UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

PHARMACOGENOMIC DATA STORAGE AND SHARING
USING PRIVATE BLOCKCHAIN

A special problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Gabriel Austin Untalan

June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser | No

Available only to those bound by confidentiality agreement | No

ACCEPTANCE SHEET

The Special Problem entitled “Pharmacogenomic Data Storage and
Sharing Using Private Blockchain” prepared and submitted by Gabriel Austin
Untalan in partial fulfillment of the requirements for the degree of Bachelor of Sci-
ence in Computer Science has been examined and is recommended for acceptance.

Marbert John C. Marasigan, M.Sc

Adviser
EXAMINERS:
Approved Disapproved
1. Avegail D. Carpio, M.Sc.
2. Richard Bryann L. Chua, Ph.D (cand.)
3. Perlita E. Gasmen, M.Sc. (cand.)
4. Ma. Sheila A. Magboo, Ph.D. (cand.)
5. Vincent Peter C. Magboo, M.D., M.Sc.
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the
degree of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.
Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean
College of Arts and Sciences

. (cand.)

Abstract

Pharmacogenomics is an emerging field that combines pharmacology and genomics
to study how an individual’s genetic makeup influences their response to drugs.
This personalized approach to medicine holds great potential for improving drug
efficacy and reducing adverse effects. However, the effective implementation of
pharmacogenomics in clinical practice is hindered by challenges in securely storing
and sharing large volumes of sensitive genomic data. With the help of MultiChain,
a private blockchain, a data storage and sharing system was developed to address
these issues. MultiChain acts as the off-chain and on-chain storage for the system.
It allows organizations to join the network and request data while preserving
patient privacy.

Keywords: Private Blockchain, MultiChain, Pharmacogenomics, Data Sharing

Contents

Acceptance Sheet

Abstract

List of Figures

List of Tables

II.

III.

Introduction

Background of the Study
Statement of the Problem
Objectives of the Study
Significance of the Project

Scope and Limitations

=\ =0 o w o

Assumptions Lo

Review of Related Literature
A. Pharmacogenomicso L
A..1 Challenges in Pharmacogenomics
B. Blockchain o
B..1 Data Repository, Data Sharing, and Access Control Using
Blockchaino o oo
B..2 Application of Blockchain on Pharmacogenomic Data

C. Synthesis

Theoretical Framework

A. Pharmacogenomicso
A..1 Genetic Polymorphism
B. Blockchain oo
B..1 Workflow

B..2 Architecture

1ii

ii

vi

10
11

B.3 Blocks
B..4 Blockchain Categorization
C. MultiChain. o
C..1 Smart Filters oo

C..2 Stream

IV. Design and Implementation

A. Use-case Diagram
Data Storage L
Access Control

System Architectureo

= o a W

Technical Architecture

V. Results

VI. Discussions

VII. Conclusions

VIII. Recommendations

References

IX. Bibliography

X. Appendix
A, Source Code
A.1 Django Files
A.2 Templates

XI. Acknowledgment

v

18
18
19
20
21
21

22

31

34

35

36

36

40
40
40
47

54

List of Figures

1

10
11
12
13
14
15
16
17
18

Use-Case Diagram 18
Login Page 22
Register Page o 23
Organization not granted 23
Check Join Requests 24
Upload Data Page, 24
Example CSV File 25
Request Page 25
View Data (Patient) 26
Check Request Page 26
Patient Consent 27
View Data (Data Requester) 27
Manage Access Page 28
Auditor’s Transaction Page, 28
Patient’s Transaction Page 29
Organization and Data Requester’s Transaction Page 29
Transactions in multichain-cli 30
Decoded Hex Data 30

List of Tables

1 Data structure of the access control stream

vi

I. Introduction

A. Background of the Study

Pharmacogenomics (PGx) is the use of genetic information to improve the thera-
peutic outcomes of pharmacotherapy. Patients’ responses to treatments are influ-
enced by both genetic and non-genetic factors in many ways. Up to 95 percent of
the variations in response to treatment can be attributed to genetic factors. The
significance of these variations, however, may be greatly influenced by additional
variables, including cultural, behavioral, and environmental ones. The purpose
of PGx tests is to identify patients who respond or do not respond to treatment,
interact with other drugs, experience side effects, and may need their dosage ad-
justed [1]. It has evolved into a significant aspect of drug development from the
early stages of target discovery through the final stages of clinical development
[2].

However, using pharmacogenomic data presents a number of challenges, par-
ticularly in terms of preserving patient privacy. One of the main challenges is the
inclusion of genetic information in medical records, which raises concerns about
the security and confidentiality of the data. Unauthorized access and misuse of
this personal data pose risks of being shared to the public. Data-sharing regula-
tions are also a barrier for pharmacogenomic studies [3]. There are policies such
as the General Data Protection Regulation (GDPR) and the Health Insurance
Portability and Accountability Act (HIPAA) that require access rights to data
owners which complicates genetic data collection and sharing for study.

Blockchain is a decentralized and distributed digital ledger that records trans-
actions on multiple computers, providing a secure and transparent way to record
and verify transactions without the need for a central authority. Blockchain tech-
nology uses cryptography to ensure the authenticity and integrity of the trans-
action data [1]. One of the main uses of blockchain is in the financial industry,

where it can be used to create and track digital currencies, such as Bitcoin and

Ethereum. It can also be used in supply chain management to track the movement
of goods and ensure the authenticity of products. In healthcare, blockchain can be
used to securely store and share patient data. The idea of blockchain in healthcare
in particular has garnered several studies e.g. implementation of blockchain in the

electronic health records [5].

B. Statement of the Problem

Maramba [6] proposed an access control system for pharmacogenomic data stor-
age and sharing using InterPlanetary File Storage (IPFS), a decentralized and
distributed system designed for storing and accessing files in a peer-to-peer net-
work, as an off-chain storage and Solidity Smart Contracts from Ethereum as the
blockchain. The issue with this proposed system is, since the doctor is both the
data provider and requester, anyone with Ethereum address can register as a doc-
tor. This means anyone can fake being a legitimate doctor conducting a research
or clinical trial and request data from patients. Additionally, there is no purpose
for every request sent by the doctors. This could pose as a problem for the patient
to give consent for sharing his/her data since there is no way for them to verify

the doctors requesting access or know the purpose for the request.

C. Objectives of the Study

The system aims to improve upon the work of [6]by having five users instead of a
2 users: doctor and patient, and by using private permissioned blockchain called
MultiChain.

The system has the following functionalities:

1. Administrative entity

(a) Sets access permission to joining organizations (e.g. genomic laboratory

hub)
(b) Adds Data Requester to the system

2

(c) Uploads the patient’s pharmacogenomic data into the MultiChain stream.
2. Organizational entity

(a) Adds Data Requester to the system

(b) Uploads the patient’s pharmacogenomic data into the MultiChain stream.
3. Patient

(a) Registers into the system
(b) Access and view their account
(c) Grant or Revoke Access

(d) Remove/hide their data

(e) View accounts who have access to their data
4. Data Requester (e.g. pharmacists, physicians)

(a) Access and view their account
(b) Request access to data while stating the purpose of the request.
(¢) View data upon approval

(d) Download data into a CSV file
5. Auditor

(a) View the chain details

D. Significance of the Project

Addressing the concerns regarding consent and security is detrimental to the
progress of pharmacogenomics. Using a private blockchain ensures that not any-
one can get into the system and request data from the patient. Organizations
must first request to join, or be invited into the system. Data requesters are then

added by the organizational or administrative entity. This would give patients

the security that their data will not be easily requested or accessed by anyone.
The system would implement the access control mechanism similar [0], but with
added new features e.g. citing the research or clinical trial that intends to use
the data, downloadable table of approved data, and access permission set by the
administrator to the organization. Using MultiChain instead of Ethereum also

means that there will be no fee using the blockchain.

E. Scope and Limitations

1. The project will only use the community version of MultiChain

2. Due to the limitations of using the community version, there will be functions

missing unless the Enterprise version is used.
3. The drugs are limited to those with pharmacogenomic labeling.

4. The project conforms to the GDPR and HIPAA privacy rules.

F. Assumptions

1. The users of the system are knowledgeable in technology.

2. The patients have agreed for the organizations to upload their data into the

system.

3. Other organization are invited or authorized by the administrator into the

system

4. Gene and drug names, interaction scores, and annotation follow the Phar-

macogenomics Knowledge Base (PharmGKB) format.
5. Organizations have a secure way of giving the data requesters their accounts

6. Data requesters given access do not share the data to others.

II. Review of Related Literature

A. Pharmacogenomics

Clinical DNA-based testing began with the diagnosis of sickle cell disease in 1978.
Because of discoveries pertaining to genes linked to some common diseases, this
opened up the possibility of predictive genetic testing to evaluate personalized dis-
ease risk. With the completion of the Human Genome Project and the availability
of genome-wide sequence data, pharmacogenomics (PGx), the study and applica-

tion of genetic factors relating to the body’s response to drugs, was born[7, &].

A..1 Challenges in Pharmacogenomics

However, there are a lot of ethical and regulatory issue, and potential risks as-
sociated with the use of pharmacogenomic data, including privacy concerns and
the potential for malicious attacks.. Gershon et. al. [J] further analyzed these
issues in their study. Pharmacogenomic data is highly sensitive and could be used
to identify individuals or reveal personal information. The data is often collected
and stored in a centralized database, which could be vulnerable to hacking or
other malicious attacks. In 2021, over 45 Million protected health information
(PHI) have been breached by attackers [10]. There are also questions regarding
the identification of genetic variants leading up to individuals being subjected to
discriminatory practices (e.g. being denied of insurance) [11].

Furthermore, testing personalized treatments on patients with rare diseases
also opens up a lot of problems. The standard process of drug development is
simply not yet catered for rare variant diseases. There is also the problem of
consent; data mining of hospital records of anonymous individuals is common in
research, however when consent is needed, broad-based consent is not possible
under the current standards [9]. Gershon et. al. [J] states that the solution

should lie in some combination of modifying the rules on consent to research to

allow open-ended consent and increasing the deterrent penalties for violations of

privacy.

B. Blockchain

Blockchain was first introduced in 2008 by an entity under the pseudonym Satoshi
Nakamoto by proposing Bitcoin, an electronic coin that doesn’t rely on trust [12].

Blockchain is a distributed ledger where a chain of blocks contains the records of all

committed transactions [13]. When more blocks are added, the chain continuously
expands [13]. It provides, immutability, transparency, traceability, decentraliza-
tion, and automation [14, 1]. One of the benefits of blockchain is its immutability.

However, it also means storing large amounts of data in the blockchain would pose
problems such as scalability and increased transaction fees, hence, blockchains
alone would pose as a challenge in developing a data storage and sharing system.
Which is why many researches have been experimenting on using an on-chain and
off-chain system, wherein off-chain would store the data and the on-chain would

handle all the transactions such as access control to view the data.

B..1 Data Repository, Data Sharing, and Access Control Using Blockchain

Since large files is not suitable to be stored in a blockchain, [15] used the Inter-
planetary File System (IPFS) as off-chain storage to compensate for blockchain
inefficiency to store large files. The InterPlanetary File System (IPFS) is a file-
sharing system designed to efficiently store and share large files. It can safeguard
sensitive and personal data by not allowing other users to share data with unau-
thorized parties. To leverage access control in the blockchain, an Ethereum smart
contract with 12 functions was used: (1) amIOwner and (2) amIOwnerMultiple,
checks if the sender is the owner data, (3) checkAccess and (4) checkAccessMul-
tiple, checks if access has been granted, (5) addBlock and (6) AddBlockMultiple,
new data is added to storage, (7) grantAccess and (8) grantAccessMultiple, grants

access to requester, (9)removeAccess and (10) removeAccessMultiple, removes ac-

cess to requester, (11) deleteBlock and (12) deleteBlockMultiple, all accesses and
owner are removed.

Another approach is by Naz et. al. [16] where they implemented a system that
uses Interplanetary File System (IPFS) for storing research files, and Ethereum
Smart Contracts for the uploading or sharing of the file, review system, and the
incentives of the data requester. Their system consists of 4 actors a Data owner,
Data requester (Customer), Middleware (Workers), and an Arbitrator. They use
the Shamir’s Secret Sharing algorithm to encrypt the hashes generated by the
IPFS. Middleware’s private-public key pair are first initialized in the Smart Con-
tract, only the middleware or workers can decrypt the data uploaded by the owner.
Data owners uploads the meta data of the file into the IPFS. Once a file is up-
loaded, IPFS returns a hash which will then be encrypted using Shamir’s Secret
Sharing. Owners can select verified workers or middleware within the smart af-
ter receiving the encrypted hash. The encrypted hash is then uploaded into the
system. Data requestors can then send request access to a file along with their
RSA signature to all workers. Once workers verify the requestor, data requestors
can then submit a deposit. Workers will then search and decrypt the requested
file. Once the file is successfully downloaded by the requestors, they will submit
a review which upon completion will receive 10 percent refund of their deposit. If
the download fails, the arbitrator will then verify if it was a requestor mistake. If
it is not a requestor mistake, requestor gets a full refund.

Shrestha et. al. [17] proposed a blockchain data-sharing framework using an
on-chain and off-chain system in a travel industry. They used MultiChain both as
the off-chain storage, by the uploading the user data as object in the MultiChain
stream, and the blockchain for the user data. An enterprise is first initialized
into the MultiChain. It serves as the administrator to grant other enterprises
access permissions. These enterprises serves as the hosts or node. Depending on
the administrator permissions, the enterprises can access data, or publish data

within the stream or both. Only the participating nodes or enterprises can set

permissions provided they are given permission to do so by the administrator. All
participants must have an Ethereum address to interact with the smart contract.
Users registers into the enterprise by giving their information and choosing what
data can be shared. User data is converted into a JSON format which is then
published as items into the MultiChain stream. Users can decide which consumers
can access their data. Only selected enterprises who agrees to the terms in the
smart contracts can access or view the data published in the stream.

Similarly, Prata et. a.l [18] and Ismailisufi et. al. [19] also both implement Mul-
tiChain in their system albeit only using it merely as a data repository. [19] uses
MultiChain as a storage for information on product items in food supply chain,
[18] on the other hand created a framework based on it to store certificates issued
by Federal University of Tocantins. Both studies used MultiChain in their studies
because it is a private blockchain. The main advantage of a private blockchain is it
is used for specific people/organization, which means only the necessary entities
are allowed to access the data within the blockchain. So for a repository where
a there is need for privacy within a certain network of enterprise or organization,
private blockchains would prove to be beneficial. However, since the data can be
accessed by anyone that is subscribed to the blockchain, there must be a need for
access control. MultiChain in particular allows for access permission to be given
by administrators to other nodes within the network, which gives a sense of access
control on the part of the data provider. Private blockchains are also faster than
public ones since there is no need for real decentralization, and participants do
not need mine blocks, only validate transactions [15].

Chakraborty et. al. [20] implemented a similar approach with [13] wherein they
also used MultiChain for certificates in the Education sector. The main difference
is that [20] utilized more of MultiChain’s networking capability by having the
course providers as the hosts/nodes in the system. Their system is also more
focused on the access control of the data owner. Employers can register in any of

the course providers to request for student data. The student will then be able

to grant access to the employer by encrypting his/her certificate, student id, and
employers public key into another stream within the MultiChain network.
MultiChain is also adopted in the medical field. [5] proposed a hybrid system
approach of a secure Electronic Medical Record (EMR) storage using asymmetric
keys supported by the Public Key Infrastructure (PKI), and secret session keys to
store medical records in the MultiChain. The patient first creates a session key in
the blockchain. Access to the patient’s health records during a medical appoint-
ment requires patients to retrieve the session key addressing it with his/her public
key then decrypt it with his/her private key. The patient will then publish the
session key in the blockchain encrypted with the physician’s public key, enabling
the physician to access the health records using the patient’s public key. After the
medical appointment, the physician can then create the patient’s medical record,
encrypt it with the patient’s session key, and sign it with his private key. The

encrypted and signed record will then be published into the blockchain.

B..2 Application of Blockchain on Pharmacogenomic Data

Giirsoy et. al. [21] aims to solve the security and privacy challenges in phar-
macogenomics by proposing to use blockchain technology in storing and querying
pharmacogenomics data. They entered their proposed solution at the 2019 In-
tegrating Data for Analysis, Anonymization, and Sharing (iDASH) competition
as part of the Secure Genome Analysis Challenge. In their solution, the storing
and quering of the data is done through Ethereum Smart-contracts created using
Solidity programming language. They tested the speed of storing and querying
of data using two methods: Challenge solution, and fastQuery solution. During
their testing, they found that the fastQuery method is the fastest in terms of query
and insertion. The system protects data from loss in a single point of failure sce-
nario. However in their findings, their system is only scalable up to 10,000 entries
due to limitations imposed by Solidity which poses problems as the number of
pharmacogenomic data being used increases.

[22] identified 5 requirements in designing a data storage and sharing system
for pharmacogenomic data: (1) Security and privacy, (2) Accessibility, (3) In-
teroperability, (4) Traceability, (5) Legal Compliance. They satisfied all these
requirementsby proposing an on-chain and off-chain hybrid system with a focus
on access control. On-chain is implemented through Ethereum Smart Contracts
while the off-chain is done through the Oracle server. There are three actors in the
system: data creator, patient, and data requester. Access control is implemented
in the smart contracts wherein the data creator can grant or revoke access to data
requestors and patients can set access permission preferences.

A similar approach is proposed by Maramba [6]. In her proposed system, she
used Interplanetary File System (IPFS) as the off-chain while also using Ethereum
blockchain as Smart Contracts same as [21, 22]. There are only 2 actors in the
system: a patient, and a doctor. The doctor however acts as the data creator and
data requestor. The access control mechanism is much more data owner friendly

as it allows the patient to grant and revoke access directly to the data requester.

10

C. Synthesis

Pharamacogenomics is an important part of drug development because it aims to
personalize drug treatment in order to avoid adverse reactions that could harm the
patient. Regrettably, concerns about consent, unauthorized access of data, data
security, and regulatory requirements have slowed its progress.[21] used blockchain
in order to securely store PGx data. Despite its security it still does not address
the other concerns. [22] solved this by implementing an access control mechanism
by allowing patients to set permission preferences, and allowing data creators to
grant and revoke data access while using an off-chain storage to compensate for
the blockchain’s scalability issues. Maramba [0] also used this approach albeit
implementing a similar architecture proposed by [15]. However, [0]’s system does
not employ user authentication or verification since anyone with an ethereum
address can register and pose as a legitimate doctor and request data from the
patient, and does not provide information on the doctor’s purpose of requesting.
Chakraborty et. al. [20] used MultiChain as the blockchains in their system.
Being a private blockchain means that it is faster and more cost effective since
they have fewer nodes participating in the network and have a more centralized
structure. This allows for faster consensus and fewer network bottlenecks. Entities
wil alsol not be easily able to access the blockchain unless they are verified by an
administrator. [20] was able to implement an access control mechanism for the
data owner but in a much more complicated way that only allows for granting
access. [17] managed to implement an access control mechanism using Ethereum
smart contracts. The smart contracts allow the data owners to set what data
they want to share, and to set which data requestor can access their data. This
approach can be used to solve the problems in [0, 20]. MultiChain is already both
an off-chain and on-chain, and external encryption is not needed as it already
provides the encryption for the data. MultiChain could be used to as a data
storage and blockchain for pharmacogenomic data, and set access permissions

to other organizations while the smart contracts called “smart filters” from the

11

MultiChain itself will be used to give patients access control, and to set the terms

and conditions for the organizations to join into the network.

12

III. Theoretical Framework

A. Pharmacogenomics

Pharmacogenomics is defined as the study of drug interaction in relation to the
genetic properties of an individual [23, &].It examines the theory that genomic

variability underpins drug response variability [I1].

A..1 Genetic Polymorphism

The term ”polymorphism” refers to a mutation in the genome that varies among
people in a significant portion of the population. Researchers who study pharma-
cogenomics focus on two determinants regarding polyphormism: pharmacokinetics

and pharmacodynamics [24, &].

1. Pharmacokinetics relates to the absorption, distribution, metabolism, and
excretion (ADME) processes of the drug. It examines what the body does to

a drug, and how much of a drug is required to reach its target in the body.

2. Pharmacodynamics is the opposite of pharmacokinetics as it relates to how
well a target (e.g. receptors, ion channels, enzymes, or immune system)

reacts to the drug. Or in short, what the drug does to the body.

The parameters of these determinants can be altered by a genetic alteration known
as single nucleotide polymophism (SNP) [I]. SNP is the most common type of

polymorphism in pharmacogenomics [7]

B. Blockchain

A blockchain is a distributed ledger of transactions or digital events that have
been shared among involved parties [25]. The transaction is verified through the
consensus of the system’s users. As the data or information enters the block, it will

become immutable, meaning it cannot be changed or deleted within the blockchain

13

system. Every transaction ever made is contained in a certain, verifiable record

on the blockchain.

B..1 Workflow

The transaction within the blockchain works by [25]:
1. The transaction is first stored in a block.

2. The transaction is then broadcast to every party in a peer-to-peer (P2P)

network
3. Every party in the network with then verify the validity of the transaction

4. Once transaction is approved, it can now be added to the chain.

B..2 Architecture

The blockchain architecture consists of six layers as defined by [20]:

1. Data Layer: The data layer is the lowest layer of the blockchain protocol
stack. It creates the data structure responsible for the storage and orgraniza-
tion of data. The header is used to store the meta-information of the block,

while the body uses the integrity of the data stored in the block.

2. Network Layer: The network layer’s primary responsibility is to support in-
formation exchange between peer nodes while protecting the data’s security

and privacy.

3. Consensus Layer: The blockchain’s consensus algorithm is contained in the

consensus layer. Consensus algorithms such as:

(a) Proof-of-Work
(b) Proof-of-Stake

(c) Proof-of-Authority

14

4. Incentive Layer: The mechanism for issuing and distributing tokens is cre-
ated by the incentive layer, and this mechanism establishes the overall num-

ber and distribution of tokens.

5. Contracts Layer: Smart contracts are commitments and rules that are prede-
fined in blockchain systems and are automatically carried out when certain
conditions are met. Without the involvement of a third party, smart con-
tracts allow for traceable and irreversible trusted transactions. Different
Opcodes, Chaincodes, and smart contracts are all contained in the contract
layer. Opcodes and Chaincodes specify the specifics of trading and processes,

enhancing the network’s autonomy and programmability.

6. Application Layer: The application layer acts as the frontend of the blockchain.
It facilitates the use of blockchain in different kinds of application.
B..3 Blocks

According to [27] the block has two parts: the Block header and the Block data.
1. Block Header consists of:

(a) The block number

(b) Previous hash value

(c) Hash representation of the block data
(d) Timestamp

(e) Size of Block

(f) Nonce Value
2. Block Data consists of:

(a) A list of transactions.

(b) Ledger of events.

15

B..4 Blockchain Categorization

There are three categories of blockchain [27, 28]:

1. Permissioned: Also known as private blockchains.In a permissioned blockchain
network, only a specific group of people or organizations can publish within

the blockchain system as long as a central figure gives them permission.

2. Permissionless: Also known as public blockchains. In a permissionless blockchain

network, anyone can publish within the blockchain system.

3. Consortium: Constortium blockchain is a combination of both permissioned
and permissionless blockchain. Only a specific group of people or organi-
zations can publish within the blockchain system without a central figure.

This means that the organizations can give permissions to each other.

C. MultiChain

MultiChain is private blockchain developed by Dr. Gideon Greenspan [29]. Tt
allows users to control the maximum block size and configure every aspect of the
blockchain in a configuration file. Administrative permissions are automatically
given to the miner of the first block.

MultiChain has three main objectives [17]:
1. Blockchain’s activity should be shown only ton chosen participants.
2. Only selected transactions should be permitted.

3. Securely conduct mining without proof of work and its associated costs.

16

C..1 Smart Filters

The term smart contracts was coined by Nick Szabo in 1994. He defines it as
"a computerized transaction protocol that executes the terms of a contract...”
[27]. In Etherium, smart contract is a collection of code and data deployed in
a blockchain and is written using the Solidity programming language .It stores
the rules for contract negotiations, automatic contract verification, and contract
execution. [17] It can only be executed once and all nodes that execute it must
derive the same results from the execution. The results of each execution are
recorded on the blockchain [27]. In MultiChain 2.0, it allows for the creation of
smart contracts as well in the form of “Smart Filters”. It allows for custom rules

to be defined regarding the validity of transactions or stream items [30].

C..2 Stream

The MultiChain data stream is an append only storage or database. A MultiChain
blockchain can contain any number of streams. Each stream consists of an ordered

list of items that has the following features:
1. one or more publishers who have digitally signed the item,
2. one or more keys with a length of 0 to 256 bytes to enable effective retrieval,
3. some data, either on-chain or off-chain, in JSON, text, or binary format,
4. stream filters that are used to define custom validation rules for the data,

5. and details about the transaction and block for the item, including its txid,

blockhash, blocktime, etc.

Data can be published in stream either on-chain or off-chain. On-chain data is
directly embedded into the blockchain, while off-chain data can embed a hash up

to 1GB per item.

17

IV. Design and Implementation

A. Use-case Diagram

The system has four users: Adminstrative Entity, Organizational Entity, Patient,

and Data Requester.

System

Sels access
permissions to
joining
organizations

Adds data
requester into the
system

A

Administrative Entity

Kpload the patient™
pharmacogenomic

Accepts
organizations into
the system

org

anizational Entity

data
= View profile <
View fransactions

Register into the
system

dCCess

View data upon
Approval

Patient

Grant or deny
request, and revoke
access

Download list of
data into csv file.

Remaove data from
stream

Pata Reguesier

lew organizations
and data requesters
who have access to
their data

Figure 1: Use-Case Diagram

18

Auditor

Patients can create their account in the system. They have control on granting
and revoking access on their data. They would also be able to see who has access
on their data. Patient data can only be uploaded into the system by either the
administrative entity or an organizational entity.

For data requesters to get into the system, they must first be added by an
administrative or an organizational entity. Only then can data requesters request

access to the data.

B. Data Storage

Using the MultiChain blockchain platform, the developed system incorporates
off-chain storage functionality for pharmacogenomic data. When patient data is
uploaded, it is published as off-chain by including the keyword ”offchain” in the
publish function. This designates the data as suitable for off-chain storage. Before
the data is fully published, it must be first be encrypted using the ”binascii” library
of Python. The encrypted data is then fragmented into smaller chunks, and each
chunk is stored as an individual transaction in the MultiChain stream.

A mapping is established to sustain the connection between the patient’s data
and the corresponding MultiChain transactions. This mapping associates the
identifier or key of the patient with the specific transaction IDs or references in
MultiChain. For most stream items, the patient’s address acts as the identifier or
the key e.g. when the patient’s pharmacogenomic data is uploaded, the patient’s
address acts as the key, or when publishing for the access control stream, the
patient’s address acts as the publisher of that stream item while the key for that
item is the organization’s address and this will be shown in the transaction when
the list of stream items is queried.

By employing MultiChain as the off-chain storage solution, the system pre-
vents the blockchain from becoming overburdened with massive data files. This
method optimizes the system’s storage capacity and scalability, ensuring that the

blockchain remains lightweight and effective.

19

C. Access Control

At the administrative level, the system allows administrative entities to set ac-
cess permissions for joining organizations. This step ensures that only trusted
organizations are granted access to the system and that proper vetting processes
are in place. As the organization creates an account, a request, which contains
the organization’s address and the status 'No grants yet’ will be passed on to the
org_request’ stream, using the organization’s address as the key, which will then
be viewed by the admin. After granting, a new item will be published in the
stream with the status 'permissions granted’, indicating that the organization can

now add data requesters and upload patient data. For patients, the access con-

Name Data Type Description
patient_address address Patient’s address
org address Organization’s address
data_id string The data’s identifier.
purpose string Research/Clinical Study.
timestamp date Time/Date published
access_level string ‘grant’,’deny’; or 'revoke’.

Table 1: Data structure of the access control stream

trol function provides them with the ability to manage and control access to their
own pharmacogenomic data. Patients can selectively grant or deny the request of
the data requesters, and revoke access to their data to granted requesters. When
granting, denying, or revoking access to a data requester, the system updates the
access control list for the relevant data stream. This is achieved by adding the
requester’s and patient’s addresses to the ’access_control’ stream, along with the
status "grant’; ’deny’, or revoke’; indicating that they do or don’t have permission
to access the data.

Furthermore, data requesters are also subjected to the access control mech-
anisms implemented in the system. To request access to patient data, data re-
questers must explicitly state the purpose of their access. This request is passed

on to the ’request-data’ stream with the patient’s address as it’s key.

20

D. System Architecture

The system is a semi-decentralized application developed on the MultiChain blockchain
platform. MultiChain provides a comprehensive set of built-in functions, including
access permission management and off-storage capabilities, which were utilized in
the development process. Python programming language was utilized to handle
the interactions with MultiChain, utilizing the ”savoir” package to call JSON-RPC
API commands. The application architecture incorporates the Django framework
as the backend, enabling seamless integration with the MultiChain network. Ad-
ditionally, Bootstrap was employed to design and create the frontend of the ap-

plication, ensuring a user-friendly and visually appealing interface.

E. Technical Architecture

Below are the system requirements to run MultiChain [31]:

1. Linux: 64-bit, supports Ubuntu 12.04+, CentOS 6.2+, Debian 7+, Fedora
15+, RHEL 6.2+.

2. Windows: 64-bit, supports Windows 7, 8, 10, 11, Server 2008 or later.
3. Mac: 64-bit, supports OS X 10.11 or later.
4. 512 MB of RAM

5. 1 GB of disk space

21

V. Results

All users’ initial landing pages are the login pages. Users must register and specify

their roles if they do not already have an account in order to access the system;

otherwise, they must enter their username and password.

Log in

&

Username n
Password n
Login
Register

Figure 2: Login Page

Users can access the registration page by clicking the link beneath the login

button on the login page in order to create a new account. The names, roles,

usernames, and passwords of all users must be provided.

22

Create an Account!

Select Designation v
Username n
Name

Password = Repeat Password =

Register Account

Already have an account? Lagin

Figure 3: Register Page

Once registered, patients and auditors are redirected to their respective home-
pages, the check request page for patients and the transaction view page for au-
ditors. However, although organizations can access the system immediately, their
functionality is limited because the administrative entity has not yet granted them
permissions, so their default home page is their account page. This limitation is

in place to ensure the security of the system and prevent unauthorized access.

X You are now logged in as 1EBmGqURATNZKYs10qK66RSWESfqUYsvmE3yvd

Profile

Name: Mercury Drug Corporation Status: No grants yet
Address: 1EBMGqURATNZKYs10gK66RSWEIfqUYsvmE3yva

Role: organization

Figure 4: Organization not granted

To grant permissions to the organizations, the administrative entity must check

the join requests.

23

Check Requests

Organization

Mercury Drug Corporation

Figure 5: Check Join Requests

Once permissions are granted, organizations can fully utilize the system’s fea-
tures, such as being able to create data requesters, and add patient pharmacoge-
nomic data. The organizations must ensure that the name and address of the
patient are registered in the system when adding the data, otherwise, they won’t

be able to add the data. Organizations must upload a csv file with

Upload Data

Name Address

Enter name Enter address

Upload file here:

Choose File No file chosen

Upload Data

Figure 6: Upload Data Page

Organizations must upload a csv file with the pharmacogenomic data of the

patient.

24

[l Gene Drugs Interactior Annotation
EC\’PZDS Codeine 100 Reduced efficacy of codeine due to impaired conversion to its active form,
EVKOR(Zl Warfarin 201 Increased sensitivity to warfarin, lower dose requirement.

LR SLCO1B1 Simvastatin,Amiodarone 250 Increased risk of myopathy and rhabdomyolysis when simvastatin is co-ad

Figure 7: Example CSV File

Once data has been added, data requesters, whether from the same or a differ-
ent organization, can request access to the data owner their respective researches
or clinical trials. Data requesters can also request multiple data. The data to be

requested can be filtered by gene or drug ID.

Request Data

Gene: Drug:

B 1MruSBu5RxbulqpHMLfe8XqQsLiLdtNFV7T8LR_atomoxetin
Gene: BDNF-CC

@ 1CtrqffQ8uco6VnuYgng3rc43PFImMCHcbibXv_warfarin
Gene: CYP2CS

Request Access

Figure 8: Request Page

Patients would also be able to view their data in the View Data page upon

data being added.

25

Data: 1CtrqffQ8uco6VnuYgng3rc43PFImMCHcbibXv_warfarin X

Patient: Jill Valentine

Address: 1CtrqffQ8ucosVnuYgng3red3PF1mMCHbibXv
Gene: CYP2C9

Drug ID: warfarin

Interaction Score: 4

Annotations: The CYP2C9 *2 variant is associated with reduced
enzyme activity, resulting in decreased metabolism of warfarin
This genotype leads to increased sensitivity to warfarin and an
increased risk of bleeding complications. The interaction score for
the combination of CYP2C9 *2 and warfarin is high (score of 4),
indicating a significant pharmacogenetic interaction. Dose
adjustments and careful monitoring of INR (international
normalized ratio) levels are recommended to optimize the
therapeutic response and minimize bleeding risk in patients with
this genotype.

Close

Figure 9: View Data (Patient)

After the request is sent, the patient owning the data should be able to see the
requests on the check requests page. Before granting the request, the patient will
be shown a consent form. Patients can also deny the request if they choose to do

SO.

Check Requests

Name Address Organization Data Purpose
Juan 1SDBguildU8tc2im54bASEAdXiujDBC6d 1xKkz Mercury Drug 1RKoFVmZNgPkDCR5si3qhr4]ThE1LcAMFFLKSY Warfarin - MD Clinical Trial
Miguel Corporation #

Figure 10: Check Request Page

26

Consent X

| hereby grant access to my pharmacogenomic data to Mercury
Drug Corporation for the research/clinical trial "MD Clinical
Trial #2". | understand that my data will be used in accordance
with all applicable privacy laws and regulations, and will only be
accessed by authorized individuals involved in my healthcare.

| acknowledge that granting this access is voluntary, and | have
been provided with sufficient information about the purpose and
potential risks of sharing my data. | understand that | have the
right to revoke this access at any time.

By clicking the "Grant Access" button below, | consent to the

above terms and conditions.

Figure 11: Patient Consent

Upon approval, the data should be accessed by all the data requesters, from
the same organization, on the view data page similar to Figure 9. However, the

data requester has the option to download all their accessed data into a csv file.

View Data

TRKoFVmMZNgPkDcR5si3qhr4jThEILcAMFfLK5Y mercaptopurine

Gene: TPMT

Click the button below to download the accessed data as a PDF:

Download Data

Figure 12: View Data (Data Requester)

Patients should now be able to see which organization has access to their
data and the list of users under that organization on the Manage Access page.

They should also be able to revoke access to each research/clinical study of the

27

organization thereby revoking all user’s access within that organization.

Manage Access

Organization Data Purpose

Umbrella Corporation 1RKoFVmMZNgPkDcR5si3ghr4jThE 1Lc4MFfLKSY_mercaptopurine Research

Figure 13: Manage Access Page

The transactions of the access control should be visible to the patient, orga-
nization, data requester, and auditor. They would be able to view them on the

View Transactions page.

Transaction View

Patient Address: Access Level:

Requester
Txid Patient Address Address Data
770e5be6176e99¢f2146c64232623eb67b640d4107cf797805b326f41240d23e TRKoFVmMZNgPkDcR5si3ghrdj ThE1Lc4MFfLKSY TRKoFVmMZNgPkDcR5si3qhr4jThETLe:
78a9¢chece2767{7fe492be(4e58fa9622740a69083442efddc8c08cf2b90401 1RKoFVmMZNgPkDcR5si3ghr4j ThE1LcAMFfLKSY TRKoFVmZNgPkDcR5si3ghr4jThETLe:
34b05aa1fe27e48562c657253efbed43a8fb169c37a5deb2b5baeat99694325¢e3 1RKoFVmMZNgPkDcR5si3ghr4j ThE1LcAMFfLKSY TRKoFVmZNgPkDcR5si3ghr4jThETLe:
05c4a88f55e1130d8edc76d6352223b4788a235c01ab93117%e30f0539c00b05 1RKoFVmZNgPkDcR5si3ghr4j ThE1LcAMFfLKSY TRKoFVmZNgPkDcR5si3ghr4jThETLe:
dag8974bbca508ea6ddafe6480079795644dc5706e7db8d4fo4af853b024a1267 TRKoFVmMZNgPkDcR5si3ghrdj ThE1Lc4MFfLKSY TRKoFVmMZNgPkDcR5si3qhr4jThETLe:

Figure 14: Auditor’s Transaction Page

28

Transaction View

Requester Address: Access Level:
- [S M
Txid Requester Org Data Purpc
d3c63bb050cef0f3a50722¢52b6615e60629675a4d7d98edc37f2270cae7d352 Albert Umbrella 1MruSBusRxbulgpHMLfe8XqQsLiLdtNFV7TELR_atomoxetin Reseal
Wesker Corporation

3c48aa25f810c814fbdb1633b2ea3e4375de534ac6a8bBc44abe3684569bcdec John AdminQrg 1MruSBuSRxbulgpHMLfe8XqQsLiLdtNFV7TELR_atomoxetin Reseal
Doe

7bTa3ed3c933254463da32c0aed52eed5cac50fb2dcd36219ed0d915¢06b4973 John AdminOrg 1MruSBusRxbulgpHMLfe8XqQsLiLdtNFV7TELR_atomoxetin Reseal
Doe

0a25f701cd988c50898b1f8509d600712654585831c894ebbb4bad005aadaa0s John AdminOrg 1MruSBusRxbu)gpHMLfe8XqQsLiLdtNFV7TELR_atomoxetin Reseal
Doe

c496fc2c8baalbfcee387acf75f84e10e92370bd8b443d0a25f435a97c52cdd John AdminOrg 1MruSBusRxbulgpHMLfe8XqQsLiLdtNFV7TELR_atomoxetin Reseal
Doe

32cAThh77783ANGTR7NARACANANG D PRADAATAASAhAN22348ANRA39T 1ha 154 Inhn AdminOrn AMriSRSRyhilanHMI feRXn0s! il AINFUTTRI R atnmnvetin Receal

Figure 15: Patient’s Transaction Page

Transaction View

Patient: Access Level
v v
Txid Patient Data Purpose Acce

05c4a88f55e1130d8edc76d6352223b4788a235c01ab931179e30f0539c00b0S Ronald 1RKoFVmMZNgPkDcR5si3qhr4jThE 1Lc4MFfLKSY_mercaptopurine Research grar
McDonald

Figure 16: Organization and Data Requester’s Transaction Page

These access control transactions can also be viewed in the multichain-cli. Here
transaction shows the patient’s address, which is the 'publisher’ in this case, the
name of the organization, which is the key for the stream item, and the data,

which is encoded in hexadecimal.

29

"publishers” : [
"1RKoFVmZNgPKkDcR5s1i3qhrdjThE1LcUMFFLKSY"

1]g

"keys* : [

"Umbrella Corporation"

1lg

"offchain" : false,

"available" : true,

"data" : "7b2270617U469656e7U5Ff616U6U72657373223a20223152uUb6fU6566d5ale67506bUU6352357369337168723U6a5U68U5314Uc63
34udus66Ucub3559222c20226F7267223a2022556d6272656C6Cc6120U36F72706F72617469616e222c20226U6174615F6964223a20223152Ub6TU656
6d5ale67506bUU6352357369337168723U6a5068U5310c633UUdU6664clb35595F6d6572636170TU6FTAT7572696e65222c2022707572706F7365223a
20225265736561726368222¢c202274696d657374616d70223a2022323032332d30362d31365032313a33313a31382e343034333533222c2022616363
6573735f6c6576656Cc223a20226772616e7U227d"

"confirmations" : 43,

"blocktime" : 1686922291,

"txid" : "@5cUa88f55ell30dBedc76d6352223bU788a235c01ab931179e300539cBObOS"

Figure 17: Transactions in multichain-cli

We can decode the hex data in python to see if transactions match the trans-

actions in the Transactions page

bytes.fromhex(data) .dec
»»> print(data)
{"patient_address": "1RKoFVmZNgPkDcRSsi3ghr4jThEILcAMFFLKSY", “org”: "Umbr
ella Corporation™, “data id": "1RKoFVmZNgPkDcR5si3ghrdjThELLcAMFILKSY merc
aptopurine”, “purpose”: "Research”, "timestamp"”: "20823-86-16T21 18.4843
"access level™: "grant™}

Figure 18: Decoded Hex Data

30

VI. Discussions

The developed application system aimed to fulfill several objectives related to
administrative, organizational, patient, data requester, and auditor entities. Upon
evaluation, it can be concluded that the system has successfully achieved these
objectives. The administrative entity is able to set access permissions for joining
organizations and accept nodes into the system. Additionally, the entity can add
data requesters to the system and upload patients’ pharmacogenomic data into the
MultiChain stream. Similarly, the organizational entity can add data requesters
and upload patient data into the stream. Patients can register into the system,
access and view their accounts, grant or deny requests, revoke access to their data,
and view the accounts that have access to their data. Data requesters, such as
pharmacists and physicians, can access their accounts, request data access, view
data upon approval, and download the data as csv file. Auditors have the ability
to view chain details, ensuring transparency and accountability.

Throughout the development process, various challenges were encountered such
as User-related issues, framework limitations, programming language challenges,
and technology constraints. Despite the successful achievement of the outlined
objectives, one limitation of the current system is the lack of the "remove access”
feature. Due to the utilization of the open-source version of MultiChain, this
functionality is not available. However, future iterations or the adoption of the
MultiChain Enterprise version could enable the implementation of this feature.
Incorporating the "remove access” capability would grant patients greater control
over their data privacy and security.

To optimize query performance, MultiChain initially limited data fetching to 10
items per stream. However, this imposed limitations when presenting information
such as transaction lists, especially for auditors who require a comprehensive view.
In order to address this constraint and enhance the user experience, solution was
implemented that allows the maximum number of items to be returned per stream,

providing a more comprehensive and detailed overview. By setting the limit to 256

31

items, we ensure that auditors and other viewers have access to a broader range
of data, enabling them to perform thorough analysis and gain valuable insights.
This enhancement not only improves the usability of the system but also enables
auditors to effectively evaluate the chain details.

Comparing this work with the main references, notable differences emerge.
The referenced works utilize Smart Contracts for on-chain data management for
access control, and IPFS for off-chain data storage. In contrast, this system lever-
ages MultiChain for stream-based data management. Employing MultiChain in
the system brings significant benefits to data privacy, scalability, and interoper-
ability in the healthcare ecosystem. The use of blockchain technology ensures
secure and tamper-evident storage, making it nearly impossible to modify or tam-
per with stored pharmacogenomic data without detection. MultiChain’s access
control mechanisms provide granular control over data access, allowing only au-
thorized entities to interact with the data. This enhances privacy and compliance
with data protection regulations. Furthermore, MultiChain’s decentralized nature
improves data privacy by distributing data across multiple nodes and granting
certain entities control over their own data. The system can scale to handle large
volumes of data and promotes interoperability with other healthcare systems, fa-
cilitating seamless data sharing and collaboration. By leveraging MultiChain, the
system establishes a strong foundation for secure and efficient pharmacogenomic
data management.

The developed system also goes beyond the previous references by introducing
the purpose of data requests. This addition promotes transparency and empowers
patients to make informed choices regarding their pharmacogenomic data sharing.
By requiring requesters to explicitly state their access purpose, patients gain a
clear understanding of how their data will be utilized. Moreover, implying the
purpose ensures compliance with data protection laws and regulations, reinforcing
the system’s commitment to privacy and ethical data practices.

A dedicated page is provided for concerned users to view the access control

32

transactions associated with their data. This page is where users can access and
review the detailed information about the access control transactions in a user-
friendly format. By having a dedicated page for transactions, users can easily and
track the history of the access control stream.

To ensure the legitimacy and integrity of these transactions, users are provided
with two options for verification. The first option is to use the 'multichain-cli’
command-line interface, which allows users to interact directly with the Multi-
Chain blockchain network. By utilizing the 'multichain-cli’ tool, users can query
and verify the access control transactions by retrieving the transaction details
and confirming their validity against the blockchain records using liststreamitems
stream_name. Alternatively, users can leverage the MultiChain Explorer, a web-
based interface that provides a visual representation of the blockchain network.
The MultiChain Explorer allows users to explore the blockchain, view transaction
details, and verify the access control transactions associated with their data.

The main contributions of this work are twofold. Firstly, the developed ap-
plication system addresses the need for effective pharmacogenomic data manage-
ment and access control. By providing a user-friendly interface and comprehensive
functionalities, it empowers administrative entities, organizations, patients, data
requesters, and auditors to efficiently manage and access relevant data. Secondly,
the system introduces an innovative approach to data management by utilizing
MultiChain. This novel implementation provides a robust and secure platform
for storing and sharing pharmacogenomic data, addressing privacy concerns and

enhancing data integrity.

33

VII. Conclusions

The developed application system effectively fulfills its objectives, catering to the
needs of administrative entities, organizations, patients, data requesters, and audi-
tors. It enables administrators to set access permissions, organizations to submit
patient data, and patients to control access to their own data.

The inclusion of a data request’s intent within the system enhances trans-
parency and enables patients to make informed decisions regarding the sharing
of their pharmacogenomic data. By explicitly stating the purpose of their access
request, data requesters demonstrate transparency and accountability, aligning
with data protection regulations. This feature ensures that patients have a clear
understanding of how their data will be utilized and allows them to assess the
relevance and potential benefits of sharing their data for a specific purpose. It
promotes a culture of trust, privacy, and compliance, strengthening the overall
ethical framework of the system.

By incorporating the concept of organizations joining the system and creating
data requesters, the developed application ensures that requesters are legitimate
entities, subject to background checks and approval by the administrative entity.
This approach transfers the liability for data privacy breaches from the system
owner to the organization, enhancing accountability and reinforcing data protec-
tion measures. It establishes a robust framework where organizations play a crucial
role in safeguarding patient data, fostering trust, and ensuring compliance with
privacy regulations. This organizational structure strengthens the overall security
and privacy framework of the system, mitigating potential risks and ensuring the
responsible handling of sensitive pharmacogenomic data.

Utilizing MultiChain technology, the system guarantees secure storage and en-
ables seamless integration with other healthcare systems, thereby fostering collab-
oration and coordinated patient care. Overall, the system represents a significant
improvement in pharmacogenomic data administration, transforms data sharing

practices, and advances precision medicine.

34

VIII. Recommendations

In order to enhance the overall system’s implementation, there are several key
recommendations to consider. Firstly, a better implementation of MultiChain
streams could be explored to optimize data management and retrieval. This could
involve adding stream per patient, or requester, in order to not overload the system
when for example fetching all the access control transaction.

Secondly, integrating Metamask as a user authentication solution could greatly
enhance security and user convenience. Metamask is a widely used Ethereum wal-
let and browser extension that provides secure management of private keys. By
incorporating Metamask into the system, users can securely authenticate them-
selves without relying on traditional username-password combinations. This not
only improves security by eliminating the need to store sensitive login creden-
tials but also enhances the user experience by offering a seamless and intuitive
authentication process.

Lastly, considering the use of the enterprise version of MultiChain could provide
additional benefits, particularly in terms of managing and removing stream items.
The enterprise version offers advanced functionalities and capabilities specifically
designed for enterprise-grade applications. Leveraging the enterprise version could
enable smoother removal of stream items, ensuring efficient data management and

maintenance within the system.

35

IX. Bibliography

1]

J. Oates and D. Lopez, “Pharmacogenetics: An important part of drug devel-
opment with a focus on its application,” International Journal of Biomedical

Investigation, vol. 1, pp. 1-16, May 2018.

K. Bienfait, A. Chhibbe, J. Marshall, M. Armstrong, C. Cox, P. M. Shaw, and
C. Paulding, “Current challenges and opportunities for pharmacogenomics:
perspective of the industry pharmacogenomics working group (i-pwg),” Hu-

man Genetics, vol. 141, pp. 1165-1173, 2022.

M. E. Klein, M. M. Parvez, and J.-G. Shin, “Clinical implementation of phar-
macogenomics for personalized precision medicine: Barriers and solutions,”

Journal of Pharmaceutical Sciences, vol. 106, pp. 2368-2379, 2017.

N. Darlington, “What is blockchain technology? a step-by-
step guide for beginners.” https://blockgeeks.com/guides/

what-is-blockchain-technology/, 2022.

M. T. de Oliveira, L. H. A. Reis, R. C. Carrano, F. L. Seixas, D. C. M. Saade,
C. V. Albaquerque, N. C. Fernandes, S. D. Olabarriaga, D. S. V. Medeiros,
and D. M. F. Mattos, “Towards a blockchain-based secure electronic med-

ical record for healthcare applications,” IEFE International Conference on

Communications (ICC), May 2019.

M. A. F. M. Maramba, “A blockchain-based access control system for storing

and sharing pharmacogenomic data,” June 2022.

S. A. Scott, “Personalizing medicine with clinical pharmacogenetics,” Genet

Med, vol. 13, pp. 978-995, December 2011.

K. J. Karczewski, R. Daneshjou, and R. B. Altman, “Chapter 7: Pharma-
cogenomics,” PLOS Computational Biology, vol. 8, p. e1002817, December
2012.

36

https://blockgeeks.com/guides/what-is-blockchain-technology/
https://blockgeeks.com/guides/what-is-blockchain-technology/

[9]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

E. S. Gershon, N. Alliey-Rodriguez, and K. Grennan, “Ethical and public
policy challenges for pharmacogenomics,” Dialogues Clin Neurosci, vol. 16,

pp- 567-574, 2014.

H. Landi, “Healthcare data breaches hit all-time high in 2021, impacting 45m

people,” Health Tech, February 2022.

D. M. Roden, R. B. Altman, N. L. Benowitz, D. A. Flockhart, K. M. Giaco-
mini, J. A. Johnson, R. M. Krauss, H. L. McLeod, M. J. Ratain, M. V. Relling,
H. Z. Ring, A. R. Shuldiner, R. M. Weinshilboum, and S. T. Weiss, “Phar-
macogenomics: Challenges and opportunities,” Ann Intern Med, vol. 145,

pp. 7T49-757, 2006.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” https://

bitcoin.org/bitcoin.pdf/, 2008.

Z. Zheng, H. Wang, S. Xie, H.-N. Dai, and X. Chen, “Blockchain challenges
and opportunities: A survey,” International Journal of Web and Grid Ser-

vices, vol. 14, 2018.

IBM, “Benefits of blockchain.” https://www.ibm.com/topics/

benefits-of-blockchain.

M. Steichen, B. Fiz, R. Norvill, W. Shbair, and R. State, “Blockchain-based,

decentralized access control for ipfs,” IEEE Xplore, 2018.

M. Naz, F. A. Al-zahrani, R. Khalid, N. Javaid, A. M. Qamar, M. K. Afzal,
and M. Shafiq, “A secure data sharing platform using blockchain and inter-

planetary file system,” Sustainability, vol. 11, p. 7054, December 2019.

A. K. Shrestha, J. Vassileva, and R. Deters, “A blockchain platform for user
data sharing ensuring user control and incentives,” Frontiers in Blockchain,

vol. 3, October 2020.

37

https://bitcoin.org/bitcoin.pdf/
https://bitcoin.org/bitcoin.pdf/
https://www.ibm.com/topics/benefits-of-blockchain
https://www.ibm.com/topics/benefits-of-blockchain

[18]

[19]

[22]

23]

[24]

[25]

[26]

D. N. Prata, H. X. de Araujo, and C. Santos, “Blockchain technology applied
to education,” International Journal of Advanced Engineering Research and

Science, vol. 6, p. 295-298, 2019.

A. Ismailisufi, T. Popovic, N. Gligoric, S. Radonjic, and S. Sandi, “A private
blockchain implementation using multichain open source platform,” 2020 2/th

International Conference on Information Technology (IT), February 2020.

S. Chakraborty, K. Dutta, and D. Berndt, “Blockchain based resource man-

agement system,” January 2018.

G. Giirsoy, C. M. Brannon, and M. Gerstein, “Using ethereum blockchain to
store and query pharmacogenomics data via smart contracts,” BMC Medical

Genomics, vol. 13, June 2020.

F. Albalwy, J. H. McDermott, W. G. Newman, A. Brass, and A. Davies, “A
blockchain-based framework to support pharmacogenetic data sharing,” The

Pharmacogenomics Journal, vol. 22, pp. 264-275, July 2022.

P. J. Carabello, J. A. Sutton, J. Giri, J. A. Wright, W. T. Nicholson, I. J.
Kullo, M. A. Parkulo, S. J. Bielinski, and A. M. Moyer, “Integrating phar-
macogenomics into the electronic health record by implementing genomic in-

dicators,” Journal of the American Medical Informatics Association, vol. 27,

pp. 154-158, October 2019.

J. U. Adams, “Pharmacogenomics and personalized medicine,” Nature Fdu-

cation, vol. 1, p. 194, 2008.

M. Crosby, Nachiappan, P. Pattanayak, S. Verma, and V. Kalyanaraman,
“Blockchain technology beyond bitcoin,” Sutardja Center for Entrepreneur-

ship and Technology Technical Report, October 2015.

X. Li, Z. Wang, V. C. M. Leung, H. Ji, Y. Liu, and H. Zhang, “Blockchain-
empowered data-driven networks: A survey and outlook,” ACM Computing

Surveys, vol. b4, pp. 1-38, April 2022.

38

[27]

28]

D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technology

overview,” National Institute of Standards and Technology, October 2018.

B. Shrimali and H. B. Patel, “Blockchain state-of-the-art: architecture, use
cases, consensus, challenges and opportunities,” Journal of King Saud Uni-

versity - Computer and information Sciences, August 2021.

G. Greenspan, “Multichain private blockchain — white paper.” https://

www.multichain.com/download/MultiChain-White-Paper.pdf.

MultiChain, “Working with smart filters.” https://www.multichain.com/

developers/smart-filters/.

MultiChain, “Download multichain community.” https://www.multichain.

com/download-community/.

39

https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/developers/smart-filters/
https://www.multichain.com/developers/smart-filters/
https://www.multichain.com/download-community/
https://www.multichain.com/download-community/

X. Appendix

A. Source Code

A..1 Django Files

Settings

nun

Django settings for multi_pgx project.
Generated by ’django-admin startproject’ using Django 4.1.7.

For more information on this file, see
https://docs.djangoproject.com/en/4.1/topics/settings/

For the full list of settings and their values, see
https://docs.djangoproject.com/en/4.1/ref/settings/

nun

from pathlib import Path

Build paths inside the project like this: BASE_DIR / ’subdir
>

BASE_DIR = Path(__file__).resolve().parent.parent

Quick-start development settings - unsuitable for production

See https://docs.djangoproject.com/en/4.1/howto/deployment/

checklist/

SECURITY WARNING: keep the secret key used in production

secret!
SECRET_KEY = "django-insecure--2+e)v+#d+@h7s+u+4109jo3k3ujxn$-
_zhpe62fhwn5xwawdu"

SECURITY WARNING: don’t run with debug turned on in
production!
DEBUG = True

ALLOWED_HOSTS = []

Application definition

INSTALLED_APPS = [
"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"pgx",

]

MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"django.middleware.common.CommonMiddleware",
"django.middleware.csrf.CsrfViewMiddleware",
"django.contrib.auth.middleware.AuthenticationMiddleware",
"django.contrib.messages.middleware.MessageMiddleware",
"django.middleware.clickjacking.XFrameOptionsMiddleware",

]
ROOT_URLCONF = "multi_pgx.urls"

TEMPLATES = [

{
"BACKEND": "django.template.backends.django.
DjangoTemplates",
"DIRS": [I,
"APP_DIRS": True,
"OPTIONS": {

"context_processors": [
"django.template.context_processors.debug",
"django.template.context_processors.request",
"django.contrib.auth.context_processors.auth",
"django.contrib.messages.context_processors.

messages",

1,

},
},

]

WSGI_APPLICATION = "multi_pgx.wsgi.application"

Database
https://docs.djangoproject.com/en/4.1/ref/settings/#databases

DATABASES = {
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": BASE_DIR / "db.sqlite3",

Password validation
https://docs.djangoproject.com/en/4.1/ref/settings/#auth-
password-validators

AUTH_PASSWORD_VALIDATORS = [

{
"NAME": "django.contrib.auth.password_validation.
UserAttributeSimilarityValidator",
},
{
"NAME": "django.contrib.auth.password_validation.
MinimumLengthValidator",
},
{
"NAME": "django.contrib.auth.password_validation.
CommonPasswordValidator",
1,
{
"NAME": "django.contrib.auth.password_validation.
NumericPasswordValidator",
1,

Internationalization
https://docs.djangoproject.com/en/4.1/topics/i18n/

LANGUAGE_CODE = "en-us"
TIME_ZONE = "UTC"
USE_I18N = True

USE_TZ = True

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/4.1/howto/static-files/

STATIC_URL = "static/"

Default primary key field type
https://docs.djangoproject.com/en/4.1/ref/settings/#default-
auto-field

DEFAULT_AUTO_FIELD = "django.db.models.BigAutoField"

MULTICHAIN_RPC = {

"rpchost": "127.0.0.1", # Change to the IP address of your
MultiChain node, if needed

"rpcport": "6732", # Change to the port number specified in
the ‘params.dat‘ file

"rpcuser": "multichainrpc",

"rpcpasswd": "DLEBEN97YUVnn4psEojR49ZKEESoYBjZANgX4AQMmP28" ,

Replace with the rpcpassword found in the ¢

multichain.conf‘ file

"chainname": "mychain",

Decorators

from django.http import HttpResponseRedirect
from django.urls import reverse

def role_required(*roles):
def decorator(view_func):
def _wrapped_view(request, *args, **kwargs):
user_role = request.session.get(’role’)
if user_role not in roles:
return HttpResponseRedirect(reverse(’home’)) #

redirect to home if the user doesn’t have
the required role

return view_func(request, *args, **kwargs)

40

return _wrapped_view
return decorator

Utilities
import binascii
from datetime import datetime
import hashlib
import secrets
from Savoir import Savoir
from django.conf import settings
import json

rpcuser = settings.MULTICHAIN_RPC["rpcuser"]
rpcpasswd = settings.MULTICHAIN_RPC["rpcpasswd"]

rpchost = settings.MULTICHAIN_RPC["rpchost"]
rpcport = settings.MULTICHAIN_RPC["rpcport"]
chainname = settings.MULTICHAIN_RPC["chainname"]

multichain_api = Savoir(rpcuser, rpcpasswd, rpchost, rpcport,
chainname)

def publish_to_stream_with_offchain_data(stream_name, key,
hex_data) :
options "offchain"
return multichain_api.publish(stream_name, key, hex_data,
options)

def get_all_patient_data(stream_name):
try:
get all items from the stream
stream_items multichain_api.liststreamitems(
stream_name, False, 256)

patients = []
for item in stream_items:
data_hex = item["data"]
data_str = binascii.unhexlify(data_hex).decode()
name, address, gene, drugid, iscore, annot, upload =
data_str.split(":")
dataid = f"{address}_{drugid}"

patient_data = {
"name": name,
"address": address,

"gene": gene,

"drugid": drugid,

"iscore": iscore,

"annot": annot,

"upload": upload,

"dataid": dataid,
}

patients.append(patient_data)
return patients
except Exception as e:
print (f"Error fetching patients: {str(e)}")
return None
def grant_perm(address, name):
multichain_api.grant(address,
multichain_api.grant(address,
multichain_api.grant (address,
multichain_api.grant (address,
access_data = {
"org": name,
"address": address,
"timestamp": datetime.now().isoformat(),
"status": "permissions granted", # or whatever access
level is appropriate

"activate")
"requester-test.write")
"user_credentials.write")
"pgx_data.write")

}

Convert to hex to publish on the blockchain

data_hex = binascii.hexlify(json.dumps(access_data).encode()
) .decode)

return multichain_api.publish("org_request",
data_hex)

address,

def grant_requester_perm(address) :
multichain_api.grant(address, "activate")
return multichain_api.grant(address, "request-data.write")

def grant_patient_perm(address):
multichain_api.grant(address, "activate")

return multichain_api.grant(address, "access_tx.write")

def get_join_requests(stream_name):
try:
get all items from the stream
stream_items = multichain_api.liststreamitems(
stream_name, False, 256)
prev_name = ’’
prev_status = ’’
requests = []
for item in reversed(stream_items):
data_hex = item["data"]
address = item["keys"][0]

41

data_str = binascii.unhexlify(data_hex).decode()
data_str = json.loads(data_str)
name = data_str.get("name", "org")
status = data_str["status"]
if (
status == "No grants yet"
and prev_status != "permissions granted"
and prev_status != "No grants yet"
and name != prev_name
):
request = {
"name": name,
"address":address,
"status": status,

}

requests.append(request)

prev_name = name
prev_status = status

return requests

except Exception as e:
print (f"Error fetching patients: {str(e)}")
return None

def get_all_requests(stream_name, patient_address):
try:
get all items from the stream
stream_items = multichain_api.liststreamkeyitems(
stream_name, patient_address)
requests = []
for item in reversed(stream_items):

data_hex = item["data"]

data_str = binascii.unhexlify(data_hex).decode()
data_str = json.loads(data_str)

status = data_str.get("status")

name = data_str.get("name")

organization = data_str.get("organization")
address = data_str.get("requester")

data_id = data_str.get("data")

if not data_str.get("purpose"):
purpose = "Research"

else:

purpose = data_str.get("purpose")

if check_grant(organization, data_id) or data_id ==
IR
status = ’grant/deny’
if status == "waitlisted":
request = {
"name": name,
"organization": organization,
"address": address,
"data": data_id,
"purpose": purpose,
"status": status,
}

requests.append(request)

return requests

except Exception as e:
print (f"Error fetching patients: {str(e)}")
return None

def get_all_data(address):
patient_data = multichain_api.liststreamkeyitems(’pgx_data’,
address)
data_array = []
for d in patient_data:
d_hex = d["data"]
d_str = binascii.unhexlify(d_hex).decode()
name,address,gene,drug_id,iscore,annot,uploadedby= d_str
.split(":")
data_dict = {
"name": name,
"address":address,
"gene":gene,
"drugid":drug_id,
"iscore":iscore,
"annot":annot,
"uploadedby" :uploadedby,

data_array.append(data_dict)
return data_array

def check_request(purpose, patient_address):
request = multichain_api.liststreamkeyitems("request-data",
patient_address)
if request:
for r in request:
data = r["data"]
d_str = binascii.unhexlify(data).decode()
d = json.loads(d_str)
p = d.get(’purpose’)
if p == purpose:
return True

return False data_dict = {
"name": name,

def check_grant(organization, dataid): "address" :address,
grants = multichain_api.liststreamkeyitems("access_tx", "gene":gene,
organization) "drugid":drug_id,
if grants: "iscore":iscore,
for grant in grants: "annot":annot,
grant = grant[’data’] "uploadedby" :uploadedby,
grant = binascii.unhexlify(grant).decode() "status": status
grant = json.loads(grant) }
data = grant.get(’data_id’) if status == "grant":
if dataid == data: data_map[datal] = data_dict
return True elif status == "revoke" and data in data_map:
return False del data_map[datal
else:
return False p_data = list(data_map.values())
return p_data
def check_deny(organization, purpose):
access = multichain_api.liststreamkeyitems("access_tx", def getallrequesterswithaccess(patient_address):
organization) grant = multichain_api.liststreamitems(’access_tx’, False,
if access: 256)
for deny in access: data_map = {}
deny = deny[’data’] temp = *’
deny = binascii.unhexlify(denyu).decode() for item in reversed(grant):
deny = json.loads(deny) grant_data = item["data"]
p = deny.get(’purpose’) data_str = binascii.unhexlify(grant_data).decode()
status = deny.get(’access_level’) data_str = json.loads(data_str)
if p == purpose and status == ’deny’: address = data_str["patient_address"]
return True requesters = []
return False if address == patient_address:
else: status = data_str["access_level"]
return False data = data_str["data_id"]
if not data_str.get("purpose"):
def check_address(address): purpose = "Research"
stream_items = multichain_api.liststreamitems(" else:
user_credentials", False, 256) purpose = data_str.get("purpose")
org = data_str["org"]
for item in stream_items: reqorg = multichain_api.liststreamitems(’requester-
data_hex = item["data"] test’, False, 256)
data_str = binascii.unhexlify(data_hex).decode() for req in reqorg:
add = data_str.split(":")[2] reghex = req[’data’]
if add == address: req = binascii.unhexlify(reqhex).decode()
return True organization = req.split(’:?)[1]
name = req.split(’:’)[0]
return False if organization == org:
def check_name(name): requesters.append (name)
stream_items = multichain_api.liststreamitems(’patients’, if status == "grant" and org!=temp:
False, 256) data_dict = {
isnamesame = False "organization": org,
for item in stream_items: "requesters": requesters,
data_hex = item["data"] "data": data,
data_str = binascii.unhexlify(data_hex).decode() "purpose" : purpose,
patient_name= data_str.split(":") [0] "status": status,
print (patient_name,name) ¥
if patient_name == name: data_map[org] = data_dict
isnamesame = True elif status == "revoke":
if isnamesame: temp = org
return True
else: access_data = list(data_map.values())
return False print (access_data)
return access_data
def publish_to_stream_from_address(org, stream_name, key,
hex_data): def grant_access(patient_address, org, data_id, purpose):
options = "offchain" # Prepare the data
return multichain_api.publishfrom(org, stream_name, key, access_data = {
hex_data, options) "patient_address": patient_address,
"org": org,
"data_id": data_id,
def publish_request(requester, stream_name, key, hex_data): "purpose": purpose,
options = "offchain" "timestamp": datetime.now().isoformat(),
return multichain_api.publishfrom(requester, stream_name, "access_level": "grant",
key, hex_data, options) }
#return multichain_api.publish(stream_name, key, hex_data, json_data = json.dumps(access_data)
options) hex_data = json_data.encode().hex()
return multichain_api.publishfrom(patient_address,"access_tx
def get_all_granted(requester_address): ", org, hex_data)
req = multichain_api.liststreamkeyitems(’requester-test’,
requester_address) def deny_access(patient_address, org, data_id, purpose):
req = req[0] [’data’] # Prepare the data
req = binascii.unhexlify(req).decode() access_data = {
org = req.split(":")[1] "patient_address": patient_address,
grant = multichain_api.liststreamkeyitems(’access_tx’, org) "org": org,
data_map = {} "data_id": data_id,
for item in grant: "purpose" :purpose,
grant_data = item["data"] "timestamp": datetime.now().isoformat(),
data_str = binascii.unhexlify(grant_data).decode() "access_level": "deny",
data_str = json.loads(data_str) }
status = data_str["access_level"] # Convert to hex to publish on the blockchain
data = data_str["data_id"] json_data = json.dumps(access_data)
patient_address = data_str["patient_address"] hex_data = json_data.encode().hex()
drugid = data.split("_")[1] return multichain_api.publishfrom(patient_address,"access_tx
patient_data = multichain_api.liststreamkeyitems(’ ", org, hex_data)
pgx_data’, patient_address)
for d in patient_data: def revoke_access(patient_address, org, data_id, purpose):
d_hex = d["data"] # Prepare the data
d_str = binascii.unhexlify(d_hex).decode() access_data = {
name,address,gene,drug_id,iscore,annot,uploadedby= "patient_address": patient_address,
d_str.split(":") "org": org,
if drug_id == drugid: "data_id": data_id,

42

def

def

def

def

def

"purpose" :purpose,
"timestamp": datetime.now().isoformat(),
"access_level": "revoke",
¥
Convert to hex to publish on the blockchain
json_data = json.dumps(access_data)
hex_data = json_data.encode() .hex()
return multichain_api.publishfrom(patient_address,"access_tx
", org, hex_data)

generate_salt():
return secrets.token_hex(32)

create_org_address():

address = multichain_api.getnewaddress()
permissions "connect,send,receive"
multichain_api.grant (address, permissions)
return address

create_address():

address = multichain_api.getnewaddress()
permissions "connect"
multichain_api.grant(address, permissions)
return address

hash_password(password, salt):
return hashlib.sha256((password + salt).encode()).hexdigest

O

get_user_data(stream_name, key):
items = multichain_api.liststreamkeyitems(stream_name, key)
if items:
items = list(reversed(items))
data = items[0]["data"]
return data
return None

get_publisher_address(stream_name, key):
items = multichain_api.liststreamkeyitems(stream_name, key)
if items:

publisher = items([0][’publishers’][0]
return publisher
return None
get_status(stream_name, key):
items = multichain_api.liststreamkeyitems(stream_name, key)
if items:
return items
return None
get_access_control_tx():
tx = multichain_api.liststreamitems(’access_tx’, False, 256)
datalist 0
for item in tx:
txid = item[’txid’]
data = item[’data’]
data = bytes.fromhex(data).decode(’utf-8’)
data = json.loads(data)
p_address = data[’patient_address’]
r_address = data[’org’]
dataid = data[’data_id’]
if not data.get("purpose"):

purpose = "Research"
else:
purpose = data.get("purpose")
timestamp = data[’timestamp’]
timestamp = datetime.fromisoformat(timestamp)
timestamp = timestamp.strftime("%B %d, %Y, %H:%M:%sS")

access_level = data[’access_level’]
data_dict = {
"txid": txid,
"patient_address": p_address,
"org": r_address,
"dataid":dataid,
"purpose": purpose,
"timestamp":timestamp,
"access_level":access_level,
}
datalist.append(data_dict)
return datalist

get_tx_org(name) :
tx = multichain_api.liststreamkeyitems(’access_tx’, name)
print (tx)
datalist = []
for item in tx:
txid = item[’txid’]
data = item[’data’]
data = bytes.fromhex(data).decode(’utf-8’)
data = json.loads(data)

p-address = data[’patient_address’]
dataid = data[’data_id’]

timestamp = data[’timestamp’]
timestamp = datetime.fromisoformat(timestamp)
timestamp = timestamp.strftime("%B %d, %Y, %H:%

access_level = data[’access_level’]
if not data.get("purpose"):
purpose = "Research"
else:
purpose = data.get("purpose")
patient = get_user_data(’patients’, p_address)

if not patient:
patient=get_user_data(’patients’, ’gab’)
patient_str = binascii.unhexlify(patient).decode()
name = patient_str.split(’:’)[0]
data_dict = {
"txid": txid,
"patient_name": name,
"dataid":dataid,
"purpose": purpose,
"timestamp":timestamp,
"access_level":access_level,

}
datalist.append(data_dict)

return datalist

def get_tx_patient(address):

tx
datalist

multichain_api.liststreamitems(’access_tx’, False, 256)

[

for item in tx:

txid = item[’txid’]

data = item[’data’]

data = bytes.fromhex(data).decode(’utf-8’)
data = json.loads(data)

print (data)

p_address = data[’patient_address’]
r_address = data[’org’]

requester_data = multichain_api.liststreamkeyitems(’
requester-test’, r_address)
if not requester_data:
requester_data = multichain_api.liststreamkeyitems(’
requester-test’, ’requesterl’)
requester_hex = requester_datal[0] ["data"]
requester_str = binascii.unhexlify(requester_hex)
decode ()
name, org = requester_str.split(":")
elif requester_data:
requester_hex = requester_data[0] ["data"]
requester_str = binascii.unhexlify(requester_hex).
decode ()
name, org, addr = requester_str.split(":")
dataid = data[’data_id’]
timestamp = data[’timestamp’]
if not data.get("purpose"):
purpose = "Research"
else:
purpose = data.get("purpose")
timestamp = datetime.fromisoformat (timestamp)
timestamp = timestamp.strftime("%B %d, %Y, %H:%M:%S")
access_level = data[’access_level’]
if address p_address:
data_dict = {
"txid": txid,
"name": name,
"org": org,
"dataid":dataid,
"purpose": purpose,
"timestamp":timestamp,
"access_level":access_level,

}
datalist.append(data_dict)

return datalist

def org_status(address):

items

multichain_api.liststreamkeyitems(’org_request’,
address)

if items:

list(reversed(items))
items[0] ["data"]
binascii.unhexlify(data).decode()
json.loads(data)
= data[’status’]
status

items
data
data
data
status
return

return None

Views

import binascii
import json

import pandas as pd
import csv

from

from
from
from
from
from

from

django.http import JsonResponse, HttpResponseRedirect,
HttpResponse

django.urls import reverse

django.contrib import messages

django.shortcuts import redirect, render
.multichain_utils import *

.decorators import role_required

.forms import *

def index(request):
return redirect(’login’)

def home(request):

user
role

request.session.get(’user’)
request.session.get(’role’)

if user is None or role is Nonme:

43

def

def

User is not authenticated, redirect them to the login
page
return redirect(’login’)

if role == ’admin’:

return redirect(’join_request’)
elif role == ’organization’:

return redirect(’profile’)
elif role == ’Patient’:

return redirect(’patient_request’)
elif role == ’Auditor’:

return redirect(’view_trans’)
elif role == ’requester’:

return redirect (’request_view’)

register_user(request):

if request.method == ’POST’:
username = request.POST.get (’username’)
password = request.POST.get (’passwordl’)
name = request.POST.get(’name’)
role = request.POST.get(’role’)
salt = generate_salt()
password_hash = hash_password(password, salt)

Create a new MultiChain address for this user
address = create_address()

Store the username, hashed password, and address
together

data = f"{salt}:{password_hash}:{address}:{role}"

data_hex = binascii.hexlify(data.encode()).decode()

Publish the user’s credentials and address to the ’
user_credentials’ stream

publish_to_stream_with_offchain_data(’user_credentials’,
username, data_hex)

Store the user’s name and role on the ’user_profiles’
stream
if role == ’Patient’:
profile_data = f"{name}:{address}"
profile_data_hex = binascii.hexlify(profile_data.
encode()) .decode)
grant_patient_perm(address)
publish_to_stream_with_offchain_data(’patients’,
address, profile_data_hex)
request.session[’user’] = username
request.session[’role’] = role
request.session[’address’] = address
messages.success (request, "Your account has been
successfully registered.")
return redirect(’home’)
elif role ’Auditor’:
profile_data = f"{name}:{address}"
profile_data_hex = binascii.hexlify(profile_data.
encode()) .decode)
publish_to_stream_with_offchain_data(’auditors’,
address, profile_data_hex)
request.session[’user’] = username
request.session[’role’] = role
request.session[’address’] = address
messages.success(request, "Your account has been
successfully registered.")
return redirect(’home’)
elif role == ’organization’:
profile_data = f"{name}:{address}"
profile_data_hex = binascii.hexlify(profile_data.
encode()) .decode ()
req_data = {’name’:name,’status’: ’No grants yet’}
req_hex = binascii.hexlify(json.dumps(req_data).
encode()) .decode)
publish_to_stream_with_offchain_data(’organizations’,
address, profile_data_hex)
publish_to_stream_with_offchain_data(’org_request’,
address, req_hex)
request.session[’user’] = username
request.session[’role’] = role
request.session[’address’] = address
messages.success (request, "Your account has been
successfully registered.")
return redirect(’home’)
else:
messages.error (request, "Please select a role.")
return redirect(’register_user’)
return render(request, ’register.html’)

profile(request):
role = request.session.get(’role’)
user = request.session.get(’user’)
address = request.session.get(’address’)
status = ""
if role == ’admin’:

user_data = get_user_data(’organizations’, user)

if not user_data:

user_data = get_user_data(’organizations’, address)

data_str = binascii.unhexlify(user_data).decode()

name = data_str.split(’:’)[0]
context = {’role’: role, ’status’: status, ’name’: name,

44

if role

org =
if user is None:

’address’: address}

elif role == ’organization’:

user_data = get_user_data(’organizations’, user)
if not user_data:

user_data = get_user_data(’organizations’, address)
orgrequest = get_user_data(’org_request’, address)
status_hex = binascii.unhexlify(orgrequest).decode()
status_hex = json.loads(status_hex)
status = status_hex[’status’]

data_str = binascii.unhexlify(user_data).decode()
name = data_str.split(’:’)[0]

context = {’role’: role, ’status’: status, ’name’: name,
’address’: address}

elif role == ’Patient’:

user_data = get_user_data(’patients’, user)
if not user_data:

user_data = get_user_data(’patients’, address)
data_str = binascii.unhexlify(user_data).decode()
name = data_str.split(’:’)[0]

context = {’role’: role, ’status’: status, ’name’: name,
’address’: address}

elif role == ’Auditor’:

user_data = get_user_data(’auditors’, user)
if not user_data:

user_data = get_user_data(’auditors’, address)
data_str = binascii.unhexlify(user_data).decode()
name = data_str.split(’:’)[0]

context = {’role’: role, ’status’: status, ’name’: name,
’address’: address}

elif role == ’requester’:

user_data = get_user_data(’requester—test’, user)
if not user_data:
user_data = get_user_data(’requester—test’, address)
data_str = binascii.unhexlify(user_data).decode()
name = data_str.split(’:’)[0]
organization = data_str.split(’:’)[1]
context = {’role’: role, ’status’: status, ’name’: name,
’address’: address, ’organization’: organization}

return render(request,’profile.html’, context)

Qrole_required(’admin’)
def join_request_view(request):
role = request.session.get(’role’)
address = request.session.get(’address’)
status = ""
requests = get_join_requests(’org_request’)
return render(request, ’org_request.html’, {’requests’:

requests, "role":role, ’status’: status, ’address’:
address})

Q@role_required(’admin’)
def grant_permissions(request, name, address):
if request.method == ’POST’:

try:
grant_perm(address, name)
messages.success (request, f"Permissions have been
granted to {address}")
return redirect(’join_request’)
except Exception as e:
messages.error (request, str(e))
return redirect(’join_request’)

else:

messages.error(request, "Invalid request")
return redirect(’join_request’)

@role_required(’admin’, ’organization’)
def create_data_requester(request):
role = request.session.get(’role’)
user = request.session.get(’user’)
orgadd = request.session.get(’address’)
status = ""
if role

"organization":

status = org_status(orgadd)

admin":

user_data = get_user_data(’organizations’, user)

else:

user_data = get_user_data(’organizations’, orgadd)
m

return redirect(’login’)

if user_data:

if role == "admin":
org = binascii.unhexlify(user_data).decode()
else:
org = binascii.unhexlify(user_data).decode()
org = org.split(’:’)[0]

if request.method == ’POST’:

username = request.POST.get (’username’)
password = request.POST.get (’passwordl’)
name = request.POST.get(’name’)

organization = org

role = "requester"

salt = generate_salt()

password_hash = hash_password(password, salt)

messages.error(request, "Name not found.")

Create a new MultiChain address for this user return redirect(’upload_data’)
address = create_address() else:
for i in range(len(file)):
Store the username, hashed password, and address data = f"{name}:{address}:{gene[il}:{drugid[il}:{
together iscore[i]}:{annot[i]}:{uploaded_by[i]}"
data = f"{salt}:{password_hash}:{address}:{role}" data_hex = binascii.hexlify(data.encode()).decode
data_hex = binascii.hexlify(data.encode()).decode() O
publish_to_stream_from_address(orgadd,’pgx_data’,
profile_data = f"{name}:{organization}:{address}" address, data_hex)
profile_data_hex = binascii.hexlify(profile_data.encode messages.success(request, f"Patient {address} pgx
()) .decode () data was uploaded.")

return HttpResponseRedirect(reverse(’upload_data’))
grant_requester_perm(address)

publish_to_stream_from_address(orgadd, ’requester-test’,
address, profile_data_hex)

return render(request, ’createdata.html’, {"role":role,
status’: status})

Publish the user’s credentials and address to the ’ @role_required("Patient")
user_credentials’ stream def patient_request_view(request):
publish_to_stream_from_address(crgadd,’user_credentials role = request.session.get(’role’)
’, username, data_hex) address = request.session.get(’address’)
status = ""
messages.success(request, f"User with address {address} requests = get_all_requests(’request-data’, address)
has been created.") return render(request, ’patient_request_view.html’, {’
return redirect(’create_user’) requests’:requests, "role":role, ’status’: status})
return render(request, ’createrequester.html’, {"role":role, @role_required("Patient")
’status’: status}) def manage_access_view(request):
role = request.session.get(’role’)
def authenticate_user(request): address = request.session.get(’address’)
if request.method == ’POST’: status = ""
username = request.POST.get (’username’) requesters = getallrequesterswithaccess(address)
password = request.POST.get (’password’) return render(request, ’manage_access.html’, {’requesters’:

requesters, "role":role, ’status’: status})
data_hex = get_user_data(Vuser_credentials’, username)

if data_hex: @role_required("Patient")
data_str = binascii.unhexlify(data_hex).decode() def grant_data_access(request, organization, data_id, purpose):
stored_salt, stored_password_hash, address, role = address = request.session.get(’address’)
data_str.split(’:’) if request.method == ’POST’:
password_hash = hash_password(password, stored_salt) try:
grant_access (address,organization,data_id, purpose)
if stored_password_hash == password_hash: messages.success(request, f"You have granted {
request.session[’user’] = username organization} access to your data for the
request.session[’role’] = role research/clinical trial {purpose}.")
request.session[’address’] = address return redirect(’manage_access’)
Redirect user to home page except Exception as e:
messages.success(request, "You are now logged in messages.error (request, str(e))
as " + str(address)) return redirect(’patient_request’)
return HttpResponseRedirect(reverse(’home’)) else:
else: messages.error (request, "Invalid Request")
messages.error(request,"Invalid password!") return redirect(’patient_request’)
return redirect(’login’)
else: @role_required("Patient")

messages.error(request,“Username not found!") def revoke_data_access(request, organization, data_id, purpose)
return redirect(’login’) :
address = request.session.get(’address’)

return render(request, ’login.html’) if request.method == ’POST’
try:
@role_required(’admin’, ’organization’) revoke_access(address,organization,data_id, purpose)
def upload_data(request): messages.success (request, f"You have revoked access
role = request.session.get(’role’) of {organization} for {purpose}")
user = request.session.get(’user’) return redirect(’manage_access’)
orgadd = request.session.get(’address’) except Exception as e:
status = "" messages.error (request, str(e))
org = get_user_data(’organizations’, user) return redirect(’patient_request’)
if org: else:
org = binascii.unhexlify(org).decode() messages.error (request, "Invalid Request")
else: return redirect(’patient_request’)
org = get_user_data(’organizations’, orgadd)
org = binascii.unhexlify(org).decode() @role_required("Patient")
org = org.split(":")[0] def deny_data_access(request, organization, data_id, purpose):
if role == "organization": address = request.session.get(’address’)
status = org_status(orgadd) if request.method == ’POST’:
if request.method == ’POST’ and request.FILES[’csv_file’]: try:
csv_file = request.FILES[’csv_file’] deny_access(address,organization,data_id, purpose)
if not csv_file.name.endswith(’.csv’): messages.success (request, f"You have denied access to
return HttpResponseBadRequest(’Invalid file format. {organization} for {purpose}")
Please upload a CSV file.’) return redirect(’manage_access’)
except Exception as e:
Process the CSV file messages.error (request, str(e))
file = pd.read_csv(csv_file).iloc[:,[0,1,2,3]] return redirect(’patient_request’)
gene = file[’Gene’].tolist() else:
drugid = file[’Drugs’].tolist() messages.error(request, "Invalid Request")
iscore = file[’Interaction Score’].tolist() return redirect(’patient_request’)
annot = file[’Annotation’].tolist()
name = request.POST.get(’name’) @role_required("requester")
address = request.POST.get(’address’) def request_view(request):
status = ""
uploaded_by = org role = request.session.get(’role’)
if not check_address(address) and not check_name(name): address = request.session.get(’address’)
messages.error (request, "Address and name not found patients = get_all_patient_data(’pgx_data’)
-" filtered_patients = patients
return redirect(’upload_data’)
elif not check_address(address): select_gene= []
messages.error (request, "Address not found.") select_drug= []
return redirect(’upload_data’)
elif not check_name(name): for p in patients:

45

gn = p.get(’gene’)

dg = p.get(’drugid’)

if gn not in select_gene:
select_gene.append(gn)

if dg not in select_drug:
select_drug.append(dg)

gene = request.GET.get(’gene_id’)
drug = request.GET.get(’drug_id’)
if gene:
filtered_patients = [t for t in filtered_patients if t.
get ("gene’) genel

if drug:
filtered_patients = [t for t in filtered_patients if t.
get(’drugid’) == drug]
patients = filtered_patients
for patient in patients:
data = patient[’dataid’]
items = get_status(’access_tx’, address)
in_list = False
if items:
for item in items:
item = item[’data’]
item = binascii.unhexlify(item).decode()
item = json.loads(item)

if item[’data_id’] == data:
in_list = True
continue
if in_list:

patients.remove(patient)

context = {’pd’:patients, "role":role, ’status’: status, ’
drugs’:select_drug, ’genes’:select_gene}

return render(request, ’request_view.html’, context)

@role_required("requester")
def request_data(request):
user = request.session.get(’user’)
address = request.session.get(’address’)
user_data = get_user_data(’requester—test’,user)
if not user_data:
user_data = get_user_data(’requester—test’,address)
data_str = binascii.unhexlify(user_data).decode()
name, org, add= data_str.split(’:’)
else:
data_str = binascii.unhexlify(user_data).decode()
name, org= data_str.split(’:’)
if request.method == ’POST’:
purpose = request.POST.get (’purpose’)
data_list = request.POST.getlist(’selected_patients’)
already_requested = len(data_list)
for data in data_list:

if data != ’’:

patient_address, data_id = data.split(’|’)
if check_request(purpose, patient_address):
messages.error (request, f"Your request of {
data_id} for {purpose} has already been
sent")
already_requested -= 1
continue
if check_deny(org, purpose):
messages.error (request, f"Your request of {
data_id} for {purpose} has been denied
")
already_requested -= 1
continue

req_data = {’name’ :name, ’organization’:org,’
requester’:address,’data’:data_id, ’purpose
’:purpose,’status’: ’waitlisted’}

data_hex = binascii.hexlify(json.dumps(req_data).
encode()) .decode ()

publish_request (address, ’request-data’,
patient_address, data_hex)
if already_requested > 1:
messages.success (request, f"Your request/s has/have
been sent")
return redirect (’request_view’)

else:
messages.error(request, "Invalid request")
return redirect (’request_view’)

@role_required("requester")
def view_data_table(request):
status = ""
role = request.session.get(’role’)
data = get_all_granted(request.session.get("address"))
return render(request, "data_table.html", {’data’:data, "
role":role, ’status’: status})

@role_required("requester")
def download_data(request):
Get the accessed data for the requester
accessed_data = get_all_granted(request.session.get("address
"))

46

Prepare the data as a table

table_data = []

headers = ["Name", "Address", "Gene", "Drug/s", "Interaction

Score", "Annotation"]
table_data.append (headers)
for data in accessed_data:
table_data.append([data[’name’], data[’address’], datal[’

gene’], data[’drugid’], datal[’iscore’], datal’
annot’]]) # Replace with your actual data fields

response = HttpResponse(content_type=’text/csv’)
response [’Content-Disposition’] = ’attachment; filename="
pgx_data.csv"’

writer = csv.writer(response)
writer.writerows(table_data)

return response

Q@role_required("Patient")
def view_data_table_patient(request):
status = ""
role = request.session.get(’role’)
data = get_all_data(request.session.get("address"))
return render(request, "data_table_patient.html", {’data’:
data, "role":role, ’status’: status})

@role_required("Auditor")
def transaction_view(request):
status = ""
transactions = get_access_control_tx()
role = request.session.get(’role’)
transactions = transactions[::-1]
select_patient= []
select_access = []
for t in transactions:
patient = t.get(’patient_address’)
access = t.get(’access_level’)
if patient not in select_patient:
select_patient.append(patient)
if access not in select_access:
select_access.append(access)
filtered_transactions = transactions
patient_address = request.GET.get(’patient_address’)
access_level = request.GET.get(’access_level’)
if patient_address:
filtered_transactions = [t for t in
filtered_transactions if t.get(’patient_address’)
== patient_address]
if access_level:
filtered_transactions = [t for t in
filtered_transactions if t.get(’access_level’) ==
access_level]

context = {
transactions’:filtered_transactions,
"role":role,
’status’: status,
’patients’:select_patient,
’access’:select_access,
}

return render(request, ’transactions.html’, context)

@role_required("Patient")
def patient_transaction_view(request):
status = ""
address = request.session.get(’address’)
transactions = get_tx_patient(address)
role = request.session.get(’role’)
transactions = transactions[::-1]
select_requester= []
select_access = []
select_org = []
for t in transactions:
requester = t.get(’name’)
access = t.get(’access_level’)
org = t.get(Porg’)
if requester not in select_requester:
select_requester.append(requester)
if access not in select_access:
select_access.append(access)
if org not in select_org:
select_org.append (org)

filtered_transactions = transactions
requester_name = request.GET.get(’name’)
access_level = request.GET.get(’access_level’)
organization = request.GET.get(’org’)
if requester_name:
filtered_transactions = [t for t in
filtered_transactions if t.get(’name’ ==
requester_name]
if organization:
filtered_transactions = [t for t in
filtered_transactions if t.get(’org’) ==
organization]
if access_level:

filtered_transactions = [t for t in

filtered_transactions if t.get(’access_level’) ==

access_level]

context = {
>transactions’:filtered_transactions,
"role":role,
’status’: status,
’names’:select_requester,
’access’:select_access,
’orgs’:select_org,

}

return render(request, ’transactions_patient.html’, context)

@role_required("organization", "requester")
def org_transaction_view(request):
status = ""
user = request.session.get(’user’)
role = request.session.get(’role’)
address = request.session.get(’address’)
if role == ’requester’:
req = get_user_data(’requester-test’, address)
req_str = binascii.unhexlify(req).decode()
name = req_str.split(’:’)[1]
add = get_publisher_address(’requester-test’, address)
address = add
print (user,address)
else:
user_data = get_user_data(’organizations’, user)
if not user_data:
user_data = get_user_data(’organizations’, address)
data_str = binascii.unhexlify(user_data).decode()
name = data_str.split(’:’)[0]
orgrequest = get_user_data(’org_request’, address)
status_hex = binascii.unhexlify(orgrequest).decode()
status_hex = json.loads(status_hex)
status = status_hex[’status’]
transactions = get_tx_org(name)
role = request.session.get(’role’)
transactions = transactions[::-1]
select_patient= []
select_access = []
for t in transactions:
patient = t.get(’patient_name’)
access = t.get(’access_level’)
if patient not in select_patient:
select_patient.append(patient)
if access not in select_access:
select_access.append(access)
filtered_transactions = transactions
patient_name = request.GET.get(’patient_name’)
access_level = request.GET.get(’access_level’)
if patient_name:

filtered_transactions = [t for t in

filtered_transactions if t.get(’patient_name’) ==

patient_name]
if access_level:

filtered_transactions = [t for t in

filtered_transactions if t.get(’access_level’) ==

access_level]

context = {
’transactions’:filtered_transactions,
"role":role,
’status’: status,
’patients’:select_patient,
’access’:select_access,

A..2 Templates

Base Template

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-

scale=1.0, shrink-to-fit=no">
<title>{% block title %}{% endblock title %}</title>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/
bootstrap@5.2.3/dist/css/bootstrap.min.css">
{% block extracss %}
{% endblock extracss %}
</head>

<body>
<nav class="navbar navbar-expand-lg navbar-dark bg-dark py
-3">
<div class="container-fluid">

<svg xmlns="http://www.w3.org/2000/svg" viewBox

="0 0 24 24" fill="none" stroke="white"

stroke-width="2" stroke-linecap="round"

stroke-linejoin="round" class="feather

}
return render(request, ’transactions_requester.html’,
context)

def logout(request):

request.session.flush() # This will delete all current
session data
return redirect(’login’) # Redirect to the login page

URLS

from django.urls import path

from django.conf.urls.static import static
from django.conf import settings

from

import views

urlpatterns = [

47

path("", views.index , name="index"),

path("home/", views.home, name="home"),

path("login/", views.authenticate_user, name="login"),
path("logout/", views.logout, name="logout"),
path("profile/", views.profile, name="profile"),
path("register/", views.register_user, name="register_user")

s

path("check_join_requests/", views.join_request_view, name="
join_request"),

path("grant_permissions/<str:name>/<str:address>/", vieus.
grant_permissions, name="grant_permissions"),

path("create_user/", views.create_data_requester, name="
create_user"),

path("upload_data/", views.upload_data, name="upload_data"),

path("request_view/", views.request_view, name='"request_view

"y,

path("request_data/", views.request_data, name="request_data
"y

path("data_table/", views.view_data_table, name="data_table
"
),

path("download_data/", views.download_data, name="
download_data"),

path("data_table_patient/", views.view_data_table_patient,
name="data_table_patient"),

path("patient_request_data/", views.patient_request_view,
name="patient_request"),

path("manage_access", views.manage_access_view, name="
manage_access"),

path("grant_access/<str:organization>/<str:data_id>/<str:
purpose>", views.grant_data_access, name="
grant_access"),

path("deny_access/<str:organization>/<str:data_id>/<str:
purpose>", views.deny_data_access, name="deny_access
"),

path("revoke_access/<str:organization>/<str:data_id>/<str:
purpose>", views.revoke_data_access, name="
revoke_access"),

path("viewtransactions/", views.transaction_view, name="
view_trans"),

path("patient_transactions/", views.patient_transaction_view
, name="patient_trans_view"),

path("org_transactions/", views.org_transaction_view, name="
org_trans_view"),

feather-blockchain" style="width: 40px;
height: 40px;">
<path d="M12 2L2 7.8v8.4L12 22110-5.8V7.8L12
2zM22 121-4.5 2.6m0-5.2L22 12m-9-3.5L7
.5 12m0-5.2L12 12m0-9.3V5"></path>
</svg>
PGChain

<button data-bs-toggle="collapse" class="navbar-
toggler" data-bs-target="#navcol-1">Toggle navigation</
span></button>
<div class="collapse navbar-collapse" id="navcol-1">
<ul class="navbar-nav ms-auto">
{% if role == "Patient" %}
<1li class="nav-item"><a class="nav-link"
href="{} url ’patient_request’ %}">
Check Requests</1i>
<1li class="nav-item"><a class="nav-link"
href="{}, url ’manage_access’ %}">
Manage</1i>
<1li class="nav-item"><a class="nav-link"
href="{% url ’data_table_patient’
%}">View Data</1i>

<1li class="nav-item"><a class="nav-link"
href="{% url ’profile’ %}">Account
</1i>
<1li class="nav-item"><a class="nav-link"
href="{}, url ’patient_trans_view’
%}">View Transactions</1i>
{}% elif role == "requester" %}
<1li class av-item"><a class="nav-link"
href="{Y% url ’data_table’ %}">View
Data</1i>
<1i class="nav-item"><a class="nav-link"
href="{% url ’request_view’ %}">
Request</1i>
<1li class="nav-item"><a class="nav-link"
href="{% url ’org_trans_view’ %}">
View Transactions</1li>
<1li class="nav-item"><a class="nav-link"
href="{% url ’profile’ %}">Account
</1i>
{/ elif role == "Auditor" %}
<1li class="nav-item"><a class="nav-link"
href="{Y% url ’view_trans’ %}">View
Transactions</1i>
{% else %}
{% if role == "admin" %}
<1li clas; nav-item"><a class="nav-
link" href="{J url ’join_request
> %}">Check Join Requests</
1i>
{/endif%}
{4 if status "permissions granted" or
role == "admin" %}
<1li class="nav-item"><a class="nav-link"
href="{% url ’upload_data’ %}">
Upload Data</1i>
<1li class="nav-item"><a class="nav-link"
href="{% url ’create_user’ %}">
Create User</1i>
<1li class="nav-item"><a class="nav-link"
href="{% url ’org_trans_view’ %}">
View Transactions</1i>
{/ endif %}
<1li class="nav-item"><a class="nav-link"
href="{% url ’profile’ %}">Account
</1i>
{% endif %}
<li class="nav-item"><a class="nav-link" href
="{% url ’logout’ %}">Logout</1i>

</div>

</div>
</nav>
<main>

{% include ’message.html’ %}

{% block content %}

{% endblock content %}
</main>

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/
dist/js/bootstrap.bundle.min.js"></script>

<script src="https://code.jquery.com/jquery-3.6.0.min.js"></
script>

<script>
$ (document) .ready (function() {
// Close the alert when the close button is clicked
$(".msg .close").on("click", function() {
$(this).closest(".msg") .alert("close");
b

// Automatically disappear after 5 seconds
$(".msg") .delay(5000) . fadeOut ("slow");
b
</script>
{% block extrascripts %}
{% endblock extrascripts %}
</body>

</html>

Register

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-
scale=1.0">
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/
dist/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-1

<link href="https://fonts.googleapis.com/css?family=Poppins
:300,400,500,600,700,800,900" rel="stylesheet">

<script src="https://kit.fontawesome.com/70e2a3091b.js"
crossorigin="anonymous"></script>

<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/
Qfortawesome/fontawesome-free@6.1.1/css/fontawesome.
min.css">

<title>Register</title>

<style>

</style>
</head>

<body>
<div class="container" style="position: absolute;left: 0;
right: O;top: 50%;transform: translateY(-50%);-ms-
transform: translateY(-50%);-moz-transform:
translateY(-50%) ;-webkit-transform: translateY(-50%)
;-o-transform: translateY(-50%);">
<div class="row d-flex d-xl-flex justify-content-center
justify-content-xl-center">
<div class="col-sm-12 col-1g-10 col-x1-9 col-xx1-7 bg
-white shadow-1g" style="border-radius: 5px;">
<div class="p-5">
<div class="text-center">
<h4 class="text-dark mb-4">Create an
Account !</h4>
</div>
<form method="POST" class="user">
{% csrf_token %}
<div class="mb-3">
<select class="form-select" name="role
" aria-label="Default select
example">
<option value = "None" selected
disabled hidden>Select
Designation</option>
<option value="Patient">Patient</
option>
<option value="Auditor">Auditor</
option>
<option value="organization">
Organization</option>
</select>

</div>
<div class="mb-3"><input class="form-
control form-control-user" type="
text" name="username" placeholder="
Username" required /></div>
<div class="mb-3"><input id="email" class
="form-control form-control-user"
name="name" type="text" placeholder
="Name" required /></div>
<div class="row mb-3">
<div class="col-sm-6 mb-3 mb-sm-0"><
input id="password" class="form-
control form-control-user" type
="password" name="passwordl"
placeholder="Password" required
/></div>
<div class="col-sm-6"><input id="
verifyPassword" class="form-
control form-control-user" type
="password" name="password2"
placeholder="Repeat Password"
required /></div>
</div>
<div class="row mb-3">
<p id="passwordErrorMsg" class="text-
danger" style="display: none;">
Password does not match</p>
</div><button id="submitBtn" class="btn
btn-primary d-block btn-user w-100"
type="submit">Register Account</
button>
<hr />
</form>
<div class="text-center"><a class="small"
href="{, url ’login’ %}">Already have
an account? Login!</div>
</div>
</div>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/
dist/js/bootstrap.bundle.min. js"
integrity="sha384-ka7Sk0G1ln4gmtz2M1QnikT1wXgYsOg+0OMhuP+
I1RH9SENBOOLRn5q+8nbTov4+1p"
crossorigin="anonymous"></script>
<script src="https://ajax.googleapis.com/ajax/libs/jquery
/3.4.1/jquery.min. js"></script>
<script>
// Function to check if passwords match and display
error message

BuEAKWBq781 YhF1dvKuhf TAUSauU8t TO4WrHE t jDbrCEXSULoBoqyl2qyzej ThEAction checkPasswordMatch() {

" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/
bootstrap-icons@1.3.0/font/bootstrap-icons.css">

var password = document.getElementById("password").
value;
var verifyPassword = document.getElementById("

48

verifyPassword") .value;
var passwordErrorMsg = document.getElementById("
passwordErrorMsg") ;

if (password !== verifyPassword) {
passwordErrorMsg.style.display = "block";
} else {
passwordErrorMsg.style.display = "none";
¥

}

// Bind the checkPasswordMatch function to the password
fields’ input event
document .getElementById("verifyPassword") .
addEventListener("input", checkPasswordMatch);
</script>

</body>
</html>

Login
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge'">
<meta name="viewport" content="width=device-width, initial-
scale=1.0">
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/
dist/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-1

</div>
<div class="mb-3"><button class="
btn btn-primary d-block w
-100" type="submit">Login</
button></div>
</form>

<a class="text-muted" href="{jurl ’
register_user’’}">Register
</div>
</div>
</div>
</div>
</div>
</section>

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/
dist/js/bootstrap.bundle.min. js"
integrity="sha384-ka7Sk0G1n4gmtz2M1QnikT1wXgYsOg+0OMhuP+
I1RH9SENBOOLRn5q+8nbTov4+1p"
crossorigin="anonymous"></script>
{% block extrascripts %}
{/ endblock extrascripts %}
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></
script>

<script type="module" src="https://unpkg.com/ionicons@7.1.0/
dist/ionicons/ionicons.esm.js"></script>

<script nomodule src="https://unpkg.com/ionicons@7.1.0/dist/
ionicons/ionicons.js"></script>

</body>
</html>

BmE4kWBq78iYhF1dvKuhfTAUBauU8tT94WrHft jDbrCEXSU10Boqyl2QvZ6jIW3

" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/

Profile

bootstrap-icons@1.3.0/font/bootstrap-icons.css"> {% extends(’ind?x.htm}’ %? . .
<link href="https://fonts.googleapis.com/icon?family= {% block title %}Profile{} endblock title %}
Material+Icons" {% block content %}

rel="stylesheet">

<script src="https://kit.fontawesome.com/70e2a3091b.js" <div class="container w-50 my-5">

crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/
Qfortawesome/fontawesome-free@6.1.1/css/fontawesome.
min.css">
<title>Login</title>
<style>
ion-icon {
font-size: 90px;
¥
</style>
</head>

<body>
<section class="py-4 py-x1-5">
<div class="container">
<div class="row py-5">
<div class="col-md-8 col-x1-6 text-center mx-auto
">
<h2>Log in</h2>
</div>
</div>
<div class="row d-flex justify-content-center py-5">
<div class="col-md-6 col-x1-4">
<div class="card mb-5 shadow-1g">
<div class="card-body d-flex flex-column
align-items-center">
<svg xmlns="http://www.w3.org/2000/svg
" class = ’py-3’ viewBox="0 0 24
24" fill="none" stroke="black"

<div class="row px-4 pb-3 shadow-sm border">
<h2 class="py-4">Profile</h2>
<div class="col-6">
<div class="mb-3">
<label class="form-label">Name:</label></
strong>
{{ name }}
</div>
<div class="mb-3">
<label class="form-label">Address:</label
>
{{ address }}
</div>
<div class="mb-3">
<label class="form-label">Role:</label></
strong>
{{ role }}
</div>
</div>
<div class="col-4">
{l if role == ’requester’ %}
<div class="mb-3">
<label class="form-label">Organization:</
label>
{{ organization }}
</div>
{% elif role == ’organization’ %}
<div class="mb-3">
<label class="form-label">Status:</label

stroke-width="2" stroke-linecap >
="round" stroke-linejoin="round" {{ status }}
class="feather feather- </div>
blockchain" style="width: 100px; {4 endif 7%}
height: 100px;"> </div>
<path d="M12 2L2 7.8v8.4L12 22110 </div>
-5.8V7.8L12 2zM22 121-4.5 </div>
2.6m0-5.2L22 12m-9-3.5L7.5
12m0-5.2L12 12m0-9.3V5"></ {% endblock content %}
path>
</svg>
< —_n - " —n
form r:"];ass text-center" method="post Create Data Requester
{% csrf_token %} {% extends ’index.html’ %}
<div class="mb-3"><input class=" {% block title %}Create User{), endblock title %}
form-control" type="username {% block content %}
" name="username" <div class="container my-5">

placeholder="Username" /></
div>

<div class="mb-3"><input class="
form-control" type="password

" name="password"
placeholder="Password" /></
div>

<div class="row mb-2">
{/ for message in messages %}
<p class="text-danger">{{
message }}</p>
{% endfor %}

49

<div class="row justify-content-center">
<div class="col-1lg-6">
<div class="form-container bg-white shadow-1lg p-5
rounded">
<h4 class="text-center mb-4">Create Account</h4>
<form method="POST" class="user">
{% csrf_token %}
<div class="mb-3">
<input class="form-control form-control-
user" type="text" name="username"
placeholder="Username" required />

</div>

<div class="mb-3">
<input id="email" class="form-control form
-control-user" name='"name" type="
text" placeholder="Name" required
/>
</div>
<div class="row mb-3">
<div class="col-sm-6 mb-3 mb-sm-0">
<input id="password" class="form-
control form-control-user" type
="password" name="passwordl"
placeholder="Password" required
/>
</div>
<div class="col-sm-6">
<input id="verifyPassword" class="form
-control form-control-user" type
="password" name="password2"
placeholder="Repeat Password"
required />
</div>
</div>
<div class="row mb-3">
<div class="col">
<p id="usernameErrorMsg" class="text-
danger" style="display: none;">
Paragraph</p>
<p id="passwordErrorMsg" class="text-
danger" style="display: none;">
Password does not match</p>

</div>

</div>

<button id="submitBtn" class="btn btn-primary
btn-user w-100" type="submit'">Register
Account</button>

<hr />

</form>
</div>
</div>
</div>
</div>

{% endblock content %}

Upload Data

{% extends ’index.html’ %}
{% block title %}Upload Data{’, endblock title %}

{% block extracss %}
<style>

</style>
{% endblock extracss %}
{% block content %}
<div class="container py-5">
<div class="row justify-content-center">
<div class="col-sm-12 col-md-8 col-1g-6">
<div class="bg-white shadow-lg p-5 rounded">
<div class="text-center">
<h4 class="text-dark mb-4">Upload Data</h4>
</div>
<form method="POST" class="user" enctype="
multipart/form-data">
{% csrf_token %}
<div class="row mb-3">
<div class="col-sm-6">
<label class="form-label">Name</label>
<input class="form-control form-
control-user" type="text" name="
name" placeholder="Enter name"
required />
</div>
<div class="col-sm-6">
<label class="form-label">Address</
label>
<input class="form-control form-
control-user" name="address"
type="text" placeholder="Enter
address" required />
</div>
</div>
<div class="row mb-3">
<label for="formFile" class="form-label">
Upload file here:</label>
<input class="form-control" type="file" id
="formFile" name="csv_file" accept
=".csv">
</div>
<button id="submitBtn" class="btn btn-primary
d-block btn-user w-100" type="submit">
Upload Data</button>
<hr />
</form>
</div>
</div>
</div>
</div>

50

{% endblock content %}

Data Request

{% extends ’index.html’ %}
{% block title %}Request Data{’ endblock title %}
{% block content %}

{% block extracss %}
<style>
.scrollable-checkbox-list {
max-height: 500px; /* Set the maximum height for the
scrollable list */
overflow-y: auto; /* Enable vertical scrolling */

}

.button-container {
margin-top: 20px; /* Add appropriate margin for spacing
*/
}
</style>

{% endblock extracss %}

<div class="container py-5 py-x1-5">
<hl class="text-center pb-4">Request Data</hi>
{% if pd %}
<form method="get" action="{} url ’request_view’ %}">
<div class="row mx-5 mx-5">
<div class="col">
<label for="patient_address">Gene:</label>
<select class="form-select" name="gene_id" aria-
label="Default select example'">
<option value = "None" selected disabled
hidden>----------- </option>
{%for gene in genesi}
<option value="{{gene}}">{{gene}}</option>
{endfori}
</select>
</div>
<div class="col">
<label for="access_level">Drug:</label>
<select class="form-select" name="drug_id" aria-
label="Default select example'">
<option value = "None" selected disabled
hidden>----------- </option>
{%for drug in drugs’}
<option value="{{drug}}">{{drug}}</option>
{%endfory}
</select>
</div>
</div>
<div class = "row-3 mx-3">
<button class="btn btn-success text-center mx-5 my-2 "
type="submit">Filter</button>
</div>
</form>

<form method="post" action="{J url ’request_data’ %}">
{% csrf_token %}
<div class="row">
<div class="col-md-8 offset-md-2">
<div class="scrollable-checkbox-list">
{% for patient in pd %}
<div class="form-check">
<input class="form-check-input" type="checkbox" id
="patient-{{ forloop.counter }}" name="
selected_patients" value="{{ patient.address
}}1{{ patient.dataid }}">
<label class="form-check-label" for="patient-{{
forloop.counter }}">
<h5>{{ patient.dataid }}</h5>
<h7>Gene: {{ patient.gene }}</h7
>
</label>
</div>
<hr class="my-5" />
{% endfor %}
</div>
<div class="button-container">
<a class="btn btn-warning text-center border border-
dark" href="#" role="button" data-bs-toggle="
modal" data-bs-target="#requestAccessModal">
Request Access
</div>
</div>
<div class="modal fade" id="requestAccessModal" tabindex
="-1" aria-labelledby="requestAccessModalLabel"
aria-hidden="true">
<div class="modal-dialog modal-dialog-centered">
<div class="modal-content">
<div class="modal-header">
<h6 class="modal-title" id="
requestAccessModalLabel">Request
Access</h6>

<button type="button" class="btn-close" data
-bs-dismiss="modal" aria-label="Close
"></button>
</div>
<div class="modal-body">
<form id="requestAccessForm" method="post"
action="{% url ’request_data’ %}">
{% csrf_token %}
<div class="form-group">
<label for="purpose">Purpose:</label>
<input type="text" class="form-control" id
="purpose" name="purpose" required>

</div>
<input type="hidden" name="selected_patients
" value="" id="selectedPatientsInput
">
<div class="modal-footer">
<button type="submit" id = "btn" class="
btn btn-primary">Request Access</
button>
<button type="button" class="btn btn-
secondary" data-dismiss="modal">
Cancel</button>
</div>
</form>
</div>

</div>
</div>
</div>
</div>
</form>

{lelsel}

<div class="row justify-content-end">
<div class="col">

<h3>No data to request</h3>

</div>

</div>

{/endif%}

</div>

{% endblock content %}

{% block extrascripts %}
<script>
$(document) .ready (function() {
$(’#requestAccessModal’) .on(’shown.bs.modal’, function() {
$(’#purpose’) .focus(); // Focus on the purpose input field
when the modal is shown
updateRequestButton(); // Update the state of the request
button on modal shown

B

// Update the state of the request button whenever the
purpose input value changes

$ (#purpose’) .on(’input’, function() {

updateRequestButton() ;

b

$(’#requestAccessForm’) .submit (function(e) {
e.preventDefault(); // Prevent the form from submitting
normally

var selectedPatients = [];
$(’input [name="selected_patients"]:checked’) .each(function
O A{
selectedPatients.push($(this).val());
b

var purpose = $(’#purpose’).val();

// Set the selected patients value in the hidden input
field

$(’#selectedPatientsInput’).val(selectedPatients.join(’,’)
);

// Perform any validation or additional checks on the
purpose if needed

// Update the form action URL with the purpose value
$(this) .attr(’action’, $(this).attr(’action’) + ’7purpose
=’ + encodeURIComponent (purpose)) ;

// Submit the form
this.submit () ;
12N

// Function to update the state of the request button based
on the purpose input value
function updateRequestButton() {
var purpose = document.getElementById("purpose").value;
var requestButton = $(’#requestAccessForm button[type="
submit"]’);

if (purpose == ’’) {
document .getElementById("btn") .disabled = true;

} else {

document . getElementById("btn") .disabled = false; //
Disable the request button

b
</script>

{% endblock extrascripts %}

Check Request

{% extends ’index.html’ %}
{% block title %}Request View{), endblock title %}
{% block content %}

<div class =

"container-x1 px-1 pt-4">

<hl class="text-center pb-4">Check Requests</h1>
{% if requests %}
<table id =’booking-table’ class="table ">

51

<thead>
<tr>
<th scope="col" class = "text-center">Name</th>
<th scope="col" class = "text-center">Address</th>
<th scope="col" class = "text-center">0Organization</
th>
<th scope="col" class = "text-center">Data</th>
<th scope="col" class = "text-center">Purpose</th>
<th scope="col"></th>
<th scope="col"></th>
</tr>
</thead>
<tbody>
{/ for req in requestsi}
<tr>
<td class = "py-3 text-center">{{req.name}}</td>
<td class = "py-3 text-center">{{req.address}}</td>
<td class = "py-3 text-center">{{req.organization}}</
td>
<td class = "py-3 text-center">{{req.data}}</td>
<td class = "py-3 text-center">{{req.purpose}}</td>
<td class = "py-3 pl-5 text-center">
<a class="btn btn-success text-center border
border-dark" href="#" role="button" data-bs
-toggle="modal" data-bs-target="#grantModal
">Grant
</td>
<td class = "py-3 pl-5 text-center">
<a class="btn btn-danger text-center border
border-dark" href="#" role="button" data-bs
-toggle="modal" data-bs-target="#denyModal
">Deny
</ta>
</tr>
<!-- Request modal -->

<div class="modal fade" id="grantModal" tabindex="-1"
role="dialog" aria-labelledby="grantModalLabel"
aria-hidden="true">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<h5 class="modal-title" id="
grantModalLabel">Consent</h5>
<button type="button" class="btn-close"
data-bs-dismiss="modal" aria-label
="Close"></button>
</div>
<div class="modal-body">

<p> I hereby grant access to my
pharmacogenomic data to {{req.organization}}
for the research/clinical trial
"{{req.purpose}}"". I understand that my data
will be used in accordance with
all applicable privacy laws and
regulations, and will only be
accessed by authorized
individuals involved in my
healthcare.</p>

<p>I acknowledge that granting this
access is voluntary, and I have
been provided with sufficient
information about the purpose
and potential risks of sharing
my data. I understand that I
have the right to revoke this
access at any time.</p>

<p>By clicking the "Grant Access"
button below, I consent to the
above terms and conditions.</p>
<div class="modal-footer">

<form method="post" action="{J url ’
grant_access’ req.organization
req.data req.purpose %}">
{% csrf_token %}
<button type="button" class="btn
btn-danger" data-bs-dismiss
="modal">Cancel</button>
<button class="btn btn-success text
-center" type="submit">Grant
Access</button>

</form>
</div>
</div>
</div>
</div>
</div>
<div class="modal fade" id="denyModal" tabindex="-1"
role="dialog" aria-labelledby="denyModalLabel"
aria-hidden="true">
<div class="modal-dialog" role="document'">
<div class="modal-content">
<div class="modal-header">
<h5 class="modal-title" id:
">Deny Access</h5>
<button type="button" class="btn-close"
data-bs-dismiss="modal" aria-label
="Close"></button>
</div>
<div class="modal-body">

"denyModalLabel

<p> Are you sure you want to deny this
user?</p>
<div class="modal-footer">
<form method="post" action="{} url °’
deny_access’ req.organization
req.data req.purpose %}">
{% csrf_token %}
<button type="button" class="btn
btn-danger" data-bs-dismiss
="modal">No</button>
<button class="btn btn-success text
-center" type="submit">Yes</

button>
</form>
</div>
</div>
</div>
</div>

</div>

{% endfor %}

</tbody>
</table>
{lelsel}

<div class="row justify-content-end">
<div class="col text-center">
<h4>No requests at the moment</h4>
</div>
</div>
<hr class="my-5" />
{/endif%}

</div>
{% endblock content %}

View Data

{% extends ’index.html’ %}
{% block title %}View Data{’ endblock title %}
{% block content %}

<div class="container py-5 py-x1-5">
<hl class="text-center pb-4">View Data</h1>
<div class="row">
<div class="col-md-8 offset-md-2">
{/4if data %}
{/for d in datal}
<div class="row justify-content-end">
<div class="col">
<h5>{{d.address}}_{{d.drugid}}</h5>
<h7>Gene: {{ d.gene }}</
h7>
</div>
<div class="col">
<div class="d-flex justify-content-end">
<a class="btn btn-warning mx-5 border
border-dark" href="#" role="
button" data-bs-toggle="modal"
data-bs-target="#dataModal{{
forloop.counter }}">View Data

</div>

</div>
</div>
<hr class="my-5" />

<div class="modal fade" id="dataModal{{ forloop.
counter }}" tabindex="-1" aria-labelledby="

dataModalLabel{{ forloop.counter }}" aria-
hidden="true">
<div class="modal-dialog modal-dialog-
centered">
<div class="modal-content">
<div class="modal-header">
<h6 class="modal-title" id="
dataModalLabel{{ forloop.
counter }}">Data: {{ d.
address }}_{{ d.drugid }}</
hé>
<button type="button" class="btn-
close" data-bs-dismiss="
modal" aria-label="Close"></
button>
</div>
<div class="modal-body">
<p>Patient: {{d.
name}}</p>
<p>Address: {{d.
address}}</p>
<p>Gene: {{d.gene
I¥</p>
<p>Drug ID: {{d.
drugid}}</p>
<p>Interaction Score:</
strong> {{d.iscore}}</p>
<p>Annotations: {{
d.annot}}</p>
</div>
<div class="modal-footer">
<button type="button" class="btn
btn-secondary" data-bs-
dismiss="modal">Close</
button>
</div>
</div>
</div>
</div>

{% endfor %}
<h8>Click the button below to download the accessed
data as a PDF:</h8>

<a href="{J, url ’download_data’ %}" download class="
btn btn-primary my-2">Download Data
{lhelsel}
<div class="row justify-content-end">
<div class="col">
<h3>No patient data to view</h3>
</div>
</div>
<hr class="my-5" />
{/iendif}

</div>
</div>
</div>

{% endblock content %}

Manage Access

{% extends ’index.html’ %}
{% block title %}Manage Access{/ endblock title %}
{% block content %}
<div class = "container-xl px-1 pt-4">
<hl class="text-center pb-4">Manage Access</h1>
<table id =’booking-table’ class="table ">

<thead>
<tr>
<th scope="col" class = "text-center">0rganization</
th>
<th scope="col" class = "text-center">Data</th>
<th scope="col" class = "text-center">Purpose</th>

<th scope="col"></th>
<th scope="col"></th>

</tr>
</thead>
<tbody>
{) for req in requesters¥}
<tr>
<td class = "py-3 text-center">{{req.organization}}</
td>
<td class = "py-3 text-center">{{req.data}}</td>
<td class = "py-3 text-center">{{req.purpose}}</td>
<td class "py-3 text-center">
<a class="btn btn-primary text-center border
border-dark" href="#" role="button" data-bs
-toggle="modal" data-bs-target="#
viewrequesters">View Users

</td>

</td>
<td class = "py-3 pl-1 text-center">

52

<a class="btn btn-danger text-center border
border-dark" href="#" role="button" data-bs
-toggle="modal" data-bs-target="#
revokeModal">Revoke

"modal fade" id="revokeModal" tabindex="-1"
role="dialog" aria-labelledby="revokeModalLabel"
aria-hidden="true">

<div class="modal-dialog" role="document">

<div class="modal-content">
<div class="modal-header">

<h5 class="modal-title" id="

revokeModalLabel">Revoke Access</h5
>

<button type="button" class="btn-close"

data-bs-dismiss="modal" aria-label
="Close"></button>

</div>

<div class="modal-body">

<p> Are you sure you want to revoke
access for this data?</p>
<div class="modal-footer">
<form method="post" action="{} url °’
revoke_access’ req.organization
req.data req.purpose %}">
{/% csrf_token %}
<button type="button" class="btn
btn-danger" data-bs-dismiss
="modal">No</button>
<button class="btn btn-success text
-center" type="submit">Yes</
button>
</form>
</div>
</div>
</div>
</div>
</div>

<div class="modal fade" id="viewrequesters" tab-index
="-1">
<div class="modal-dialog modal-dialog-centered modal-
dialog-scrollable">
<div class="modal-content">
<div class="modal-header">
<h5>Users who have access under {{req.
organization}}</h5>
<button type="button" class="btn btn-close"
data-bs-dismiss="modal"></button>
</div>
<div class="modal-body">
{) for user in req.requesters %}
<p>{{user}}</p>
{/endfory}
</div>
<div class="modal-footer">
<button type="button" class="btn btn-
secondary" data-bs-dismiss="modal"><i
class="fa-solid fa-x"></i> Exit</button
>
</div>
</div>
</div>
</div>
{/, endfor %}

</tbody>
</table>

</div>
{% endblock content %}

View Transactions

<div class="row mx-5 mx-5">
<div class="col">
<label for="patient_address">Patient Address:</
label>
<select class="form-select" name="patient_address
" aria-label="Default select example">
<option value = "None" selected disabled
hidden>----------- </option>
{%for patient in patients %}
<option value="{{patient}}">{{patient}}</
option>
{’endfor%}
</select>
</div>

<div class="col">
<label for="access_level">Access Level:</label>
<select class="form-select" name="access_level"
aria-label="Default select example">
<option value = "None" selected disabled
hidden>- -</option>
{%for a in access %}
<option value="{{a}}">{{a}}</option>
{%endfory}
</select>
</div>
</div>
<div class = "row-3 mx-3">
<button class="btn btn-success text-center mx-5 my-2
" type="submit">Filter</button>

</div>
</form>
<div class = "table-responsive mb-4">
<table id =’tx_table’ class="table ">
<thead>
<tr>
<th scope="col" class = "text-center">Txid</th>
<th scope="col" class = "text-center">Patient
Address</th>
<th scope="col" class = "text-center">
Organization</th>
<th scope="col" class = "text-center">Data</th>
<th scope="col" class = "text-center">Purpose</th
>
<th scope="col" class = "text-center">Access</th>
<th scope="col" class = "text-center">Timestamp</
th>
</tr>
</thead>
<tbody>
{% for tx in transactions%}
<tr>
<td class = "py-3 px-3 text-center">{{tx.txid}}</
td>
<td class = "py-3 px-3 text-center">{{tx.
patient_address}}</td>
<td class = "py-3 px-3 text-center">{{tx.org}}</
td>
<td class = "py-3 px-3 text-center">{{tx.dataid
}r</ta>
<td class = "py-3 px-3 text-center">{{tx.purpose
}¥</ta>
<td class = "py-3 px-3 text-center">{{tx.
access_level}}</td>
<td class = "py-3 px-3 text-center">{{tx.
timestamp}}</td>
</tr>
{% endfor %}
</tbody>
</table>
</div>
{lelsel}

<div class="row justify-content-end">
<div class="col">

/| I . Y . .
{% extends ’index.html’ %} <h3>No transactions to view</h3>

{% block title %}Transaction View{) endblock title %} ‘</diV>
{/% block content %} </div>

{%endif%}
<div class = "container-xl pt-5 mx-auto"> </div>

<hl class="text-center pb-4">Transaction View</h1> {% endblock content %}
{/ if transactions %}

<form method="get" action="{}, url ’view_trans’ %}">

33

XI. Acknowledgment

I would like to express my deepest gratitude to the Lord for His unwavering guid-
ance and blessings throughout this journey.

I am incredibly thankful to my family for their endless love, support, and
encouragement. Their patience and understanding during long hours of work and
dedication to this project are deeply appreciated.

I would like to extend my heartfelt appreciation to my girlfriend for her unwa-
vering support, understanding, and encouragement. Her love, patience, and belief
in me have been a constant source of inspiration.

I am also grateful to my friends for keeping me sane during dark times, and
helping me laugh and be positive when things seem to not work out.

Lastly, I would like to extend my appreciation to all the individuals, mentors,
and colleagues who have provided guidance, assistance, and valuable insights dur-
ing the development of this project. Your expertise and constructive feedback

have immensely contributed to this project.

54

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Pharmacogenomics
	Challenges in Pharmacogenomics

	Blockchain
	Data Repository, Data Sharing, and Access Control Using Blockchain
	Application of Blockchain on Pharmacogenomic Data

	Synthesis

	Theoretical Framework
	Pharmacogenomics
	Genetic Polymorphism

	Blockchain
	Workflow
	Architecture
	Blocks
	Blockchain Categorization

	MultiChain
	Smart Filters
	Stream

	Design and Implementation
	Use-case Diagram
	Data Storage
	Access Control
	System Architecture
	Technical Architecture

	Results
	Discussions
	Conclusions
	Recommendations
	References
	Bibliography
	Appendix
	Source Code
	Django Files
	Templates

	Acknowledgment

