ünal, A. Khademhosseini, and H. Butt,

“Wearables in medicine,” Advanced Materials, vol. 30, no. 33, p. 1706910, 2018.

[28] J. Dunn, R. Runge, and M. Snyder, “Wearables and the medical revolution,”

Personalized medicine, vol. 15, no. 5, pp. 429–448, 2018.

[29] “What is blockchain technology? - ibm blockchain.”

[30] B. Edmondson, “How does blockchain work for small business,” Aug 2022.

[31] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of blockchain

technology: Architecture, consensus, and future trends,” in 2017 IEEE interna-

tional congress on big data (BigData congress), pp. 557–564, Ieee, 2017.

[32] K. Pandey and A. K. Pandey, “What are the different layers of blockchain tech-

nology?,” Sep 2022.

[33] L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of blockchain

consensus algorithms,” in 2018 41st International Convention on Information

and Communication Technology, Electronics and Microelectronics (MIPRO),

pp. 1545–1550, Ieee, 2018.

[34] L. Ismail and H. Materwala, “A review of blockchain architecture and consen-

sus protocols: Use cases, challenges, and solutions,” Symmetry, vol. 11, no. 10,

p. 1198, 2019.

[35] H. Sheth and J. Dattani, “Overview of blockchain technology,” Asian Journal

For Convergence In Technology (AJCT) ISSN-2350-1146, 2019.

[36] S. M. Kerner and B. Lutkevich, “What is ethereum?,” Jan 2022.

[37] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran, “An

overview on smart contracts: Challenges, advances and platforms,” Future Gen-

eration Computer Systems, vol. 105, pp. 475–491, 2020.

50

[38] K. Wu, “An empirical study of blockchain-based decentralized applications,”

arXiv preprint arXiv:1902.04969, 2019.

[39] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng, and V. C. Leung, “Decentralized

applications: The blockchain-empowered software system,” IEEE Access, vol. 6,

pp. 53019–53033, 2018.

51

X. Appendix

A. Smart Contract

Patient Data Smart Contract

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

contract PatientData {

struct Data {

string name;

uint age;

uint height;

uint weight;

uint systolic;

uint diastolic;

uint bloodsugar;

string symptoms;

string diet;

uint timestamp;

}

struct AccessRequest {

address doctor;

address patient;

bool granted;

uint timeGranted;

uint timeRevoked;

}

mapping(address => Data) private patientData;

mapping(address => AccessRequest[]) private accessRequests;

mapping(address => AccessRequest[]) private previousRequests;

mapping(address => Data[]) private dataHistory;

event DataUpdated(address patient, string name, uint age, uint

height, uint weight, uint systolic, uint diastolic,

uint bloodsugar, string symptoms, string diet, uint

timestamp);

event AccessRequested(address patient, address doctor);

event AccessGranted(address patient, address doctor);

event AccessRevoked(address patient, address doctor);

function updateData(string memory _name, uint _age, uint

_height, uint _weight, uint _systolic, uint _diastolic,

uint _bloodsugar, string memory _symptoms, string memory

_diet, uint _timestamp) public {

address patient = msg.sender;

Data memory currentData = patientData[patient];

dataHistory[patient].push(currentData);

patientData[msg.sender] = Data(_name, _age, _height,

_weight, _systolic, _diastolic, _bloodsugar,

_symptoms, _diet, _timestamp);

emit DataUpdated(msg.sender, _name, _age, _height, _weight,

_systolic, _diastolic, _bloodsugar, _symptoms,

_diet, _timestamp);

}

function readData(address _patient) public view returns (

string memory _name, uint _age, uint _height, uint

_weight, uint _systolic, uint _diastolic, uint

_bloodsugar, string memory _symptoms, string memory

_diet, uint _timestamp) {

require(msg.sender == _patient || hasAccess(_patient, msg.

sender), "Access denied");

Data memory data = patientData[_patient];

return (data.name, data.age, data.height, data.weight, data

.systolic, data.diastolic, data.bloodsugar, data.

symptoms, data.diet, data.timestamp);

}

function requestAccess(address _patient) public {

AccessRequest[] storage requests = accessRequests[_patient

];

for (uint i = 0; i < requests.length; i++) {

require(requests[i].doctor != msg.sender, "Access

request already submitted");

}

requests.push(AccessRequest(msg.sender, _patient, false, 0,

0));

emit AccessRequested(_patient, msg.sender);

}

function grantAccess(address _doctor, uint timeGranted) public

{

require(msg.sender != _doctor, "Patients cannot grant

access to themselves");

AccessRequest[] storage requests = accessRequests[msg.

sender];

for (uint i = 0; i < requests.length; i++) {

if (requests[i].doctor == _doctor) {

requests[i].granted = true;

requests[i].timeGranted = timeGranted;

emit AccessGranted(msg.sender, _doctor);

break;

}

}

}

function revokeAccess(address _doctor, uint timeRevoked)

public {

require(msg.sender != _doctor, "Patients cannot revoke

access from themselves");

AccessRequest[] storage requests = accessRequests[msg.

sender];

for (uint i = 0; i < requests.length; i++) {

if (requests[i].doctor == _doctor) {

requests[i].granted = false;

requests[i].timeRevoked = timeRevoked;

previousRequests[msg.sender].push(requests[i]);

emit AccessRevoked(msg.sender, _doctor);

for (uint j = i; j < requests.length - 1; j++) {

requests[j] = requests[j + 1];

}

requests.pop();

break;

}

}

}

function hasAccess(address _patient, address _doctor) public

view returns (bool) {

AccessRequest[] storage requests = accessRequests[_patient

];

for (uint i = 0; i < requests.length; i++) {

if (requests[i].doctor == _doctor && requests[i].

granted) {

return true;

}

}

return false;

}

function getDataHistory(address _patient) public view returns

(Data[] memory) {

require(msg.sender == _patient || hasAccess(_patient, msg.

sender), "Access denied");

return dataHistory[_patient];

}

function getAccessRequests(address _patient) public view

returns (AccessRequest[] memory) {

return accessRequests[_patient];

}

function getPreviousRequests(address _patient) public view

returns (AccessRequest[] memory) {

return previousRequests[_patient];

}

}

52

B. Django Files

Settings

"""

Django settings for SP project.

Generated by ’django-admin startproject’ using Django 4.2.

For more information on this file, see

https://docs.djangoproject.com/en/4.2/topics/settings/

For the full list of settings and their values, see

https://docs.djangoproject.com/en/4.2/ref/settings/

"""

from pathlib import Path

Build paths inside the project like this: BASE_DIR / ’subdir’.

BASE_DIR = Path(__file__).resolve().parent.parent

Quick-start development settings - unsuitable for production

See https://docs.djangoproject.com/en/4.2/howto/deployment/

checklist/

SECURITY WARNING: keep the secret key used in production secret!

SECRET_KEY = ’django-insecure-g*ub9fa&8db9gedxg-1#8t)q&7w(*e_jiro

*^#9zpj16#ibs6+’

SECURITY WARNING: don’t run with debug turned on in production!

DEBUG = True

ALLOWED_HOSTS = []

Application definition

INSTALLED_APPS = [

’django.contrib.admin’,

’django.contrib.auth’,

’django.contrib.contenttypes’,

’django.contrib.sessions’,

’django.contrib.messages’,

’django.contrib.staticfiles’,

’webapp’,

’crispy_forms’,

’crispy_bootstrap5’,

]

CRISPY_ALLOWED_TEMPLATE_PACKS = "bootstrap5"

CRISPY_TEMPLATE_PACK = "bootstrap5"

MIDDLEWARE = [

’django.middleware.security.SecurityMiddleware’,

’django.contrib.sessions.middleware.SessionMiddleware’,

’django.middleware.common.CommonMiddleware’,

’django.middleware.csrf.CsrfViewMiddleware’,

’django.contrib.auth.middleware.AuthenticationMiddleware’,

’django.contrib.messages.middleware.MessageMiddleware’,

’django.middleware.clickjacking.XFrameOptionsMiddleware’,

]

ROOT_URLCONF = ’SP.urls’

AUTH_USER_MODEL = "webapp.AuthUser"

AUTHENTICATION_BACKENDS = [’webapp.backends.EmailBackend’]

TEMPLATES = [

{

’BACKEND’: ’django.template.backends.django.DjangoTemplates

’,

’DIRS’: [],

’APP_DIRS’: True,

’OPTIONS’: {

’context_processors’: [

’django.template.context_processors.debug’,

’django.template.context_processors.request’,

’django.contrib.auth.context_processors.auth’,

’django.contrib.messages.context_processors.messages

’,

],

},

},

]

WSGI_APPLICATION = ’SP.wsgi.application’

Database

https://docs.djangoproject.com/en/4.2/ref/settings/#databases

DATABASES = {

’default’: {

’ENGINE’: ’django.db.backends.sqlite3’,

’NAME’: BASE_DIR / ’db.sqlite3’,

}

}

Password validation

https://docs.djangoproject.com/en/4.2/ref/settings/#auth-

password-validators

AUTH_PASSWORD_VALIDATORS = [

{

’NAME’: ’django.contrib.auth.password_validation.

UserAttributeSimilarityValidator’,

},

{

’NAME’: ’django.contrib.auth.password_validation.

MinimumLengthValidator’,

},

{

’NAME’: ’django.contrib.auth.password_validation.

CommonPasswordValidator’,

},

{

’NAME’: ’django.contrib.auth.password_validation.

NumericPasswordValidator’,

},

]

Internationalization

https://docs.djangoproject.com/en/4.2/topics/i18n/

LANGUAGE_CODE = ’en-us’

TIME_ZONE = ’UTC’

USE_I18N = True

USE_TZ = True

Static files (CSS, JavaScript, Images)

https://docs.djangoproject.com/en/4.2/howto/static-files/

STATIC_URL = ’static/’

Default primary key field type

https://docs.djangoproject.com/en/4.2/ref/settings/#default-auto

-field

DEFAULT_AUTO_FIELD = ’django.db.models.BigAutoField’

Views

from multiprocessing import context

from django.shortcuts import render, redirect

from django.contrib import messages

from django.contrib.auth import authenticate, login, logout,

update_session_auth_hash

from django.contrib.auth.forms import UserCreationForm,

PasswordChangeForm

from django.contrib.auth.models import Group

from django.contrib.auth.decorators import login_required

from django.http import HttpResponse

from web3 import Web3

import json

from datetime import datetime

from .models import *

from .forms import *

from .backends import *

w3 = Web3(Web3.HTTPProvider(’HTTP://127.0.0.1:7545’))

with open("webapp/contract.json") as f:

abi = json.load(f)

contract_address = ’0x8aCBfD115fcd83325e8756806bBad01BfB6301AD’

contract_abi = abi

53

contract = w3.eth.contract(address=contract_address, abi=

contract_abi)

Create your views here.

@login_required(login_url="login_page")

def index_page(request):

return redirect("login_page")

def register_page(request):

form = CreateUserForm()

if request.method == "POST":

form = CreateUserForm(request.POST)

if form.is_valid():

user = form.save()

if user.user_type == 1:

Doctor.objects.create(

user=user,

)

elif user.user_type == 2:

Patient.objects.create(

user=user,

)

email = form.cleaned_data.get(’email’)

messages.success(request, ’Account was created for ’ +

email)

return redirect(’login_page’)

context = {’form’: form}

return render(request, ’webapp/register.html’, context)

def login_page(request):

if request.user.is_authenticated:

if request.user.user_type == 1:

return redirect(’doctor_dashboard’)

else:

return redirect(’patient_dashboard’)

else:

if request.method == ’POST’:

email = request.POST.get(’email’)

password = request.POST.get(’password’)

user = authenticate(request, email = email, password =

password)

if user is not None:

login(request, user)

if user.user_type == 1:

return redirect(’doctor_dashboard’)

else:

return redirect(’patient_dashboard’)

else:

messages.info(request, "Email or password is

incorrect!")

context = {}

return render(request, ’webapp/login.html’, context)

@login_required(login_url="login_page")

def logOut_page(request):

logout(request)

return redirect(’login_page’)

@login_required(login_url="login_page")

def patient_dashboard(request):

if request.user.user_type == 1:

return redirect("doctor_dashboard")

puser = request.user

patient_address = puser.address

print(request.user.email)

if request.method == "POST":

dform = PatientDataForm(request.POST)

if dform.is_valid():

name = request.user.first_name

age = dform.cleaned_data[’age’]

height = dform.cleaned_data[’height’]

weight = dform.cleaned_data[’weight’]

systolic = dform.cleaned_data[’systolic’]

diastolic = dform.cleaned_data[’diastolic’]

bloodsugar = dform.cleaned_data[’bloodsugar’]

symptoms = dform.cleaned_data[’symptoms’]

diet = dform.cleaned_data[’diet’]

timestamp = int(datetime.now().timestamp())

contract.functions.updateData(name, age, height, weight

, systolic, diastolic, bloodsugar, symptoms, diet

, timestamp).transact({’from’: patient_address})

return redirect(’patient_dashboard’)

else:

form = EditUserForm(instance=request.user)

dform = PatientDataForm()

data = contract.functions.readData(patient_address).call({’

from’: patient_address})

temp = list(data)

temp[9] = datetime.fromtimestamp(temp[9])

data = tuple(temp)

print(data)

prev_data = contract.functions.getDataHistory(

patient_address).call({’from’: patient_address})

prev_data = prev_data[::-1]

if prev_data:

prev_data.pop()

for k, (a, b, c, d, e, f, g, h, i, j) in enumerate(

prev_data):

prev_data[k] = (a, b, c, d, e, f, g, h, i, datetime.

fromtimestamp(j))

access_requests = contract.functions.getAccessRequests(

patient_address).call()

prev_requests = contract.functions.getPreviousRequests(

patient_address).call()

for l, (m, n, o, p, q) in enumerate(prev_requests):

prev_requests[l] = (m, n, o, datetime.fromtimestamp(p),

datetime.fromtimestamp(q))

doctors = Doctor.objects.all()

context = {’form’: form, ’user’: puser, ’dform’: dform, ’

data’: data, ’access_requests’: access_requests, ’

prev_requests’: prev_requests, ’prev_data’:

prev_data, ’doctors’: doctors}

return render(request, ’webapp/pdashboard.html’, context)

@login_required(login_url="login_page")

def doctor_dashboard(request):

if request.user.user_type == 2:

return redirect("patient_dashboard")

puser = request.user

doctor_address = puser.address

print(request.user.email)

if request.method == "POST":

rform = AccessRequestForm(request.POST)

if rform.is_valid():

patient_address = rform.cleaned_data[’patient_address’]

patient = AuthUser.objects.get(address=patient_address,

user_type=2)

if not patient:

return redirect(’doctor_dashboard’)

else:

access_requests = contract.functions.

getAccessRequests(patient.address).call()

for req in access_requests:

if req[0] == doctor_address:

return redirect(’doctor_dashboard’)

contract.functions.requestAccess(patient_address).

transact({’from’: doctor_address})

return redirect(’doctor_dashboard’)

else:

form = EditUserForm(instance=request.user)

rform = AccessRequestForm()

patient_addresses = AuthUser.objects.filter(user_type = 2).

values_list(’address’, flat = True)

list_requests = []

access_requests = []

data = []

54

for address in patient_addresses:

list_requests += contract.functions.getAccessRequests(

address).call()

for tuple in list_requests:

if tuple[0] == doctor_address:

if contract.functions.hasAccess(tuple[1],

doctor_address).call():

data.append(("Has Access!",))

else:

data.append(("No Access!",))

request_data = (tuple,) + (data,)

data = []

access_requests.append(request_data)

patients = Patient.objects.all()

context = {’access_requests’: access_requests, ’form’: form

, ’user’: puser, ’rform’: rform, ’patients’:

patients,}

return render(request, ’webapp/ddashboard.html’, context)

@login_required(login_url="login_page")

def patient_data(request, patient_address):

if request.user.user_type == 2:

return redirect("patient_dashboard")

doctor_address = request.user.address

patient = AuthUser.objects.get(address=patient_address)

if not contract.functions.hasAccess(patient_address,

doctor_address).call():

return redirect("doctor_dashboard")

else:

data = contract.functions.readData(patient_address).call({’

from’: doctor_address})

prev_data = contract.functions.getDataHistory(

patient_address).call({’from’: doctor_address})

prev_data = prev_data[::-1]

if prev_data:

prev_data.pop()

temp = list(data)

temp[9] = datetime.fromtimestamp(temp[9])

data = tuple(temp)

for k, (a, b, c, d, e, f, g, h, i ,j) in enumerate(

prev_data):

prev_data[k] = (a, b, c, d, e, f, g, h, i, datetime.

fromtimestamp(j))

context = {’patient’: patient, ’data’: data, ’prev_data’:

prev_data}

return render(request, ’webapp/patient.html’, context)

@login_required(login_url="login_page")

def grant_access(request, doctor_address):

if request.user.user_type == 1:

return redirect("doctor_dashboard")

patient_address = request.user.address

time = int(datetime.now().timestamp())

contract.functions.grantAccess(doctor_address, time).transact

({’from’: patient_address})

return redirect("patient_dashboard")

@login_required(login_url="login_page")

def revoke_access(request, doctor_address):

if request.user.user_type == 1:

return redirect("doctor_dashboard")

patient_address = request.user.address

time = int(datetime.now().timestamp())

contract.functions.revokeAccess(doctor_address, time).transact

({’from’: patient_address})

return redirect("patient_dashboard")

Forms

from django import forms

from django.forms import ModelChoiceField, ModelForm

from django.contrib.auth.forms import UserCreationForm,

UserChangeForm

from django.contrib.auth.models import User

from .models import *

class CreateUserForm(UserCreationForm):

class Meta:

model = AuthUser

fields = [’first_name’, ’last_name’, ’username’, ’email’, ’

password1’, ’password2’, ’user_type’, ’address’]

class EditUserForm(UserChangeForm):

class Meta:

model = User

fields = [’email’]

labels = {

’email’ : ’Email Address’

}

class PatientDataForm(forms.Form):

#name = forms.CharField(label = "Name", max_length=100)

age = forms.IntegerField(label = "Age")

height = forms.IntegerField(label = "Height (in cm)")

weight = forms.IntegerField(label = "Weight (in kg)")

systolic = forms.IntegerField(label = "Systolic Blood Pressure

(in mmHg)")

diastolic = forms.IntegerField(label = "Diastolic Blood

Pressure (in mmHg)")

bloodsugar = forms.IntegerField(label = "Blood Sugar Level in

(mg/dL)")

symptoms = forms.CharField(label = "Symptoms", max_length=100)

diet = forms.CharField(label = "Diet", max_length=100)

class AccessRequestForm(forms.Form):

patient_address = forms.CharField(label=’Patient Address’,

max_length=42)

Models

from django.db import models

from django.contrib.auth.models import AbstractUser

Create your models here.

class AuthUser(AbstractUser):

USER_TYPE_CHOICES = {

(1, ’Doctor’),

(2, ’Patient’),

}

email = models.EmailField(unique = True)

user_type = models.PositiveSmallIntegerField(choices =

USER_TYPE_CHOICES, null = True)

address = models.CharField(max_length=42, blank = True, null =

True, unique= True)

class Patient(models.Model):

user = models.ForeignKey(AuthUser, on_delete=models.CASCADE,

related_name="p",null=True)

def __str__(self):

return self.user.first_name

class Doctor(models.Model):

user = models.ForeignKey(AuthUser, on_delete=models.CASCADE,

related_name=’d’, null=True)

def __str__(self):

return self.user.first_name

Backends

from django.contrib.auth.backends import ModelBackend

from django.contrib.auth import get_user_model

class EmailBackend(ModelBackend):

def authenticate(self, request, email=None, password=None, **

kwargs):

User = get_user_model()

try:

user = User.objects.get(email=email)

except User.DoesNotExist:

return None

if user.check_password(password):

return user

return None

55

C. Templates

Register

<!DOCTYPE html>

<html lang="en">

{% load crispy_forms_tags %}

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

<!-- bootstrap -->

{% include ’webapp/head-modules.html’ %}

<title>Register</title>

</head>

<body>

<!-- contenthere -->

<div class="container-fluid">

<div class="row align-items-center my-auto bg-light vh

-100">

<div class="col">

<div class="container-fluid bg-dark p-3 w-50">

<h5 class="text-white px-3">Register</h5>

<hr class="text-white">

<form method = "POST" action = "">

{% csrf_token %}

<div class="row bg-dark mx-auto">

<div class="col text-light">

<div class="mb-3">

{{form.first_name |

as_crispy_field}}

</div>

<div class="mb-3">

{{form.last_name | as_crispy_field

}}

</div>

<div class="mb-3">

{{form.username | as_crispy_field

}}

</div>

<div class="mb-3">

{{form.email | as_crispy_field}}

</div>

<div>

{{form.address| as_crispy_field}}

</div>

</div>

<div class="col text-light">

<div>

{{form.password1 | as_crispy_field

}}

</div>

<div>

{{form.password2 | as_crispy_field

}}

</div>

<div>

{{form.user_type| as_crispy_field

}}

</div>

<div class="row">

<div class="col">

<a class="text-decoration-

none text-muted" href

="{% url ’login_page’

%}">Log in

</div>

<div class="col text-end">

<input class="btn btn-success

border-dark" type="

submit" value="Register

">

</div>

</div>

</div>

</div>

</form>

</div>

</div>

</div>

</div>

<!-- bootstrap -->

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist

/js/bootstrap.bundle.min.js" integrity="sha384-

ka7Sk0Gln4gmtz2MlQnikT1wXgYsOg+OMhuP+IlRH9sENBO0LRn5q+8

nbTov4+1p" crossorigin="anonymous"></script>

</body>

</html>

Login

<!DOCTYPE html>

<html lang="en">

{% load crispy_forms_tags %}

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-

scale=1.0">

<!-- bootstrap -->

{% include ’webapp/head-modules.html’ %}

<title>Login</title>

</head>

<body>

<!-- contenthere -->

<div class="container-fluid">

<div class="row align-items-center my-auto bg-light vh

-100">

<div class="col">

<div class="container-fluid bg-dark p-3 w-50">

<h5 class="text-white px-3">Login</h5>

<hr class="text-white">

<form method="POST" action="">

<div class="row bg-dark align-items-center

mx-auto">

{% load static %}

{% csrf_token %}

<div class="col text-light">

<div class="mb-3">

<label for="emailInput"><i class="

fa-solid fa-at"></i> Email

</label>

<input type="text" name="email"

class="form-control">

</div>

<div>

<label for="passwordInput"><i

class="fa-solid fa-key"></i

> Password </label>

<input type="password" name="

password" class="form-

control">

</div>

<div class>

{% for message in messages %}

<div class = "alert alert-info

">

{{message}}

</div>

{% endfor %}

56

</div>

<div class="row">

<div class="col">

<a class="text-decoration-

none text-muted" href

="{% url ’register_page’

%}">Register

</div>

<div class="col text-end">

<input class="btn btn-success

border-dark" type="

submit" value="Login">

</div>

</div>

</div>

</div>

</form>

</div>

</div>

</div>

</div>

<!-- bootstrap -->

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist

/js/bootstrap.bundle.min.js" integrity="sha384-

ka7Sk0Gln4gmtz2MlQnikT1wXgYsOg+OMhuP+IlRH9sENBO0LRn5q+8

nbTov4+1p" crossorigin="anonymous"></script>

</body>

</html>

Patient Dashboard

<html>

{% load crispy_forms_tags %}

{% include ’webapp/head-modules.html’ %}

<body>

{% block navbar %}

{% include ’webapp/navbar.html’ %}

{% endblock navbar %}

<div class = "container">

<div class = "row">

<div class = "col border border-3">

<h1> Personal Details </h1>

First name: {{user.first_name}}

Last name: {{user.last_name}}

Email Address: {{user.email}}

Ethereum Address: {{user.address}}

</div>

<div class = "col border border-3">

<h1> Health Data </h1>

<div class = "row">

<div class = "col">

Age = {{data.1}}

</div>

<div class = "col">

Height = {{data.2}} cm

</div>

<div class = "col">

Systolic = {{data.4}} mmHg

</div>

</div>

<div class = "row">

<div class = "col">

Symptoms = {{data.7}}

</div>

<div class = "col">

Weight = {{data.3}} kg

</div>

<div class = "col">

Diastolic = {{data.5}} mmHg

</div>

</div>

<div class = "row">

<div class = "col">

Diet = {{data.8}}

</div>

<div class = "col">

Blood sugar = {{data.6}} mg/dL

</div>

<div class = "col">

</div>

</div>

<div class = "row">

<div class = "col">

<button type="button" class="btn btn-

primary" data-bs-toggle="modal"

data-bs-target="#edit">

Update

</button>

</div>

<div class="modal fade" id="edit" data-bs-

backdrop="static" data-bs-keyboard="

false" tabindex="-1" aria-labelledby="

staticBackdropLabel" aria-hidden="true

">

<div class="modal-dialog modal-dialog-

centered">

<div class="modal-content">

<div class="modal-header">

<h1 class="modal-title fs-5" id="

staticBackdropLabel">Health

Data</h1>

<button type="button" class="btn-

close" data-bs-dismiss="modal"

aria-label="Close"></button>

</div>

<div class="modal-body">

<form method = "POST" action = "">

{% csrf_token %}

{{dform.age| as_crispy_field}}

{{dform.height|

as_crispy_field}}

{{dform.weight|

as_crispy_field}}

{{dform.systolic|

as_crispy_field}}

{{dform.diastolic|

as_crispy_field}}

{{dform.bloodsugar|

as_crispy_field}}

{{dform.symptoms|

as_crispy_field}}

{{dform.diet| as_crispy_field

}}

<input class="btn btn-success

border-dark" type="

submit" value="Submit">

</form>

</div>

<div class="modal-footer">

<button type="button" class="btn

btn-secondary" data-bs-

dismiss="modal">Close</

button>

</div>

</div>

</div>

</div>

<div class = "col">

<button type="button" class="btn btn-

primary" data-bs-toggle="modal"

data-bs-target="#dhistory">

View Health History

</button>

</div>

<div class="modal fade" id="dhistory" data-

bs-backdrop="static" data-bs-keyboard

="false" tabindex="-1" aria-labelledby

="staticBackdropLabel" aria-hidden="

true">

<div class="modal-dialog modal-dialog-

centered auto modal-xl">

<div class="modal-content">

<div class="modal-header">

57

<h1 class="modal-title fs-5" id="

staticBackdropLabel">Health

Data History</h1>

<button type="button" class="btn-

close" data-bs-dismiss="modal"

aria-label="Close"></button>

</div>

<div class="modal-body">

<table class = "table table-

striped table-bordered

table-hover">

<thead class = "thead-light">

<tr>

<th scope = "col">Time

</th>

<th scope = "col">Age</

th>

<th scope = "col">

Height (cm)</th>

<th scope = "col">

Weight (kg)</th>

<th scope = "col">

Systolic Blood

Pressure (mmHg)

</th>

<th scope = "col">

Diastolic Blood

Pressure(mmHg)</

th>

<th scope = "col">Blood

Sugar Level (mg

/dL)</th>

<th scope = "col">

Symptoms</th>

<th scope = "col">Diet

</th>

</tr>

</thead>

<tbody>

<tr>

<td>{{data.9|date:"Y-m-

d G:i:s"}}</td>

<td>{{data.1}}</td>

<td>{{data.2}}</td>

<td>{{data.3}}</td>

<td>{{data.4}}</td>

<td>{{data.5}}</td>

<td>{{data.6}}</td>

<td>{{data.7}}</td>

<td>{{data.8}}</td>

</tr>

{% for data in prev_data

%}

<tr>

<td>{{data.9|date:"

Y-m-d G:i:s

"}}</td>

<td>{{data.1}}</td>

<td>{{data.2}}</td>

<td>{{data.3}}</td>

<td>{{data.4}}</td>

<td>{{data.5}}</td>

<td>{{data.6}}</td>

<td>{{data.7}}</td>

<td>{{data.8}}</td>

</tr>

{% endfor %}

</tbody>

</table>

</div>

<div class="modal-footer">

<button type="button" class="btn

btn-secondary" data-bs-

dismiss="modal">Close</

button>

</div>

</div>

</div>

</div>

</div>

</div>

</div>

<div class = "row align-items-center">

<div class = "col">

<h1> Doctor Access </h1>

</div>

<div class = "col align">

<button type="button" class="btn btn-primary"

data-bs-toggle="modal" data-bs-target="#

history">

View Access History

</button>

</div>

</div>

<div class = "row">

<div class = "col">

<table class = "table table-striped table-

bordered table-hover">

<thead>

<tr>

<th scope = "col">Doctor’s Name</th>

<th scope = "col">Doctor’s Address</

th>

<th scope = "col">Status</th>

<th scope = "col">Approve/Revoke</th>

</tr>

</thead>

<tbody>

{% for request in access_requests %}

<tr>

<td>

{% for doctor in doctors %}

{% if doctor.user.address

== request.0 %}

Dr. {{doctor.user.

first_name}} {{

doctor.user.

last_name}}

{% endif %}

{% endfor %}

</td>

<td>{{request.0}}</td>

{% if request.2 %}

<td>Access Granted</td>

<td>

<a class="btn btn-danger btn-

sm" href="{% url ’

revoke_access’ request.0

%}"> Revoke

</td>

{% else %}

<td>Access Pending</td>

<td>

<a class="btn btn-success btn-

sm" href="{% url ’

grant_access’ request.0

%}"> Approve

</td>

{% endif %}

</tr>

{% endfor %}

</tbody>

</table>

</div>

</div>

<div class="modal fade" id="history" data-bs-

backdrop="static" data-bs-keyboard="false"

tabindex="-1" aria-labelledby="

staticBackdropLabel" aria-hidden="true">

<div class="modal-dialog modal-dialog-centered

modal-xl">

<div class="modal-content">

<div class="modal-header">

<h1 class="modal-title fs-5" id="

staticBackdropLabel">Previous Requests

</h1>

<button type="button" class="btn-close" data

-bs-dismiss="modal" aria-label="Close

"></button>

</div>

<div class="modal-body">

<table class = "table table-striped table

-bordered table-hover">

<thead class = "thead-light">

<tr>

<th scope = "col">Doctor’s

Name</th>

<th scope = "col">Doctor’s

58

Address</th>

<th scope = "col">Time Granted

</th>

<th scope = "col">Time Revoked

</th>

</tr>

</thead>

<tbody>

{% for request in prev_requests %}

<tr>

<td>

{% for doctor in

doctors %}

{% if doctor.user.

address ==

request.0 %}

Dr. {{doctor.

user.

first_name

}} {{

doctor.

user.

last_name

}}

{% endif %}

{% endfor %}

</td>

<td>{{request.0}}</td>

<td>{{request.3|date:"Y-m-

d G:i:s"}}</td>

<td>{{request.4|date:"Y-m-

d G:i:s"}}</td>

</tr>

{% endfor %}

</tbody>

</table>

</div>

<div class="modal-footer">

<button type="button" class="btn btn-

secondary" data-bs-dismiss="modal

">Close</button>

</div>

</div>

</div>

</div>

</div>

</div>

</body>

</html>

Doctor Dashboard

<html>

{% load crispy_forms_tags %}

{% include ’webapp/head-modules.html’ %}

<body>

{% block navbar %}

{% include ’webapp/navbar.html’ %}

{% endblock navbar %}

<div class = "container">

<div class = "row">

<div class = "col border border-3">

<h1> Personal Details </h1>

First name: {{user.first_name}}

Last name: {{user.last_name}}

Email Address: {{user.email}}

Ethereum Address: {{user.address}}

</div>

<div class = "col border border-3">

<h1> Request Access </h1>

<form method = "POST" action = "">

{% csrf_token %}

{{rform.patient_address | as_crispy_field}}

<input class="btn btn-primary border-dark"

type="submit" value="Submit">

</form>

</div>

</div>

<div class = "row">

<h1> Access Requests </h1>

</div>

<div class = "row">

<div class = "col">

<table class = "table table-striped table-

bordered table-hover">

<thead>

<tr>

<th scope = "col">Patient’s Name</th>

<th scope = "col">Patient’s Address</

th>

<th scope = "col">Status</th>

<th scope = "col">View</th>

</tr>

</thead>

<tbody>

{% for request in access_requests %}

<tr>

<td>

{% for patient in patients %}

{% if patient.user.address

== request.0.1 %}

{{patient.user.

first_name}} {{

patient.user.

last_name}}

{% endif %}

{% endfor %}

</td>

<td>{{request.0.1}}</td>

{% if request.0.2 %}

<td>Access Granted</td>

<td>

<a class="btn btn-success btn-

sm" href="{% url ’

patient_data’ request

.0.1 %}">View Patient’s

Data

</td>

{% else %}

<td>Access Pending</td>

<td>

<button type="button" class="

btn btn-danger btn-sm"

data-bs-toggle="modal"

data-bs-target="#viewB">

View Patient’s Data

</button>

<div class="modal fade" id="

viewB" data-bs-backdrop

="static" data-bs-

keyboard="false"

tabindex="-1" aria-

labelledby="

staticBackdropLabel"

aria-hidden="true">

<div class="modal-dialog

modal-dialog-

centered">

<div class="modal-content

">

<div class="modal-

header">

<h1 class="modal-title

fs-5" id="

staticBackdropLabel

">Health Data</

h1>

<button type="button"

class="btn-close

" data-bs-

dismiss="modal"

aria-label="

Close"></button>

</div>

<div class="modal-body

">

{{request.1.0.0}}

</div>

<div class="modal-

footer">

<button type="button"

class="btn btn-

secondary" data-

bs-dismiss="

modal">Close</

button>

</div>

</div>

</div>

</div>

</td>

{% endif %}

</tr>

59

{% endfor %}

</tbody>

</table>

</div>

</div>

</div>

</body>

</html>

Patient’s Data and History

<html>

{% load crispy_forms_tags %}

{% include ’webapp/head-modules.html’ %}

{% block navbar %}

{% include ’webapp/navbar.html’ %}

{% endblock navbar %}

<body>

<div class = "container">

<div class = "row">

<center><h1>{{patient.first_name}} {{patient.

last_name}}’s Health Data History</h1></

center>

</div>

<div class = "row">

<table class = "table table-striped table-bordered

table-hover">

<thead class = "thead-light">

<tr>

<th scope = "col">Time</th>

<th scope = "col">Age</th>

<th scope = "col">Height (cm)</th>

<th scope = "col">Weight (kg)</th>

<th scope = "col">Systolic Blood Pressure

(mmHg)</th>

<th scope = "col">Diastolic Blood

Pressure(mmHg)</th>

<th scope = "col">Blood Sugar Level (mg/

dL)</th>

<th scope = "col">Symptoms</th>

<th scope = "col">Diet</th>

</tr>

</thead>

<tbody>

<tr>

<td>{{data.9|date:"Y-m-d G:i:s"}}</td>

<td>{{data.1}}</td>

<td>{{data.2}}</td>

<td>{{data.3}}</td>

<td>{{data.4}}</td>

<td>{{data.5}}</td>

<td>{{data.6}}</td>

<td>{{data.7}}</td>

<td>{{data.8}}</td>

</tr>

{% for datum in prev_data %}

<tr>

<td>{{datum.9|date:"Y-m-d G:i:s"}}</

td>

<td>{{datum.1}}</td>

<td>{{datum.2}}</td>

<td>{{datum.3}}</td>

<td>{{datum.4}}</td>

<td>{{datum.5}}</td>

<td>{{datum.6}}</td>

<td>{{datum.7}}</td>

<td>{{datum.8}}</td>

</tr>

{% endfor %}

</tbody>

</table>

</div>

</div>

</body>

</html>

Navbar

<nav class="navbar navbar-expand navbar-dark bg-dark">

<div style="display: flex;" class="container-fluid">

<button class="navbar-toggler" type="button" data-bs-toggle

="collapse" data-bs-target="#navbarNav"

aria-controls="navbarNav" aria-expanded="false" aria-

label="Toggle navigation">

</button>

<div class="collapse navbar-collapse" id="navbarNav">

<ul class="navbar-nav">

<li class="nav-item">

<a class="nav-link active" aria-current="page"

href="">HealthDataChain

{% if request.user.user_type == 0 %}

<li class="nav-item">

<a class="nav-link active" aria-current="page"

href="{% url ’patient_dashboard’ %}">

Dashboard

{% endif %}

{% if request.user.user_type == 1 %}

<li class="nav-item">

<a class="nav-link active" aria-current="page"

href="{% url ’doctor_dashboard’ %}">

Dashboard

{% endif %}

<div class="navbar-nav ms-auto">

<ul class="nav navbar-nav navbar-right ">

<a class="nav-link text-light active" href="{%

url ’logout_page’ %}">

<i class="bi bi-box-arrow-right"></i>

Logout

</div>

</div>

</nav>

Modules

{% load static %}

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale

=1.0">

<link rel="stylesheet" href="{% static ’main.css’ %}">

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/css/

bootstrap.min.css" rel="stylesheet">

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/

bootstrap-icons@1.3.0/font/bootstrap-icons.css">

<link href="https://fonts.googleapis.com/css?family=Poppins

:300,400,500,600,700,800,900" rel="stylesheet">

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/js/

bootstrap.bundle.min.js"></script>

<script src="https://kit.fontawesome.com/70e2a3091b.js"

crossorigin="anonymous"></script>

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/

@fortawesome/fontawesome-free@6.1.1/css/fontawesome.min.css

">

60

XI. Acknowledgment

I would like to thank the Lord, first of all, for His guidance, all throughout my stay

in UP.

I would also like to thank my parents and siblings, for always being there for

me, and for their neverending support and constant encouragement for me, especially

when I needed it.

I would also like to thank Sir Marbert Marasigan and Sir Richard Bryann Chua,

for giving me the guidance I need in order to finish this SP. Blockchain is a very new

topic for me and without their help, I would not even come close to finishing it.

I would also like to thank my classmates, as well as my high school friends, for

the endless study sessions, requirements cramming, and for just always being there

for me in general. I will miss you all!

I may not be able to name everyone who helped me along this journey, but just

know that I will forever be grateful for all the support and guidance that I have

received in my stay in UP.

61

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Electronic Health Records
	Patient Generated Health Data
	Security in Traditional Health Data Sharing Systems
	Blockchain Technology
	Applications of Blockchain Technology in Health Data Sharing Systems
	Synthesis

	Theoretical Framework
	Patient Generated Health Data
	Mobile Health Applications
	Wearables

	Blockchain
	Blockchain Transaction Process
	Blockchain Architecture
	Consensus Mechanisms
	Characteristics of Blockchain
	Types of Blockchain Networks

	Ethereum
	Smart Contracts
	Decentralized Applications

	Design and Implementation
	Use Cases
	Database Design
	System Architecture
	Technical Architecture

	Results
	User Registration and Authentication
	Patients
	Patient Data
	Access Requests

	Doctors
	Transaction Logs

	Discussions
	Objectives and Addressed Problems
	Gas Cost Estimation
	Security Analysis
	Significance
	Issues and Challenges
	Differences with Main References
	Contributions

	Conclusions
	Recommendations
	Bibliography
	Appendix
	Smart Contract
	Django Files
	Templates

	Acknowledgment

