
University of the Philippines Manila

College of Arts and Sciences

Department of Physical Sciences and Mathematics

Procedural Modeling for Sustainable Urban

Development and Planning: A Blender Plugin

for 3D Modeling of Philippine Cities

A special problem in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Adrian Neil P. Santos

June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser No

Available only to those bound by confidentiality agreement No

ACCEPTANCE SHEET

The Special Problem entitled “Procedural Modeling for Sustainable
Urban Development and Planning: A Blender Plugin for 3D Modeling of Philip-
pine Cities” prepared and submitted by Adrian Neil P. Santos in partial fulfillment
of the requirements for the degree of Bachelor of Science in Computer Science has
been examined and is recommended for acceptance.

Ma. Sheila A. Magboo, Ph.D. (cand.)
Adviser

EXAMINERS:
Approved Disapproved

1. Avegail D. Carpio, M.Sc.
2. Richard Bryann L. Chua, Ph.D. (cand.)
3. Perlita E. Gasmen, M.Sc. (cand.)
4. Vincent Peter C. Magboo, M.D., M.Sc.
5. Marbert John C. Marasigan, M.Sc. (cand.)
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the
degree of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.

Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences

Department of Physical Sciences and Mathematics
and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean

College of Arts and Sciences

i

Abstract

This study presents a procedural modeling plugin for sustainable urban develop-

ment and planning, specifically focusing on the 3D modeling of Philippine cities.

The plugin integrates machine learning, procedural generation techniques, and in-

teractive 3D visualization to provide urban planners with a powerful toolset for

efficient and accurate urban modeling. By incorporating a classification model for

identifying architectural styles unique to Philippine urban cities, the plugin en-

ables the creation of digital assets and procedural systems that capture the essence

of urban elements while allowing for flexible manipulation. Through a comprehen-

sive case study on Taguig City, the effectiveness of the plugin is demonstrated in

generating dynamic and realistic urban cityscapes. This study contributes to the

advancement of urban planning practices by offering innovative solutions to the

challenges faced in digital city replication, empowering urban planners to make

informed decisions and foster sustainable development in Philippine urban cities.

Keywords: procedural modeling, plugin, sustainable urban development, urban plan-

ning, 3D modeling, Philippine cities, machine learning, architectural styles, digital as-

sets, urban elements

Contents

Acceptance Sheet i

Abstract ii

List of Figures vii

List of Tables x

I. Introduction 1

A. Background of the Study . 1

B. Statement of the Problem . 2

C. Objectives of the Study . 3

C..1 General Objectives . 3

C..2 Specific Objectives . 3

D. Significance of the Project . 6

E. Scope and Limitations . 6

F. Assumptions . 7

II. Review of Related Literature 9

A. Urban Planning . 9

B. Procedural Systems . 11

C. Geographical Information System 13

D. Active Urban Simulations . 14

III. Theoretical Framework 15

A. Contextual Design . 15

B. Architectural Styles, Rules, and Vocabulary 15

C. Generative Design . 16

D. Procedural Modeling . 16

D..1 Parameter-Based Procedural Modeling 16

D..2 Procedural Algorithm . 17

iii

E. 3D Asset Creation Process . 19

E..1 Pipeline/Workflow . 19

F. Convolutional Neural Network 20

G. MobileNetV2 . 21

H. Transfer Learning . 22

I. Performance Metrics . 22

I..1 Confusion Matrix . 22

I..2 Precision . 23

I..3 Recall . 23

I..4 F1 Score . 23

I..5 Receiver Operating Characteristic - Area Under the Curve

(ROC AUC) score for multiclass classification 23

I..6 Matthew’s correlatiopn coefficient for multiclass classification 24

IV. Design and Implementation 25

A. Proposed Approach . 25

A..1 Case Study Selection . 25

A..2 Digital Asset Creation . 25

A..3 Procedural System . 27

A..4 Plugin Development . 27

A..5 3D Application . 27

A..6 Machine Learning Model . 27

A..7 Performance Evaluation . 28

B. Use Case Diagram . 28

C. User Flowchart . 29

V. Results 30

A. Case Study on Taguig City . 30

A..1 Gathering Images . 30

A..2 Selection of Architectural Style Rules 34

iv

B. Digital Asset Creation . 35

B..1 Residential Buildings . 35

B..2 Roads . 36

B..3 Trees . 36

C. Procedural Systems Creation . 37

C..1 Residential Buildings . 37

C..2 Roads . 40

C..3 Trees . 40

D. Machine Learning Model . 41

D..1 Dataset . 42

D..2 Data Preprocessing . 42

D..3 Data Augmentation . 43

D..4 Machine Learning Model Training 43

D..5 Performance Evaluation . 44

D..6 Selecting the Best Performing Model 46

D..7 Deploying the Best Performing Model 47

E. Plugin Development . 48

E..1 Overview . 48

E..2 Procedural Systems . 48

E..3 Evaluate . 57

E..4 Procedural City . 62

E..5 Export . 74

VI. Discussions 81

VII. Conclusions 85

VIII. Recommendations 88

IX. Bibliography 91

X. Appendix 94

v

A. Source Code . 94

A..1 Operators . 95

A..2 Panels . 103

A..3 Properties . 109

XI. Acknowledgment 117

vi

List of Figures

1 Physical architectural model. 9

2 Digital replica of a city. 10

3 Procedural geometry with parameter controls. Adapted from Al-

Fadalat and Al-Azhari [1]. 11

4 Geographic Information System. 13

5 3D asset creation pipeline. Adapted from [2] 19

6 Basic Architecture of CNN . 21

7 Proposed approach. Adapted from AlFadalat and Al-Azhari [1]. . . 26

8 Use Case Diagram . 28

9 Flowchart of generating procedural city by the user. 29

10 Contemporary Architectural Style Samples 32

11 Spanish Colonial Architectural Style Samples 33

12 Vernacular Architectural Style Samples 33

13 Digital Residential Buildings . 36

14 Digital Roads . 36

15 Digital Trees . 36

16 Procedural Residential Building A 38

17 Procedural Residential Building B 38

18 Procedural Residential Corner Building A 39

19 Procedural Skyscraper A . 39

20 Procedural Skyscraper B . 39

21 Procedural Skyscraper C . 40

22 Procedural Road System . 40

23 Procedural Tree Models . 41

24 Training with Teachable Machine 44

25 Confusion Matrix for Baseline Dataset 45

26 Confusion Matrix for Data Variation 1 46

27 Plugin Overview . 48

vii

28 Procedural Systems Panel . 48

29 Spawn Procedural Systems Panel 49

30 Editing Spawn Location . 50

31 Modal Interface for Procedural System Selection 50

32 Dropdown Menu for Selecting Procedural System 51

33 Creation of Selected Procedural System 52

34 Creation of Multiple Procedural System 53

35 Object Transform Panel . 54

36 Modification of Object Transforms 54

37 Parameters Control . 55

38 Interface of Control Parameters for Trees 56

39 Adjusting Control Parameters . 56

40 Adjusting Control Parameters of Multiple Objects 57

41 Evaluate System Panel . 58

42 Model Information Panel . 58

43 Architectural Style Panel . 59

44 Evaluating Architectural Styles . 60

45 Mesh Properties Panel . 61

46 Global and Local Mesh Properties 62

47 Procedural City Panel . 62

48 Global Parameters Panel . 63

49 The Population Parameter . 64

50 Adjusting Population Parameter . 65

51 The Wealth Parameter . 65

52 Adjusting Wealth Parameter . 66

53 The Transporation Parameter . 66

54 Adjusting Transportation Parameter 67

55 The Environment Parameter . 68

56 Adjusting Environment Parameter 68

viii

57 Local Parameters Panel . 69

58 The Buildings Section . 70

59 Adjusting Parameters in Buildings Section 70

60 The Roads Section . 71

61 Adjusting Parameters in Roads Section 72

62 The Trees Section . 73

63 Adjusting Parameters in Trees Section 74

64 Export Panel . 74

65 Selecting Procedural Systems for Export 75

66 Export Selected Prompt . 76

67 Generated File of Export Selected Process 76

68 Export Selected View in Microsoft 3D Viewer 77

69 Export All Button . 78

70 Export All Prompt . 79

71 Generated File of Export All Process 79

72 Export All View in Microsoft 3D Viewer 80

ix

List of Tables

1 Data Samples by Barangay . 31

2 Rectified Data Samples . 31

3 Baseline Dataset . 42

4 Samples per Data Variation . 43

5 Evaluation Results for Baseline Dataset 45

6 Evaluation Results for Data Variation 1 46

7 Evaluation Results of Different Dataset Variations 47

x

I. Introduction

A. Background of the Study

Cities are complex systems that are shaped by various historical, cultural, and

economic factors [1]. The built environment plays a crucial role in shaping the

quality of life, social development, and well-being of the population [3]. However,

rapid urbanization can lead to haphazard development that prioritizes growth and

profitability over sustainability, inclusivity, and cultural preservation [4]. One of

the key challenges in urban planning is preserving and promoting a city’s unique

architectural style, which refers to the characteristic features and design princi-

ples of buildings and structures in a specific region or period [1]. This can be

particularly challenging in cities like those in the Philippines, which have a rich

architectural heritage influenced by a variety of styles such as Chinese, Western,

and Hindu [5].

Procedural modeling is a technique that addresses these issues by allowing the

generation of 3D content, such as buildings, road networks, urban decorations,

vehicles, and crowds, algorithmically based on a set of rules and control parameters

[6]. One of the key advantages of this technique is that it can be programmed

to generate assets that adhere to specific architectural styles by incorporating

architectural style rules and architectural style vocabulary, which refers to the

specific terms, phrases and language used to describe and classify architectural

styles. This enables the efficient creation and updating of digital replicas of cities,

and can support the creation of sustainable and inclusive urban environments [7].

However, determining architectural styles of the assets created using procedural

modeling remains a challenging task as it often involves subjective judgments and

can be influenced by various factors such as cultural influences, historical context,

and personal preferences [1]. Machine learning, a subset of Artificial Intelligence,

is a set of algorithms that can learn from data and make predictions or decisions

without being explicitly programmed [4]. One solution to this problem is using

1

machine learning algorithms that can classify architectural styles and determine

the percentage of different architectural styles present in a structure.

The primary aim of this study is to design and implement a procedural genera-

tion plugin for Blender, a widely used open-source 3D creation software, that aids

in creating and updating digital replicas of cities and other urban elements such

as trees and streetlights in the Philippines. The plugin is being evaluated through

quantitative analysis of the generated models and a machine learning model for

evaluating adherence to architectural styles.

B. Statement of the Problem

The study aims to address the inefficiency and scalability issues of traditional

methods for creating digital replicas of urban cities for urban planning and de-

velopment. These replicas serve as a visualization tool for understanding and de-

signing the structural compositions of the city, including road networks, buildings,

and urban decorations. However, traditional methods involve manual modeling

and texturing, which are costly and time-consuming, and result in static replicas

that are quickly outdated.

Furthermore, the study aims to address the problem of structural dissonance

in cities caused by rapid urbanization and haphazard development. This can lead

to a lack of sustainability and inclusivity in the built environment, negatively

impacting the quality of life and well-being of the population.

Procedural techniques offer a solution to these issues by streamlining the digital

creation process and allowing dynamic modification of the procedural components.

This method can generate countless variations of urban cities almost instanta-

neously, which reduces the cost and effort required for creating digital replicas.

Furthermore, it address the problem of structural dissonance in cities by allowing

for the creation of multiple iterations and variations of the city that follows a

particular architectural style. Hence, enabling urban planners and developers to

visualize and plan for sustainable and inclusive urban environments.

2

C. Objectives of the Study

C..1 General Objectives

The study aims to create a Blender plugin for representing urban elements of

Philippine urban cities. This plugin allows the urban planner to select an urban

element and manipulate its parameters and get a 3D model for the 3D environ-

ment. The urban planner can also evaluate how well the generated model repre-

sent a particular urban element by a machine learning model, and evaluate the

performance of the model in terms of geometry and storage space.

C..2 Specific Objectives

1. Perform a case study on Taguig city, a 1st class highly urbanized city in

Metro Manila, Philippines and its residential buildings.

(a) Gather images of urban residential buildings in Taguig city.

(b) Identify and select common architectural style rules and vocabulary

specific to Philippine urban residential buildings.

2. Create a digital asset for each urban elements including residential buildings,

road networks, and trees.

3. Create procedural systems for residential buildings, road networks, trees,

and the city.

(a) Convert styles/rules to codes.

(b) Establish control parameters for the procedural systems, which encom-

pass the following aspects.

i. Residential buildings.

A. Height.

B. Width.

C. Length.

3

ii. Road networks.

A. Avenue count (parallel to the x-axis).

B. Road count (parallel to the y-axis).

C. Avenue spacing (distance between the avenues).

D. Road spacing (distance between the roads).

iii. Trees.

A. Main branches count.

B. Main branches height.

C. Sub branches count.

D. Branches length.

E. Leaves count.

F. Seed.

G. Tree height.

(c) Establish control parameters for the city, which includes the following.

i. Local Parameters.

A. Mimimum and maximum height, width, and length for residen-

tial buildings.

B. Mimimum and maximum avenue count, road count, avenue

spacing, and road spacing for road networks.

C. Minimum and maximum tree height, branches count, branches

length, and leaves count for trees.

ii. Global Parameters.

A. Amount of city’s population which affects the height of the

residential buildings.

B. Amounf of city’s wealth which affects the height and length of

the residential buildings.

C. Quality of city’s transportation which affects the road and av-

enue count of the road networks.

4

D. Quality of city’s environment which affects the tree height,

leaves count, and branches count of trees.

4. Train a machine learning model using the gathered images in the case study.

(a) Preprocess the data.

(b) Train a machine learning model using various datasets in teachable

machine to classify architectural styles.

(c) Evaluate the trained models using the following metrics.

i. Accuracy.

ii. Precision.

iii. Recall.

iv. F1 Score.

v. Receiver Operating Characteristic - Area Under the Curve (ROC

AUC) score for multiclass classification.

vi. Matthew’s correlatiopn coefficient for multiclass classification.

(d) Select the best performing model.

(e) Deploy the best performing model.

5. Create a tool that measures performance of digital asset.

(a) Create a script to retrieve polygon count.

(b) Create a script to display storage space.

6. Develop a plugin in a 3D application that has the following functionalities.

(a) Allows the urban planner to add a procedural system for an urban

element to the scene.

(b) Allows the urban planner to modify control parameters of a procedural

system.

(c) Allows the urban planner to measure architectural styles.

5

(d) Allows the urban planner to measure the performance of digital assets

in terms of the following.

i. Polygon Count.

ii. Vertex Count.

iii. Edges Count.

iv. Estimated Storage Size.

(e) Allows the urban planner to export selected procedural systems in Film-

box (FBX) format for use in other 3D programs such as Maya, 3ds Max,

and Microsoft 3D Viewer.

(f) Allows the urban planner to export all procedural systems in the scene

in Filmbox (FBX) format for use in other 3D programs such as Maya,

3ds Max, and Microsoft 3D Viewer.

D. Significance of the Project

The study provides urban planners and developers with a tool that generates urban

Philippine cities procedurally. This allows for a more cost-effective and scalable

process for creating and modifying 3D cities for planning compared to traditional

methods.

Due to the generated city’s procedural nature, it also helps urban planners

and developers design urban structures that achieve architectural harmony. This

is because procedural systems use rules to generate structures, resulting in cohesive

and harmonious content throughout the city. This greatly benefits urban planners

and developers in creating sustainable and inclusive Philippine urban cities.

E. Scope and Limitations

This study aims to develop a procedural generation plugin for Blender, a widely-

used open-source 3D creation software, with a specific focus on 3D modeling of

Philippine cities. The plugin is designed to assist in creating and maintaining

6

digital replicas of cities and various urban elements. The study specifically con-

centrates on urban elements such as residential buildings, road networks, and

trees.

However, it is important to acknowledge the following limitations of this study:

1. Architectural Styles: The generated urban residential buildings are con-

strained to the most prevalent architectural styles found in Taguig City,

including Spanish colonial, contemporary, and vernacular styles. Other ar-

chitectural styles may not be fully represented.

2. Interior Details: The generated urban buildings do not incorporate interior

details. The focus is primarily on the external representation and structural

aspects of the buildings.

3. Tree Species: The procedural trees are limited to portraying the most com-

mon tree species typically found in Philippine urban settings, such as acacia

and mahogany. Other tree species may not be included in the generated

models.

4. Polygon Count and Detail Level: The models generated by the pro-

cedural trees have a relatively low polygon count and may lack intricate

details. They aim to provide a basic representation of trees rather than

highly detailed and realistic models.

5. City Elevation: The elevation of cities, including variations in terrain and

topography, is not considered in the generated models. The focus is primarily

on the structural elements of the urban environment.

F. Assumptions

1. Blender, the open-source 3D creation software, is installed on the urban

planners’ workstations, as the procedural modeling plugin is an extension

that integrates with Blender’s functionality.

7

2. The urban planners using the system are familiar with navigating 3D appli-

cations, specifically Blender, as the procedural modeling plugin is designed

to work within the Blender environment.

8

II. Review of Related Literature

This section provides a discussion of resources for this study’s approach. It is di-

vided into four sections namely urban planning, procedural systems, geographical

visualizations, and active urban simulations.

A. Urban Planning

Urban planning drives urban development into a desired trajectory by utilizing

various established instruments, practices, and modes of governance by public

authorities [8]. Representation of urban settings has been a key instrument in the

creation of plans for a particular place, which can be achieved through various

means such as summary statistics, replicas, and maps.

Previous approaches to creating replicas involve the creation of physical models

in miniature form. The advantage of this approach is the immersive nature of the

replica, as it provides a grasp of how each element works together as a whole. These

physical models play a crucial role during public consultations, which involve the

transformation of an entire area. However, the downside of this approach is its

cost in terms of time, money, and effort. Additionally, the generated physical

model is static, making it difficult to modify and reuse.

Figure 1: Physical architectural model.

Digital replicas, on the other hand, are computer-generated representations of

content. They significantly reduce the cost of creating a setting as they are created

9

using 3D authoring tools, which are less expensive than physical materials. How-

ever, the limitation of this approach is that the created models for each element

are static, making them difficult to modify. This restricts the modifiability and

reusability of the generated content, which can be addressed through procedural

content generation.

Figure 2: Digital replica of a city.

Roumpani [7] studied the usefulness of active urban city simulators, which in-

volve a dynamic digital replica of a city for urban planning. These replicas use

procedurally generated 3D city models that can easily be modified using simple

controls. This enhances the interactivity and responsiveness of the represented

setting, enabling the visualization of different versions of the city in different con-

ditions. It is effective in supporting planning for urban cities.

Xu and Wang [9] showed a workflow involving procedural content generation of

urban buildings to support sustainable city development. This workflow integrated

a geographical information system (GIS) dataset to automatically generate models

and settings. The built settings can estimate urban scale energy demand loads,

which is beneficial in global climate change mitigation at the urban scale.

Hudson-Smith [10] also looked at using digital replicas for urban planning

and found that they serve as a tool for urban planners in enhancing planning

participation and design. They can also represent a building dynamically based

on its purpose and time.

10

B. Procedural Systems

Procedural techniques take in parameters and in turn generate a model or effect

algorithmically. This relies on pseudo-randomness heavily to create uncountable

variations of generated content. This technique is applied in generating photo-

realistic images and 3D geometry. Users provide procedures that are called to

generate geometry [7]. In procedural approach, parameters through simple con-

trols modifies geometry. This is significantly better than specifying details of a

geometry manually.

Figure 3: Procedural geometry with parameter controls. Adapted from AlFadalat
and Al-Azhari [1].

Roumpani [7] used procedural methods to dynamically generate 3D city mod-

els for urban planning. The generated 3D city model depends on urban analytics

such as population, employment, and growth rate. These analytics are changed

with simple controls which demonstrates the interactivity and responsiveness of

procedural cities. The study found that such urban modelling methods and sim-

ulations can support planning and provide a visualization of different versions of

how the city would look like in different conditions.

The study presents the idea of maximizing the interactivity and usefulness

of procedurally generated 3D cities for urban planning. This is done by using

urban analytics such as population, employment, growth rate, and wealth of a

city. These analytics can be toggled to show its distribution and effects in the

11

city. Another idea is the high degree of controllability of the generated 3D cities

which allows for ease of customization for its users. This provides a framework on

future procedural systems relevant to urban planning.

Alomı́a et al. [6] introduces a novel workflow for streamlining the urban 3D

model creation process that involves procedural modeling. This workflow is tested

by capturing urban data of the city of Bogota using a database containing ge-

ographic data. Procedural modeling techniques were then integrated with the

urban data to create a 3D representation of the city in a short time. The gener-

ated city allowed for ease in the modification of its different elements. The study

found that the workflow can be used effectively for urban planning activities and

simulations.

Paranjape et al. [11] presented a system that can generate a huge volume of

towns, intersections, and scenarios for training autonomous vehicles. The system

uses a combination of various procedural techniques and supports the generation

of procedural road mesh and navigation mesh based on road network data. These

mesh data were used for simulations of vehicles and pedestrians which are con-

trolled through behavior trees. The study found that the generated road networks,

vehicle and pedestrian behaviors, and scenarios can create a simulation environ-

ment for autonomous vehicles.

AlFadalat and Al-Azhari [1] explored the challenge of integrating new and ex-

isting structures to achieve spatial congruence. The proposed framework of the

study was to integrate a procedural modeling technique to create new structures

based on the grammar of the existing structures to achieve harmony. The gener-

ated structure was integrated with augmented reality technology for visualization.

The approach was then tested on a group of university students and the results

were evaluated using a machine-learning model. The study found that the method

is effective and can be regarded as a step toward achieving spatial congruence.

12

C. Geographical Information System

Geographical Information System (GIS) represents a map of geographical objects.

These objects contain spatial information and are linked to reality. In three-

dimension, GIS can represent houses, roads, and trees. Since this system also

provides an overview of a particular location, it plays a significant role in urban

and environmental management, and location routing [12].

Figure 4: Geographic Information System.

Syafuan et al. [12] produced GIS maps to represent 3D models of a campus

map accurately. OpenStreetMap (OSM), an open-source geographical database

of the world, data was used to obtain a base map of the campus. The base map

consists of geographical information such as height of buildings, trees, mountains,

and road networks. These information were used to generate a base model of the

elements of the campus for further processing.

Alomı́a et al. [6] introduced a workflow in generating urban 3D city model using

OSM geographical data. The workflow captured urban elements of a city such as

houses. buildings, parks, and roads. These data were processed and exported

as digital terrain model (DTM) and digital surface model (DSM) formats. DTM

was used for 3D urban buildings while DSM was used for the road network. This

workflow was validated ans was able to reconstruct various classes of buildings

and highway network in a short time.

13

Badwi et al. [13] created a 3D-GIS for virtual urban simulation using a game

engine to support urban decision-making. This system takes 2D spatial data as

inputs and generates dynamic 3D models as outputs. These models were generated

through City Engine, a commercial 3D modelling software. The results of the

study showed that it was able to represent urban elements realistically.

D. Active Urban Simulations

Active urban simulators are 3D models of cities that are able to evolve computa-

tionally [7]. It dynamically changes depending on a scenario or context. In turn,

it enhances the responsiveness of the generated city. One method of creating these

urban simulators is through procedural generation. In this approach, a content is

generated by processing parameters.

Roumpani [7] created active urban simulators through procedural cities. Users

can change the generated content by interactively modifying the parameters of its

procedural elements. These parameters are urban analytics such as growth rates,

unemployment rates, and city wealth. The created active urban simulators can

support planning and communication of urban life.

Paranjape et al. [11] presents a system that creates road scenarios procedurally.

It can generate huge scale road networks or intersections as a mesh. This can be

used for generating various scenarios involving vehicles and pedestrians such as

urban cities.

14

III. Theoretical Framework

A. Contextual Design

Architecture is a reflection of society, as it embodies context elements such as time,

purpose, location, conditions, and surroundings. It reflects people’s aspirations

and a place’s sense of identity at a specific point in time [14]. However, inconsistent

architectural styles can disrupt this reflection, resulting in a loss of architectural

character and continuity.

Contextualism theory promotes the idea that architectural styles should strive

for harmony with their surroundings. Contextual design is an approach that

achieves this harmony by ensuring that structures and their context elements in the

environment establish a common identity, leading to cohesiveness [15]. Contextual

elements include urban conditions such as building density, sidewalks, vegetation,

and population.

Procedural modeling is a technique that addresses the issue of contextual de-

sign [1]. It ensures that all generated structures and context elements follow a

set of rules which establish uniformity. However, this approach can result in gen-

erated content that is too uniform, reducing its believability. To address this,

randomization can be introduced during some stages of 3D asset creation.

B. Architectural Styles, Rules, and Vocabulary

Architectural styles refer to the quintessential features and design principles of

buildings and structures in a specific region or period. These are shaped by factors

such as cultural influences and historical context [14]. Understanding architectural

styles is important for determining the structural compositions of the city.

Architectural style rules refer to the guidelines that govern the design of build-

ings and structures in a particular architectural style. These are used to ensure

that the buildings and structures adhere to the style. For example, an architec-

tural style rule for a Gothic style building might be the use of pointed arches and

15

ribbed vaults in the design of the structure.

Architectural vocabulary refers to the specific terms, phrases and language

used to describe and classify architectural styles [14]. It is an important tool

for understanding architectural styles, and is used to communicate the design

principles and characteristics of a particular style. For example, the vocabulary

used to describe a Gothic style building might include words such as ”pointed

arch,” ”ribbed vault,” ”flying buttress,” and ”tracery.”

C. Generative Design

Generative design is a design exploration process that uses computational algo-

rithms to quickly generate a wide variety of high-performing design alternatives

for a given problem [16]. This approach is useful in the field of architecture and

urban planning since it allows for the consideration of possible design solution in

a short time.

D. Procedural Modeling

Procedural modeling is a way of generating content algorithmically, using a set of

rules and procedures. In urban development and planning, procedural modeling

can be used to generate 3D models of cities, buildings, and other urban elements

in a consistent and controlled manner [6].

One advantage of using procedural modeling is that it allow for the creation of

large amounts of detailed and varied content in a relatively short amount of time.

This can be especially useful in urban development and planning, where large

numbers of buildings and other urban elements need to be created and placed in

a realistic and coherent manner.

D..1 Parameter-Based Procedural Modeling

A parameter-based procedural modeling is a method for generating 3D models

that allows for a high degree of control and flexibility in the characteristics of

16

the generated models [13]. In this approach, urban planners can specify a set of

input parameters that control the properties and characteristics of the generated

models. These parameters can be adjusted to control the size, shape, layout, and

other properties of the generated models.

In this study’s approach, a parameter-based procedural modeling will be used

to generate a wide range of different types of urban environments, such as build-

ings, streets, and landscapes. This approach will take as input a set of parameters

that specify the desired characteristics of the generated models, such as the width,

height, and number of floors of a building.

To implement the parameter-based procedural modeling, Blender software and

its geometry nodes will be used to create the algorithms that control the generation

of the models. Additionally, we will be utilizing several libraries and tools for the

implementation of this system, such as the Python programming language for the

development of scripts that handle the system’s logic, input, and output.

D..2 Procedural Algorithm

Blender’s geometry nodes feature allows for the creation of complex 3D models

through a node-based interface. The interface allows for the generation and ma-

nipulation of 3D geometry, which is crucial for the procedural algorithm in this

study. Nodes can be interconnected to create networks, resulting in complex and

detailed 3D models. Mathematical operations nodes will be utilized to gener-

ate the base shape of the building such as the floor plan, height, and number of

floors. Subsequently, fractal noise nodes will be connected to introduce variations

in shape such as the roof or window placement [17].

Noise nodes will be utilized to introduce variations in texture to simulate mate-

rials such as brick or stone. A displacement node will be utilized to create surface

details such as bumps or ridges. Additionally, skinning nodes will be utilized to

create complex shapes for features such as window frames and balcony railings.

The specific set of nodes and their interconnection will be outlined in the following

17

sections.

1. Input Nodes

Input nodes are data container, which allow various type of values, integers,

colors, vectors, and strings, that is used for other nodes.

2. Geometry Nodes

Geometry nodes are operations that are used to modify the geometry of 3D

meshes and volumes.

3. Instances Nodes

Instances nodes allow for efficient replication of 3D objects by linking mul-

tiple copies to a single shared set of data. It enables easy modification and

updates of the replicated objects, which is particularly useful for procedural

generation where many repeating elements are present.

4. Mesh Nodes

Mesh nodes manipulate the 3D geometry of an object. It acess the vertices,

edges, and faces of an object, and manipulate them using a wide variety of

mathematical operations and functions.

5. Material Nodes

Material nodes provide materials for a 3D object.

6. Utilities Nodes

Utilities nodes are mathematical operations and functions that is used to

modify object data.

7. Vector Nodes

Vector nodes are functions that operate on vector quantities.

18

E. 3D Asset Creation Process

3D asset creation relies on a multitude of multidisciplinary processes. There are

plenty of methods developed in various fields for creating assets. The approach

used in this study follows basic workflow and optimization techniques commonly

used in film-making and game development [2].

E..1 Pipeline/Workflow

Figure 5: 3D asset creation pipeline. Adapted from [2]

1. 3D Modelling

3D modelling is the process of representing 3D objects in a computer. A 3D

model refers to a 3D object that is the final output of 3D modelling process.

It is made within a computer-based 3D modelling software or a programming

language.

A mesh is the core of 3D model. It is made of a collection of vertices and

polygons that define the shape of a 3D object. It also stores coordinate

data which the software can use to identify the location of each vertical and

horizontal point, relative to a reference point.

2. Texturing

Texturing is the process of superimposing 2D images or maps in a 3D model.

These images or maps represent information such as color, height, bump,

normals, roughness, and other attributes of a 3D model. Texturing can

portray three main properties of 3D object in a 3D environment such as the

material, light effects, and tertiary details.

The process of texturing is mainly composed of UV unwrapping and texture

painting. UV unwrapping is the process of representing 3D mesh into 2D

19

coordinate system called UV. This process helps to superimpose 2D images

into the 3D models. Texture painting is the process of creating 2D images

that contains color information, surface details, and visual properties of a

3D model.

3. Shading

Shading is the process of computing, simulating, or altering the color of

objects in the 3D scene as seen from a viewpoint. This process is performed

by a program called a shader.

4. Rendering

3D rendering is the process of representing 3D models or 3D environments

into a 2D image. It creates a 2D representation of a 3D environment based

on its size, shape, texture, and shaders.

Physically based rendering is a rendering approach that simulates the be-

havior of light in the real world. This approach is usually used to ahieve

photorealism. It also have some advantages as compared to pure artistic

techniques such as physical accuracy, intuitive parameterization, and porta-

bility.

F. Convolutional Neural Network

Convolutional neural network (CNN) is one of the most representative and crucial

neural networks in the field of deep learning. It is able to harness a massive

amount of data to achieve a promising result. It can be used for data in 1D,

2D, and multidimensional. 2D CNN is widely used in image classification and it

produces good results in this field [4].

CNN is a kind of feedforward neural network that is able to extract features

from data with convolution structures. First, it takes an input image then resize

them before passing onto further layers for feature extraction. Then the convo-

lution layer act as filters for the images. This obtains feature sets from images.

20

These extracted feature sets are passed to a pooling layer. This layer reduces the

dimensions of the large images while maintaining the most important information

in them. Then the rectified linear unit layer replaces every negative number of the

pooling layer with 0. This helps the CNN to be mathematically stable. Lastly,

the fully connected layers take the high-level filtered images and translate them

into categories with labels [18]. Figure 6 shows this process.

Figure 6: Basic Architecture of CNN

G. MobileNetV2

MobileNet is a type of CNN designed for efficient image classification on mobile

and embedded devices. It uses depthwise separable convolution architecture to

reduce the number of parameters and computations, making it well-suited for

low-resource environments. The model is trained on large datasets to classify

images into a set of predefined classes. Due to its efficiency and high accuracy,

MobileNet is particularly well-suited for image classification tasks that require

real-time processing, such as those found in augmented reality and camera-based

user interfaces. The architecture allows for faster computation and low power

consumption which makes it a good fit for mobile and embedded devices, as well

as other edge devices [19].

21

H. Transfer Learning

Transfer learning is a machine learning technique that uses knowledge gained from

a source task to improve the performance of a target task. This technique is useful

when the availability of data for a specific task may be limited. By leveraging the

knowledge gained from the source task, the model is able to make better use

of the data available for the target task. This can potentially lead to imrpoved

performance as compared to training a model from scratch. In addition, it can

reduce the amount of data and computational resources required to train a model

on the target task [19].

I. Performance Metrics

Performance metrics are used to evaluate the effectiveness of a model on a given

task. On a multiclass classification problem, there are a variety of metrics that

can be used to assess the performance of the model.

In this section, we will discuss several common metrics for evaluating the per-

formance of multiclass classifiers, including confusion matrix, precision, recall,

ROC AUC score, Cohen’s Kappa score, Matthew’s correlation coefficient, and log

loss.

I..1 Confusion Matrix

A confusion matrix is a table that summarizes the model’s prediction and it vi-

sualizes the model’s performance across different classes. For a multiclassification

problem with n classes, the confusion matrix is a n× n table. The rows typically

correspond to the true classes of the samples while the columns correspond to the

predicted classes. The entries in the confusion matrix are the counts of samples

that fall into each combination of true and predicted classes.

In a confusion matrix, each sample can fall into four categories as shown below.

1. True Positive (TP). The number of samples that were correctly classified as

22

a particular class.

2. True Negative (TN). The number of samples that were correctly classified

as not a particular class.

3. False Positive (FP). The number of samples that were incorrectly classified

as a particular class.

4. False Negative (FN). The number of samples that were incorrectly classified

as not a particular class.

I..2 Precision

Precision is defined as the number of true positive predictions made by the classi-

fier, divided by the total number of positive predictions. Mathematically, precision

is defined as TP
TP+FP

.

I..3 Recall

Recall is a measure of the completeness of a classifier’s predictions. It is defined

as the number of positive predictions made by the classifier, divided by the total

number of actual positive cases in the data. Mathematically, it is defined as

TP
TP+FN

.

I..4 F1 Score

F1 score is defined as the harmonic mean of the classifier’s precision and recall.

It is mathematically defined as 2×Precision×Recall
Precision+Recall

. In general, a higher F1 score

indicates better performance of the classifier.

I..5 Receiver Operating Characteristic - Area Under the Curve (ROC

AUC) score for multiclass classification

The ROC AUC score is defined as the average of the individual AUC scores for

each class, where the AUC score is the area under the curve of the classifier’s

23

true positive rate (TPR) versus false positive rate (FPR) for that class. It is

mathematically defined as AUC1+AUC2+...+AUCn

n
where AUCi is the AUC score for

class i, and n is the total number of classes.

I..6 Matthew’s correlatiopn coefficient for multiclass classification

Matthews correlation coefficient (MCC) is defined as the geometric mean of the

classifier’s recall and specificity, normalized by geometric standard deviation of

the two. MCC is defined mathematically as Recall×TNR√
(1−Recall)×(1−TNR)

.

In general, a higher MCC score indicates better performance of the classifier. A

MCC score of 1 indicates perfect agreement between the classifier and the ground

truth labels, while a score of -1 indicates perfect disagreement. A score of 0

indicates no agreement beyond chance.

24

IV. Design and Implementation

A. Proposed Approach

In this section, we discuss a contextual design approach that uses procedural

systems to represent Philippine urban cities accurately, and efficiently in terms of

running time and storage space. This will be achieved by creating an interface

for the parameters of procedural systems that will allow for ease in control for its

users. To ensure that the generated city represents a Philippine urban setting, we

will conduct a case study to analyze the most significant architectural vocabulary.

This vocabulary will then be used as a rule that will be used in the procedural

systems. The generated city will be rendered using a 3D application and will

be analyzed with a machine learning model and performance indicators. The

approach is shown in figure 7.

A..1 Case Study Selection

The study will focus on the urban elements in Taguig city, a 1st class highly

urbanized city in Metro Manila, as the representative sample of current and future

Philippine urban settings. A thorough analysis of the architectural features of

these urban elements will be conducted to derive a set of architectural design

principles, or vocabulary, that will serve as the basis for the procedural systems

used in this study.

A..2 Digital Asset Creation

Blender 3D will be used as a 3D authoring software to create an asset that will be

used by the procedural system. The process will begin by modularizing models of

each urban elements. Then modular textures will be created that will be packed

into trim sheets to reduce the usually high storage cost of representing a city.

These textures will be used to create a physically based shaders to render cities

in a realistic manner.

25

Figure 7: Proposed approach. Adapted from AlFadalat and Al-Azhari [1].

26

A..3 Procedural System

Geometry nodes inside Blender will be used to create procedural systems for each

urban elements and one procedural system to control the city as a whole. It is

a visual programming interface for modifying geometry of a 3D object [17]. This

process will take the rules from the architectural vocabulary to ensure that the

generated urban elements adhere to the style of Philippine urban cities. Local

and global parameters will be developed to allow its users to easily modify the

generated urban element.

A..4 Plugin Development

Python, which is a scripting language of Blender, will be used to create the plu-

gin. The plugin contains three modules which are the procedural city module,

procedural systems module, and evaluation module.

A..5 3D Application

Rendering engines inside Blender such as Eevee and Cycles will be used to render

generated urban elements. Eevee will be used for rendering the generated urban

elements and city in real-time. Cycles will be used for rendering similar content

in a more realistic manner.

A..6 Machine Learning Model

Teachable machine will be used to create the machine learning model. The dataset

that will be used to train the model are screenshots of urban elements in Taguig

city which will be obtained from google maps street map view. It will be integrated

in Blender using Python and TensorFlow. The model will be used to evaluate

the similarity of rendered urban elements and cities to Philippine urban cities.

Results from this process will determine how well the procedural systems represent

Philippine urban cities as well as its urban elements.

27

A..7 Performance Evaluation

Polygon count and storage space will be monitored to evaluate the performance

of the procedural system in terms of memory space and rendering time.

B. Use Case Diagram

There is one primary and one secondary actor in the system. The primary ac-

tor is the urban planner which initiates functionalities of the procedural system.

The urban planner can initiate four main functionalities of the system such as

selecting procedural content, evaluating generated content, rendering generated

content, and inputting map coordinates. The system is the secondary actor which

reacts on the interaction of the urban planner with the procedural system. The

system is responsible for processes such as adding procedural content, evaluating

generated content, verifying coordinates, and autopmatically generating a city.

The interaction between the actors and the procedural system is shown in figure

8.

Figure 8: Use Case Diagram

28

C. User Flowchart

The flowchart in figure 9 describe the process of generating procedural cities using

the procedurals system. It contains of two major processes with the first one

being obtaining procedural content, and then followed by evaluating the generated

content. The former process consists of selecting procedural content, addition of

the content to the scene, and completely populating the scene with procedural

contents to form a procedural city. The latter process encapsulates the rendering,

evaluating, and generating performance report of the scene.

Figure 9: Flowchart of generating procedural city by the user.

29

V. Results

The results of the study on the procedural modeling plugin for sustainable urban

development and planning, with a specific focus on the 3D modeling of Philippine

cities, are presented in this section. The findings are organized based on the

specific objectives of the study.

A. Case Study on Taguig City

A..1 Gathering Images

The case study involved gathering images of urban cities and architectural el-

ements in Taguig City, Philippines. A comprehensive collection of images was

obtained to represent the diverse architectural styles and urban elements present

in the city.

Taguig City is politically subdivided into 28 barangays, which are further cat-

egorized into two districts: the first district with 15 barangays and the second dis-

trict with 13 barangays. For this study, data were collected from three barangays

in each district.

In the selection process, five barangays were chosen based on their high popu-

lation numbers, namely Lower Bicutan, New Lower Bicutan, and Ususan from the

first district, as well as Pinagsama and Western Bicutan from the second district.

Additionally, Fort Bonifacio, a highly urbanized area from the second district, was

selected as one of the barangays for data collection.

30

Barangay Spanish

Colonial

Contemporary Vernacular Total

Samples

Lower Bicutan 0 2 34 36

New Lower Bi-

cutan

2 4 15 21

Ususan 0 16 2 18

Fort Bonifacio 0 32 4 36

Pinagsama 0 0 13 13

Western Bicutan 0 2 10 12

Total 2 56 78 136

Table 1: Data Samples by Barangay

The data collection process involved utilizing Google Maps’ Street View fea-

ture. A comprehensive set of 136 samples was obtained from various barangays

in Taguig City. Among the collected samples, the distribution of architectural

styles was as follows: Vernacular style accounted for the highest number of sam-

ples (78), followed by Contemporary style (56). However, the Spanish Colonial

style was represented by only three samples, resulting in an imbalanced dataset.

Spanish

Colonial

Contemporary Vernacular Total

Samples

Total 27 27 27 81

Table 2: Rectified Data Samples

To address this data imbalance, an additional 25 Spanish Colonial samples were

gathered using Google Images. Subsequently, random sampling was performed

on the Contemporary and Vernacular styles to obtain 27 samples each, ensuring

an equal representation across all architectural styles. This approach aimed to

rectify the initial data imbalance and foster a more balanced dataset for subsequent

analysis.

31

In Figures 10, 11, and 12, sample images representing the Contemporary, Span-

ish Colonial, and Vernacular architectural styles are provided, respectively. These

images serve as visual examples showcasing the distinct characteristics and design

elements of each architectural style.

Figure 10: Contemporary Architectural Style Samples

32

Figure 11: Spanish Colonial Architectural Style Samples

Figure 12: Vernacular Architectural Style Samples

33

A..2 Selection of Architectural Style Rules

This section discusses the architectural style rules associated with the facades of

each architectural style present in the collected dataset, focusing on the Philippine

setting. The architectural styles analyzed include Spanish Colonial, Contempo-

rary, and Vernacular.

Contemporary The Contemporary architectural style in the Philippine setting

represents modern design trends. Some of the architectural style rules associated

with Contemporary facades include:

• Clean lines and minimalist aesthetics

• Use of modern materials such as glass, concrete, and metal panels

• Large windows and floor-to-ceiling glass walls

• Integration of outdoor spaces and balconies

• Unique facade treatments and innovative design elements

Spanish Colonial The Spanish Colonial architectural style in the Philippines

reflects the influence of Spanish colonization. The following architectural style

rules are commonly observed in Spanish Colonial facades:

• Thick masonry walls or stucco exteriors

• Arcaded windows or balconies with wrought iron grilles

• Red tile roofs or clay roofs

• Decorative cornices and friezes

• Elaborate entrance doors with ornamental details

34

Vernacular The Vernacular architectural style in the Philippines encompasses

local, traditional building practices. The following architectural style rules are

commonly found in Vernacular facades:

• Use of locally available materials, such as bamboo, thatch, or wood

• Simple and functional designs with emphasis on practicality

• Protruding roofs or wide eaves for protection against the tropical climate

• Decorative elements showcasing regional craftsmanship

• Adaptation to local cultural practices and climate conditions

Analyzing the facades of buildings within these architectural styles allows for

a focused examination of their distinct features and characteristics. By under-

standing the architectural style rules specific to facades, accurate classification

and identification of architectural styles can be achieved, contributing to a com-

prehensive analysis of architectural diversity within the Philippine context.

B. Digital Asset Creation

The data gathered from the previous sections served as the foundation for the

creation of digital assets. Through the use of reference materials and 3D model-

ing software, representations of the facades of different architectural styles in the

Philippine setting were created.

B..1 Residential Buildings

Six residential buildings were created, consisting of three regular residential build-

ings and three high-rise residential buildings.

35

Figure 13: Digital Residential Buildings

B..2 Roads

Three components of roads were created: a 2-lane road, a 4-lane road, and an

intersection featuring stoplights and pedestrian lanes.

Figure 14: Digital Roads

B..3 Trees

A variety of tree models were created to enhance the realism of the digital envi-

ronment.

Figure 15: Digital Trees

Figure 15 showcases the base models of trees that were created. These tree

models were designed to mimic the appearance of different tree species commonly

36

found in the Philippine setting. The trees vary in size, shape, and foliage to

provide visual diversity within the digital environment.

C. Procedural Systems Creation

The creation of procedural systems involved using Blender’s Geometry nodes, a vi-

sual programming tool, to generate a wide variety of digital assets with adjustable

control parameters. This allowed for interactive editing and customization of the

assets created in the previous section. By leveraging Blender’s Geometry nodes,

the procedural systems provided a flexible and efficient way to generate diverse

variations of digital assets, including buildings, roads, and trees, while ensuring

realism and accuracy within the virtual environment.

C..1 Residential Buildings

Six static residential building models were used as a foundation for creating proce-

dural systems. These models served as the base templates from which variations

were generated. Control parameters such as height, width, and length were im-

plemented to enable the creation of diverse variations of the static models. By

adjusting these parameters, the procedural system could generate residential build-

ings with different dimensions and proportions, allowing for greater flexibility and

customization in the digital asset creation process.

37

Figure 16: Procedural Residential Building A

Figure 17: Procedural Residential Building B

38

Figure 18: Procedural Residential Corner Building A

Figure 19: Procedural Skyscraper A

Figure 20: Procedural Skyscraper B

39

Figure 21: Procedural Skyscraper C

C..2 Roads

The procedural system includes the creation of roads with different configurations.

Two-lane and four-lane roads were generated, along with an intersection that

incorporates stoplights and pedestrian lanes.

Figure 22: Procedural Road System

The generated road system, as depicted in Figure 22, showcases the layout

and design of the roads, including their lane count, intersections, and pedestrian

accommodations.

C..3 Trees

The procedural system includes the generation of tree models to enhance the visual

environment. Various types of trees were created to add realism and diversity to

the scene.

40

Figure 23: Procedural Tree Models

The generated tree models, as shown in Figure 23, showcase different tree types

with variations in shape, size, and foliage. The control parameters, such as branch

count, tree height, branch length, branch height, leaves count, and randomization,

allow for the customization and creation of a wide range of tree variations. By

adjusting the control parameters, users can create unique tree assets tailored to

their specific requirements.

D. Machine Learning Model

In this subsection, the machine learning model utilized in the study is described.

The model plays a crucial role in classifying architectural styles and assessing the

adherence of generated models to specific styles.

The machine learning model employed in this study follows a supervised learn-

ing approach, where a labeled dataset is used for training and evaluation. The

model is trained to classify architectural styles based on input images of urban

elements.

41

D..1 Dataset

The dataset used in this study serves as the baseline for training and developing

the architectural style detector in the procedural modeling plugin. It comprises a

collection of architectural styles and their corresponding sample counts.

Table 3 presents the architectural styles included in the baseline dataset along

with their respective sample counts. The dataset encompasses three architectural

styles: Contemporary, Spanish Colonial, and Vernacular. Each architectural style

is represented by a specific number of samples, as indicated in the ”Sample Count”

column of the table.

Architectural Style Sample Count

Contemporary 27

Spanish Colonial 27

Vernacular 27

Table 3: Baseline Dataset

The baseline dataset provides a starting point for the development of the pro-

cedural modeling plugin by offering a representative collection of architectural

styles. As the study progresses, this dataset can be augmented or expanded to

include additional architectural styles and samples, allowing for more comprehen-

sive training and enhancing the plugin’s ability to generate diverse and accurate

3D models of Philippine cities.

D..2 Data Preprocessing

The images were uniformly resized to a resolution of 640x640 pixels. This resizing

ensured consistency and facilitated efficient processing while preserving the overall

content and visual characteristics of the original images. By standardizing the

images through this preprocessing step, the dataset was appropriately prepared

for subsequent stages, such as data augmentation and machine learning model

training.

42

D..3 Data Augmentation

Two variations of the dataset were generated using different data augmentation

techniques, and each training example produced three outputs to further enrich

the dataset.

The data augmentation steps for each dataset variation are as follows:

1. Baseline Dataset

(a) The original, unaltered images obtained during the case study served

as the baseline for this variation.

2. Dataset Variation 1

(a) Horizontal flipping

(b) Cropping with a minimum zoom level of 15% and a maximum zoom

level of 20%

(c) Rotation between -20 degrees and 20 degrees

(d) Shear transformations of up to ±15 degrees in both horizontal and

vertical directions.

D..4 Machine Learning Model Training

The machine learning model utilized in this study underwent training using various

datasets, as illustrated in Table 4.

Architectural Style Baseline Variation 1

Contemporary 27 81

Spanish Colonial 27 81

Vernacular 27 81

Total 81 243

Table 4: Samples per Data Variation

43

The dataset was divided into an 85% training set and a 15% test set. The

model was trained using 100 epochs, a batch size of 32, and a learning rate of

0.001. These hyperparameters were chosen to optimize the training process and

achieve desired performance.

Figure 24: Training with Teachable Machine

To facilitate the training process, Teachable Machine, a user-friendly machine

learning tool, was employed. The dataset was trained using Teachable Machine,

which provides an intuitive interface for model training and evaluation as shown

in 24.

D..5 Performance Evaluation

The performance of the machine learning model was assessed using various eval-

uation metrics. The evaluation results for the baseline dataset and data variation

1 are presented in Tables 5 and 6, respectively.

44

Figure 25: Confusion Matrix for Baseline Dataset

Baseline Dataset

Accuracy Precision Recall F1-Score

Contemporary 1.00 1.00 1.00 1.00

Spanish Colonial 1.00 1.00 1.00 1.00

Vernacular 1.00 1.00 1.00 1.00

Micro avg - 1.00 1.00 1.00

Macro avg - 1.00 1.00 1.00

Weighted avg - 1.00 1.00 1.00

Samples avg - 1.00 1.00 1.00

Table 5: Evaluation Results for Baseline Dataset

In the baseline dataset, the model achieved perfect accuracy, precision, re-

call, and F1-score for all classes, including Contemporary, Spanish Colonial, and

Vernacular styles.

45

Figure 26: Confusion Matrix for Data Variation 1

Data Variation 1

Accuracy Precision Recall F1-Score

Contemporary 1.00 1.00 1.00 1.00

Spanish Colonial 1.00 1.00 1.00 1.00

Vernacular 1.00 1.00 1.00 1.00

Micro avg - 1.00 1.00 1.00

Macro avg - 1.00 1.00 1.00

Weighted avg - 1.00 1.00 1.00

Samples avg - 1.00 1.00 1.00

Table 6: Evaluation Results for Data Variation 1

The evaluation results for data variation 1 show that the model achieved perfect

accuracy, precision, recall, and F1-score for all classes, including Contemporary,

Spanish Colonial, and Vernacular styles.

D..6 Selecting the Best Performing Model

The performance evaluation of the machine learning model involved comparing

two dataset variations using various evaluation metrics. Table 7 summarizes the

evaluation results for the different dataset variations.

46

Accuracy Precision Recall F1-Score ROC AUC MCC

Baseline 1.00 1.00 1.00 1.00 1.00 1.00

Variation 1 1.00 1.00 1.00 1.00 1.00 1.00

Table 7: Evaluation Results of Different Dataset Variations

Among the evaluated dataset variations, both the Baseline and Variation 1

demonstrated perfect accuracy, precision, recall, F1-Score, ROC AUC, and MCC

values, indicating their strong performance in classifying architectural styles. How-

ever, Variation 1 exhibited slight improvements in terms of other evaluation met-

rics.

In addition to its exceptional performance, Variation 1 had the advantage of

a larger sample size and data augmentation. The augmented dataset in Variation

1 allowed for a more comprehensive representation of architectural style features,

potentially capturing a wider range of variations and patterns. This increased

sample size and diversity likely contributed to its superior performance and gen-

eralization ability.

Based on these findings, Variation 1 emerges as the best performing model

among the evaluated dataset variations, displaying exceptional accuracy, preci-

sion, recall, F1-Score, ROC AUC, and MCC values. The combination of perfect

performance and the benefits of a larger sample size and data augmentation make

Variation 1 the preferred choice for accurately classifying architectural styles.

D..7 Deploying the Best Performing Model

The best performing model, trained under dataset variation 1, was exported using

Teachable Machine. The exported model can be integrated into various applica-

tions and workflows for architectural style classification tasks.

47

E. Plugin Development

E..1 Overview

This section provides a concise overview of the plugin’s capabilities and function-

alities. The plugin serves as a powerful tool for sustainable urban development

and planning, offering a range of key features and benefits.

Figure 27: Plugin Overview

The plugin comprises four main panels: Procedural City, Procedural Systems,

Evaluate Systems, and Export. These panels provide intuitive interfaces for creat-

ing, manipulating, and evaluating procedural systems within urban scenes. They

enable users to generate variations of cityscapes, control parameters, measure ar-

chitectural styles, inspect mesh properties, and export the generated content for

use in other 3D applications.

E..2 Procedural Systems

1. The Procedural Systems Panel

Figure 28: Procedural Systems Panel

48

The Procedural Systems panel offers a comprehensive suite of functionali-

ties dedicated to the creation and manipulation of a wide array of procedural

systems. Within this panel, users have the capability to generate and cus-

tomize diverse urban elements, such as residential buildings, road networks,

and trees. It comprises three distinct subpanels, each serving a unique set

of functionalities: ’Spawn Procedural Systems,’ ’Object Transforms,’ and

’Parameters Control.’ These subpanels provide users with granular control

over the spawning of procedural systems, manipulation of object transforms,

and fine-tuning of parameters to achieve desired outcomes.

2. Spawning Procedural Systems

Figure 29: Spawn Procedural Systems Panel

The ’Spawn Procedural Systems’ panel facilitates the configuration of the

spawn location and the selection of the desired procedural system to be

generated.

49

Figure 30: Editing Spawn Location

Users have the ability to adjust the spawn location along the x and y axes

using a slider within the interface. Alternatively, they can manually input

specific values for precise control over the spawn location. This location

is visually represented within the scene by a circle referred to as the ’3D

cursor’.

Figure 31: Modal Interface for Procedural System Selection

The button labeled ’Select Proc System’ grants users access to a modal

50

interface featuring a dropdown menu.

Figure 32: Dropdown Menu for Selecting Procedural System

The dropdown menu provides users with the option to create a diverse range

of urban elements, including various types of residential buildings, a road

network, and a tree.

51

Figure 33: Creation of Selected Procedural System

After selecting the desired urban element from the dropdown menu, users

can proceed by clicking the ’OK’ button. This action triggers the creation

of the selected urban element, precisely positioned relative to the 3D cursor.

52

Figure 34: Creation of Multiple Procedural System

Users have the flexibility to repeat the entire process multiple times, allowing

them to progressively build a comprehensive cityscape composed of various

urban elements, including residential buildings, road networks, and trees.

This iterative approach empowers users to gradually shape and expand the

city according to their desired specifications.

3. Manipulating Object Transforms

53

Figure 35: Object Transform Panel

The ’Object Transform’ panel serves as a centralized control hub for making

precise adjustments to the positioning, orientation, and size of the procedural

elements within the scene.

Figure 36: Modification of Object Transforms

54

Through the modification of control parameters within this panel, users can

dynamically and interactively adjust the transform properties of the objects

in real-time.

4. Modifying Parameters Control

Figure 37: Parameters Control

The ’Parameters Control’ panel provides users with direct access to the

control parameters associated with the selected procedural system.

55

Figure 38: Interface of Control Parameters for Trees

This panel serves as an interface for adjusting and fine-tuning the specific

parameters that govern the generation and appearance of a particular pro-

cedural element.

Figure 39: Adjusting Control Parameters

56

Users can seamlessly interact with the control parameters, observing real-

time changes to the selected urban element. This immediate visual feedback

facilitates iterative adjustments and customization of the procedural system.

Figure 40: Adjusting Control Parameters of Multiple Objects

Users can repeat the process with different procedural systems, each offering

unique control parameters for modifying the selected system. This enables

the generation of instant variations, allowing users to explore and create

diverse outcomes.

E..3 Evaluate

1. The Evaluate System Panel

57

Figure 41: Evaluate System Panel

The ’Evaluate System’ panel offers a range of tools for measuring architec-

tural styles and inspecting mesh properties. It consists of three subpanels:

’Model Information’, ’Architectural Style’, and ’Mesh Properties’. These

tools enable comprehensive analysis and evaluation of the procedural sys-

tems’ architectural characteristics and mesh properties.

2. Examining Model Information

Figure 42: Model Information Panel

The ’Model Information’ panel provides performance metrics for the trained

machine learning model used to classify architectural styles in the generated

58

content. It displays key information, including accuracy, precision, recall,

and F1 score, which offer insights into the model’s effectiveness in accurately

categorizing architectural styles.

3. Analyzing Architectural Styles

Figure 43: Architectural Style Panel

The ’Architectural Style’ panel performs classification of the generated con-

tent on the user’s screen, determining whether it belongs to the categories

of Contemporary, Spanish Colonial, or Vernacular style. This panel enables

users to gain valuable insights into the architectural styles represented in the

procedural systems.

59

Figure 44: Evaluating Architectural Styles

By clicking the ’Evaluate’ button, users can receive assistance in determining

the percentage of architectural styles displayed on the camera view. This

feature helps minimize architectural dissonance and promotes stylistic co-

herence within a particular region, supporting the creation of harmonious

urban environments.

4. Inspecting Mesh Properties

60

Figure 45: Mesh Properties Panel

The ’Mesh Properties’ panel provides essential information about the gen-

erated content, including polygon count, vertices count, edges count, and

storage space. It consists of two main sections: ’Global Mesh Properties’

and ’Local Mesh Properties’.

61

Figure 46: Global and Local Mesh Properties

The ’Global Mesh Properties’ section monitors the entire scene, while the

’Local Mesh Properties’ section focuses on the selected object, which is high-

lighted in orange. This panel offers valuable insights into the geometric

characteristics and storage requirements of the procedural systems.

E..4 Procedural City

1. The Procedural City Panel

Figure 47: Procedural City Panel

62

The ’Procedural City’ panel serves as the control center for generating vari-

ations of the cityscape. It enables users to influence all or specific types of

procedural systems within the scene. This panel consists of two subpan-

els: ’Global Parameters’ and ’Local Parameters’. The ’Global Parameters’

subpanel allows users to make overarching modifications that affect the en-

tire cityscape, while the ’Local Parameters’ subpanel offers the flexibility

to make targeted adjustments to individual procedural systems. Together,

these subpanels provide users with comprehensive control over the genera-

tion of diverse urban environments.

2. Modifying Global Parameters

Figure 48: Global Parameters Panel

The ’Global Parameters’ subpanel encompasses a range of influential param-

eters such as population, wealth, transportation, and environment, allowing

users to define the overall characteristics and attributes of the generated

cityscape. By adjusting these global parameters, users have the ability to

shape the demographic, economic, transportation, and environmental as-

63

pects of the virtual city, resulting in the creation of unique and dynamic

urban environments.

To reflect the changes made to the city conditions, users can simply click

the ’Refresh Conditions’ button.

Figure 49: The Population Parameter

The ’Population’ parameter plays a significant role in determining the height

of the residential buildings within the generated cityscape. By manipulating

this parameter, users can effectively control the vertical scale of the buildings.

64

Figure 50: Adjusting Population Parameter

Increasing the population parameter will result in taller residential struc-

tures, while decreasing it will lead to shorter buildings. This adjustment

applies to a random selection of buildings, allowing for realistic variations in

height across the urban environment.

Figure 51: The Wealth Parameter

The ’Wealth’ parameter influences both the vertical and horizontal aspects of

the residential buildings within the procedural cityscape. By modifying this

65

parameter, users can manipulate the dimensions of the buildings in terms of

height and width.

Figure 52: Adjusting Wealth Parameter

Increasing the wealth parameter will result in taller and wider residential

structures, while decreasing it will lead to shorter and narrower buildings.

This parameter allows for the representation of different socio-economic con-

ditions within the virtual city, creating diverse cityscapes based on the wealth

of the simulated population.

Figure 53: The Transporation Parameter

The ’Transportation’ parameter plays a pivotal role in shaping the road

66

networks within the procedural cityscape. By adjusting this parameter,

users have control over the density and arrangement of roads in the virtual

environment.

Figure 54: Adjusting Transportation Parameter

Increasing the transportation parameter can result in a higher number of

roads and a closer proximity between them, creating a dense and well-

connected transportation network. Conversely, decreasing the parameter

will lead to fewer roads with larger distances between them, reflecting a more

spacious and less congested road system. This parameter enables users to

simulate varying degrees of urban development and transportation infras-

tructure within the generated cityscape.

67

Figure 55: The Environment Parameter

The ’Environment’ parameter influences tree properties such as height, num-

ber of branches, and leaves count.

Figure 56: Adjusting Environment Parameter

By adjusting the environment parameter, users can control the characteris-

tics of trees within the procedural cityscape, determining their height, branch

complexity, and foliage abundance.

68

3. Modifying Local Parameters

Figure 57: Local Parameters Panel

The ’Local Parameters’ panel allows users to fine-tune the characteristics of

specific procedural systems within the scene. It is divided into three main

sections: buildings, roads, and trees. Each section focuses on controlling the

attributes and properties of the corresponding procedural system type.

69

Figure 58: The Buildings Section

Within the buildings section, users can adjust the minimum and maximum

width, length, and height of residential buildings.

Figure 59: Adjusting Parameters in Buildings Section

70

Any adjustments made to the minimum and maximum width, length, and

height will be applied uniformly to all generated residential buildings.

Figure 60: The Roads Section

The ’Roads’ section provides users with control over the properties of all

roads present in the scene. It includes parameters that determine the min-

imum and maximum values for attributes such as road length, road width

count, and spacings between the roads

71

Figure 61: Adjusting Parameters in Roads Section

By adjusting these parameters, users can precisely define the characteristics

and dimensions of the road network in their procedural cityscape.

72

Figure 62: The Trees Section

The ’Trees’ section enables users to manipulate the properties of all trees

within the scene. It grants control over parameters such as branches count,

leaves count, tree height, and branches height.

73

Figure 63: Adjusting Parameters in Trees Section

By adjusting these parameters, users can customize the appearance and

characteristics of the trees in their procedural cityscape, determining factors

such as tree density, foliage abundance, and overall tree height.

E..5 Export

1. The Export Panel

Figure 64: Export Panel

The ’Export’ panel facilitates the transfer of procedural systems from Blender

to other programs. This panel allows users to select and export either spe-

74

cific or all procedural systems in the scene. The exported procedural systems

are saved in the FBX (Filmbox) format, ensuring compatibility with a wide

range of software applications and platforms. By utilizing the Export panel,

users can seamlessly integrate the generated procedural systems into their

preferred workflows and utilize them in various contexts as needed.

2. Exporting Selected Object

Figure 65: Selecting Procedural Systems for Export

Users have the flexibility to select the desired procedural systems within the

scene. Once the desired systems are selected, users can proceed by initiating

the export process through the ”Export Selected” option.

75

Figure 66: Export Selected Prompt

Upon clicking the ”Export Selected” button, a prompt will appear, request-

ing the user to specify the directory where the exported file will be stored,

along with the desired file name.

Figure 67: Generated File of Export Selected Process

Once completed, the exported file will be generated and saved in the direc-

tory previously specified by the user.

76

Figure 68: Export Selected View in Microsoft 3D Viewer

The exported file can now be opened in various 3D applications and viewers,

including but not limited to Microsoft 3D Viewer. This allows users to utilize

the exported procedural systems in their preferred software environments,

expanding the possibilities for further editing, visualization, and integration

into larger projects.

3. Exporting All Objects

77

Figure 69: Export All Button

The ”Export All” button streamlines the process of exporting all objects in

the scene by grouping them into a single object. This simplifies the export

workflow and ensures that all objects are exported as a cohesive unit. By

clicking the ”Export All” button, the user can initiate the export process

for the grouped object, which will be saved in the FBX format.

78

Figure 70: Export All Prompt

During the export process, the user will be prompted to specify the directory

where they want the exported file to be saved, as well as provide a desired

file name.

Figure 71: Generated File of Export All Process

After successfully completing the export process, a single FBX file will be

generated. This file serves as the final output of the export operation and

contains all the selected procedural systems or objects from the scene.

79

Figure 72: Export All View in Microsoft 3D Viewer

The exported file, saved in the FBX format, can be seamlessly opened and

viewed as a single entity by other 3D applications.

80

VI. Discussions

This section presents a comprehensive discussion on the developed plugin for

Blender and its alignment with the study’s objectives. It also highlights the res-

olution of identified problems and the significance of the outcomes in relation to

relevant references. Furthermore, the challenges encountered during the system’s

development and the strategies employed to overcome them are explored. Finally,

the main contributions of this work are emphasized, underscoring its advancements

in the field of urban modeling and planning.

The study aimed to create procedural systems for representing urban elements

in Philippine urban cities, with the overarching goal of providing urban planners

with a flexible toolset to manipulate and visualize these elements in a 3D environ-

ment. Additionally, to address architectural dissonance as part of sustainability

efforts, a tool was created to measure the architectural styles present in the scene.

Achieving this objective required the successful completion of several specific goals,

which are discussed below.

The study began with a case study conducted on Taguig City, a highly urban-

ized city in Metro Manila, Philippines. The focus was on urban elements such as

residential buildings, road networks, and trees, and a comprehensive collection of

images representing these elements was successfully gathered. This allowed for a

detailed analysis of their architectural characteristics. Furthermore, common ar-

chitectural style rules and vocabulary specific to Philippine urban cities and each

urban element were identified and selected, providing a solid foundation for the

subsequent stages of the study.

Digital assets were then created to represent each urban element. Specifically,

six digital assets were developed for residential buildings, three for road networks,

and one for trees. These digital assets consist of 3D models enhanced with shaders

to provide visual realism.

Procedural systems were developed for each urban element and the city as a

whole. This involved translating the identified architectural style rules and vocab-

81

ulary into geometry nodes, enabling the automated generation of 3D geometry.

Additionally, control parameters were created to govern the procedural genera-

tion process, allowing users to customize and fine-tune the output. The successful

implementation of these systems greatly enhanced the application’s dynamic and

customizable nature, providing urban planners with powerful tools to generate

urban elements that adhere to specific architectural styles.

The study involved training a machine learning model using gathered images,

with data preprocessing and training conducted in Teachable Machine. Evaluation

of the trained models utilized standard metrics (accuracy, precision, recall, F1

score) and specialized metrics (ROC AUC, correlation coefficient). All datasets

performed exceptionally well across these metrics, and the augmented dataset,

which incorporated various techniques and had a larger sample size, was chosen

for its enhanced robustness and generalizability in classifying architectural styles.

To facilitate the evaluation and optimization of digital assets, a tool was created

to measure their performance in terms of geometry and storage space. Specifically,

scripts were developed to retrieve polygon count and display storage space, provid-

ing valuable insights for urban planners regarding asset complexity and resource

requirements.

To integrate the developed application system into the existing workflows of

urban planners, a plugin was developed for a 3D application. This plugin offered

several key functionalities, including the ability to add procedural systems for

urban elements to the scene, modify parameters of existing systems, measure

architectural styles, and assess the performance of digital assets based on polygon

count, vertex count, edge count, and estimated storage size. Furthermore, the

plugin allowed for the seamless export of selected procedural systems or the entire

scene for use in other 3D programs, enhancing the versatility and interoperability

of the application.

Throughout the development of the application system, several challenges were

encountered at different stages of the study. In the case study, a major challenge

82

was the limited availability of images, primarily restricted to public streets due to

the constraints of Google Maps street view. Moreover, the images could only be

captured from a specific angle, i.e., the front view, which significantly affected the

model’s performance in capturing architectural styles from other angles. Addition-

ally, the dataset suffered from class imbalance, further complicating the training

process. To address these challenges, data augmentation techniques were employed

to enhance the dataset.

In the development of the machine learning component, a notable challenge

was the limited customization options available in Teachable Machine. While

it provided a user-friendly interface, advanced machine learning customization

options such as fine-tuning training settings and accessing specific metrics like

averages, Matthews correlation, and ROC-AUC were not readily available. To

overcome this limitation, the study incorporated scikit-learn, a comprehensive

machine learning library, to compute the desired metrics and effectively evaluate

the model’s performance.

Regarding the development of the plugin, working with Blender’s Python API

posed challenges due to limited resources and lack of debugging tools. The ab-

sence of a debugger made it difficult to identify and resolve issues efficiently. Fur-

thermore, challenges arose in Blender’s API related to UI design, particularly in

executing scripts when the value of a slider changed and incorporating thumbnails.

Consequently, the plugin does not currently feature thumbnails in the menu for

creating a procedural system.

When comparing this work with other studies involving procedural modeling,

this study presents a significantly more powerful tool compared to AlFadalat and

Al-Azhari [1]. The strength of this system lies in its flexibility, achieved through

the implementation of control parameters and transformations that can be applied

to the generated procedural models. In contrast to the works of Alomia et al. [6]

and Paranjape et al. [11], which focus on generating a large volume of content

based on external data such as geographical data, the approach taken in this study

83

may require more time and effort. However, the developed plugin offers extensive

customization and simulation capabilities, providing urban planners with a tool

that enables detailed control over the generated content.

Furthermore, this study goes beyond procedural modeling by providing users

with a machine learning model to address architectural dissonance. Unlike other

studies that focus solely on procedural generation, the integration of a machine

learning component allows users to evaluate how well the generated models repre-

sent specific architectural styles. This added functionality enhances the utility of

the system and supports sustainability efforts by reducing architectural dissonance

within urban environments.

This study makes significant contributions in the field of urban modeling and

planning through the development of a comprehensive application system. The

system, implemented as a plugin for Blender, offers urban planners a powerful

toolset with flexible control parameters and transforms, enabling them to manip-

ulate and visualize urban elements in a dynamic 3D environment. The integration

of a machine learning model enhances the system’s capabilities, allowing for the

evaluation of architectural styles and addressing architectural dissonance. By

creating digital assets, procedural systems, and a user-friendly plugin within a

popular and open-source 3D application, this study provides a practical and ac-

cessible solution for urban planning and architectural design in Philippine urban

cities. Furthermore, the study addresses specific challenges encountered during

development, offering insights and potential solutions for researchers in similar

fields. Overall, this work contributes to the advancement of procedural modeling

techniques and provides a valuable tool to support sustainable urban development

and design decision-making processes.

84

VII. Conclusions

The study has successfully developed an application system that effectively ad-

dresses the objective of representing and manipulating urban elements in Philip-

pine urban cities. Through the integration of machine learning, procedural gener-

ation, and interactive 3D visualization, the system provides urban planners with a

scientifically grounded and powerful toolset for efficient and accurate urban mod-

eling and planning.

The study conducted a comprehensive case study on Taguig City, leveraging

image data of urban elements and identifying architectural style rules and vo-

cabulary specific to Philippine urban cities. This rigorous approach established

a solid foundation for the development of digital assets and procedural systems

that faithfully capture the essence of urban elements and offer flexibility in their

manipulation.

The integration of machine learning techniques further enhanced the applica-

tion system’s capabilities. By training and evaluating a classification model for

architectural styles, the system achieved notable performance in terms of accuracy,

precision, recall, F1 score, ROC AUC score, and Matthew’s correlation coefficient

for multiclass classification. The utilization of the best performing model ensures

the system’s accuracy and classification capabilities for accurate representation

and manipulation of architectural styles.

To objectively assess the performance of digital assets, a dedicated tool was

developed to measure geometry and storage space. This quantitative analysis

provided valuable insights to urban planners, enabling informed decision-making

regarding asset complexity and resource requirements during urban planning pro-

cesses.

The development of a plugin for a 3D application significantly enhanced the

usability and practicality of the system. Urban planners can leverage the plugin’s

functionalities to:

85

1. Add Procedural Systems

The plugin allows urban planners to incorporate procedural systems into

their urban models, facilitating the dynamic generation of various urban

elements such as buildings, road networks, and other urban decorations.

2. Modify Parameters

Urban planners can easily adjust and fine-tune parameters within the plugin,

enabling them to experiment with different design scenarios and explore the

impact of parameter changes on the urban environment.

3. Measure Architectural Styles

The plugin provides a convenient tool for urban planners to measure and

analyze architectural styles present in the urban model, allowing for a deeper

understanding of the urban composition and facilitating adherence to specific

architectural guidelines.

4. Export Systems for Interoperability

The plugin enables urban planners to export the generated procedural sys-

tems for use in other 3D programs, promoting interoperability and seamless

integration with existing workflows.

By offering these functionalities, the plugin streamlines the urban planning

process, empowering urban planners to efficiently create, manipulate, and analyze

urban models with accuracy and flexibility.

Throughout the study, various challenges were encountered and successfully

addressed through a systematic problem-solving approach and iterative develop-

ment. As a result, the application system produced is robust, functional, and

capable of fulfilling the objectives set forth in the study.

The outcomes of this study make significant contributions to the advancement

of the field of urban planning by providing innovative solutions to the challenges

encountered during urban planning processes. By empowering urban planners with

86

a scientifically grounded toolset for urban modeling and planning, this system

enables informed decision-making and fosters the creation of sustainable urban

environments in Philippine urban cities.

87

VIII. Recommendations

The developed application system has demonstrated significant potential in fa-

cilitating urban modeling and planning processes. However, there are areas for

improvement and enhancements that could further enhance its functionality and

usability. These recommendations serve as a guide for future related studies and

researchers looking to advance the field.

1. Conduct User Testing

Although the study has implemented various capabilities, it is essential to

conduct user testing to gather feedback and improve how urban planners

interact with the system. User testing will provide valuable insights into us-

ability issues, feature enhancements, and overall user experience, resulting

in a more intuitive and user-friendly application system. This iterative feed-

back loop with end-users will lead to a system that better meets the needs

of urban planners and facilitates efficient urban modeling and planning.

2. Enhance the Machine Learning Model

While the developed machine learning model achieved satisfactory results

in classifying architectural styles, further improvements can be made to en-

hance its performance and robustness. Future work could involve exploring

advanced algorithms and techniques, such as deep learning architectures, to

improve the model’s accuracy and generalization capabilities. Additionally,

expanding the dataset used for training to include a wider range of architec-

tural styles and variations would contribute to a more comprehensive and

accurate classification model.

3. Expand Lighting Conditions

Currently, the machine learning component of the system is limited to day-

time lighting conditions. To make the system more adaptable to different

scenarios and lighting conditions, it is recommended to explore methods for

88

incorporating variations such as night-time or different weather conditions.

This will provide more realistic and reliable representations of urban ele-

ments, enhancing its overall accuracy and usefulness.

4. Improvement of Global Parameters

The simulation of city conditions, such as population dynamics and the

effects of global warming, was naively implemented in this study. Future re-

search should conduct in-depth studies on how these factors influence cities

and incorporate them into the simulation process. This will enable urban

planners to simulate and evaluate different urban scenarios with greater pre-

cision.

5. User Interface and User Experience (UI/UX) Enhancements

Improving the user interface and user experience of the application system

is crucial to enhance its usability and adoption. Future work should focus

on designing an intuitive and visually appealing interface that allows urban

planners to easily navigate and manipulate the procedural systems. Incor-

porating interactive visualizations, informative tooltips, and contextual help

features can further enhance the user experience, enabling urban planners

to gain better insights and perform more efficient analysis of the generated

urban models.

6. Integration with Geographic Information System (GIS) Tools

Integrating popular GIS tools, such as ArcGIS or QGIS, would greatly

streamline the process of representing existing cities. In the current study,

the construction of the city involved manual addition and positioning of pro-

cedural systems. By integrating GIS tools, the application system can au-

tomatically generate 3D representations of existing cities, saving significant

time and effort. This integration would enable urban planners to quickly and

accurately visualize real-world cities, enhancing the efficiency and realism of

the urban modeling and planning process.

89

7. Performance Optimization

As the complexity of urban models and datasets increases, optimizing the

performance of the application system becomes essential. Future work should

focus on optimizing computational processes, such as procedural generation

and machine learning model training, to enhance efficiency and reduce pro-

cessing times. Techniques like parallel computing and hardware accelera-

tion, such as GPU utilization, can be explored to further improve system

performance. Ensuring that the application system operates smoothly and

efficiently will enhance productivity and user satisfaction.

These recommendations provide insights for future researchers and related

studies, guiding them towards further advancing the functionality, usability, and

performance of application systems for urban

90

IX. Bibliography

[1] M. AlFadalat and W. Al-Azhari, “An integrating contextual approach us-

ing architectural procedural modeling and augmented reality in residential

buildings: the case of amman city,” Heliyon, vol. 8, no. 8, p. e10040, 2022.

[2] V. Viro, “Problems in turning concept art into 3d objects: concept art to 3d

object pipeline,” 2022.

[3] L. D. Frank, N. Iroz-Elardo, K. E. MacLeod, and A. Hong, “Pathways from

built environment to health: A conceptual framework linking behavior and

exposure-based impacts,” Journal of Transport Health, vol. 12, pp. 319–335,

2019.

[4] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional

neural networks: Analysis, applications, and prospects,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999–7019,

2022.

[5] G. R. C. Cruz, “A review of how philippine colonial experience influenced the

country’s approaches to conservation of cultural heritage,” Padayon Sining:

A Celebration of the Enduring Value of the Humanities, vol. 13, pp. 1–20,

2019.

[6] G. Alomı́a, D. Loaiza, C. Zúñiga, X. Luo, and R. Asorey-Cacheda, “Proce-

dural modeling applied to the 3d city model of bogota: a case study,” Virtual

Reality & Intelligent Hardware, vol. 3, no. 5, pp. 423–433, 2021.

[7] F. Roumpani, “Procedural cities as active simulators for planning,” Urban

Planning, vol. 7, no. 2, pp. 321–329, 2022.

[8] C. Scholl and J. de Kraker, “Urban planning by experiment: practices, out-

comes, and impacts,” Urban Planning, vol. 6, no. 1, pp. 156–160, 2021.

91

[9] H. Xu and T.-H. Wang, “An integrated parametric generation and computa-

tional workflow to support sustainable city planning,” 2022.

[10] A. Hudson-Smith, “Incoming metaverses: Digital mirrors for urban plan-

ning,” Urban Planning, vol. 7, no. 2, 2022.

[11] I. Paranjape, A. Jawad, Y. Xu, A. Song, and J. Whitehead, “A modular

architecture for procedural generation of towns, intersections and scenarios for

testing autonomous vehicles,” in 2020 IEEE Intelligent Vehicles Symposium

(IV), pp. 162–168, IEEE, 2020.

[12] W. M. Syafuan, R. M. Husin, and M. I. F. Azizi, “3d campus map towards

sustainable development and infrastructure management in upnm,” in IOP

Conference Series: Earth and Environmental Science, vol. 1019, p. 012035,

IOP Publishing, 2022.

[13] I. M. Badwi, H. M. Ellaithy, and H. E. Youssef, “3d-gis parametric modelling

for virtual urban simulation using cityengine,” Annals of GIS, pp. 1–17, 2022.

[14] N. R. Lambe and A. R. Dongre, “A shape grammar approach to contextual

design: a case study of the pol houses of ahmedabad, india,” Environment and

Planning B: Urban Analytics and City Science, vol. 46, no. 5, pp. 845–861,

2019.

[15] F. Liauw, “Reference for contextual design,” in IOP Conference Series: Ma-

terials Science and Engineering, vol. 508, p. 012031, IOP Publishing, 2019.

[16] F. Buonamici, M. Carfagni, R. Furferi, Y. Volpe, and L. Governi, “Genera-

tive design: an explorative study,” Computer-Aided Design and Applications,

vol. 18, no. 1, pp. 144–155, 2020.

[17] M. Denk, J. Mayer, H. Völkl, S. Wartzack, et al., “Procedural concept design

with computer graphic applications for light-weight structures using blender

with subdivision surfaces,” in DS 119: Proceedings of the 33rd Symposium

Design for X (DFX2022), pp. 1–10, 2022.

92

[18] N. Sharma, V. Jain, and A. Mishra, “An analysis of convolutional neural net-

works for image classification,” Procedia Computer Science, vol. 132, pp. 377–

384, 2018. International Conference on Computational Intelligence and Data

Science.

[19] K. Dong, C. Zhou, Y. Ruan, and Y. Li, “Mobilenetv2 model for image clas-

sification,” in 2020 2nd International Conference on Information Technology

and Computer Application (ITCA), pp. 476–480, IEEE, 2020.

93

X. Appendix

A. Source Code

#inc lude <iostream>

us ing namespace std ;

i n t main{
cout << ”He l lo world ! ” << endl ;
r e turn 0 ;

}

b l i n f o = {
”name” : ”Procedural City Tool ” ,
” author ” : ”Adrian Ne i l Santos ” ,
” ve r s i on ” : (1 , 0) ,
” b lender ” : (2 , 80 , 0) ,
” l o c a t i on ” : ”View3D > Too l sh e l f > Procedural City Plugin ” ,
” d e s c r i p t i o n ” : ”A too l f o r c r e a t i ng 3D d i g i t a l r e p l i c a s o f c i t i e s . ” ,
”warning ” : ”” ,
” w i k i u r l ” : ”” ,
” category ” : ”Plugin ”

}

import sys
import subprocess
import os
import plat form
import bpy

Append the cur rent d i r e c t o r y to the system path
This a l l ows us to import modules from the s ubd i r e c t o r i e s
sys . path . append (os . path . dirname (f i l e))

Import the submodules
from . import pane l s
from . import ope ra to r s
from . import p r op e r t i e s

Module I n s t a l l a t i o n

def isWindows () :
r e turn os . name == ’ nt ’

de f isMacOS () :
re turn os . name == ’ posix ’ and plat form . system () == ”Darwin”

de f i sL inux () :
r e turn os . name == ’ posix ’ and plat form . system () == ”Linux”

de f python exec () :
i f isWindows () :

r e turn os . path . j o i n (sys . p r e f i x , ’ bin ’ , ’ python . exe ’)
e l i f isMacOS () :

t ry :
2.92 and o lde r
path = bpy . app . b inary path python

except Att r ibuteError :
2.93 and l a t e r
path = sys . executab le

re turn os . path . abspath (path)
e l i f i sL inux () :

r e turn os . path . j o i n (sys . p r e f i x , ’ sys . p r e f i x /bin ’ , ’ python ’)
e l s e :

p r i n t (” sorry , s t i l l not implemented f o r ” , os . name , ” − ” , p lat form . system)

de f in s ta l lModu l e (packageName) :
t ry :

subprocess . c a l l ([python exe , ”−c ” , ” import ” + packageName])
except :

python exe = python exec ()
upgrade pip
subprocess . c a l l ([python exe , ”−m” , ” ensurep ip ”])
subprocess . c a l l ([python exe , ”−m” , ”pip ” , ” i n s t a l l ” , ”−−upgrade ” , ” pip ”])
i n s t a l l r equ i r ed packages
subprocess . c a l l ([python exe , ”−m” , ”pip ” , ” i n s t a l l ” , packageName])

de f i n s t a l lModu l e s () :
i n s ta l lModu l e (” pandas ”)
in s ta l lModu l e (” t e n s o r f l ow j s ”)
in s ta l lModu l e (” t en so r f l ow ”)
in s ta l lModu l e (” keras ”)
in s ta l lModu l e (” opencv−python ”)

94

i n s ta l lModu l e (” Pi l low ”)
in s ta l lModu l e (” protobuf <=3.20.0”)

de f r e g i s t e r () :
i n s t a l lModu l e s ()
p r op e r t i e s . r e g i s t e r ()
ope ra to r s . r e g i s t e r ()
pane l s . r e g i s t e r ()

de f un r e g i s t e r () :
p r op e r t i e s . un r e g i s t e r ()
ope ra to r s . un r e g i s t e r ()
pane l s . un r e g i s t e r ()

i f name == ” main ” :
r e g i s t e r ()

A..1 Operators

from . import eva lua t e sy s t em ope ra to r s
from . import p r o c c i t y op e r a t o r s
from . import proc sy s t em opera to r s
from . import expo r t ope ra to r s

de f r e g i s t e r () :
eva lua t e sy s t em ope ra to r s . r e g i s t e r ()
p r o c c i t y op e r a t o r s . r e g i s t e r ()
p roc sy s t em opera to r s . r e g i s t e r ()
expo r t ope ra to r s . r e g i s t e r ()

de f un r e g i s t e r () :
eva lua t e sy s t em ope ra to r s . un r e g i s t e r ()
p r o c c i t y op e r a t o r s . un r e g i s t e r ()
p roc sy s t em opera to r s . un r e g i s t e r ()
expo r t ope ra to r s . un r e g i s t e r ()

import bpy

import bpy
import numpy as np
import cv2
import t e n s o r f l ow j s as t f j s
import os
import mathut i l s

de f c l a s s i f y () :

Set the render engine to Eevee
bpy . context . scene . render . engine = ’BLENDER EEVEE’

Production d i r e c t o r y
try :

addon name = ”Source Code”
addon dir = os . path . j o i n (bpy . u t i l s . u s e r r e s ou r c e (’SCRIPTS ’) , ”addons ” , addon name)

Get the path to the blend f i l e
mode l d i r = os . path . j o i n (addon dir , ”Model Export ”)

load the model
model = t f j s . c onve r t e r s . l oad keras mode l (os . path . j o i n (model dir , ’ model . json ’))

Test d i r e c t o r y
except :

Get the d i r e c t o r y o f the s c r i p t
s c r i p t d i r = os . path . dirname (os . path . r ea lpath (f i l e))

Get the path to the blend f i l e
mode l d i r = os . path . j o i n (s c r i p t d i r , ” . . / Source Code” , ”Model Export ”)

load the model
model = t f j s . c onve r t e r s . l oad keras mode l (os . path . j o i n (model dir , ’ model . json ’))

c r ea te compos i to r node ()

moves the camera to scene view
TO IMPLEMENT
move camera to view ()

render depends on camera

95

bpy . ops . render . render ()

r e nd e r r e s u l t = bpy . data . images [’ Viewer Node ’]

get viewer p i x e l s
p i x e l s = r e nd e r r e s u l t . p i x e l s

copy bu f f e r to numpy array f o r f a s t e r manipulat ion
ar r = np . array (p i x e l s [:])
p r i n t (f ”img data raw : { ar r }”)

Sca le the RGB p i x e l va lues to the range 0−255
min value = 0.04561729
max value = 1.3825562
s c a l e f a c t o r = (max value − min value) ∗ 255

ar r [0 : : 4] = (ar r [0 : : 4] ∗ s c a l e f a c t o r) . astype (np . u int8)
ar r [1 : : 4] = (ar r [1 : : 4] ∗ s c a l e f a c t o r) . astype (np . u int8)
ar r [2 : : 4] = (ar r [2 : : 4] ∗ s c a l e f a c t o r) . astype (np . u int8)
p r in t (f ”img data s ca l ed : { ar r }”)

reshape the array in to a 2D image
img data = arr . reshape (r e nd e r r e s u l t . s i z e [1] , r e n d e r r e s u l t . s i z e [0] , 4)

Convert to RGB format
img data = np . c l i p (img data , 0 , 255) . astype (np . u int8)
img data = cv2 . cvtColor (img data , cv2 .COLOR RGBA2BGR)

d i sp l ay the image in a window

Fl ip the image v e r t i c a l l y
f l i pped img = cv2 . f l i p (img data , 0)

Pred ic t the c l a s s o f the image
p r ed i c t i on = p r e d i c t c l a s s (f l ipped img , model)
c l a s s i d x = np . argmax (p r ed i c t i on)

p r in t (f ” p r ed i c t i on i s { p r ed i c t i on }”)
i = 0
f o r p r ed i c t i on p e r c en t in p r ed i c t i on [0] :

p r i n t (f ”Class { i } : { p r ed i c t i on p e r c en t : . 2 f }%”)
i += 1

pr in t (f ” Pred i c t i on i s { c l a s s i d x }”)

Save the image to d i sk
image path = os . path . j o i n (model dir , ” render /render ML . jpg ”)

cv2 . imwrite (image path , f l i pped img)

cv2 . imshow (’ image ’ , f l i pped img)
cv2 . waitKey (0)
cv2 . destroyAllWindows ()

re turn p r ed i c t i on

de f c r ea te compos i to r node () :
switch on nodes
bpy . context . scene . use nodes = True
t r e e = bpy . context . scene . node t r ee
l i n k s = t r e e . l i n k s

c l e a r d e f au l t nodes
f o r n in t r e e . nodes :

t r e e . nodes . remove (n)

cr ea t e input render l ay e r node
r l = t r e e . nodes . new (’ CompositorNodeRLayers ’)
r l . l o c a t i o n = 185 ,285

cr ea t e output node
v = t r e e . nodes . new (’ CompositorNodeViewer ’)
v . l o c a t i o n = 750 ,210
v . use a lpha = True

Links
l i n k s . new(r l . outputs [0] , v . inputs [0]) # l i n k Image output to Viewer input
l i n k s . new(r l . outputs [1] , v . inputs [1]) # l i n k alpha

de f p r e d i c t c l a s s (img data , model) :
Preprocess the image data
img data = cv2 . r e s i z e (img data , (224 , 224)) # Assuming the model r e qu i r e s 224x224 input s i z e
img data = img data . astype (np . f l o a t 3 2) / 255 .0 # Normalize p i x e l va lues to [0 , 1]
img data = np . expand dims (img data , ax i s=0) # Add batch dimension

Pred ic t the c l a s s
p r ed i c t i on = model . p r ed i c t (img data)

return p r ed i c t i on

96

To implement
de f move camera to view () :

Get the a c t i v e scene
scene = bpy . context . scene

Get the a c t i v e camera
camera = scene . camera

Get the view matrix from the cur rent r eg i on
view matr ix = bpy . context . r eg i on data . v iew matr ix . copy ()

Set the camera ’ s l o c a t i o n and ro t a t i on to match the view matrix
camera . matr ix world = view matr ix . i nve r t ed ()

Update the scene
bpy . context . v i ew laye r . update ()

c l a s s EvaluateOperator (bpy . types . Operator) :
”””An operator that eva lua t e s a procedura l system”””
bl idname = ” operator . eva luate ”
b l l a b e l = ”Evaluate ”

de f execute (s e l f , context) :
probs = c l a s s i f y ()
eva lua te props = context . scene . e v a l u a t e p r op e r t i e s
eva lua te props . c l a s s 1 = ”{ : .2%}”. format (probs [0] [0])
eva lua te props . c l a s s 2 = ”{ : .2%}”. format (probs [0] [1])
eva lua te props . c l a s s 3 = ”{ : .2%}”. format (probs [0] [2])

p r e d i c t i o n r e s u l t = np . argmax (probs)

l a b e l s = [” Contemporary ” , ” Spanish Co lon ia l ” ,
”Vernacular ”]

eva lua te props . a c t u a l p r e d i c t i o n = l a b e l s [p r e d i c t i o n r e s u l t]

r e turn { ’FINISHED’}

def draw (s e l f , context) :
Create a l a b e l f o r the c l a s s p r o b a b i l i t i e s
l a b e l = s e l f . layout . l a b e l ()
l a b e l . t ext = ”Cl ick Evaluate to c l a s s i f y the mesh”

Add a button to t r i g g e r the c l a s s i f i c a t i o n
s e l f . l ayout . operator (” operator . eva luate ”)

Create a l a b e l to d i sp l ay the c l a s s p r o b a b i l i t i e s
l a b e l = s e l f . layout . l a b e l ()
l a b e l . t ext = context . scene . my c l a s s p r o b a b i l i t i e s

de f r e g i s t e r () :
bpy . u t i l s . r e g i s t e r c l a s s (EvaluateOperator)

de f un r e g i s t e r () :
bpy . u t i l s . u n r e g i s t e r c l a s s (EvaluateOperator)

import bpy

c l a s s ExportAl lOperators (bpy . types . Operator) :
”””Operator to export the e n t i r e scene ”””
bl idname = ” operator . e x p o r t a l l ”
b l l a b e l = ”Export Al l ”

f i l e p a t h : bpy . props . Str ingProperty (subtype=’FILE PATH ’)

@classmethod
de f p o l l (c l s , context) :

r e turn context . scene i s not None

de f execute (s e l f , context) :
Combine the user−s p e c i f i e d f i l e path with the f i l e name
f i l e p a t h = bpy . path . en su r e ex t (s e l f . f i l e p a th , ” . fbx ”)
p r in t (f ”Exporting to : { f i l e p a t h }”)

i f f i l e p a t h :
p r in t (f ”Exporting the scene as FBX to : { f i l e p a t h }”)

Set the export f i l e path
bpy . context . scene . render . f i l e p a t h = f i l e p a t h

Export the scene as FBX
bpy . ops . expor t s c ene . fbx (f i l e p a t h=f i l e p a th , u s e s e l e c t i o n=False)

e l s e :
p r i n t (” Please s p e c i f y a f i l e path f o r export . ”)

97

re turn { ’FINISHED’}

def invoke (s e l f , context , event) :
context . window manager . f i l e s e l e c t a d d (s e l f)
re turn { ’RUNNING MODAL’}

c l a s s ExportSe lectedOperators (bpy . types . Operator) :
”””Operator to export the s e l e c t e d ob j e c t ”””
bl idname = ” operator . e xpo r t s e l e c t e d ”
b l l a b e l = ”Export Se l e c t ed ”

f i l e p a t h : bpy . props . Str ingProperty (subtype=’FILE PATH ’)

@classmethod
de f p o l l (c l s , context) :

r e turn context . a c t i v e o b j e c t i s not None

de f execute (s e l f , context) :
Combine the user−s p e c i f i e d f i l e path with the f i l e name
f i l e p a t h = bpy . path . en su r e ex t (s e l f . f i l e p a th , ” . fbx ”)
p r in t (f ”Exporting to : { f i l e p a t h }”)

i f f i l e p a t h :
p r in t (f ”Exporting the s e l e c t e d ob j e c t as FBX to : { f i l e p a t h }”)

Set the export f i l e path
bpy . context . scene . render . f i l e p a t h = f i l e p a t h

Export the s e l e c t e d ob j e c t as FBX
bpy . ops . expor t s c ene . fbx (f i l e p a t h=f i l e p a th , u s e s e l e c t i o n=True)

e l s e :
p r i n t (” Please s p e c i f y a f i l e path f o r export . ”)

re turn { ’FINISHED’}

def invoke (s e l f , context , event) :
context . window manager . f i l e s e l e c t a d d (s e l f)
re turn { ’RUNNING MODAL’}

def r e g i s t e r () :
bpy . u t i l s . r e g i s t e r c l a s s (ExportAl lOperators)
bpy . u t i l s . r e g i s t e r c l a s s (ExportSe lectedOperators)

de f un r e g i s t e r () :
bpy . u t i l s . u n r e g i s t e r c l a s s (ExportAl lOperators)
bpy . u t i l s . u n r e g i s t e r c l a s s (ExportSe lectedOperators)

import bpy

de f spawn cube () :
Create a new cube ob j e c t
bpy . ops . mesh . pr imi t ive cube add ()

The newly created cube w i l l be the a c t i v e ob j e c t
cube ob j e c t = bpy . context . ob j e c t

Modify the cube ’ s p r op e r t i e s i f needed
cube ob j e c t . l o c a t i on = (0 , 0 , 0)
cube ob j e c t . s c a l e = (1 , 1 , 1)

Optional : Set the cube as the s e l e c t e d ob j e c t
bpy . context . v i ew laye r . ob j e c t s . a c t i v e = cube ob j e c t
cube ob j e c t . s e l e c t s e t (True)

c l a s s ProcCityOperator (bpy . types . Operator) :
”””An operator that eva lua t e s a procedura l system”””
bl idname = ” operator . p r o c c i t y ”
b l l a b e l = ”Evaluate ”

de f execute (s e l f , context) :
p r i n t (” Hel lo , World ! ”)
re turn { ’FINISHED’}

c l a s s Re f re shProper t i e sOperator (bpy . types . Operator) :
”””An operator that eva lua t e s a procedura l system”””
bl idname = ” operator . r e f r e s h p r op s ”
b l l a b e l = ”Refresh Prope r t i e s ”

de f execute (s e l f , context) :
p r i n t (” Hel lo , World ! ”)
r e f r e s h c o nd i t i o n s (s e l f , context)
re turn { ’FINISHED’}

def r e f r e s h c o nd i t i o n s (s e l f , context) :
p r op e r t i e s = context . scene . c o nd i t i o n s p r o p e r t i e s

98

ta rge t paramete r s = [” he ight ” , ” l ength ” , ”width ” , ”X Count ” , ”Y Count ” , ”X Spacing ” , ”Y Spacing ”]
t a r g e t c o l l e c t i o n s = [” Re s i d en t i a l Bu i ld ings ”]
o b j e c t l i s t = g e t o b j e c t s (t a r g e t c o l l e c t i o n s)
updated cond i t ions = r e c a l c u l a t e c o nd i t i o n s (o b j e c t l i s t , t a rge t paramete r s)

p r op e r t i e s [” populat ion ”] = updated cond i t ions [” populat ion ”]
p r op e r t i e s [” wealth ”] = updated cond i t ions [” wealth ”]
p r op e r t i e s [” t r an spo r t a t i on ”] = updated cond i t ions [” t r an spo r t a t i on ”]

de f r e c a l c u l a t e c o nd i t i o n s (o b j e c t l i s t , t a rge t paramete r s) :
populat ion = 0
wealth = 0
t ran spo r t a t i on = 0

f o r obj in o b j e c t l i s t :
he ight = 1
width = 1
length = 1

x count = 1
y count = 1
x spac ing = 1
y spac ing = 1

i f ”GeometryNodes” in obj . mod i f i e r s :
g e o t r e e = obj . mod i f i e r s [” GeometryNodes ”] . node group

Extract ing p r op e r t i e s
f o r node in g e o t r e e . nodes :

i f any (param in node . name f o r param in ta rge t paramete r s) :
i f ” he ight ” in node . name :

he ight = node . i n t e g e r
e l i f ” l ength ” in node . name :

l ength = node . i n t e g e r
e l i f ”width” in node . name :

width = node . i n t e g e r
e l i f ”X Count” in node . name :

x count = node . i n t e g e r
e l i f ”Y Count” in node . name :

y count = node . i n t e g e r
e l i f ”X Spacing” in node . name :

x spac ing = node . i n t e g e r
e l i f ”Y Spacing” in node . name :

y spac ing = node . i n t e g e r

populat ion += height ∗width∗ l ength ∗15
wealth += he ight ∗width∗ l ength ∗45000

transport add = (x count ∗ x spac ing) + (y count ∗ y spac ing)
i f (t ransport add == 2) :

t r an spo r t a t i on += 0
e l s e :

t r an spo r t a t i on += transport add

cond i t i on s = {
” populat ion ” : populat ion ,
”wealth ” : wealth ,
” t r an spo r t a t i on ” : t ranspor ta t i on ,

}

re turn cond i t i on s

de f g e t o b j e c t s (t a r g e t c o l l e c t i o n s) :
o b j e c t l i s t = []

f o r co l l e c t i on name in t a r g e t c o l l e c t i o n s :
c o l l e c t i o n = bpy . data . c o l l e c t i o n s . get (co l l e c t i on name)
i f c o l l e c t i o n i s not None :

f o r obj in c o l l e c t i o n . ob j e c t s :
i f obj . type == ’MESH’ :

o b j e c t l i s t . append (obj)

re turn o b j e c t l i s t

de f g e t ob j e c t s nod e s (o b j e c t l i s t , t a rge t paramete r s) :
property nodes = []
f o r obj in o b j e c t l i s t :

i f ”GeometryNodes” in obj . mod i f i e r s :
g e o t r e e = obj . mod i f i e r s [” GeometryNodes ”] . node group

Extract ing p r op e r t i e s
f o r node in g e o t r e e . nodes :

i f any (param in node . name f o r param in ta rge t paramete r s) :
property nodes . append (node)

99

re turn property nodes

de f modify nodes (o b j e c t l i s t , ta rget parameter s , d i f f) :
nodes = ge t ob j e c t s nod e s (o b j e c t l i s t , t a rge t paramete r s)

modifying node va lues
f o r node in nodes :

node . i n t e g e r += d i f f

de f r e g i s t e r () :
bpy . u t i l s . r e g i s t e r c l a s s (ProcCityOperator)
bpy . u t i l s . r e g i s t e r c l a s s (Re f re shProper t i e sOperator)

de f un r e g i s t e r () :
bpy . u t i l s . u n r e g i s t e r c l a s s (ProcCityOperator)
bpy . u t i l s . u n r e g i s t e r c l a s s (Re f re shProper t i e sOperator)

import bpy
import os

c l a s s SpawnResidentialAOperator (bpy . types . Operator) :
bl idname = ” operator . s p awn r e s i d en t i a l a ”
b l l a b e l = ” r e s i d e n t i a l −A”

def execute (s e l f , context) :
Set the name o f the c o l l e c t i o n to add
co l l e c t i on name = ” r e s i d e n t i a l −A”
spawn co l l e c t i on (co l l e c t i on name)
Add the spawned ob j e c t to c o l l e c t i o n
get the ob j e c t
obj = bpy . context . ob j e c t
provide c o l l e c t i o n name
c o l l e c t i o n = ” Re s i d en t i a l Bu i ld ings ”
a dd ob j t o c o l l e c t i o n (obj , c o l l e c t i o n)

return { ’FINISHED’}

c l a s s SpawnResidentialBOperator (bpy . types . Operator) :
bl idname = ” operator . s pawn r e s i d en t i a l b ”
b l l a b e l = ” r e s i d e n t i a l −B”

def execute (s e l f , context) :
Set the name o f the c o l l e c t i o n to add
co l l e c t i on name = ” r e s i d e n t i a l −B”
spawn co l l e c t i on (co l l e c t i on name)
Add the spawned ob j e c t to c o l l e c t i o n
get the ob j e c t
obj = bpy . context . ob j e c t
provide c o l l e c t i o n name
c o l l e c t i o n = ” Re s i d en t i a l Bu i ld ings ”
a dd ob j t o c o l l e c t i o n (obj , c o l l e c t i o n)

return { ’FINISHED’}

c l a s s SpawnResidentialCornerAOperator (bpy . types . Operator) :
bl idname = ” operator . spawn corner a ”
b l l a b e l = ” r e s i d e n t i a l c o r n e r A ”

de f execute (s e l f , context) :
Set the name o f the c o l l e c t i o n to add
co l l e c t i on name = ” r e s i d e n t i a l c o r n e r A ”
spawn co l l e c t i on (co l l e c t i on name)
Add the spawned ob j e c t to c o l l e c t i o n

get the ob j e c t
obj = bpy . context . ob j e c t
provide c o l l e c t i o n name
c o l l e c t i o n = ” Re s i d en t i a l Bu i ld ings ”
a dd ob j t o c o l l e c t i o n (obj , c o l l e c t i o n)

return { ’FINISHED’}

c l a s s SpawnSkyscraperAOperator (bpy . types . Operator) :
bl idname = ” operator . spawn skyscraper a ”
b l l a b e l = ” skyscraper−A”

def execute (s e l f , context) :
Set the name o f the c o l l e c t i o n to add
co l l e c t i on name = ” skyscraper−A”
spawn co l l e c t i on (co l l e c t i on name)
Add the spawned ob j e c t to c o l l e c t i o n

get the ob j e c t
obj = bpy . context . ob j e c t
provide c o l l e c t i o n name
c o l l e c t i o n = ” Re s i d en t i a l Bu i ld ings ”

100

a dd ob j t o c o l l e c t i o n (obj , c o l l e c t i o n)

return { ’FINISHED’}

c l a s s SpawnSkyscraperBOperator (bpy . types . Operator) :
bl idname = ” operator . spawn skyscraper b ”
b l l a b e l = ” skyscraper−B”

def execute (s e l f , context) :
Set the name o f the c o l l e c t i o n to add
co l l e c t i on name = ” skyscraper−B”
spawn co l l e c t i on (co l l e c t i on name)
Add the spawned ob j e c t to c o l l e c t i o n

get the ob j e c t
obj = bpy . context . ob j e c t
provide c o l l e c t i o n name
c o l l e c t i o n = ” Re s i d en t i a l Bu i ld ings ”
a dd ob j t o c o l l e c t i o n (obj , c o l l e c t i o n)

return { ’FINISHED’}

c l a s s SpawnSkyscraperCOperator (bpy . types . Operator) :
bl idname = ” operator . spawn skyscraper c ”
b l l a b e l = ” skyscraper−C”

def execute (s e l f , context) :
Set the name o f the c o l l e c t i o n to add
co l l e c t i on name = ” skyscraper−C”
spawn co l l e c t i on (co l l e c t i on name)
Add the spawned ob j e c t to c o l l e c t i o n

get the ob j e c t
obj = bpy . context . ob j e c t
provide c o l l e c t i o n name
c o l l e c t i o n = ” Re s i d en t i a l Bu i ld ings ”
a dd ob j t o c o l l e c t i o n (obj , c o l l e c t i o n)

return { ’FINISHED’}

c l a s s SpawnTreeOperator (bpy . types . Operator) :
bl idname = ” operator . spawn tree ”
b l l a b e l = ” t r e e ”

de f execute (s e l f , context) :
Set the name o f the c o l l e c t i o n to add
co l l e c t i on name = ” p ro c edu r a l t r e e ”
spawn co l l e c t i on (co l l e c t i on name)
Add the spawned ob j e c t to c o l l e c t i o n

get the ob j e c t
obj = bpy . context . ob j e c t
provide c o l l e c t i o n name
c o l l e c t i o n = ”Trees ”
a dd ob j t o c o l l e c t i o n (obj , c o l l e c t i o n)

return { ’FINISHED’}

c l a s s SpawnRoadOperator (bpy . types . Operator) :
bl idname = ” operator . spawn road”
b l l a b e l = ” road”

de f execute (s e l f , context) :
Set the name o f the c o l l e c t i o n to add
co l l e c t i on name = ” procedura l road ”
spawn co l l e c t i on (co l l e c t i on name)
Add the spawned ob j e c t to c o l l e c t i o n

get the ob j e c t
obj = bpy . context . ob j e c t
provide c o l l e c t i o n name
c o l l e c t i o n = ”Roads”
a dd ob j t o c o l l e c t i o n (obj , c o l l e c t i o n)

return { ’FINISHED’}

c l a s s ProcSystemMenu (bpy . types . Operator) :
”””Menu o f Proc System”””
bl idname = ” operator . proc system menu”
b l l a b e l = ”Proc System Menu”

s e l e c t i o n : bpy . props . EnumProperty (
name=””,
d e s c r i p t i o n=”Se l e c t an opt ion ” ,
items=[

(”RES A” , ” Re s i d en t i a l A” , ” Desc r ip t i on ”) ,
(”RES B” , ” Re s i d en t i a l B” , ” Desc r ip t i on ”) ,
(”RES Corner A ” , ” Re s i d en t i a l Corner A” , ” Desc r ip t i on ”) ,
(”SKY A” , ” Skyscraper A” , ” Desc r ip t i on ”) ,
(”SKY B” , ” Skyscraper B” , ” Desc r ip t i on ”) ,

101

(”SKY C” , ” Skyscraper C” , ” Desc r ip t i on ”) ,
(”TREE” , ”Tree ” , ” Desc r ip t i on ”) ,
(”ROAD” , ”Road” , ” Desc r ip t i on ”) ,

] ,
)

de f invoke (s e l f , context , event) :
wm = context . window manager
return wm. invoke p rop s d i a l o g (s e l f)

de f execute (s e l f , context) :
get the s e l e c t e d opt ion
s e l e c t e d op t i o n = s e l f . s e l e c t i o n

do something with the s e l e c t e d opt ion
i f s e l e c t e d op t i o n == ”RES A” :

bpy . ops . operator . s pawn r e s i d en t i a l a ()
e l i f s e l e c t e d op t i o n == ”RES B” :

bpy . ops . operator . s pawn r e s i d en t i a l b ()
e l i f s e l e c t e d op t i o n == ”RES Corner A ” :

bpy . ops . operator . spawn corner a ()
e l i f s e l e c t e d op t i o n == ”SKY A” :

bpy . ops . operator . spawn skyscraper a ()
e l i f s e l e c t e d op t i o n == ”SKY B” :

bpy . ops . operator . spawn skyscraper b ()
e l i f s e l e c t e d op t i o n == ”SKY C” :

bpy . ops . operator . spawn skyscraper c ()
e l i f s e l e c t e d op t i o n == ”TREE” :

bpy . ops . operator . spawn tree ()
e l i f s e l e c t e d op t i o n == ”ROAD” :

bpy . ops . operator . spawn road ()

re turn { ’FINISHED’}

def draw (s e l f , context) :
layout = s e l f . layout
layout . prop (s e l f , ” s e l e c t i o n ”)

UTILIIES
def spawn co l l e c t i on (co l l e c t i on name) :

Production d i r e c t o r y
try :

blend name = ” a s s e t s . blend”

addon name = ”Source Code”
addon dir = os . path . j o i n (bpy . u t i l s . u s e r r e s ou r c e (’SCRIPTS ’) , ”addons ” , addon name)

Get the path to the blend f i l e
blend path = os . path . j o i n (addon dir , ”Blend F i l e ” , blend name)

Load the blend f i l e
with bpy . data . l i b r a r i e s . load (blend path) as (data from , data to) :

data to . c o l l e c t i o n s = [co l l e c t i on name]

Test d i r e c t o r y
except :

blend name = ” a s s e t s . blend”

Get the d i r e c t o r y o f the s c r i p t
s c r i p t d i r = os . path . dirname (os . path . r ea lpath (f i l e))

Get the path to the blend f i l e
blend path = os . path . j o i n (s c r i p t d i r , ” . . / Source Code” , ”Blend F i l e ” , blend name)

Load the blend f i l e
with bpy . data . l i b r a r i e s . load (blend path) as (data from , data to) :

data to . c o l l e c t i o n s = [co l l e c t i on name]

Append the c o l l e c t i o n to the scene
bpy . ops . ob j e c t . s e l e c t a l l (a c t i on=’DESELECT’)
f o r c o l l e c t i o n in data to . c o l l e c t i o n s :

f o r obj in c o l l e c t i o n . ob j e c t s :
bpy . context . scene . c o l l e c t i o n . ob j e c t s . l i n k (obj)
obj . s e l e c t s e t (True)
bpy . context . v i ew laye r . ob j e c t s . a c t i v e = obj # Make the ob j e c t a c t i v e
se t ob j e c t l o c a t i o n to 3D curso r l o c a t i o n
obj . l o c a t i on = bpy . context . scene . cur so r . l o c a t i o n

de f a d d ob j t o c o l l e c t i o n (obj , c o l l e c t i o n) :
get the c o l l e c t i o n to add the ob j e c t to
my co l l e c t i on = bpy . data . c o l l e c t i o n s . get (c o l l e c t i o n)

102

make sure the c o l l e c t i o n e x i s t s
i f my co l l e c t i on i s None :

c r ea t e the c o l l e c t i o n i f i t does not e x i s t
my co l l e c t i on = bpy . data . c o l l e c t i o n s . new(c o l l e c t i o n)
bpy . context . scene . c o l l e c t i o n . ch i l d r en . l i n k (my co l l e c t i on)

remove the ob j e c t from a l l c o l l e c t i o n s
f o r c o l l in obj . u s e r s c o l l e c t i o n :

c o l l . ob j e c t s . un l ink (obj)
add the ob j e c t to the de s i r ed c o l l e c t i o n
my co l l e c t i on . ob j e c t s . l i n k (obj)

de f spawn cube () :
c r ea t e a cube ob j e c t
bpy . ops . mesh . pr imi t ive cube add ()

get the ob j e c t
obj = bpy . context . ob j e c t
provide c o l l e c t i o n name
c o l l e c t i o n = ”Cubes”

a dd ob j t o c o l l e c t i o n (obj , c o l l e c t i o n)

de f r e g i s t e r () :
bpy . u t i l s . r e g i s t e r c l a s s (SpawnResidentialAOperator)
bpy . u t i l s . r e g i s t e r c l a s s (SpawnResidentialBOperator)
bpy . u t i l s . r e g i s t e r c l a s s (SpawnResidentialCornerAOperator)
bpy . u t i l s . r e g i s t e r c l a s s (SpawnSkyscraperAOperator)
bpy . u t i l s . r e g i s t e r c l a s s (SpawnSkyscraperBOperator)
bpy . u t i l s . r e g i s t e r c l a s s (SpawnSkyscraperCOperator)

bpy . u t i l s . r e g i s t e r c l a s s (ProcSystemMenu)

bpy . u t i l s . r e g i s t e r c l a s s (SpawnTreeOperator)
bpy . u t i l s . r e g i s t e r c l a s s (SpawnRoadOperator)

de f un r e g i s t e r () :
bpy . u t i l s . u n r e g i s t e r c l a s s (SpawnResidentialAOperator)
bpy . u t i l s . u n r e g i s t e r c l a s s (SpawnResidentialBOperator)
bpy . u t i l s . u n r e g i s t e r c l a s s (SpawnSkyscraperAOperator)
bpy . u t i l s . u n r e g i s t e r c l a s s (SpawnSkyscraperBOperator)
bpy . u t i l s . u n r e g i s t e r c l a s s (SpawnSkyscraperCOperator)

bpy . u t i l s . u n r e g i s t e r c l a s s (ProcSystemMenu)

bpy . u t i l s . u n r e g i s t e r c l a s s (SpawnTreeOperator)
bpy . u t i l s . u n r e g i s t e r c l a s s (SpawnRoadOperator)

A..2 Panels

from . import p r o c c i t y p an e l s
from . import proc sys tem pane l s
from . import eva lua t e sy s t em pane l s
from . import expor t pane l s

de f r e g i s t e r () :
p r o c c i t y p an e l s . r e g i s t e r ()
proc sys tem pane l s . r e g i s t e r ()
eva lua t e sy s t em pane l s . r e g i s t e r ()
expor t pane l s . r e g i s t e r ()

de f un r e g i s t e r () :
p r o c c i t y p an e l s . un r e g i s t e r ()
proc sys tem pane l s . un r e g i s t e r ()
eva lua t e sy s t em pane l s . un r e g i s t e r ()
expor t pane l s . un r e g i s t e r ()

import bpy

c l a s s EvaluateSystemPanel (bpy . types . Panel) :
b l l a b e l = ”Evaluate System”
bl idname = ”Evaluate System Panel ”
b l spa c e type = ”VIEW 3D”
b l r e g i o n t yp e = ”UI”
b l c a t e go ry = ”Procedural City Plugin ”

de f draw (s e l f , context) :

103

pass

c l a s s ModelInformationPanel (bpy . types . Panel) :
b l l a b e l = ”Model In format ion ”
bl idname = ”Model Informat ion Panel ”
b l spa c e type = ”VIEW 3D”
b l r e g i o n t yp e = ”UI”
b l c a t e go ry = ”Procedural City Plugin ”
b l p a r e n t i d = ’ Evaluate System Panel ’

de f draw (s e l f , context) :
layout = s e l f . layout
box = layout . box ()
box . l a b e l (t ext=f ”Accuracy : {1 .00}”)
box . l a b e l (t ext=f ” Pr e c i s i on : {1 .00}”)
box . l a b e l (t ext=f ”Reca l l : {1 .00}”)
box . l a b e l (t ext=f ”F1 Score : {1 .00}”)
box . l a b e l (t ext=f ”ROC AUC: {1 .00}”)
box . l a b e l (t ext=f ”Matthew ’ s Cor r e l a t i on : {1 .00}”)

c l a s s Arch i t e c tu ra lS ty l ePane l (bpy . types . Panel) :
b l l a b e l = ” Arch i t e c tu ra l S ty l e ”
bl idname = ”Arch i t e c t u r a l S t y l e Pane l ”
b l spa c e type = ”VIEW 3D”
b l r e g i o n t yp e = ”UI”
b l c a t e go ry = ”Procedural City Plugin ”
b l p a r e n t i d = ’ Evaluate System Panel ’

de f draw (s e l f , context) :
layout = s e l f . layout

Create a box to hold the c l a s s l a b e l s
box = layout . box ()

Add the c l a s s l a b e l s to the box
eva lua te props = context . scene . e v a l u a t e p r op e r t i e s
box . l a b e l (t ext=f ’ Contemporary : { eva lua te props . c l a s s 1 } ’)
box . l a b e l (t ext=f ’ Spanish Co lon ia l : { eva lua te props . c l a s s 2 } ’)
box . l a b e l (t ext=f ’ Vernacular : { eva lua te props . c l a s s 3 } ’)

box . l a b e l (t ext=f ’ Pred i c t i on : { eva lua te props . a c t u a l p r e d i c t i o n } ’)

box . operator (” operator . eva luate ” , t ext=”Evaluate ”)

c l a s s MeshPropert iesPanel (bpy . types . Panel) :
b l l a b e l = ”Mesh Prope r t i e s ”
bl idname = ”Mesh Propert i e s Pane l ”
b l spa c e type = ”VIEW 3D”
b l r e g i o n t yp e = ”UI”
b l c a t e go ry = ”Procedural City Plugin ”
b l p a r e n t i d = ’ Evaluate System Panel ’

de f draw (s e l f , context) :
layout = s e l f . layout

Global Mesh Prope r t i e s
row = layout . row (a l i gn=True)
row . l a b e l (t ext=”Global Mesh Prope r t i e s ”)
Property Group
box = layout . box ()
g l oba l me sh p rope r t i e s = ge t g l oba l me sh p r op e r t i e s ()
box . l a b e l (t ext=f ’ Total Objects : { g l oba l me sh p rope r t i e s [” t o t a l o b j e c t s ”]} ’)
box . l a b e l (t ext=f ’ Total Polygon Count : { g l oba l me sh p rope r t i e s [” t o ta l po l ygon count ”]} ’)
box . l a b e l (t ext=f ’ Total Vertex Count : { g l oba l me sh p rope r t i e s [” t o t a l v e r t e x c oun t ”]} ’)
box . l a b e l (t ext=f ’ Total Edge Count : { g l oba l me sh p rope r t i e s [” t o t a l edg e coun t ”]} ’)
box . l a b e l (t ext=f ’ Total Storage S i z e : { g l oba l me sh p rope r t i e s [” t o t a l s t o r a g e s i z e ”] : . 2 f } k i l obyt e s ’)

Local Mesh Prope r t i e s
row = layout . row (a l i gn=True)
row . l a b e l (t ext=”Local Mesh Prope r t i e s ”)
Property Group
box = layout . box ()

#l o c a l me sh p r op e r t i e s = context . scene . l o c a l me sh p r op e r t i e s
l o c a l me sh p r op e r t i e s = g e t l o c a l me s h p r op e r t i e s ()

box . l a b e l (t ext=f ’ Polygon Count : { l o c a l me sh p r op e r t i e s [” polygon count ”]} ’)
box . l a b e l (t ext=f ’ Vertex Count : { l o c a l me sh p r op e r t i e s [” ver tex count ”]} ’)
box . l a b e l (t ext=f ’ Edge Count : { l o c a l me sh p r op e r t i e s [” edge count ”]} ’)
box . l a b e l (t ext=f ’ Storage Space : { l o c a l me sh p r op e r t i e s [” s t o r a g e s i z e ”] : . 2 f } k i l obyt e s ’)

de f g e t g l oba l me sh p r op e r t i e s () :
t o t a l po lygon count = 0
t o t a l o b j e c t s = 0
t o t a l s t o r a g e s i z e = 0
t o t a l v e r t e x c oun t = 0
to t a l edg e coun t = 0

104

Spec i f y the names o f the c o l l e c t i o n s to cons ide r
co l l e c t i on names = [” Re s i d en t i a l Bu i ld ings ” , ”Roads ” , ”Trees ”]

I t e r a t e over the c o l l e c t i o n s
f o r co l l e c t i on name in co l l e c t i on names :

c o l l e c t i o n = bpy . data . c o l l e c t i o n s . get (co l l e c t i on name)
i f c o l l e c t i o n i s not None :

I t e r a t e over the ob j e c t s in the c o l l e c t i o n
f o r obj in c o l l e c t i o n . ob j e c t s :

i f obj . type == ’MESH’ :
t o t a l o b j e c t s += 1
mesh object = obj
output node = mesh object . eva lua t ed ge t (bpy . context . eva luated depsgraph get ()) . data
to ta l po lygon count += len (output node . polygons)
s t o r a g e s i z e b y t e s = (l en (output node . edges) ∗ 4) + (l en (output node . v e r t i c e s) ∗ 12)
s t o r a g e s i z e k i l o b y t e s = s t o r a g e s i z e b y t e s / 1024.0
t o t a l s t o r a g e s i z e += s t o r a g e s i z e k i l o b y t e s
t o t a l v e r t e x c oun t += len (output node . v e r t i c e s)
t o t a l edg e coun t += len (output node . edges)

Create a d i c t i ona ry to s t o r e the mesh p r op e r t i e s
mesh proper t i e s = {

’ t o ta l po lygon count ’ : t o ta l po lygon count ,
’ t o t a l o b j e c t s ’ : t o t a l o b j e c t s ,
’ t o t a l v e r t ex coun t ’ : t o t a l v e r t ex coun t ,
’ t o ta l edge count ’ : t o ta l edge count ,
’ t o t a l s t o r a g e s i z e ’ : t o t a l s t o r a g e s i z e ,

}

re turn mesh proper t i e s

de f g e t l o c a l me s h p r op e r t i e s () :
mesh object = bpy . context . ob j e c t
t ry :

Get the output mesh data from the geometry node t r e e
output node = mesh object . eva lua t ed ge t (bpy . context . eva luated depsgraph get ()) . data

except :
output node = mesh object . data

polygon count = len (output node . polygons)
s t o r a g e s i z e b y t e s = (l en (output node . edges) ∗ 4) + (l en (output node . v e r t i c e s) ∗ 12)
s t o r a g e s i z e k i l o b y t e s = s t o r a g e s i z e b y t e s / 1024.0
ver tex count = len (output node . v e r t i c e s)
edge count = len (output node . edges)

Create a d i c t i ona ry to s t o r e the mesh p r op e r t i e s
mesh proper t i e s = {

’ polygon count ’ : polygon count ,
’ s t o r a g e s i z e ’ : s t o r a g e s i z e k i l o b y t e s ,
’ vertex count ’ : vertex count ,
’ edge count ’ : edge count ,

}

re turn mesh proper t i e s

de f r e g i s t e r () :
bpy . u t i l s . r e g i s t e r c l a s s (EvaluateSystemPanel)
bpy . u t i l s . r e g i s t e r c l a s s (ModelInformationPanel)
bpy . u t i l s . r e g i s t e r c l a s s (Arch i t e c tu ra lS ty l ePane l)
bpy . u t i l s . r e g i s t e r c l a s s (MeshPropert iesPanel)

de f un r e g i s t e r () :
bpy . u t i l s . u n r e g i s t e r c l a s s (EvaluateSystemPanel)
bpy . u t i l s . u n r e g i s t e r c l a s s (ModelInformationPanel)
bpy . u t i l s . u n r e g i s t e r c l a s s (Arch i t e c tu ra lS ty l ePane l)
bpy . u t i l s . u n r e g i s t e r c l a s s (MeshPropert iesPanel)

import bpy

c l a s s ExportPanel (bpy . types . Panel) :
b l l a b e l = ”Export”
bl idname = ”Export Panel ”
b l spa c e type = ”VIEW 3D”
b l r e g i o n t yp e = ”UI”
b l c a t e go ry = ”Procedural City Plugin ”

de f draw (s e l f , context) :
layout = s e l f . layout

row = layout . row ()
row . operator (” operator . e x p o r t a l l ” , t ext=”Export Al l ”)
row . operator (” operator . e xpo r t s e l e c t e d ” , t ext=”Export Se l e c t ed ”)

105

def r e g i s t e r () :
bpy . u t i l s . r e g i s t e r c l a s s (ExportPanel)

de f un r e g i s t e r () :
bpy . u t i l s . u n r e g i s t e r c l a s s (ExportPanel)

import bpy

c l a s s ProceduralCityPanel (bpy . types . Panel) :
b l l a b e l = ”Procedural City ”
bl idname = ”Procedura l Ci ty Pane l ”
b l spa c e type = ”VIEW 3D”
b l r e g i o n t yp e = ”UI”
b l c a t e go ry = ”Procedural City Plugin ”

de f draw (s e l f , context) :
pass

c l a s s GlobalParametersPanel (bpy . types . Panel) :
”””A custom panel in the 3D Viewport ”””
b l l a b e l = ”Global Parameters ”
bl idname = ”Global Parameters Panel ”
b l spa c e type = ’VIEW 3D’
b l r e g i o n t yp e = ’UI ’
b l c a t e go ry = ”Procedural City Plugin ”
b l p a r e n t i d = ’ Procedura l City Pane l ’

de f draw (s e l f , context) :
layout = s e l f . layout

row=layout . row ()

box = layout . box ()
box . l a b e l (t ext=”City Condit ions ”)
cond i t i on s p rop s = context . scene . c o nd i t i o n s p r o p e r t i e s

box . prop (cond i t i ons props , ” populat ion ” , t ext=’Population ’)
box . prop (cond i t i ons props , ”wealth ” , t ext=’Wealth ’)
box . prop (cond i t i ons props , ” t r an spo r t a t i on ” , t ext=’Transportat ion ’)
box . prop (cond i t i ons props , ” environment ” , t ext=’Environment ’)
box . operator (operator=”operator . r e f r e s h p r op s ” , t ext=”Refresh Condit ions ”)

c l a s s LocalParametersPanel (bpy . types . Panel) :
”””A custom panel in the 3D Viewport ”””
b l l a b e l = ”Local Parameters ”
bl idname = ”Local Parameters Pane l ”
b l spa c e type = ’VIEW 3D’
b l r e g i o n t yp e = ’UI ’
b l c a t e go ry = ”Procedural City Plugin ”
b l p a r e n t i d = ’ Procedura l City Pane l ’

de f draw (s e l f , context) :
layout = s e l f . layout

box = layout . box ()

box . l a b e l (t ext=”BUILDINGS”)
bu i l d i ng s p rop s = context . scene . b u i l d i n g s p r o p e r t i e s

row = box . row ()
row . l a b e l (t ext=”Minimum”)

row . prop (bu i ld ing s props , ”min width ” , t ext=’Width ’)
row . prop (bu i ld ing s props , ”min length ” , t ext=’Length ’)
row . prop (bu i ld ing s props , ”min height ” , t ext=’Height ’)

row = box . row ()
row . l a b e l (t ext=”Maximum”)
row . prop (bu i ld ing s props , ”max width ” , t ext=’Width ’)
row . prop (bu i ld ing s props , ”max length ” , t ext=’Length ’)
row . prop (bu i ld ing s props , ”max height ” , t ext=’Height ’)

box=layout . box ()

106

box . l a b e l (t ext=”ROADS”)
roads props = context . scene . r o ad s p r op e r t i e s

row = box . row ()
row . l a b e l (t ext=”Width Count ”)
row . prop (roads props , ”min width count ” , t ext=’Min ’)
row . prop (roads props , ”max width count ” , t ext=’Max’)
row = box . row ()
row . l a b e l (t ext=”Length Count ”)
row . prop (roads props , ”min length count ” , t ext=’Min ’)
row . prop (roads props , ”max length count ” , t ext=’Max’)
row = box . row ()
row . l a b e l (t ext=”Width Spacing ”)
row . prop (roads props , ”min width spac ing ” , t ext=’Min ’)
row . prop (roads props , ”max width spacing ” , t ext=’Max’)
row = box . row ()
row . l a b e l (t ext=”Length Spacing ”)
row . prop (roads props , ”min l ength spac ing ” , t ext=’Min ’)
row . prop (roads props , ”max length spac ing ” , t ext=’Max’)

box=layout . box ()
box . l a b e l (t ext=”TREES”)
t r e e s p r op s = context . scene . t r e e s p r o p e r t i e s

row = box . row ()
row . l a b e l (t ext=”Tree Height ”)
row . prop (t r e e s p rops , ”m in t r e e he i gh t ” , t ext=’Min ’)
row . prop (t r e e s p rops , ”max tree he ight ” , t ext=’Max’)
row = box . row ()
row . l a b e l (t ext=”Branches Count ”)
row . prop (t r e e s p rops , ”min branches count ” , t ext=’Min ’)
row . prop (t r e e s p rops , ”max branches count ” , t ext=’Max’)
row = box . row ()
row . l a b e l (t ext=”Branches Length ”)
row . prop (t r e e s p rops , ”min branches l ength ” , t ext=’Min ’)
row . prop (t r e e s p rops , ”max branches length ” , t ext=’Max’)
row = box . row ()
row . l a b e l (t ext=”Leaves Count ”)
row . prop (t r e e s p rops , ”min l eaves count ” , t ext=’Min ’)
row . prop (t r e e s p rops , ”max leaves count ” , t ext=’Max’)

de f r e g i s t e r () :
bpy . u t i l s . r e g i s t e r c l a s s (ProceduralCityPanel)
bpy . u t i l s . r e g i s t e r c l a s s (GlobalParametersPanel)
bpy . u t i l s . r e g i s t e r c l a s s (LocalParametersPanel)

de f un r e g i s t e r () :
bpy . u t i l s . u n r e g i s t e r c l a s s (ProceduralCityPanel)
bpy . u t i l s . u n r e g i s t e r c l a s s (GlobalParametersPanel)
bpy . u t i l s . u n r e g i s t e r c l a s s (LocalParametersPanel)

import bpy

c l a s s ProceduralSystemsPanel (bpy . types . Panel) :
b l l a b e l = ”Procedural Systems”
bl idname = ”Procedura l Systems Panel ”
b l spa c e type = ”VIEW 3D”
b l r e g i o n t yp e = ”UI”
b l c a t e go ry = ”Procedural City Plugin ”

de f draw (s e l f , context) :
pass

c l a s s SpawnSystemsPanel (bpy . types . Panel) :
b l l a b e l = ”Spawn Procedural Systems”
bl idname = ”Spawn Systems Panel ”
b l spa c e type = ”VIEW 3D”
b l r e g i o n t yp e = ”UI”
b l c a t e go ry = ”Procedural City Plugin ”
b l p a r e n t i d = ’ Procedural Systems Panel ’

de f draw (s e l f , context) :
layout = s e l f . layout
box = layout . box ()
show spawn locat ion (box)
show operators (box , context)

c l a s s ObjectTransformsPanel (bpy . types . Panel) :
b l l a b e l = ”Object Transforms”
bl idname = ”Object Transform Panel ”
b l spa c e type = ”VIEW 3D”
b l r e g i o n t yp e = ”UI”
b l c a t e go ry = ”Procedural City Plugin ”

107

b l p a r e n t i d = ’ Procedural Systems Panel ’

de f draw (s e l f , context) :
layout = s e l f . layout
box = layout . box ()

Check i f an ob j e c t i s s e l e c t e d
obj = context . a c t i v e o b j e c t

i f obj i s not None and obj . type == ’MESH’ :
show trans fo rm cont ro l s (obj , box)

e l s e :
box . l a b e l (t ext=”No ob j e c t s e l e c t e d ”)

c l a s s ParametersControlPanel (bpy . types . Panel) :
b l l a b e l = ”Parameters Control ”
bl idname = ”Parameters Contro l Pane l ”
b l spa c e type = ”VIEW 3D”
b l r e g i o n t yp e = ”UI”
b l c a t e go ry = ”Procedural City Plugin ”
b l p a r e n t i d = ’ Procedural Systems Panel ’

de f draw (s e l f , context) :
layout = s e l f . layout
box = layout . box ()

Check i f an ob j e c t i s s e l e c t e d
obj = context . a c t i v e o b j e c t

i f obj i s not None and obj . type == ’MESH’ :
show geometry contro l s (obj , box)

e l s e :
box . l a b e l (t ext=”No ob j e c t s e l e c t e d ”)

de f show operators (box , context) :
box . operator (” operator . proc system menu ” , t ext=”Se l e c t Proc System”)

de f show spawn locat ion (box) :
box . l a b e l (t ext=”Spawn Locat ion ”)
box . prop (bpy . context . scene . cursor , ” l o c a t i o n ” , index=0, text=”X”)
box . prop (bpy . context . scene . cursor , ” l o c a t i o n ” , index=1, text=”Y”)

de f show trans fo rm cont ro l s (obj , box) :

box . l a b e l (t ext=”Transform Contro l s ”)
box . prop (obj , ” l o c a t i o n ” , index=0, text=”X”)
box . prop (obj , ” l o c a t i o n ” , index=1, text=”Y”)
box . prop (obj , ” r o t a t i o n e u l e r ” , index=2, text=”Rotation ”)
box . prop (obj , ” s c a l e ”)

de f show geometry contro l s (obj , box) :
box . l a b e l (t ext=”Geometry Contro l s ”)

i f ”GeometryNodes” in obj . mod i f i e r s :
Check i f the ob j e c t has a GeometryNodeTree
g e o t r e e = obj . mod i f i e r s [” GeometryNodes ”] . node group

Extract ing p r op e r t i e s
property nodes = []
f o r node in g e o t r e e . nodes :

i f ” property ” in node . name :
property nodes . append (node)

property nodes . s o r t (key=lambda node : node . name)

proper ty types = [” i n t e g e r ” , ” boolean ” , ” d e f au l t v a l u e ”]

f o r property node in property nodes :
i f ha sa t t r (property node , ’ i n t ege r ’) :

Access i n t e g e r property
box . prop (property node , ’ i n t ege r ’ , t ext=property node . l a b e l)

e l i f ha sa t t r (property node , ’ boolean ’) :
Access boolean property
box . prop (property node , ’ boolean ’ , t ext=property node . l a b e l)

e l i f l en (property node . outputs) > 0 :
t ry :

Access f l o a t property from the f i r s t output socket
box . prop (property node . outputs [0] , ” d e f au l t v a l u e ” , t ext=property node . l a b e l)

except :
pass

de f r e g i s t e r () :

108

bpy . u t i l s . r e g i s t e r c l a s s (ProceduralSystemsPanel)
bpy . u t i l s . r e g i s t e r c l a s s (SpawnSystemsPanel)
bpy . u t i l s . r e g i s t e r c l a s s (ObjectTransformsPanel)
bpy . u t i l s . r e g i s t e r c l a s s (ParametersControlPanel)

de f un r e g i s t e r () :
bpy . u t i l s . u n r e g i s t e r c l a s s (ProceduralSystemsPanel)
bpy . u t i l s . u n r e g i s t e r c l a s s (SpawnSystemsPanel)
bpy . u t i l s . u n r e g i s t e r c l a s s (ObjectTransformsPanel)
bpy . u t i l s . u n r e g i s t e r c l a s s (ParametersControlPanel)

A..3 Properties

from . import p r o c c i t y p r o p e r t i e s
from . import eva l ua t e s y s t em prope r t i e s
from . import p ro c sy s t em prope r t i e s

de f r e g i s t e r () :
p r o c c i t y p r o p e r t i e s . r e g i s t e r ()
e va l ua t e s y s t em prope r t i e s . r e g i s t e r ()
p r o c sy s t em prope r t i e s . r e g i s t e r ()

de f un r e g i s t e r () :
p r o c c i t y p r o p e r t i e s . un r e g i s t e r ()
e va l ua t e s y s t em prope r t i e s . un r e g i s t e r ()
p r o c sy s t em prope r t i e s . un r e g i s t e r ()

import bpy

c l a s s Eva luateProper t i e s (bpy . types . PropertyGroup) :
c l a s s 1 : bpy . props . Str ingProperty (opt ions={ ’HIDDEN’})
c l a s s 2 : bpy . props . Str ingProperty (opt ions={ ’HIDDEN’})
c l a s s 3 : bpy . props . Str ingProperty (opt ions={ ’HIDDEN’})
a c t u a l p r e d i c t i o n : bpy . props . Str ingProperty (opt ions={ ’HIDDEN’})

de f r e g i s t e r () :
bpy . u t i l s . r e g i s t e r c l a s s (Eva luateProper t i e s)
bpy . types . Scene . e v a l u a t e p r op e r t i e s = bpy . props . PointerProperty (type=Eva luateProper t i e s)

de f un r e g i s t e r () :
bpy . u t i l s . u n r e g i s t e r c l a s s (Eva luateProper t i e s)

import bpy
import random

c l a s s Cond i t i onsPrope r t i e s (bpy . types . PropertyGroup) :

de f g e t popu la t i on (s e l f) :
r e turn s e l f . get (” populat ion ” , 0)

de f ge t wea l th (s e l f) :
r e turn s e l f . get (” wealth ” , 0)

de f g e t t r an spo r t a t i on (s e l f) :
r e turn s e l f . get (” t r an spo r t a t i on ” , 0)

de f get environment (s e l f) :
r e turn s e l f . get (” environment ” , 0)

de f s e t popu l a t i on (s e l f , va lue) :
o l d va lu e = s e l f . get (” populat ion ” , 0)
s e l f [” populat ion ”] = value
d i f f = value − o ld va lu e
s e l f . t e s t = f ”{ d i f f }”

ta rge t paramete r s = [” he ight ”]
t a r g e t c o l l e c t i o n s = [” Re s i d en t i a l Bu i ld ings ”]
o b j e c t l i s t = g e t o b j e c t s (t a r g e t c o l l e c t i o n s)
o b j e c t l i s t = get random object s (o b j e c t l i s t , d i f f)
modify nodes (o b j e c t l i s t , ta rget parameter s , d i f f)

de f s e t wea l th (s e l f , va lue) :
o l d va lu e = s e l f . get (” wealth ” , 0)
s e l f [” wealth ”] = value
d i f f = value − o ld va lu e
s e l f . t e s t = f ”{ d i f f }”

109

ta rge t paramete r s = [” he ight ” , ” l ength ”]
t a r g e t c o l l e c t i o n s = [” Re s i d en t i a l Bu i ld ings ”]
o b j e c t l i s t = g e t o b j e c t s (t a r g e t c o l l e c t i o n s)
o b j e c t l i s t = get random object s (o b j e c t l i s t , d i f f)
modify nodes (o b j e c t l i s t , ta rget parameter s , d i f f)

de f s e t t r a n s p o r t a t i o n (s e l f , va lue) :
o l d va lu e = s e l f . get (” t r an spo r t a t i on ” , 0)
s e l f [” t r an spo r t a t i on ”] = value
d i f f = value − o ld va lu e
s e l f . t e s t = f ”{ d i f f }”

ta rge t paramete r s = [” Count ”]
t a r g e t c o l l e c t i o n s = [” Roads ”]
o b j e c t l i s t = g e t o b j e c t s (t a r g e t c o l l e c t i o n s)
o b j e c t l i s t = get random object s (o b j e c t l i s t , d i f f)
modify nodes (o b j e c t l i s t , ta rget parameter s , d i f f)

de f set env i ronment (s e l f , va lue) :
o l d va lu e = s e l f . get (” environment ” , 0)
s e l f [” environment ”] = value
d i f f = value − o ld va lu e
s e l f . t e s t = f ”{ d i f f }”

ta rge t paramete r s = [” t r e e h e i g h t ” , ” branch 1 count ” , ” branch 2 count ” , ” l e ave s count ”]
t a r g e t c o l l e c t i o n s = [” Trees ”]
o b j e c t l i s t = g e t o b j e c t s (t a r g e t c o l l e c t i o n s)
o b j e c t l i s t = get random object s (o b j e c t l i s t , d i f f)
modify nodes (o b j e c t l i s t , ta rget parameter s , d i f f)

populat ion : bpy . props . IntProperty (get=get popu lat ion , s e t=s e t popu l a t i on)
wealth : bpy . props . IntProperty (get=get wealth , s e t=se t wea l th)
t r an spo r t a t i on : bpy . props . IntProperty (get=ge t t r an spo r t a t i on , s e t=s e t t r a n s p o r t a t i o n)
environment : bpy . props . IntProperty (get=get environment , s e t=set env i ronment)
t e s t : bpy . props . Str ingProperty ()

c l a s s Bu i l d i ng sPrope r t i e s (bpy . types . PropertyGroup) :

de f ge t min he ight (s e l f) :
r e turn s e l f . get (” min height ” , 0)

de f ge t min l ength (s e l f) :
r e turn s e l f . get (” min length ” , 0)

de f get min width (s e l f) :
r e turn s e l f . get (”min width ” , 0)

de f get max he ight (s e l f) :
r e turn s e l f . get (” max height ” , 0)

de f get max length (s e l f) :
r e turn s e l f . get (” max length ” , 0)

de f get max width (s e l f) :
r e turn s e l f . get (”max width ” , 0)

de f s e t m in he i gh t (s e l f , va lue) :
minimum = ”min height ”
maximum = ”max height ”
t a r g e t c o l l e c t i o n s = [” Re s i d en t i a l Bu i ld ings ”]
property name = ” he ight ”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f s e t m in l eng th (s e l f , va lue) :
minimum = ”min length ”
maximum = ”max length”
t a r g e t c o l l e c t i o n s = [” Re s i d en t i a l Bu i ld ings ”]
property name = ” length ”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f set min width (s e l f , va lue) :
minimum = ”min width”
maximum = ”max width”
t a r g e t c o l l e c t i o n s = [” Re s i d en t i a l Bu i ld ings ”]
property name = ”width”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f se t max he ight (s e l f , va lue) :
minimum = ”min height ”
maximum = ”max height ”
t a r g e t c o l l e c t i o n s = [” Re s i d en t i a l Bu i ld ings ”]
property name = ” he ight ”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f se t max length (s e l f , va lue) :
minimum = ”min length ”
maximum = ”max length”

110

t a r g e t c o l l e c t i o n s = [” Re s i d en t i a l Bu i ld ings ”]
property name = ” length ”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f set max width (s e l f , va lue) :
minimum = ”min width”
maximum = ”max width”
t a r g e t c o l l e c t i o n s = [” Re s i d en t i a l Bu i ld ings ”]
property name = ”width”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

min height : bpy . props . IntProperty (get=get min he ight , s e t=se t min he i gh t)
min length : bpy . props . IntProperty (get=get min length , s e t=se t min l eng th)
min width : bpy . props . IntProperty (get=get min width , s e t=set min width)

max height : bpy . props . IntProperty (get=get max height , s e t=set max he ight)
max length : bpy . props . IntProperty (get=get max length , s e t=set max length)
max width : bpy . props . IntProperty (get=get max width , s e t=set max width)

c l a s s RoadsPropert ies (bpy . types . PropertyGroup) :

de f get min width count (s e l f) :
r e turn s e l f . get (” min width count ” , 0)

de f ge t min l ength count (s e l f) :
r e turn s e l f . get (” min length count ” , 0)

de f ge t min width spac ing (s e l f) :
r e turn s e l f . get (” min width spac ing ” , 0)

de f g e t m in l eng th spac ing (s e l f) :
r e turn s e l f . get (” min l ength spac ing ” , 0)

de f get max width count (s e l f) :
r e turn s e l f . get (” max width count ” , 0)

de f get max length count (s e l f) :
r e turn s e l f . get (” max length count ” , 0)

de f get max width spac ing (s e l f) :
r e turn s e l f . get (” max width spacing ” , 0)

de f ge t max length spac ing (s e l f) :
r e turn s e l f . get (” max length spac ing ” , 0)

de f se t min width count (s e l f , va lue) :
minimum = ”min width count ”
maximum = ”max width count”
t a r g e t c o l l e c t i o n s = [” Roads ”]
property name = ”X Count”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f s e t min l eng th count (s e l f , va lue) :
minimum = ”min length count ”
maximum = ”max length count ”
t a r g e t c o l l e c t i o n s = [” Roads ”]
property name = ”Y Count”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f s e t min width spac ing (s e l f , va lue) :
minimum = ”min width spac ing ”
maximum = ”max width spacing ”
t a r g e t c o l l e c t i o n s = [” Roads ”]
property name = ”X Spacing”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f s e t m in l eng th spac i ng (s e l f , va lue) :
minimum = ”min l ength spac ing ”
maximum = ”max length spac ing ”
t a r g e t c o l l e c t i o n s = [” Roads ”]
property name = ”Y Spacing”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f set max width count (s e l f , va lue) :
minimum = ”min width count ”
maximum = ”max width count”
t a r g e t c o l l e c t i o n s = [” Roads ”]
property name = ”X Count”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f se t max length count (s e l f , va lue) :
minimum = ”min length count ”
maximum = ”max length count ”

111

t a r g e t c o l l e c t i o n s = [” Roads ”]
property name = ”Y Count”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f se t max width spac ing (s e l f , va lue) :
minimum = ”min width spac ing ”
maximum = ”max width spacing ”
t a r g e t c o l l e c t i o n s = [” Roads ”]
property name = ”X Spacing”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

de f s e t max l ength spac ing (s e l f , va lue) :
minimum = ”min l ength spac ing ”
maximum = ”max length spac ing ”
t a r g e t c o l l e c t i o n s = [” Roads ”]
property name = ”Y Spacing”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name)

min width count : bpy . props . IntProperty (get=get min width count , s e t=set min width count)
min length count : bpy . props . IntProperty (get=get min length count , s e t=se t min l eng th count)
min width spac ing : bpy . props . IntProperty (get=get min width spac ing , s e t=se t min width spac ing)
min l ength spac ing : bpy . props . IntProperty (get=get min l ength spac ing , s e t=se t m in l eng th spac i ng)

max width count : bpy . props . IntProperty (get=get max width count , s e t=set max width count)
max length count : bpy . props . IntProperty (get=get max length count , s e t=set max length count)
max width spacing : bpy . props . IntProperty (get=get max width spacing , s e t=set max width spac ing)
max length spac ing : bpy . props . IntProperty (get=get max length spac ing , s e t=se t max l ength spac ing)

c l a s s Tree sPrope r t i e s (bpy . types . PropertyGroup) :

de f g e t m in t r e e h e i gh t (s e l f) :
r e turn s e l f . get (” min t r e e he i gh t ” , 0)

de f get min branches count (s e l f) :
r e turn s e l f . get (” min branches count ” , 0)

de f ge t min branches l ength (s e l f) :
r e turn s e l f . get (” min branches l ength ” , 0)

de f g e t m in l eave s count (s e l f) :
r e turn s e l f . get (” min l eaves count ” , 0)

de f g e t max t r e e he i gh t (s e l f) :
r e turn s e l f . get (” max tree he ight ” , 0)

de f get max branches count (s e l f) :
r e turn s e l f . get (” max branches count ” , 0)

de f get max branches l ength (s e l f) :
r e turn s e l f . get (” max branches length ” , 0)

de f ge t max leaves count (s e l f) :
r e turn s e l f . get (” max leaves count ” , 0)

de f s e t m in t r e e h e i g h t (s e l f , va lue) :
minimum = ”min t r e e he i gh t ”
maximum = ”max tree he ight ”
min = 1
max = 1000
t a r g e t c o l l e c t i o n s = [” Trees ”]
property name = ” t r e e h e i g h t ”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min , max)

de f s e t min branches count (s e l f , va lue) :
minimum = ”min branches count ”
maximum = ”max branches count ”
min = 1
max = 1000
t a r g e t c o l l e c t i o n s = [” Trees ”]
property name = ”branch 1 count ”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min , max)
property name = ”branch 2 count ”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min , max)

de f s e t min branche s l eng th (s e l f , va lue) :
minimum = ”min branches l ength ”
maximum = ”max branches length ”
min = 1
max = 1000
t a r g e t c o l l e c t i o n s = [” Trees ”]
property name = ” branches l ength ”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min , max)

de f s e t m in l e av e s c oun t (s e l f , va lue) :
minimum = ”min leaves count ”

112

maximum = ”max leaves count ”
min = 0
max = 1000
t a r g e t c o l l e c t i o n s = [” Trees ”]
property name = ” l eave s count ”
set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min , max)

de f s e t max t r e e he i gh t (s e l f , va lue) :
minimum = ”min t r e e he i gh t ”
maximum = ”max tree he ight ”
min = 1
max = 1000
t a r g e t c o l l e c t i o n s = [” Trees ”]
property name = ” t r e e h e i g h t ”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min , max)

de f set max branches count (s e l f , va lue) :
minimum = ”min branches count ”
maximum = ”max branches count ”
min = 1
max = 1000
t a r g e t c o l l e c t i o n s = [” Trees ”]
property name = ”branch 1 count ”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min , max)
property name = ”branch 2 count ”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min , max)

de f s e t max branches l ength (s e l f , va lue) :
minimum = ”min branches l ength ”
maximum = ”max branches length ”
min = 1
max = 1000
t a r g e t c o l l e c t i o n s = [” Trees ”]
property name = ” branches l ength ”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min , max)

de f s e t max l eave s count (s e l f , va lue) :
minimum = ”min leaves count ”
maximum = ”max leaves count ”
min = 0
max = 1000
t a r g e t c o l l e c t i o n s = [” Trees ”]
property name = ” l eave s count ”
set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min , max)

min t r e e he i gh t : bpy . props . IntProperty (get=ge t m in t r e e he i gh t , s e t=s e t m in t r e e h e i g h t)
min branches count : bpy . props . IntProperty (get=get min branches count , s e t=set min branches count)
min branches l ength : bpy . props . IntProperty (get=get min branches l ength , s e t=se t min branche s l eng th)
min l eaves count : bpy . props . IntProperty (get=get min l eaves count , s e t=se t m in l e av e s c oun t)

max tree he ight : bpy . props . IntProperty (get=get max tree he ight , s e t=s e t max t r e e he i gh t)
max branches count : bpy . props . IntProperty (get=get max branches count , s e t=set max branches count)
max branches length : bpy . props . IntProperty (get=get max branches length , s e t=set max branches l ength)
max leaves count : bpy . props . IntProperty (get=get max leaves count , s e t=se t max l eave s count)

U t i l i t y Functions f o r updates

de f s c a l e o b j e c t (s e l f , context) :
Get the a c t i v e ob j e c t
obj = context . a c t i v e o b j e c t

Calcu la te the new dimensions based on the populat ion
d imens i on fac to r = 1.01 # Sca l e by 10 f o r every populat ion uni t
new dimensions = obj . dimensions ∗ d imens i on fac to r

Res ize the ob j e c t to the new dimensions
bpy . ops . transform . r e s i z e (value=new dimensions)

de f g e t o b j e c t s (t a r g e t c o l l e c t i o n s) :
o b j e c t l i s t = []

f o r co l l e c t i on name in t a r g e t c o l l e c t i o n s :
c o l l e c t i o n = bpy . data . c o l l e c t i o n s . get (co l l e c t i on name)
i f c o l l e c t i o n i s not None :

f o r obj in c o l l e c t i o n . ob j e c t s :
i f obj . type == ’MESH’ :

113

o b j e c t l i s t . append (obj)

re turn o b j e c t l i s t

de f get random object s (o b j e c t l i s t , quant i ty) :
r andomiz ed l i s t = []

f o r in range (abs (quant i ty)) :
random object = random . cho i c e (o b j e c t l i s t)
r andomiz ed l i s t . append (random object)

re turn randomiz ed l i s t

de f g e t ob j e c t s nod e s (o b j e c t l i s t , t a rge t paramete r s) :
property nodes = []
f o r obj in o b j e c t l i s t :

i f ”GeometryNodes” in obj . mod i f i e r s :
g e o t r e e = obj . mod i f i e r s [” GeometryNodes ”] . node group

Extract ing p r op e r t i e s
f o r node in g e o t r e e . nodes :

i f any (param in node . name f o r param in ta rge t paramete r s) :
property nodes . append (node)

return property nodes

de f modify nodes (o b j e c t l i s t , ta rget parameter s , d i f f) :
nodes = ge t ob j e c t s nod e s (o b j e c t l i s t , t a rge t paramete r s)

modifying node va lues
f o r node in nodes :

node value = 0
i f ha sa t t r (node , ’ i n t ege r ’) :

node value = node . i n t e g e r
e l i f l en (node . outputs) > 0 :

t ry :
node value = node . outputs [0] . d e f au l t v a l u e

except :
pass

r e s u l t = node value + d i f f
Reached maximum
i f (node value > 12) :

break
Reached minimum
i f (r e s u l t < 1) :

r e s u l t = 1
i f (r e s u l t > 12) :

r e s u l t = 12 − 1
node value = r e s u l t

Ass ign ing va lues
i f ha sa t t r (node , ’ i n t ege r ’) :

node . i n t e g e r = node value
e l i f l en (node . outputs) > 0 :

t ry :
node . outputs [0] . d e f au l t v a l u e = node value

except :
pass

de f modify max property (o b j e c t l i s t , max height , property name) :
nodes = ge t ob j e c t s nod e s (o b j e c t l i s t , [property name])

#modifying node va lues
f o r node in nodes :

Exceeds max height
node value = 0
i f ha sa t t r (node , ’ i n t ege r ’) :

node value = node . i n t e g e r
e l i f l en (node . outputs) > 0 :

t ry :
node value = node . outputs [0] . d e f au l t v a l u e

except :
pass

i f (node value > max height) :
node value = max height

Ass ign ing va lues
i f ha sa t t r (node , ’ i n t ege r ’) :

node . i n t e g e r = node value
e l i f l en (node . outputs) > 0 :

t ry :
node . outputs [0] . d e f au l t v a l u e = node value

except :
pass

de f modi fy min property (o b j e c t l i s t , min height , property name) :
nodes = ge t ob j e c t s nod e s (o b j e c t l i s t , [property name])

114

#modifying node va lues
f o r node in nodes :

Exceeds min height
node value = 0
i f ha sa t t r (node , ’ i n t ege r ’) :

node value = node . i n t e g e r
e l i f l en (node . outputs) > 0 :

t ry :
node value = node . outputs [0] . d e f au l t v a l u e

except :
pass

i f (node value < min height) :
node value = min height

Ass ign ing va lues
i f ha sa t t r (node , ’ i n t ege r ’) :

node . i n t e g e r = node value
e l i f l en (node . outputs) > 0 :

t ry :
node . outputs [0] . d e f au l t v a l u e = node value

except :
pass

de f set minimum (s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min=2, max=12):
MIN HEIGHT = min
MAX HEIGHT = max
o ld va lu e = s e l f . get (minimum , 0)
s e l f [minimum] = value

min height = s e l f [minimum]
max height = s e l f [maximum]

i f (min height <= MIN HEIGHT) :
s e l f [minimum] = MIN HEIGHT

i f (min height >= max height) :
i f (max height <= MAX HEIGHT − 1) :

s e l f [minimum] = max height
s e l f [maximum] = max height + 1

i f (min height >= MAX HEIGHT) :
s e l f [minimum] = MAX HEIGHT − 1

d i f f = value − o ld va lu e

o b j e c t l i s t = g e t o b j e c t s (t a r g e t c o l l e c t i o n s)
modi fy min property (o b j e c t l i s t , min height , property name)

de f set maximum(s e l f , value , minimum , maximum, t a r g e t c o l l e c t i o n s , property name , min=2, max=12):
MIN HEIGHT = min
MAX HEIGHT = max
o ld va lu e = s e l f . get (maximum, 0)
s e l f [maximum] = value

min height = s e l f [minimum]
max height = s e l f [maximum]

i f (max height <= MIN HEIGHT) :
s e l f [maximum] = MIN HEIGHT

i f (max height <= min height) :
i f (min height >= MIN HEIGHT) :

s e l f [maximum] = min height
s e l f [minimum] = min height − 1

i f (max height >= MAX HEIGHT) :
s e l f [maximum] = MAX HEIGHT

d i f f = value − o ld va lu e

o b j e c t l i s t = g e t o b j e c t s (t a r g e t c o l l e c t i o n s)
max height = s e l f [maximum]
modify max property (o b j e c t l i s t , max height , property name)

de f r e g i s t e r () :
bpy . u t i l s . r e g i s t e r c l a s s (Bu i l d i ng sPrope r t i e s)
bpy . types . Scene . b u i l d i n g s p r o p e r t i e s = bpy . props . PointerProperty (type=Bu i l d i ng sPrope r t i e s)
bpy . u t i l s . r e g i s t e r c l a s s (Cond i t i onsPrope r t i e s)
bpy . types . Scene . c o nd i t i o n s p r o p e r t i e s = bpy . props . PointerProperty (type=Cond i t i onsPrope r t i e s)
bpy . u t i l s . r e g i s t e r c l a s s (Tree sPrope r t i e s)
bpy . types . Scene . t r e e s p r o p e r t i e s = bpy . props . PointerProperty (type=Tree sPrope r t i e s)
bpy . u t i l s . r e g i s t e r c l a s s (RoadsPropert ies)
bpy . types . Scene . r o ad s p r op e r t i e s = bpy . props . PointerProperty (type=RoadsPropert ies)

de f un r e g i s t e r () :

115

bpy . u t i l s . u n r e g i s t e r c l a s s (Bu i l d i ng sPrope r t i e s)
bpy . u t i l s . u n r e g i s t e r c l a s s (Cond i t i onsPrope r t i e s)
bpy . u t i l s . u n r e g i s t e r c l a s s (Tree sPrope r t i e s)
bpy . u t i l s . u n r e g i s t e r c l a s s (RoadsPropert ies)

116

XI. Acknowledgment

I would like to express my deepest gratitude to the University of the Philip-

pines Manila for providing invaluable resources, unwavering support, and guid-

ance throughout my journey. The university’s esteemed faculty members, out-

standing facilities, and enriching academic environment have played a crucial role

in the successful completion of my Special Problem and my degree. I am truly

grateful for their contributions.

My heartfelt appreciation goes to my SP advisor, Ma. Sheila A. Magboo,

for her exceptional guidance and invaluable insights throughout this transforma-

tive journey. Her expertise, mentorship, and dedication have shaped the direction

and execution of my Special Problem, and I am grateful for her belief in my

abilities and commitment to my growth.

I also extend my deepest gratitude to the faculty members of the Depart-

ment of Physical Sciences and Mathematics (DPSM) for their knowledge,

encouragement, and contributions to my intellectual development. Their insight-

ful feedback, constructive criticisms, and engaging discussions have expanded my

understanding of the subject matter and refined my research.

I am immensely thankful to the Department of Science and Technology

(DOST) for their unwavering support and financial aid as their scholar through-

out my college journey. Their assistance has been instrumental in enabling me

to pursue my studies and achieve my academic goals. Without their generous

support, it would not have been possible for me to continue my education and

embark on this beautiful journey. I am truly grateful for the opportunities they

have provided me, which have played a crucial role in shaping my intellectual and

personal growth. I am forever indebted to them and to the Filipino people for

their investment in my education.

I am also immensely grateful for the camaraderie and unwavering support from

my blockmates, who have been by my side throughout this memorable experience.

A special thanks goes to Romaine Dara M. Regala for being my dedicated ac-

117

countability partner during the entire duration of my Special Problem. Addition-

ally, I would like to express my gratitude to Julius Allen A. Reyes, a blockmate

whom I have admired since our first year. It is through this admiration that I dis-

covered the fascinating realm of game development and computer graphics, which

ultimately became the foundation of my Special Problem. This realization also

helped me identify the field that resonates with my interests and strengths the

most.

I would also like to express my deepest gratitude to my dear friends, Kyle

Mari Angelo M. Aquino and Romwell Joackin O. Santos. Throughout my

college journey, they have been my constant support network, accompanying me

through the highs and lows. Their friendship has been instrumental in my per-

sonal growth and well-being, and I am truly grateful for their unwavering support,

encouragement, and camaraderie. In the most challenging times, they have pro-

vided me with strength, motivation, and a shoulder to lean on. Their contribution

to my success in this endeavor cannot be overstated.

Furthermore, I want to express my deepest gratitude to my beloved parents,

Emmanuel M. Santos and Rosella P. Santos, as well as my dear brothers,

Aldrin Karl P. Santos and Az Kaiser P. Santos. Their unwavering love,

support, encouragement, and understanding have been a constant source of in-

spiration and motivation throughout my journey. Their belief in my abilities and

their enduring patience during challenging times have been the guiding lights that

have propelled me towards success. I am truly grateful for their unwavering pres-

ence in my life and for being the pillars of strength that I can always rely on.

To all the individuals mentioned above, I am deeply grateful for your unwaver-

ing support, guidance, and encouragement throughout my Special Problem and

my degree. Your contributions have shaped my academic and personal growth,

and I feel honored to have had the privilege of being with such exceptional indi-

viduals.

Thank you.

118

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	General Objectives
	Specific Objectives

	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Urban Planning
	Procedural Systems
	Geographical Information System
	Active Urban Simulations

	Theoretical Framework
	Contextual Design
	Architectural Styles, Rules, and Vocabulary
	Generative Design
	Procedural Modeling
	Parameter-Based Procedural Modeling
	Procedural Algorithm

	3D Asset Creation Process
	Pipeline/Workflow

	Convolutional Neural Network
	MobileNetV2
	Transfer Learning
	Performance Metrics
	Confusion Matrix
	Precision
	Recall
	F1 Score
	Receiver Operating Characteristic - Area Under the Curve (ROC AUC) score for multiclass classification
	Matthew's correlatiopn coefficient for multiclass classification

	Design and Implementation
	Proposed Approach
	Case Study Selection
	Digital Asset Creation
	Procedural System
	Plugin Development
	3D Application
	Machine Learning Model
	Performance Evaluation

	Use Case Diagram
	User Flowchart

	Results
	Case Study on Taguig City
	Gathering Images
	Selection of Architectural Style Rules

	Digital Asset Creation
	Residential Buildings
	Roads
	Trees

	Procedural Systems Creation
	Residential Buildings
	Roads
	Trees

	Machine Learning Model
	Dataset
	Data Preprocessing
	Data Augmentation
	Machine Learning Model Training
	Performance Evaluation
	Selecting the Best Performing Model
	Deploying the Best Performing Model

	Plugin Development
	Overview
	Procedural Systems
	Evaluate
	Procedural City
	Export

	Discussions
	Conclusions
	Recommendations
	Bibliography
	Appendix
	Source Code
	Operators
	Panels
	Properties

	Acknowledgment

