
University of the Philippines Manila

College of Arts and Sciences

Department of Physical Sciences and Mathematics

Privacy-Preserving Viral Strain Classification

Through a Client-Server Application Using An

Open-Source Fully Homomorphic Encryption

Library

A special problem in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Johann Benjamin P. Vivas

June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser No

Available only to those bound by confidentiality agreement No

2

ACCEPTANCE SHEET

The Special Problem entitled “Privacy-Preserving Viral Strain Classifi-
cation Through a Client-Server Application Using An Open-Source Fully Homomor-
phic Encryption Library” prepared and submitted by Johann Benjamin P. Vivas in
partial fulfillment of the requirements for the degree of Bachelor of Science in Com-
puter Science has been examined and is recommended for acceptance.

Richard Bryann L. Chua, M.Sc.
Adviser

EXAMINERS:
Approved Disapproved

1. Avegail D. Carpio, M.Sc.
2. Perlita E. Gasmen, M.Sc. (cand.)
3. Ma. Sheila A. Magboo, Ph.D. (cand.)
4. Vincent Peter C. Magboo, M.D.
5. Marbert John C. Marasigan, M.Sc. (cand.)
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.

Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences

Department of Physical Sciences and Mathematics
and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean

College of Arts and Sciences

i

Abstract

ML techniques and outsourcing are being increasingly used by researchers in their

efforts to look into and better understand SARS-CoV-2 and combat the spread of

the virus. However, this brings about privacy issues that surround the sharing of,

and training of ML models on, SARS-CoV-2 genomic sequences and contextual data,

potentially leading to the reidentification of the owners of such genomic data. Thus,

there is a need to develop methods of protecting patients’ privacy, all while allowing

researchers and medical professionals to continue the use of ML techniques and out-

sourcing to make better informed medical decisions and take more effective actions

against the spread of the virus. To that end, this paper proposes a fully homomorphic

encryption-based viral classification framework and logistic regression model based on

Concrete-ML, a fully open-source FHE ML library.

Keywords: Fully Homomorphic Encryption, Viral Strain Classification, Machine Learning,

Security, Privacy, Genomic Data

Contents

Acceptance Sheet i

Abstract ii

List of Figures vi

List of Tables vii

I. Introduction 1

A. Background of the Study . 1

B. Statement of the Problem . 4

C. Objectives of the Study . 6

D. Significance of the Project . 7

E. Scope and Limitations . 7

F. Assumptions . 8

II. Review of Related Literature 9

A. Machine Learning and its use in Viral Strain Classification 9

B. Privacy concerns with Machine Learning in the Medical Domain . 11

C. Fully Homomorphic Encryption 12

D. FHE libraries and the Concrete-ML FHE ML library 12

E. Applications of FHE . 13

III. Theoretical Framework 16

A. Developments of FHE . 16

B. FHE Across the Generations . 17

C. The Concrete-ML FHE ML Library 18

D. Concrete-ML Workflow . 18

E. Viral Strain Classification Workflow 21

iii

F. The Dashing Preprocessing Tool 22

G. Logistic Regression . 23

IV. Design and Implementation 25

A. Threat Model . 25

B. Dataset . 25

C. Input File Structure . 26

D. Preprocessing Techniques and Tools 27

E. Feature Selection Algorithm . 30

F. Implementation of Classification 31

G. System Architecture . 31

H. Technical Architecture . 36

V. Results 37

A. ConcreteML Performance . 37

A..1 Test Machine Specifications and Details 37

A..2 Training Workflow . 37

A..3 Models Trained . 38

A..4 Comparison of Logistic Regression with other ML Algorithms 39

A..5 Model Accuracy . 40

B. Client-Server Classification System 42

VI. Discussions 47

A. Accuracy . 47

B. Error Analysis . 50

C. Model Training and Classification Speed 54

D. Key and Ciphertext Size Comparison 57

E. Issues Encountered in Development 59

F. System Assessment . 59

iv

VII. Conclusions 62

VIII. Recommendations 63

IX. Bibliography 64

X. Appendix 75

A. Source Code . 75

XI. Acknowledgment 89

v

List of Figures

1 Summary of the overall communications protocol for deploying ma-

chine learning services [1]. 20

2 The preprocessed dataset as displayed via Microsoft Excel 30

3 The client-server architecture. 33

4 Detailed workflow of the client-server system. 34

5 The Client GUI application after starting up. 43

6 The Client GUI application’s file selection interface. 44

7 The Client GUI application’s output window showing prediction results. 45

8 The server-side web application developed in Django. 46

9 The confusion matrix for the scikit-learn (Plaintext) model 48

10 The confusion matrix for the Concrete-ML (Quantized Plaintext) model 48

11 The confusion matrix for the Concrete-ML (FHE) model 49

12 Confusion matrices of the three models for error analysis run 1 51

13 Confusion matrices of the three models for error analysis run 2 52

14 Confusion matrices of the three models for error analysis run 3 53

vi

List of Tables

1 Number of samples per lineage used in the main dataset. 26

2 System specifications for the test machine used to gather model per-

formance data . 37

3 Accuracy comparison between different algorithms for both scikit-learn

and Concrete-ML, averaged over 10 runs 40

4 Model performance in terms of accuracy and AUROC score (One vs

Rest) . 47

5 Average loss of performance of FHE classification compared to scikit-

learn for both standard accuracy and AUROC score 47

6 Average training time for each model, with respective time increase . 54

7 Average model prediction time on the entire test set and per sample . 55

8 Summarized model slowdowns in terms of running time for prediction

and training . 55

9 Average of FHE model compilation time 56

10 FHE eval key size and private key size comparison vs RSA private key

of similar security level . 57

11 Ciphertext size comparison between Concrete-ML’s FHE encryption

and standard RSA encryption using a 3072-bit key 58

vii

I. Introduction

A. Background of the Study

In recent years, the issue of data privacy has become one of the most talked-about

topics in multiple domains. Among these are the legal, technological, medical, and

financial domains, where it is often mentioned how a dangerous situation may arise

from leaked financial, medical, legal, or personal data, and how practicing data privacy

is paramount to avoid such situations. [2, 3] Even with efforts including acts such

as the General Data Protection Regulation in the European Union and European

Economic Area [4], and the Data Privacy Act of 2012 in the Philippines [5], there are

many issues and concerns that remain unresolved.

These pressing issues include the privacy concerns with sharing viral genomic se-

quencing data, as discussed by Song et al [6]. In their work, they brought attention to

the nuances in this matter, acknowledging that the sharing of viral genomic sequenc-

ing data, in light of recent developments in the COVID-19 pandemic, is tantamount

to properly informing regional, national, and international public health responses.

It was also important to the development and improvement of clinical therapies and

vaccines and allowing researchers, scientists, and experts to better understand the

SARS-CoV-2 virus. They also maintain that while the sharing of SARS-CoV-2 viral

genomic sequences alone is extremely unlikely to lead to the re-identification of the

data’ owners due to the SARS-CoV-2 virus’s short mutation rate and even shorter

serial interval, some minimal contextual data is required to properly assess and pro-

cess the data itself. These contextual data fields can take the form of the gender, age,

province/territory, or a combination of these factors, or can also take other forms,

depending on what would bring the most value to the data while minimizing privacy

risks.

Further, Song et al. mention that, in most situations, the inclusion of such con-

1

textual data fields in association with the sequencing data is not contradictory to

privacy laws. The authors do, however, note that extra care should be taken to eval-

uate whether the inclusion of these contextual data fields with viral sequence data

would disproportionately increase the risk of re-identification, and thus the risk to

privacy on the whole. They explained that this can happen due to the sensitivity of

the data in relation to factors such as the population pool and confirmed cases in the

specific province. Following this, some particular examples in which certain contex-

tual data fields disproportionately increased the risk of re-identification were brought

up by the authors, beginning by mentioning the Gordon v. Canada 2008 federal court

case, in which the data field of “province” or “territory” can create a disproportionate

risk of re-identification in provinces and territories with a smaller population [7, 8].

Song et al. next discussed the potential re-identification risks of providing data fields

similar to “collection agency”, which they noted is not uncommonly the name of a

local hospital that could provide more detailed geographical information, increasing

re-identification risk.

Next, the gender and age data fields were mentioned and described as potentially

disproportionately increasing the risk of re-identification when paired with other con-

textual data, as also discussed by [9, 10, 11]. The amount that the re-identification

risk increases varies widely depending on the age bracket in question, as the very

elderly or very young individuals may in some cases make up a significantly smaller

fraction of a particular population, and should be considered more risk-prone as a

result. In such cases, special mitigating measures should be taken to reduce the risks

of re-identification, and the authors also recommend the periodic monitoring of re-

identification risk to account for the increased efficiency of diagnostic methods and

other relevant developments that could potentially increase privacy risks.

Adding to the points already raised are the recent events concerning SARS-CoV-

2 sequences and metagenomics data from China that was uploaded to the GISAID

2

database, which were associated with samples dated January 2020 from the Huanan

Seafood Wholesale Market in Wuhan, China [12]. Various sources including the World

Health Organization and Ars Technica report that analyses of these data suggest

that apart from SARS-CoV-2 sequences, some samples also contained human DNA,

as well as mitochondrial DNA of several animal species, including some that are

known to be susceptible to SARS-CoV-2 [13, 14, 15]. This development raises the

concern that SARS-CoV-2 sequences hosted on public databases such as GISAID may

contain trace amounts of human DNA, which is corroborated by the work of Lehrer

& Rheinstein [16] and Li et al. [17]. These studies discuss that many SARS-CoV-2

human samples do contain trace amounts of human DNA and RNA, which has the

potential to increase the risk of reidentification, especially when considered in tandem

with the privacy risks that even minimal contextual data fields associated with the

sequences pose and further warrants research into ways to reduce the likelihood of

reidentification associated with sharing SARS-CoV-2 sequences and contextual data.

Further, the events previously discussed have also affected GISAID’s credibility,

and have caused the repository to come under scrutiny in light of other shortcomings

with regard to data sharing limitations and the manner in which GISAID handles

disputes of credit and sanctions scientists who have allegedly violated the terms and

conditions of the repository [18]. This has led to a growth in sentiment for fully

open-access data sharing, as evidenced by an open letter published by a group of

scientists urging other researchers to publish their datasets on open-access databases

[19]. However, publishing datasets, particularly those as timely as SARS-COV-2

sequence datasets, on open-access databases poses a risk of the data being ’scooped’,

a practice in other scientists publish studies using the dataset first instead of the

original authors and creators of the dataset. This prevents the timely sharing of

potentially crucial data.

From the works of the aforementioned authors and the developments that have

3

transpired in recent years, it can be clearly seen that there is a need for low-risk,

privacy-preserving viral genomic data that will allow researchers and experts to im-

prove their understanding of COVID-19, as well as other viral diseases, as well as share

their findings and genomic data with other researchers to allow for faster and more

successful strides towards better medical responses and healthcare. One potential

solution to this is the use of Homomorphic Encryption, which, as defined by various

sources, is a relatively new form of encryption technology that allows operations such

as addition and multiplication to be performed on encrypted data without the need

for decryption beforehand. Virtually any algorithm can be computed and performed

on encrypted numbers with the two available operations, and this can even include

the analysis and classification of encrypted biomedical data, such as DNA sequences

[20, 21, 22]

B. Statement of the Problem

The sharing of viral sequence data along with some of its contextual data is vital to the

analysis and surveillance of the SARS-CoV-2 pandemic through various processes such

as viral sequence classification. That being said, while Song et al [6] explain that viral

sequence data alone does not substantially increase the risk of reidentification of an

individual due SARS-CoV-2’s mutation rate and serial interval, these characteristics

can lead to the identification of groups of individuals. To elaborate, SARS-CoV-2’s

serial interval, the interval between the onset of symptoms in an infector (individual

that transmits the virus) and the infectee (individual infected by the virus from the

infector), is shorter than its rate of mutation. This means that multiple infector-

infectee pairs can share the same viral sequence and that single individuals cannot

be identified by any particular strain. However, entire groups of individuals can be

identified by these same characteristics. Given this, the identification of groups of

individuals can still raise ethical concerns as it could possibly lead to ostracization

4

or discrimination due to the social stigma that being diagnosed with SARS-CoV-2

carries.

What this means is that viral strain classification, along with other methods to

study, classify and protect against SARS-CoV-2 strains based on patients’ viral se-

quence data is potentially at odds with legal and ethical boundaries regarding the

patients’ rights to data privacy and protection, and thus poses a risk of endangering

the data’s owner. In the context of the privacy concerns regarding the sharing of vi-

ral sequencing data and the use of viral strain classification, the use of Homomorphic

Encryption instead addresses the problem from the angle of improving the privacy-

preserving properties of our methods as opposed to adjusting the data to meet our

needs. This was explored in one of the challenges put forward in the 2021 IDASH

Privacy & Security Workshop [23]. The workshop had brought attention to the issue

and contributed to the development of various models that were able to successfully

preserve the privacy of the patients who owned the viral sequence data by allowing

viral strain classification to be performed on encrypted data without prior decryption,

thereby significantly reducing the risk of re-identification.

While the results of the iDASH competition were reassuring in that viral strain

classification was shown to be a practical task, as the performance of most of the

models in performing privacy-preserving viral strain classification was impressive,

there were still some optimization issues that led to large variability in the time cost

of the classification of the sequences. It also brings attention to the potential of FHE

in viral strain classification, while also encouraging many others to explore the use of

other publicly available methods to implement solutions to the privacy concerns that

plague the sharing and classification of viral sequencing data.

Thus, at the core of this dilemma lies the following questions: “How well does an

open-source FHE library lend itself towards the implementation of practical privacy-

preserving viral strain classification?”, and “What is the most appropriate machine

5

learning method for viral strain classification that can be implemented in FHE?”

This study aims to answer these questions through the discussion and use of

existing FHE libraries with features that lend themselves to machine learning imple-

mentations.

C. Objectives of the Study

The objective of this study was to develop an application that allows researchers and

service providers to perform the homomorphic computations required to conduct viral

strain classification on data that is provided by clients on the client version of the

application, effectively ensuring data is encrypted during the entire servicing process.

The study resulted in the creation of an application with a client-server model. Here,

the client represents a hospital, clinic, or other medical institution that would require

the use of ML services to provide better diagnoses and treatment for viral diseases

and would need to outsource such tasks to ML service providers. Likewise, the server

represents an ML service provider.

The model developed sported the following functionalities:

Allow the hospital (client) to:

1. Encrypt and upload their preprocessed viral strain data

2. Send their encrypted data to the ML service provider for classification

3. Receive and decrypt the results of the classification

Provide the ML service provider (server) with the following capabilities:

1. Receive the encrypted viral strain data from the hospital

2. Perform homomorphic viral strain classification via Logistic Regression

3. Send the results of the homomorphic classification to the hospital

6

D. Significance of the Project

The exploration and implementation of a privacy-preserving viral strain classification

application are of great benefit to various medical fields, as through it, clients, such

as medical professionals and researchers, are better equipped to study viral strain

sequences without the risk of violating privacy standards, potentially allowing them to

develop and/or roll out appropriate treatment and medical initiatives more effectively.

Patients would also benefit greatly from the implementation of this application as

well. The use of FHE to encrypt their data significantly reduces the chances of their

viral sequence data being used to re-identify them.

E. Scope and Limitations

For this study, the author worked primarily with the existing FHE library Concrete-

ML. Concrete-ML was chosen for the implementation of the application in this study

due to its propensity for being used in Machine Learning or Deep Learning mod-

els and applications, by virtue of its various built-in ML models that can be easily

compiled from its plaintext version into a corresponding FHE version of the model.

These models are also compatible with Scikit-learn modules, processes, and work-

flows. Concrete-ML is also implemented in Python, allowing for easier programming

due to the high-level nature of the language. One major advantage that Concrete-ML

boasts is that it also supports tree-based classification models in FHE, which meant

that the implementation of such was significantly easier than first envisioned as there

are no known general conditional statements in FHE at the time of writing, which is

important in the creating of tree-based classifiers from scratch.

As Concrete-ML compiles their plaintext models into equivalent FHE circuits

through Concrete’s FHE compiler to produce an equivalent FHE circuit, which is

performed under the hood. Additionally, Concrete-ML’s FHE compiler makes use

of the TFHE scheme only, and adjustments, such as the quantization of non-integer

7

inputs, are required. Concrete-ML’s FHE engine also does not support data batching,

so loops are required for the implementation of ML through Concrete-ML.

The application was built primarily for the Windows operating system due to the

ease of use and large user base of the system. However, due to operating system

limitations for tools considered essential to the study such as Dashing, the Windows

Subsystem for Linux was used for functions and tools that did not support Windows,

such as Dashing.

This setup allows future studies to reproduce and improve upon this study with

more ease, allowing future researchers to focus their efforts on more important aspects.

F. Assumptions

1. The client in the model will provide valid viral strain sequences in FASTA

format, which is ideally preprocessed using techniques such as Dashing [24], as

performed by the A*FHE team, who were behind the CoVnita framework [25].

8

II. Review of Related Literature

A. Machine Learning and its use in Viral Strain Classifica-

tion

In recent years, Machine Learning has often been used in the diagnosis of viral dis-

eases with the long-term goal of preventing their spread. One such instance of the use

of ML can be seen in Remita et al’s work [26], where in the course of the study, the

group developed a virus classification platform, dubbed CASTOR, which simulates,

in silico, the restriction digestion of genomic material by different enzymes into frag-

ments. Remita et al. explored and incorporated various machine learning algorithms,

each of which fell under one of three types: symbolic methods, characterized by deci-

sion trees and random forests, statistical methods, such as the naive Bayes classifier

and support vector machine, and k-nearest neighbors, and ensemble methods, under

which Adaboost and Bagging fell. The performance of the platform was benchmarked

for the classification of distinct datasets of human papillomaviruses (HPV), hepatitis

B viruses (HBV), and human immunodeficiency viruses type 1 (HIV-1). The classi-

fication results ended with the authors noting that, in general, SVM had performed

better in four of the five datasets utilized with the mean of weighted F −measures

higher than 0.906, ranking first in HPV Alpha species, HBV genotypes and HIV-1

subtypes classifications, and fourth in HPV genera classification. SVM is followed by

Random Forest, Naive Bayes Classifier, and K-Nearest Neighbors in terms of perfor-

mance, though Remita et al. note that the Random Forest and Naive Bayes classifiers

are affected by large variances.

Kim et al. [27] also achieved the successful classification of porcine reproductive

and respiratory syndrome virus (PRRSV) sublineages, while also detecting key amino

acid positions. The authors achieved this by implementing four ML approaches based

on the amino acid scores of the ORF5 gene. The approaches implemented were ran-

9

dom forest, support vector machine, k-nearest neighbors, and multilayer perceptron.

Kim et al. also performed experiments to see how the number of amino acid sequences

affected the performance and time consumption of the ML algorithms. The results

of their study revealed that all four ML approaches tested for the classification of

PRRSV sublineages had been able to perform accurate classification of the sublin-

eages (all algorithms having an AUC of 0.98 and above) when using at least 2 amino

acid positions: the two amino acid positions with the highest RF scores. When only

one amino acid sequence (with the highest RF importance score) was used, the ac-

curacy had dropped down to around 80% for all algorithms. The results also showed

that the accuracy for all four ML algorithms in classifying the PPRSV sublineages

were identical.

Other studies, such as those by Lopez et al. [28] and Câmara et al. [29], focused

on the classification of Sars-CoV-2 viral strains, with both studies choosing to utilize

deep learning in the form of convolutional neural networks, or CNNs, to facilitate their

operations. To elaborate on this, in their study, Lopez et al. trained a convolutional

neural network on 553 sequences from the National Genomics Data Center (NGDC)

repository, resulting in a classifier capable of separating the genome of different virus

strains from the Coronavirus family with 98.73% accuracy. Câmara et al. worked

with 1557 instances of SARS-CoV-2 from the National Center for Biotechnology In-

formation (NCBI), and 14,684 different viruses from the Virus-Host DB. Further, as

their CNN was highly customizable with several changeable parameters, the tests

were performed on forty-eight different architectures with the best of these having an

accuracy of 91.94 ± 2.62% in classifying viruses into their realms correctly.

10

B. Privacy concerns with Machine Learning in the Medical

Domain

It cannot be understated how much of an impact these studies, along with many

others, have collectively had on the medical and computer science domains. These

studies have allowed medical professionals and health informatics experts to identify

and either prevent the spread or treat those who have been diagnosed with viral

diseases. However, these methods have also had concerns of various natures raised

against them, which Char et al. [30, 31] illustrate in their work, discussing concerns

such as those that ML algorithms may mirror human biases in decision-making, as

well as concerns about the intent behind the design of machine-learning systems, as

algorithms can be designed to perform in unethical ways. Despite this, they acknowl-

edge that the incorporation of machine learning into clinical medicine holds much

promise as ML is capable of improving the overall quality and speed of healthcare de-

livery and can serve as a foundation on which several initiatives and projects headed

by public and private companies can be built. Lastly, Char et al. reiterate that the

consideration of ethical issues and problems inherent in the implementation and use

of machine learning in healthcare systems is also warranted [30, 31].

The main issue being addressed in this study, however, is the issue of data privacy,

integrity, and overall protection from potential bad actors. In recent years, as machine

learning methods and techniques have become more complex and resource-intensive,

researchers and companies have turned to the use of cloud computing to achieve the

results they need in a cheaper and more cost-effective manner. With that, when a

machine learning model is trained or classified in a cloud environment, the server itself

obtains data from the user side. Given this, the privacy of the data then depends

on the service provider, and thus it could be very easy for malicious acquisition

and utilization of data to occur [32, 33]. As can be seen from the issues previously

discussed by [6, 31, 30, 32, 33], there is a need for methods to address the concerns

11

of privacy and data security.

C. Fully Homomorphic Encryption

While there have been several methods of achieving data privacy and anonymization

in the past, as evidenced by [34], one such approach has been touted by several as

the “holy grail” of cryptography: Homomorphic Encryption, and in particular, Fully

Homomorphic Encryption. Homomorphic encryption (HE), as described by numerous

works [33, 35, 36, 32], can be described as a relatively new form of technology that

allows data to be encrypted and for complex operations to be performed on it without

having to decrypt that data in the process. Several different types of HE have been

developed over time, including, but not limited to, partially homomorphic encryption

(PHE) which originally only had support for either additional homomorphism or

multiplicative homomorphism, meaning that only one of the two operations between

encrypted data could be achieved to the intended effect, and fully homomorphic

encryption (FHE), which fully realized the concept by allowing both addition and

multiplication operations to be performed on encrypted datasets, as any arbitrary

function could theoretically be implemented with these two operations.

D. FHE libraries and the Concrete-ML FHE ML library

There have been several advances in HE since its original conception by Rivest et al.

[37]. All of these advances have culminated in today’s FHE libraries, all implemented

in various languages, with some implemented in relatively low-level languages like

C++ and others in higher-level languages like Python. Some examples of these

libraries are Microsoft SEAL, OpenFHE, TenSEAL, Concrete-ML, HElayers, and

Pyfhel [38, 39, 35, 40, 41, 36].

While some of these libraries have seen use in different applications and studies

which involve machine learning with data that is considered sensitive, such as Mi-

12

crosoft SEAL and HElayers, which were utilized by two of the top three contenders

of the iDASH 2021 competition [42, 33, 25], Concrete-ML stands out from other FHE

libraries for its specialization in incorporating FHE into its built-in ML models that

are based on, and are compatible with, Scikit-learn processes and workflows. It also

has the edge over other libraries in that, aside from already having pre-built ML

algorithms, there are built-in algorithms for tree-based models, which are difficult to

implement in FHE due to lacking general homomorphic conditional statements for

comparison purposes. Concrete-ML was also implemented in Python, which lends

to the user-friendliness of the library due to high-level abstractions and interfaces.

Additionally, much of the parameter setting in Concrete-ML is handled by its native

FHE compiler. All these traits make Concrete-ML a very accessible and relatively

easy-to-implement-and-improve FHE ML library and are the reason for the author’s

choice to utilize this particular library for this study.

E. Applications of FHE

Applications that implement FHE in some of their features have also been imple-

mented and even rolled out. These include works that involve privacy-preserving

genome-wide association studies [22, 43], genotype imputation [44, 27, 44], and feder-

ated analytics [45]. One other noteworthy implementation of FHE [46] had introduced

the Password Monitor feature to Microsoft Edge, which allowed Microsoft to mon-

itor and alert users if their password had been found in a third-party breach. The

password monitor features homomorphic encryption, allowing it to avoid learning the

passwords of the user while monitoring its status.

It eventually came to be implemented in different domains that deal with very

sensitive data. Machine Learning applications that implement FHE methods have

been created and shared with the community, setting a precedent for the use of

privacy-preserving encryption methods that allow for the processing of sensitive data

13

without putting the owners of the data at risk [26, 32]. In direct relation is the creation

and publication of various privacy-preserving viral strain classification applications

as part of the iDASH 2021 competition [42, 33]. The results of the competition serve

as a great example of the use of FHE to improve the state of Machine Learning

and its use in the delivery of healthcare services, all while preserving the privacy of

patient data. At the time of writing, there are two solutions from the competition

that have received publications in websites and journals, or are currently being peer-

reviewed: IBM’s HElayers-based Privacy-Preserving Viral Strain Classification based

on k-mer signatures and FHE [47, 33, 48, 49], and I2R’s A*FHE-2 Team’s End-to-end

Privacy-preserving SARS-CoV-2 Classification Framework entitled CoVnita [25].

Akavia et al.’s work focused on the implementation of a client-server protocol

through the Microsoft SEAL and HElayers libraries, wherein the model owner would

provide viral strain classification services on encrypted data, which is uploaded by

the DNA-Sequence owner. To elaborate, the process would begin with the client

computing their DNA-Sequence’s k-mer set. Next, the client would encrypt this

set through FHE using any FHE scheme that supports the encryption of complex

numbers, and send it to the server. Lastly, the actual classification is performed

based on the k-mer sets derived from the DNA sequences, and the Jaccard similarity

between a particular strain in the data and various sequences representative of each of

the different Sars-CoV-2 viral strains. Once Jaccard similarity scores were successfully

computed for the k-mer sets and normalized, the strain with the highest similarity

score is chosen to be the classification of that particular strain, and classification would

continue until the process was completed. On the other hand, A*FHE-2’s solution was

CoVnita, an end-to-end privacy-preserving framework for SARS-COV-2 classification.

They implemented this framework, resulting in a viral strain classification model that

used a logistic regression algorithm and was built on a federated learning approach,

wherein various data providers train their own local models using their own data, after

14

which a joint global model that does not require data providers to share their genomic

samples, is trained. The model’s FHE capabilities were powered by Microsoft SEAL.

A*FHE also noted that they had chosen logistic regression as they felt that it is an

appropriate machine learning model for the purpose of minimizing data exposure, as,

unlike machine learning models like k nearest neighbors, which will expose all the

individual data values, logistic regression restricts the sharing of information and also

prevents the exposure of individual data values. It should also be noted that both

publicly documented solutions had placed in the top three for the iDASH competition,

and both used open-source libraries which were implemented in an ML context. Thus,

this study aims to investigate whether practical privacy-preserving classification can

be achieved with other open-source libraries, particularly those more specialized for

applications in ML such as Concrete-ML.

15

III. Theoretical Framework

As Creeger and Cornami Inc. [50] put it, Homomorphic Encryption, in particular,

Fully Homomorphic Encryption, aka FHE, are new and burgeoning technologies that

have the potential to provide quantum-secure computing over encrypted data. FHE

guarantees that the plaintext data and the results derived from its analysis, decom-

position, computation, or other forms of processing, are kept secure from breach even

with compromised infrastructures or models. Most of the FHE schemes today are

based on lattice mathematics [51], and are considered safe from breaches via quan-

tum computing, and to that end, are considered post-quantum cryptography.

A. Developments of FHE

The original concept of Homomorphic Encryption began to form in 1978 when Rivest

et al. [52] recognized it and addressed homomorphic behavior in their study. They

showed that when two RSA (Rivest-Shamir-Adleman) encrypted numbers are added

together, their result, when decrypted, is equivalent to the result of the same operation

if done on the unencrypted numbers [37]. This is called privacy homomorphism and is

present in certain encryption schemes. By leveraging these properties, the separation

of data processing and data access can be achieved, encrypted queries could be made

possible, and data involved in such operations were never decrypted, at rest or during

its life cycle. More than 30 years later in 2009, Craig Gentry [53] proposed the very

first FHE scheme. Gentry defined the algorithms of the scheme as a series of logic

gates, and unrestricted computation was possible with the scheme, and the results of

computation with encrypted numbers were encrypted in much the same way. While

Gentry’s FHE scheme was extremely slow, taking half an hour to finish a single logic

gate on available standard x86 hardware at the time as evidenced by the results of

its implementation [54], it helped kickstart the development of other FHE schemes,

16

which can be divided into four distinct generations:

B. FHE Across the Generations

The first generation of FHE can be characterized by the release of Gentry’s FHE

scheme. Gentry’s publication paved the way for the further development of funda-

mental concepts in FHE, such as the introduction of noise to a public key by DGHV

[55]. DGHV developed an encryption scheme that allowed homomorphic operations

over integers, which they used to replace the SHE portion of Gentry’s originally con-

ceived scheme. The second generation of developments in FHE followed, defined

by the development of the BFV (Brakerski/Fan-Vercauteren) and BGV (Brakerski-

Gentry-Vaikuntanathan) schemes [50]. These schemes introduced the LWE (Learn-

ing With Error) and RLWE (Ring Learning With Error) security models, as well

as leveling schemes that allowed for the execution of a logic-gate circuit of a cer-

tain set depth before requiring a bootstrap to manage the noise level. Meanwhile,

the most noteworthy events that formed the third generation of FHE developments

included the introduction of the GSW (Gentry-Sahai-Waters) homomorphic encryp-

tion scheme, which avoided relinearization, which was considered computationally

expensive, when performing homomorphic multiplication. Due to this, the scheme

exhibited slower noise growth. The development of more efficient ring variants with

FHEW (Ducas-Micciancio — “Fastest Homomorphic Encryption in the West”), as

well as the simplification and increased optimization of bootstrapping, were also ob-

served in this generation. Lastly, the fourth generation brought the CKKS (Cheon-

Kim-Kim-Song) scheme, which introduced efficient rounding operations for encrypted

values, controlling noise rate increases in HE multiplication and reducing the number

of bootstraps required in a logic circuit. The generation also brought the concept of

PBS (programmable bootstrapping) to TFHE (torus fully homomorphic encryption)

[56], reducing the number of bootstraps required in a logic circuit.

17

C. The Concrete-ML FHE ML Library

We utilized the open-source FHE ML library Concrete-ML for its specialization in

machine learning and deep learning, and execution of ML/DL algorithms in FHE,

as well as its implementation in Python, allowing easier programming thanks to its

high-level nature and abstractions. It is also compatible with Scikit-learn modules and

workflows, and has built-in support for implementation in client-server architectures.

Concrete-ML also features supports a variety of regression and classification models

that can be compiled to FHE equivalents. These supported models are categorized

into linear models, tree-based models, and neural networks for deep learning.

For linear models, Concrete-ML supports linear regression, logistic regression,

linear SVC, linear SVR, Poisson regressor, Tweedie regressor, gamma regressor, lasso,

ridge, and elastic net [57]. For tree-based models, it supports decision tree classifier,

decision tree regressor, random forest classifier, and random forest regressor, which are

scikit-learn compatible, as well as the XG classifier and XG regressor, from XG Boost

[58]. Lastly, Concrete-ML supports neural net classifiers and neural net regressors for

its neural network repertoire [59]. All in all, these models provide a better interface

for exploring FHE ML methods and finding the best fit for viral strain classification

[40].

D. Concrete-ML Workflow

A Concrete-ML model’s lifecycle can be divided into the model’s development and

its deployment [60]. Under the model development phase, the following actions are

taken:

1. The training of the model, where a model is trained on plaintext/unencrypted

training data. Since ConcreteML only supports FHE inference at the time of

writing, this particular step of model development can only be performed using

18

plaintext data.

2. The quantization of the model. The process of quantization converts inputs,

model weights, and all intermediate values of the inference computation to in-

tegers. The point at which quantization is performed depends on the model

type. It can be performed either during training (also dubbed Quantization-

Aware Training) for Neural Networks or after training (Post-Training Quanti-

zation) for Linear Models. For tree-based models, the data instead of the model

is quantized into its integer equivalent. The main parameter that affects the

quantization process is the number of bits, n bits.

In the case of linear models, n bits can use a single integer value dependent on

the number of attributes. For a higher number of attributes, it is recommended

to use a lower value. On the other hand, a dictionary of integer values can

also be passed to n bits to allow it to use different parameters. For tree-based

models, the maximum accumulator bit-width is determined to be n bits + 1

bits. As the Concrete FHE framework is only limited to 8-bit integers, n bits

must be less than 8. Further information on the process can be accessed via the

Zama AI documentation on Quantization [61].

3. The compilation of the model. This process is handled in its entirety by

Concrete-Numpy [62]. Concrete-ML hides away most of the complexity of this

step by allowing users to compile the model by simply using the compile()

function [63].

4. Performing FHE inference using the compiled FHE Concrete model [60, 61,

62].

19

Figure 1: Summary of the overall communications protocol for deploying machine
learning services [1].

Next, under the model deployment phase, Concrete-ML provides built-in func-

tionalities for deploying the compiled FHE models in a client/server setting. The

deployment workflow and model serving pattern are described as follows: For de-

ployment, when the training and compilation of the model to its FHE equivalent is

performed, three files are created when saving the model. These are:

1. client.zip, which contains the secure cryptographic parameters (client.specs.json)

needed for the client to generate private and evaluation keys. It also contains

serialized processing.json, which contains required metadata about pre and

post-processing, such as quantization parameters to quantize the input and de-

quantize the output, and a copy of versions.json.

2. server.zip, which contains the compiled model. This file is used to run the

model on a server.

3. versions.json, which contains information about the version of Concrete-ML

20

used to compile the model. This file is important since compiled Concrete-ML

models do not work with older versions of Concrete-ML.

Next, ConcreteML provides users with the concrete.ml.deployment.fhe client server

module, which contains several APIs for FHE deployment, to make this process pos-

sible. Users make use of various classes included in this module for the deployment

process. The FHEModelDev class is used for saving and exporting the files needed

for the client-server system by first instantiating the class and using the save()

method. The process of loading and running the compiled FHE circuit is performed

by using the run() methods of the FHEModelServer class. Lastly, the FHEMod-

elClient class is used for the encryption and decryption of the client’s data. Once

the client is created and the model is loaded, the private and evaluation keys are

generated via the generate private and evaluation keys() method. After that,

the serialization evaluation keys are retrieved and stored in a variable using the

get serialized evaluation keys() method. The evaluation key is then sent to the

server, therefore ensuring that all requirements for client-server interaction are met.

With this, the user/client can then begin preparing their input data for inference by

quantizing, encrypting, and serializing the data using the quantize encrypt seria

lize() method. After FHE inference has been completed and the results have been

sent back to the client, they can view the results of the inference by deserializing, de-

crypting, and dequantizing the data with the deserialize decrypt dequantize()

method. [62, 64, 65, 66].

E. Viral Strain Classification Workflow

Similar to the workflow outlined by Sim et al. and Akavia et al. [25, 49], the general

workflow for performing viral strain classification can be divided into the following

steps, adjusted to integrate with the Concrete-ML workflow (Section D.):

21

1. The training and compilation of the classification model. As discussed in

subsection D., this step of the workflow is to be performed on plaintext data.

After this, the compilation and saving of the model follow, resulting in the FHE

equivalent of the model capable of performing Homomorphic Inference.

2. The dissemination of prerequisite files to the client for key generation,

encryption, and decryption. The client requests for the prerequisite files

which it uses to generate the private and evaluation keys. Additional required

files will also be requested by the client from the server. These include the

Dashing binary releases and accompanying shell scripts for CSV file formatting

(discussed in the next subsection), features and classes.txt, which hosts

the results of the feature selection during training that allows the client to drop

non-selected columns, and the original class labels for translating the classifier’s

outputs back into its text labels.

3. Preprocessing, quantization, encoding, and encryption of the input

data. The client preprocesses the data using Dashing, which is discussed in

subsection F.. After preprocessing, the data is then quantized, encrypted, and

serialized using Concrete-ML’s built-in API.

4. Lastly, Homomorphic Inference on the prepared data using the compiled

model is performed. The results of the inference are then sent back to the

client, who deserializes, decrypts, and dequantizes the data using the Concrete-

ML API to view the results.

F. The Dashing Preprocessing Tool

Dashing is a software tool for estimating similarities of genomes or sequencing datasets

[24]. The similarity estimation is performed by splitting a provided genome sequence

into k-mers and converting each k-mer into a 64-bit hash. Dashing also uses the

22

HyperLogLog sketch, which is an approximate counting method in O(log2 log2(n))

space that estimates a count by incrementing counters with exponentially decaying

probability [24, 67], alongside other cardinality estimation methods (which are spe-

cialized for set unions and intersections) to estimate the cardinality of the hashed

genomes. The tool can summarize genomes more rapidly than previous MinHash-

based methods while providing greater accuracy across a wide range of input sizes

and sketch sizes [24]. Sim et al. [25] utilized this tool to allow for a layer of abstrac-

tion from the raw sequence data, thereby reducing the dimensionality of the data

and allowing easier processing of it. The tool is accessible via the following GitHub

link: https://github.com/dnbaker/dashing and can be downloaded in the form of a

binary release. These binary releases work only on specific instruction sets, and are

the following:

• dashing s128, which works on systems supporting the 128-bit SSE2 SIMD

instruction set

• dashing s256, which works on systems that support the AVX2 256-bit SIMD

instruction set

• dashing s512, which runs on systems that feature the AVX512BW 512-bit

SIMD instruction set

If a binary release does not work on a given system, then a release with a lower

number should be used.

G. Logistic Regression

Logistic Regression is a type of statistical approach that is used quite often in pre-

dictive analysis. It is also used extensively when performing binary or multi-class

classification and is also relatively simple to implement. [68, 69] Chang [70] noted

23

that logistic regression is relatively fast when compared to other supervised classifica-

tion techniques such as SVM or ensemble methods. While logistic regression suffers

to some degree in terms of accuracy as a result of its speed, Pradhan et al. and

Zeller et al. note that logistic regression performs well when used with linearly sep-

arable classes and classification, potentially mitigating the model’s lower accuracy

[69, 71]. Zeller et al. used logistic regression in viral strain classification, since the

genetic patterns in sequences, which come about as a result of genetic divergence

over time, are linearly separable across aligned amino acid positions. This quality

lends itself well to the use of logistic regression as well as other supervised machine

learning methods, such as random forest classification. Lastly, Sim et al. [25] also

used logistic regression from a privacy perspective in their proposed framework for

privacy-preserving viral strain classification, noting that the use of logistic regression

in the classification of viral strains is more appropriate as the classification approach

does not expose the individual data values used to train the model in contrast to

models such as k-Nearest Neighbors that do. The model’s ease of implementation,

speed of classification, and excellent performance when used with linearly separable

classes make it the ideal algorithm for use in viral strain classification.

24

IV. Design and Implementation

A. Threat Model

Our system follows a semi-honest (honest-but-curious) threat model. That is, we

assume that our server (an ML service provider) will stay honest and will adhere

to the system’s workflow, but is curious about the client’s private information. We

also assume that all communication channels between the two parties (client and

server) are secure. Given this, if the security of the encryption scheme is guaranteed,

then there will be no leakage of the client’s private data to any potentially malicious

parties, including the server. We also assume that the client (the owner of the secret

key) does not collude with the server. Our security goals are as follows:

1. The server should not obtain or receive any information on the client’s encrypted

inputs.

2. The server should not find out any information regarding the encrypted predic-

tion results.

B. Dataset

We used data from the publicly available repository Global Initiative on Sharing

Avian Influenza Data (GISAID) [72, 73, 74]. We initially used the data of Sim

et al. [25] (Episet ID EPI SET 220924cw, accessible at https://doi.org/10.55876/

gis8.220924cw). The dataset of nearly 9000 sequences was comprised primarily of

four strains of interest. The strains are the B.1.617.2 (Delta), C.37 (Lambda), B.1.621

(Mu), and B.1.1.529 (Omicron) lineages, and were made the main focus of the study.

This resulted in a smaller, unbalanced dataset of 6805 samples. To address this imbal-

ance, we performed an upsampling of the minority (the B.1.1.529 and the B.1.617.2

classes) through the acquisition of a total of 2100 samples from GISAID via the

25

GISAIDR library [75]. The samples were compiled to a GISAID Episet with the

ID EPI SET 230520sm (accessible via https://doi.org/10.55876/gis8.230520sm). This

resulted in a final dataset with the following sample distribution:

Lineage No. of samples

B.1.1.529 2066

B.1.617.2 2044

B.1.621 2305

C.37 2478

Total 8893

Table 1: Number of samples per lineage used in the main dataset.

C. Input File Structure

Clients will interact with our viral strain classification through the client-side GUI

application, which takes one FASTA file as input for classification. The format for

FASTA files is as follows:

1. The file begins with the FASTA definition line, which is included before the

nucleotide sequence. It must begin with a carat (“>”) and should be followed

by a unique sequence identifier (SeqID) [76].

• The FASTA definition line in this sequence should follow the following

format: >Reference/Database|AccessionID|DateCollected

• The SeqID should be unique for each nucleotide sequence.

• The SeqID should not contain any spaces.

• The SeqID should only contain the following characters: letters, digits, un-

derscores (), periods (.), asterisks (*), colons (:), hyphens (-), and number

signs (#).

26

• All the information should be on a single line of text. The FASTA definition

line should not include any hard returns.

2. The sequence begins after the FASTA definition line, and can contain returns.

NCBI recommends that each line should be no more than 80 characters, and

should only contain IUPAC symbols only, with “N” being used to symbolize

ambiguous characters [76].

D. Preprocessing Techniques and Tools

To improve preprocessing and model training speeds, we followed Sim et al’s frame-

work and truncated the first 20kB of each of the genome sequences in the dataset.

The truncated regions correspond to the regions of the sequences that preceded the

S gene, which is the key driver of biological mutations between the SARS-CoV-2

strains [25]. Additionally, due to viral strains being typically defined based on their

phenotypic characteristics instead of simple sequence similarity, alignment-free pre-

processing methods were explored and utilized to prepare the viral sequences for strain

classification. These methods transform raw genomic sequences into feature vectors,

which can then be used as inputs for training classification models. The alignment-

free tool that we used is Dashing [24]. Dashing provides a layer of abstraction from

the raw sequence data by splitting an individual sequence into k-mers, converting

each k-mer into a 64-bit hash, and then computing the HyperLogLog sketch of the

sequence to estimate the cardinality of the hash sets. The output of this process,

which was performed for each sequence in the dataset, was a vector containing the

cardinality of 512 hash sets, represented by buckets. These buckets were then used

as the features in training the machine learning model [25].

For the commands used during the Dashing process, we used shell scripts for

transforming the resulting HLL sketches into a CSV file (from https://github.com

/bjorgkav/concreteml-covid-classifier):

27

1 ./ dashing_s512 sketch -k31 -p13 -S9 -F path.txt

Listing 1: Code listing of Dashing commands used to generate the HLL sketches

(using 512-bit release)

1 #!/bin/bash

2 #clear output file (repeated testing)

3 rm output.txt

4

5 #assume no is 512 (based on Sim et al.’s paper)

6 echo -n "Accession ID," >> output.txt

7

8 no_of_features =512

9 for ((i=1; i<$no_of_features; i++))

10 do

11 printf %s "feature_$i ," >> output.txt

12 done

13

14 printf "%s\n" "feature_$i" >> output.txt

15

16 for f in FASTAFiles /*. hll

17 do

18 content=$(./ dashing_s512 view $f)

19

20 #sed ’s/[//g;]//g’

21 echo "$f, $content" >> output.txt

22 done

23

28

24 #remove all occurrences of [and] in output

25 echo "Removing [and] from output and placing in csv

..."

26 echo "$(sed -i ’s/[][]//g’ ./ output.txt)"

27 echo "$(sed -i ’s/\< FASTAFiles \>//g’ ./ output.txt)"

28 echo "$(sed -i ’s/\///g’ ./ output.txt)"

29 #| sed -e ’s/\< FASTAFiles \>//g’ | sed -e ’s/\///g’

30 echo "$(sed -i ’s/\.//g’ ./ output.txt)"

31 echo "$(sed -i ’s/\< fastaw31spacing9hll \>//g’ ./ output

.txt)"

32

33 mv ./ output.txt ./ output.csv

Listing 2: Code listing for reading HLL sketch values and generating a CSV file from

the Dashing output (using 512-bit release)

The Dashing commands used in the study, shown in Listing 1, k was set to 31

using “-k31”, the number of threads was set to 13 using “-p13”, and the sketch size

set to 9 using “-S9”, for 29 bytes, with setting the sketch size affecting the number

of features generated (a sketch size of 10 results in 1024 features being generated).

After using Dashing to convert the individual SARS-COV-2 sequences into feature

buckets, the output is joined with its respective Lineage and Accession ID values to

form a dataset containing the GISAID accession ID, the lineage (also called variant

or class) of the sample, and the features generated from Dashing, as shown below:

29

Figure 2: The preprocessed dataset as displayed via Microsoft Excel

E. Feature Selection Algorithm

To improve the performance of the logistic regression model, a feature selection

algorithm is used to address the high number of features generated from Dashing

the training sequences. Scikit-learn’s k-best features algorithm (sklearn.feature

selection.SelectKBest), a univariate feature selection algorithm, was used to select

the k highest scoring features based on univariate statistical tests [77, 78, 79]. This

algorithm was chosen for its simplicity and fast running time, as well as its ability to

ensure that feature selection results in a set with lower dimensionality. The k value

was set to 20, effectively selecting the 20 highest-scoring features based on statistical

tests. The feature selection algorithm was used to reduce the dimensionality of the

dataset from the initial count of 512 features to 20 features.

30

F. Implementation of Classification

Following Sim et al’s Covnita framework, a logistic regression classifier was chosen

as the main classification model for the system due to its speed, simplicity in imple-

mentation, good performance with linearly separable data, and privacy advantages

as discussed in section G. of Chapter III..

In terms of training, the LogisticRegression implementations of both scikit-

learn and Concrete-ML were developed and trained on the same dataset in order to

gauge the performance of the Concrete-ML model in comparison to the scikit-learn

model, given that Concrete-ML is said to be compatible with scikit-learn workflows.

Doing this also provided some information regarding the effect of Concrete-ML’s

quantization process on its accuracy and overall performance, with the scikit-learn

model being used as a comparison. A standard train-test split of 80% training data

and 20% testing data was utilized via scikit-learn’s train test split function, and

the univariate feature selection algorithm was applied to reduce the dimensionality

of the dataset to 20 features. The training, development, compilation, and saving of

the models were performed in the Concrete ML Docker container and Google Colab.

G. System Architecture

The following technologies and tools were utilized to implement the client and server-

side applications:

• Pygubu and Pygubu-designer - A “what you see is what you get” (WYSI-

WYG) GUI designer for the Python’s tkintermodule, as well as CustomTkinter

• Tkinter - Standard Python interface to the Tk GUI toolkit

• CustomTkinter - A Python UI library based on tkinter that provides more

modern UI widgets to allow for more up-to-date UI designs

31

• Dashing - Software tool for sketching similarities of genomes or sequencing

datasets.

• pandas - Python software library for data manipulation and analysis

• Concrete-ML - Privacy-preserving FHE machine learning library built on

Concrete

• WSL2 - A Windows compatibility layer for Linux that enables running a Linux

terminal environment on Windows without virtualization

• scikit-learn - Software machine learning library for the Python programming

language

• Django Framework - Open source Python-based Model-View-Controller (MVC)

web framework

• Bootstrap - Open-source CSS front-end development framework for web ap-

plications

• Google Colab - Cloud-based Jupyter notebook environment

The logistic regression classification model that is stored on the server-side appli-

cation was developed using the pandas, scikit-learn and Concrete-ML libraries on

the Google Colab notebook environment. The pandas library was used to parse the

dataset used for training into a dataframe for pre-processing and training, while the

scikit-learn library provided the modules for feature selection using the univariate

feature selection algorithm, splitting the dataset into training and testing sets, and

for the scikit-learn logistic regression model, which was used as a standard for com-

parison of model performance. Lastly, the Concrete-M library was used to create the

system’s final logistic regression classification model.

32

The client-side application serves as the primary method that clients of the system

use to interact with the system, allowing the client to preprocess, encrypt, and send

their SARS-CoV-2 sequences in one action. The app UI was built using CustomTk-

inter and Tkinter GUI libraries to develop the user interface of the application, with

Pygubu and Pygubu-designer acting as rapid application development tools to allow

more efficient UI development. Its sequence hashing and column selection function-

alities were provided by the Dashing tool and pandas library, respectively, and the

Concrete-ML library provided the client-side application with encryption and decryp-

tion functionality. The app communicates with the server-side application’s API to

send the preprocessed and encrypted sequences for prediction and uses its decryption

functionalities to view the results of the prediction.

The server-side application was developed using the Django framework and Boot-

strap and provides an API endpoint through which the client application passes its

encrypted inputs and generated keys to the server. The server-side application then

returns its encrypted prediction results to the client for decryption.

Figure 3: The client-server architecture.

33

Figure 4: Detailed workflow of the client-server system.

As shown in Figure 4, the detailed workflow begins with the data scientists train-

ing, compiling, and saving the model into its FHE equivalent, with the last step being

performed using the FHEModelDev.save() command, as outlined in subsection D. of

Chapter III.. The data scientists then store the saved model (server.zip) on the

server machine, along with the cryptographic parameters (client.zip) to allow the

server to send them to client machines at their request. In development, these files

(along with versions.json, also discussed in subsection D. of Chapter III.) are stored

in the Compiled Model folder of the Django project directory (BASE DIR), which the

server then accesses using relative file paths as needed via Python’s os.path.join()

function. The training, saving, and storing process is similar to the steps taken to

store a saved scikit-learn model on a server for a similar use case, with the main

difference being that instead of storing only a single file on the server like in tra-

ditional scikit-learn workflows, the process involves storing two files on the server:

34

client.zip for dissemination to client machines, and server.zip for classification

of clients’ encrypted sequences. This allows data scientists that are already familiar

with scikit-learn workflows to acclimate to Concrete-ML’s workflow more easily.

Once the previous step is completed, the client (which represents users such as

medical professionals, medical institutions, or researchers) can open the client-side

app, which automatically requests the cryptographic parameters (client.zip, also

discussed in subsection D. of Chapter III.) from the server using the requests li-

brary. It also requests features and classes.txt (discussed in subsection E. of

Chapter III.) for column filtering. After the client-side application has ensured that

client.zip and other required files have been downloaded, the client begins prepro-

cessing and encrypting their data using the client-side application, which abstracts the

Dashing, evaluation key generation, encryption of the clients’ inputs behind a single

file input, and filtering of non-selected features and class translation post-prediction

(via features and classes.txt). It also accounts for any instruction set incompat-

ibilities for the Dashing tool as discussed in section F. of Chapter III., ensuring that

the correct version of the Dashing tool is utilized in the sequence hashing set. The

key generation and encryption steps were performed using Concrete-ML’s API, in

particular, through the following commands from the FHEModelClient module:

• generate private and evaluation keys() for key generation

• get serialized evaluation keys() to access the keys within the program for

saving and sending to the server

• quantize encrypt serialize() to facilitate the encryption of the inputs

The client-side application also automatically sends the encrypted file input to

the server for classification along with the generated evaluation keys for classifica-

tion. This is done by using Python’s requests library to interact with the clas-

sification endpoint server’s API. In development, the classification API endpoint

35

is http://localhost:8000/start classification, with localhost:8000 being a

locally-run Django-development server. Once the server receives the clients’ eval-

uation keys and encrypted viral strain sequences, it then performs FHE inference

on the sequences using the FHEModelServer.run() command. It then saves the

encrypted predictions to separate files, compresses the encrypted predictions to a

ZIP file, and sends the ZIP file back to the client via the client-side application,

which automatically unpacks the ZIP file and uses the FHEModelClient.deserialize

decrypt dequantize() method to facilitate the decryption of the prediction results

using the keys generated earlier in the workflow and the display of the results for the

client to view.

H. Technical Architecture

The requirements for running the system at full capacity include the following speci-

fications:

• Operating System: Linux or Windows Subsystem for Linux 2

• Memory: 4GB minimum

• Storage space: 7GB free disk space for Concrete-ML package and dependen-

cies

An estimated 7 gigabytes of free disk space is required to run the full system

due to Concrete-ML’s dependencies, including torch and concrete. Additionally,

as the client application requires the Dashing tool, the appropriate shell scripts,

a text file listing the selected features for classification and original class labels

(features and classes.txt), and the client.zip file, which holds the required

cryptographic parameters for key generation, encryption, and decryption, the appli-

cation requires an internet connection to download the files needed from the system’s

Github repository.

36

V. Results

A. ConcreteML Performance

A..1 Test Machine Specifications and Details

All test results obtained and displayed as tables in this section and the next were

averaged over ten runs to account for the stochastic nature of the data and algorithms.

The performance of ConcreteML was evaluated on a machine with the following

specifications:

Test Machine Specifications

Operating System Windows 10 Home Single Language version 22H2

Linux Compatibility

Layer

Windows Subsystem for Linux 2 (using Ubuntu 22.04

LTS)

Processor 11th Gen Intel(R) Core(TM) i7-11370H @ 3.30GHz

Installed RAM 16.0 GB

System Type 64-bit

Table 2: System specifications for the test machine used to gather model performance

data

A..2 Training Workflow

The training workflow is as follows:

1. A total of 8994 SARS-CoV-2 genomic data sequences, all obtained from GI-

SAID, had their first 20kB truncated following Sim et al’s initial CoVnita work-

flow [25]. They were then converted into feature values using the Dashing tool,

specifically the sketch function of the Dashing tool, which is further discussed

in section F. of Chapter III.. For the parameters, k (used to split the data into

k-mers) was set to 31. The number of threads (“-p”) used for the operation was

37

set to 13, while the sketch size (“-S”) was set to 9 (for 29 bytes). This results

in a sketch for each sequence that contains a total of 512 features. The exact

EPISETs for the dataset can be found in subsection B. of Chapter IV..

2. The dataset was loaded into a pandas DataFrame in the training environment

and the classes were label encoded using the scikit-learn library

sklearn.preprocessing.LabelEncoder.

3. The feature data used in prediction was then cast as the float data type to adhere

to the strict formatting standards that Concrete-ML’s model fitting function

enforces.

4. The sklearn.feature selection.SelectKBest univariate feature selection al-

gorithm was used to reduce the dimensionality of the dataset. The number of

features (n features) was set to 20, leading to the algorithm selecting only the

20 highest-scoring features on the dataset according to univariate tests.

5. Scikit-learn’s (sklearn.model selection.train test split) function was used

to split the data into a training set and a testing set, with a split of 80 percent

training data and 20 percent testing data.

6. The models are then initialized and fit to the training data set. For the FHE

model, an extra step is performed:

• Once the quantized plaintext model has been fit to the training data, it

can then be compiled to its FHE equivalent to produce the trained FHE

model.

A..3 Models Trained

A total of three different logistic regression models were trained:

38

• The plaintext model, which uses scikit-learn’s logistic regression model. This

serves as the baseline against which the other two models (that use Concrete-

ML’s implementation of the logistic regression model) will be compared.

• The quantized plaintext model, which uses Concrete-ML’s logistic regression

model with FHE disabled. This differs from the plaintext model in that there is

still a quantization step included in the fitting process despite not using FHE. As

discussed in subsection D. of Chapter III., quantization converts inputs, model

weights, and all intermediate values of the inference computation to integers,

which can lead to a level of degradation in performance. It is also a mandatory

step to perform before compiling a model to its FHE equivalent, as TFHE,

the encryption scheme utilized by Concrete-ML, is currently limited to 16-bit

integers. This model is included in the setup to determine the extent of the

effect that quantization has on the models’ accuracy.

• The FHE model, which is the quantized plaintext model with FHE enabled.

This will be compared with both the plaintext and quantized plaintext models

to see if the use of FHE in the model adversely affects model performance to a

tolerable extent.

A..4 Comparison of Logistic Regression with other ML Algorithms

A comparison of various machine learning algorithms available to Concrete-ML was

performed to determine the most optimal model for viral strain classification and

to verify the performance of Logistic Regression compared to other algorithms. A

total of four machine learning algorithms were compared: Logistic Regression, Linear

Regression, Support Vector Classifier, and Random Forest. Both the scikit-learn and

Concrete-ML implementations were compared as well, resulting in the performance of

8 algorithms being compared. The results are as follows:

39

Model

Type

Linear

Regres-

sion

Random

Forest

SVC Logistic

Regres-

sion

Plaintext 95.309591% 99.505340% 99.066892% 99.280495%

Quantized

Plaintext

95.315662% 99.072513% 99.145587% 99.252389%

FHE 95.315662% 99.072513% 99.145587% 99.252389%

Table 3: Accuracy comparison between different algorithms for both scikit-learn and

Concrete-ML, averaged over 10 runs

Table 3 shows that the logistic regression algorithm performed the best in the

quantized plaintext and FHE model runs, while achieving the second-highest results

in the plaintext model runs. As discussed in subsection G. of Chapter III., this

performance can also be attributed to logistic regression’s ability to perform well

when used with linearly separable classes and classification [69, 71]. This also extends

to the use case of viral strain classification, as genetic patterns in sequences, which

come about as a result of genetic divergence over time, are linearly separable across

aligned amino acid positions [71].

A..5 Model Accuracy

The performance of the Concrete-ML models (the Quantized Plaintext, and FHE

models) was compared against the performance of the scikit-learn (Plaintext) model.

Three performance metrics were explored to gain an understanding of their perfor-

mance:

• The standard classification accuracy of the model’s predictions on the test set.

It is defined as the number of correctly predicted samples divided by the total

40

number of samples the model was tested on. The metric is considered one of

the most common and simplest performance metrics to implement and works

well when used with a more balanced dataset. This makes it suitable for use

with our own fairly balanced data, as it provides a simple and easy-to-interpret

performance metric that allows us to evaluate the performance of the model at

a glance [80]. However, this metric also has shortcomings in that it can be influ-

enced by class imbalances in datasets and also cannot make use of probabilities

of predictions, thereby limiting the information that we can gain regarding the

model’s performance, such as false positives and negatives [81, 82]. This metric

was implemented using scikit-learn’s sklearn.metrics.accuracy score mod-

ule.

• The models’ Area Under the Receiver Operating Characteristic Curve (ROC

AUC) score. The ROC AUC score is calculated by computing the area un-

der the Receiver Operating Characteristic (ROC) curve, which features the

true positive rate (TPR) on the Y axis, and the false positive rate (FPR) on

the X axis across several classification thresholds [77, 83, 80]. With scikit-

learn’s sklearn.metrics.roc auc score module, this area is computed using

the models’ prediction scores (obtained using the model’s predict proba()

method). For a multiclass problem such as ours, a One-vs-Rest strategy was

utilized to split the multiclass problem into one binary classification prob-

lem per class. Next, macro averaging was performed, where the ROC AUC

scores for each class were calculated, and their unweighted mean was com-

puted to produce the final result, ensuring that all classes would be treated

equally. The OvR strategy and macro-averaging settings were specified using

the multi class=’ovr’ and average=’macro’ settings for the roc auc score()

function, respectively [77]. In comparison to the accuracy metric, the ROC AUC

score makes use of the model’s TPR and FPR, providing us with a more com-

41

prehensive idea of the model’s performance. It is also more capable of handling

imbalances in datasets compared to the accuracy metric due to using the predic-

tion scores of the classes instead of accuracy’s simple ratio of correctly predicted

samples to the total number of samples [84, 82].

• The models’ confusion matrix, which is a table that summarizes the number of

correctly predicted samples and incorrectly predicted samples while providing a

more in-depth visualization of how these samples were classified. This helps us

understand the behavior of a particular classifier and see how or where it makes

misclassifications [85, 86]. Scikit-learn’s sklearn.metrics.confusion matrix

is used to implement our classifier’s confusion matrix, while sklearn.metrics.

ConfusionMatrixDisplay is used to visualize the matrix in a more informative

manner.

The results of our tests were averaged over ten runs to account for the stochastic

nature of the data and the train-test split algorithm, and are discussed in subsection

A. chapter VI..

B. Client-Server Classification System

An FHE-enabled client-server classification system was developed, with the client

primarily interacting with the client side of the application and only interacting with

the server during the classification of the client’s encrypted sequences.

42

Figure 5: The Client GUI application after starting up.

43

Figure 6: The Client GUI application’s file selection interface.

The client and server sides of the system were developed as two separate ap-

plications, with the client application being developed as a desktop GUI applica-

tion that makes use of the CustomTkinter and Tkinter packages to facilitate the

rendering and windowing of the application’s user interface. The server applica-

tion was developed as a web application using the Django framework. The files

client.zip and server.zip, which were generated when the Concrete-ML model

was saved, were stored or otherwise made available for download for their respec-

tive applications. The package requirements for the main system were also saved

to requirements.txt, which can be found on the system’s GitHub repository at

44

Figure 7: The Client GUI application’s output window showing prediction results.

https://github.com/bjorgkav/concreteml-covid-classifier.

45

Figure 8: The server-side web application developed in Django.

While the server side of the system is not intended to be interacted with, a UI

interface was designed to allow the web application to provide visitors with informa-

tion regarding the system, its technologies, currently supported strains, and links to

its GitHub repository.

46

VI. Discussions

A. Accuracy

The results in terms of training and testing dataset accuracy and performance are as

follows:

Logistic Regression Model Accuracy ROC AUC Score

Plaintext 99.280495% 0.999879

Quantized Plaintext 99.252389% 0.999877

FHE 99.252389% 0.999877

Table 4: Model performance in terms of accuracy and AUROC score (One vs Rest)

Logistic Regression

Model

Accuracy Loss

vs Plaintext

ROC AUC Score Loss

vs Plaintext

Plaintext 0.000000% 0.000000%

Quantized Plaintext 0.028106% 0.000175%

FHE 0.028106% 0.000175%

Table 5: Average loss of performance of FHE classification compared to scikit-learn

for both standard accuracy and AUROC score

47

Figure 9: The confusion matrix for the scikit-learn (Plaintext) model

Figure 10: The confusion matrix for the Concrete-ML (Quantized Plaintext) model

48

Figure 11: The confusion matrix for the Concrete-ML (FHE) model

As can be seen from Tables 4 to 5 and Figures 9, 10, and 11, all three models

(Plaintext, Quantized Plaintext, and FHE) were able to achieve relatively high scores

in all three performance metrics when tested against the test set consisting of 20%

of the total samples (1779 samples). It can also be seen that the performance of the

quantized plaintext and FHE models are nearly identical to the performance of the

plaintext model for all three metrics. Additionally, at some points, the performance

of the Concrete-ML model achieves a near-equal level of accuracy compared to the

baseline scikit-learn model’s performance when scored on the accuracy metric. The

loss of performance from both the quantization of the inputs in order to fit the

format of the Concrete-ML model, along with the conversion of plaintext to its FHE

equivalent, is below 0.1 percent in all cases, indicating a relatively insignificant, and

thus tolerable, loss in accuracy.

49

B. Error Analysis

An error analysis was also conducted by performing runs and comparing the results

of the confusion matrices per model to determine the extent of the differences in their

classification ability as a result of the quantization and encryption steps undertaken

for the Concrete-ML models (the Quantized Plaintext and the FHE models). The

results of all runs performed can be categorized into three cases:

• Case 1, Where the Quantized Plaintext and FHE model performed the best

in the run, with scikit-learn misclassifying one more sample in total than was

misclassified by the Concrete-ML models. This case is the least common among

the cases, occurring only once in the runs performed, with the FHE vs Plaintext

similarity score (shown in the results below) indicating a 99 percent similarity.

• Case 2, where all models achieved the same degree of performance. This means

that any misclassifications made by the scikit-learn Plaintext model were also

misclassified by the Concrete-ML models. This was the most common case

among the three cases, with the FHE vs Plaintext similarity score at 100 percent.

• Case 3, where the scikit-learn Plaintext model performed the best among the

three models. In this case, the Concrete-ML models misclassified one more

sample in total than the Plaintext model, resulting in an FHE vs Plaintext

similarity of 99 percent. This was the second most common case among the

runs.

The following three runs depict these three cases:

50

(a) scikit-learn Plaintext Model Confusion Matrix

(b) Quantized Plaintext Model Confusion Matrix

(c) FHE Model Confusion Matrix

Figure 12: Confusion matrices of the three models for error analysis run 1

51

(a) scikit-learn Plaintext Model Confusion Matrix

(b) Quantized Plaintext Model Confusion Matrix

(c) FHE Model Confusion Matrix

Figure 13: Confusion matrices of the three models for error analysis run 2

52

(a) scikit-learn Plaintext Model Confusion Matrix

(b) Quantized Plaintext Model Confusion Matrix

(c) FHE Model Confusion Matrix

Figure 14: Confusion matrices of the three models for error analysis run 3

53

As can be seen from figures 12, 13, and 14, the extent of the differences between

the models is at most 1, which can still be considered a tolerable level of error in most

use cases.

C. Model Training and Classification Speed

Model

Type

Training time

(nanoseconds)

Training time

increase vs plaintext

Quantization time

(nanoseconds)

Plaint. 95986247.062683 0.000000% -

Quant. 115684342.384338 20.521789% 19698095.321655

Table 6: Average training time for each model, with respective time increase

Table 6’s results show that the training time for the Plaintext, Quantized Plain-

text, and FHE models are relatively close, with at most a 20 percent increase from

the averaged Plaintext training time. We can attribute the increase compared to

the Plaintext results in training time to the quantization step that is performed by

the Concrete-ML models to respect FHE constraints (which are that FHE is, at

the time of writing, limited to 16-bit integers) [60]. Specifically, linear models such

as LogisticRegression perform quantization after training is performed [61]. The

quantization time can be computed by subtracting the plaintext training time from

the Quantized Plaintext model training times. The results of that subtraction show

that an average of around 19698095 nanoseconds (or around 0.019698095 seconds)

is added to the training time of the Quantized Plaintext due to the additional post-

training quantization process.

We also evaluated model performance in terms of running time for the classifi-

cation of new samples using the models. The running time in seconds was obtained

using Python’s time.time() function to obtain the starting and ending time of the

task and then compute the difference. These results were then averaged over ten runs

54

to account for randomness. The results are displayed as follows:

Model

Type

Test Set Pred.

Time (nanosec.)

Avg. per Sample

Time (nanosec.)

Increase in

Pred. Time

Plaint. 267052.650452 150.113913 0.000000%

Quant. 819325.447083 460.553933 206.802964%

FHE 955438.613892 537.064988 257.771628%

Table 7: Average model prediction time on the entire test set and per sample

The results of the prediction time comparison are shown in Table 7. There is an

expected increase in prediction time from the plaintext model to the Concrete-ML

models, as the additional quantization step is required for both models, regardless

of the use of FHE [61]. This additional step leads to more complex equations and a

longer running time because performing matrix multiplications or convolutions using

quantized values requires the computation of important quantization parameters,

which are used in equations over those quantized values to ensure that the final result

is also quantized. These parameters include the scale factor (the value used to map

a float number to its integer representation and vice versa) and the zero point (the

value that zero takes in the target representation) [61, 87, 88, 89]. In our case, this

results in a nearly 210 percent increase in prediction running time compared to the

plaintext model for the quantized plaintext model, and an almost 260 percent increase

from the plaintext model’s prediction running time for the FHE model.

Comparisons Entire test

set

Per sample

time

Training

time

Continued on next page

Table 8: Summarized model slowdowns in terms of running time for prediction and

training

55

Plaintext vs Quantized

Plaintext

2.07x slower 2.07x slower 0.21x slower

Plaintext vs FHE 2.58x slower 2.58x slower 0.21x slower

FHE vs Quantized

Plaintext

0.17x slower 0.17x slower 0x slower

Table 8: Summarized model slowdowns in terms of running time for prediction and

training

We summarize the training and prediction time results in table 8, with results

indicating that the Concrete-ML models (Quantized Plaintext and FHE) are more

than two times slower than the scikit-learn Plaintext model in terms of prediction

time, and only being slightly slower than the Plaintext model during training. Addi-

tionally, the FHE model exhibited only a slight increase in the prediction time vs the

Quantized Plaintext model. Though the results indicate that the use of quantization

and encryption significantly increases the running times for training and prediction

on the models, the actual training and prediction times themselves can still be con-

sidered tolerable for most use cases, as the training and prediction times stay below

0.2 seconds on average.

Run no. FHE Compilation time in nanoseconds

1 2047241449

2 2026603460

3 1970088005

4 2024210453

5 1939769745

Continued on next page

Table 9: Average of FHE model compilation time

56

6 2018125772

7 2008958340

8 2048562288

9 2002124786

10 1998833179

Average 2008451748

Table 9: Average of FHE model compilation time

The compilation time for the FHE model was also recorded and averaged over

ten runs. The results of the runs, as seen in table 9, show an average FHE model

compilation time of roughly 2.01 seconds. This indicates that the model compilation

time is still also relatively tolerable in most use cases given that the model compilation

step only takes place during the training phase illustrated in Figure 4 where the

classification model is trained, compiled and saved.

D. Key and Ciphertext Size Comparison

Eval Key

Size (kB)

Private Key

Size (kB)

128-bit security RSA

Key

Size in kB

Increase in size

vs RSA Standard

0.0230 4.0000 2.4140 65.7001%

Table 10: FHE eval key size and private key size comparison vs RSA private key of

similar security level

As the key length of an encryption scheme is an important security parameter, a

comparison of Concrete-ML’s key size with the standard RSA key size of a similar

security level was done to assess whether the encryption scheme used by the library

57

can be considered efficient in terms of key size. Concrete-ML’s security level is cur-

rently fixed to 128-bits, so an RSA key that provided 128-bit security was used for

comparison, the results of which can be seen in Table 10 [90, 91]. The key size com-

parison shows that Concrete-ML’s key size is significantly larger than the standard

RSA key size, indicating a loss in memory efficiency, as the key generated for encryp-

tion requires a much larger key size to achieve a similar security level as that of the

RSA encryption scheme.

Encryption File Size (kB)

Plaintext Input 0.0436

Concrete-ML FHE 200.1970

128-bit security RSA Encryption 0.3750

Percentage Increase in Size from RSA 53285.8667%

Table 11: Ciphertext size comparison between Concrete-ML’s FHE encryption and

standard RSA encryption using a 3072-bit key

In addition to the key size comparison, a ciphertext size comparison was performed

to further assess the memory efficiency of the Concrete-ML’s encryption function and

scheme. Across fives runs, each using different strains except for the fifth run, the

ciphertext size of the encrypted data stayed consistent at 200.197 kB. This is ex-

pected, as all samples that were encrypted had undergone the same preprocessing

steps (truncation, Dashing, column dropping according to selected features) before

being encrypted and were encrypted using the same encryption function, that being

the encryption function described in section G. of Chapter IV.. We also see a signifi-

cant increase in Concrete-ML’s ciphertext size compared to the RSA encryption size,

also indicating a loss in memory efficiency, requiring significantly more storage space

to achieve a 128-bit security level than the RSA encryption scheme.

58

E. Issues Encountered in Development

We faced certain issues during the development of the system itself, which mainly

involved errors raised by the Concrete-ML library due to its rather specific and strict

formatting. There is an issue whenever a pandas dataframe with an integer dtype

was passed to the Concrete-ML LogisticRegression model without being cast to

the float data type. This might be due to the inclusion of the quantization step

in the Concrete-ML process, which converts float values into an integer format that

can be used with the Torus Fully Homomorphic Encryption (TFHE) scheme, which

only supports integer calculations. We addressed this by casting the preprocessed

dataset to the float datatype during training. A similar issue is encountered when

using the compiled Concrete-ML model to make predictions on data allocated to

the test set during the train-test split step of the workflow, or completely new SARS-

CoV-2 sequences that have been preprocessed as described in the training workflow in

Chapter V.. The issue was resolved by ensuring that inputs for testing and prediction

on new samples were cast to a numpy array with the data type uint16 before passing it

into Concrete-ML’s prediction function. It is important to note that these formatting

issues do not apply to the Plaintext (scikit-learn) model, as their model does not

require a specific data type due to the lack of any quantization functionality for the

model.

F. System Assessment

Both the client-server classification system and classification model that was devel-

oped as a result of this study were able to meet all the required objectives and planned

functionalities illustrated in Chapter I.. Concerning the issues that were brought up

in this study’s earlier chapters, it seems very likely that the development of this

application and its excellent performance in the privacy-preserving classification of

encrypted SARS-CoV-2 sequences could stand as a testament to the viability of im-

59

plementing privacy-preserving technologies such as Fully Homomorphic Encryption

into the tools and methods used in the medical field and its practices. More im-

portantly, the development of the system and its corresponding model exhibits the

substantial potential benefits in terms of privacy and protection of intellectual prop-

erty that medical professionals, patients, and researchers can gain from incorporating

FHE into their practices.

The system stands apart from its reference works as an application developed

using Concrete-ML, an open-source FHE library that was developed specifically to

allow for the use of Machine Learning computations on encrypted data, thus allowing

for more specialized implementations of FHE that can also work well in tandem with

currently existing scikit-learn workflows. In particular, Sim et al’s work on CoVnita

presented a viral strain classification framework that implemented FHE using the

Microsoft SEAL library, while Akavia et al. utilized the IBM HElayers FHE library

for the same purpose [25, 38, 33, 47]. Both of these libraries may be considered more

general-purpose FHE libraries, and thus lack the built-in machine learning models

and ease of use that Concrete-ML offers due to its implementation in the high-level

Python programming language and its ability to integrate smoothly into scikit-learn

workflows, while also providing a simple interface that allowed users to convert their

plaintext model into an FHE equivalent through its compile() function. Concrete-

ML also boasts a plethora of built-in functions that facilitate and simplify the process

of key generation, encryption, and decryption significantly, making it much more

beginner and user-friendly in comparison to other FHE libraries. This study also

provides a comparison between the standard plaintext scikit-learn ML model and its

corresponding Quantized Plaintext and FHE ML models, which has not been done

in previous works, and provides a great deal of insight into the current state and

potential direction of FHE ML moving forward.

The FHE-enabled classification system is also easier to learn than some of its coun-

60

terparts due to Concrete-ML’s comprehensive documentation, and is also quick and

simple to update or adapt for other diseases, as such processes mainly only require the

replacement of client.zip, server.zip, along with the

selected features.txt file, and the installation of updated packages as necessary.

The implementation of the client-side as a desktop GUI app which then consumes

the server’s API instead of a separate web application further differentiates the sys-

tem from its contemporaries while also highlighting the privacy advantage of using

a desktop application as it prevents any servers from seeing any form of the client’s

data before it is encrypted.

With all the points discussed above, it is clear that the system serves as a useful

tool that allows clients such as medical professionals and researchers to study and per-

form viral strain classification on viral strain sequence data without putting patients’

sensitive data at risk of being leaked to ML service providers.

61

VII. Conclusions

We address the widespread privacy concerns related to the use of ML outsourcing

to allow for better-informed medical decisions and higher-quality healthcare by de-

veloping an FHE-enabled viral strain classification system for SARS-CoV-2 genomic

sequences that implements a client-server architecture to allow for maximized privacy

of data and ease of use through a GUI application. The system was developed using

the open-source FHE ML-specialized library Concrete-ML, providing the system a

relatively high degree of customization, adaptability, intelligibility (as a result of its

similarity to, and compatibility with, the scikit-learn library and workflows). The

client side of the system uses a combination of feature extraction from submitted ge-

nomic sequences through the Dashing tool and univariate feature selection through the

sklearn.feature selection.SelectKBest module to transform the client’s submit-

ted genomic sequences into a set of features with comparatively low dimensionality.

The client GUI application then generates a set of keys for encryption, encrypts the

aforementioned set of features using the keys, and saves them into files for uploading

to the server by consuming its API, where the encrypted inputs are then classified

using the Logistic Regression model stored on the server and sent back to the client

for decryption.

The system serves as a solution to the privacy issue of medical professionals,

medical institutions, scientists, and other researchers using patients’ genomic data

in machine learning applications to assist them in providing better healthcare. By

introducing FHE into clients’ workflows, the affected patients’ privacy is significantly

less likely to be endangered when their genomic data are used as inputs in machine

learning services and applications, as the data can remain encrypted even while being

operated on. The implementation of this technology also allows clients to continue

the use of ML services and ML outsourcing without risking patients’ privacy and

potential legal action.

62

VIII. Recommendations

In terms of improvements to the current version of the classification system, should

future studies take inspiration from this study, we recommend that the studies’ au-

thors explore the implementation of batch processing to allow for a more efficient and

intuitive experience when working with larger datasets and collections of sequences,

as well as the addition of a cache such that sequences that were already previously

classified would no longer be re-classified unless specified, potentially cutting down

on memory usage and running time when performing predictions.

In addition, exploring the use of similar libraries in the same use case, viral strain

classification, is also recommended. Of particular interest is the possible implemen-

tation of a similar client-server classification system using the Pyfhel library devel-

oped by Ibarrond and Viand [92, 36], which is a Python wrapper for the SEAL and

OpenFHE (currently in progress) FHE libraries, essentially exposing the underlying

functionality of these FHE libraries in the high-level Python language, which allows

for the more accessible implementation of FHE. Additionally, Pyfhel supports dif-

ferent FHE schemes (such as BFV and CKKS) as opposed to the singular TFHE

scheme utilized by Concrete-ML. This could serve as a point of comparison in terms

of running time, data precision and quality, ease of use, and overall accuracy and

model performance.

63

IX. Bibliography

[1] Zama-AI, Summary of the overall communications protocol to enable cloud de-

ployment of machine learning services. Zama-AI, Dec 2022.

[2] D. Tobin, “What is data privacy-and why is it important?,” Integrate.io, May

2021.

[3] “What is data privacy? — privacy definition — Cloudflare,” Cloudflare.

[4] “Data protection in the EU,” European Commission - European Commission,

Oct 2022.

[5] “Data privacy act primer,” National Privacy Commission, Oct 2022.

[6] L. Song, H. Liu, F. S. Brinkman, E. Gill, E. J. Griffiths, W. W. Hsiao, S. Savić-

Kallesøe, S. Moreira, G. Van Domselaar, M. H. Zawati, and et al., “Addressing

privacy concerns in sharing viral sequences and minimum contextual data in a

public repository during the covid-19 pandemic,” Frontiers in Genetics, vol. 12,

2022.

[7] “Gordon v. Canada (Health), 2008 FC 258,” Office of the Privacy Commissioner

of Canada, Jun 2014.

[8] “Gordon v. Canada (Minister of Health), 2008 FC 258,” vLex.

[9] L. Sweeney, “Simple demographics often identify people uniquely,” figshare, Jun

2018.

[10] P. Golle, “Revisiting the uniqueness of simple demographics in the us popula-

tion,” Proceedings of the 5th ACM workshop on Privacy in electronic society -

WPES ’06, 2006.

64

[11] L. Rocher, J. M. Hendrickx, and Y.-A. de Montjoye, “Estimating the success of

re-identifications in incomplete datasets using generative models,” Nature Com-

munications, vol. 10, no. 1, 2019.

[12] K. J. Wu, “A major clue to covid’s origins is just out of reach,” Mar 2023.

[13] “Sago statement on newly released sars-cov-2 metagenomics data from china cdc

on gisaid,” Mar 2023.

[14] B. Mole, “Genetic data links sars-cov-2 to raccoon dogs in china market, scientists

say,” Mar 2023.

[15] K. Cullinan, “High drama as scientists who may have found covid ’animal x’ are

kicked off data-sharing platformnbsp;,” Mar 2023.

[16] S. LEHRER and P. H. RHEINSTEIN, “Human gene sequences in sars-cov-2 and

other viruses,” In Vivo, vol. 34, p. 1633–1636, Jun 2020.

[17] H. Li, X. Hong, L. Ding, S. Meng, R. Liao, Z. Jiang, and D. Liu, “Sequence simi-

larity of sars-cov-2 and humans: Implications for sars-cov-2 detection,” Frontiers

in Genetics, vol. 13, Jul 2022.

[18] M. Lenharo, “Gisaid in crisis: Can the controversial covid genome database

survive?,” May 2023.

[19] R. Van Noorden, “Scientists call for fully open sharing of coronavirus genome

data,” Feb 2021.

[20] A. Aloufi, P. Hu, Y. Song, and K. Lauter, “Computing blindfolded on data

homomorphically encrypted under multiple keys: A survey,” ACM Computing

Surveys, vol. 54, p. 1–37, Dec 2022.

65

[21] M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein, K. Lauter,

S. Lokam, D. Moody, T. Morrison, and et al., “Security of homomorphic encryp-

tion - microsoft.com,” Jan 2018.

[22] J. A. Cruz and R. Chua, “Secure remote genome-wide association studies using

fully homomorphic encryption,” Theory and Practice of Computation Proceed-

ings of the Workshop on Computation: Theory and Practice (WCTP 2019),

2020.

[23] Competition tasks - IDASH privacy security workshop 2021 - secure genome

analysis competition, 2021.

[24] D. N. Baker and B. Langmead, “Dashing: Fast and accurate genomic distances

with hyperloglog,” Genome Biology, vol. 20, no. 1, 2019.

[25] J. J. Sim, W. Zhou, F. M. Chan, M. S. Annamalai, X. Deng, B. H. Tan, and K. M.

Aung, “CoVnita: An End-to-end Privacy-preserving Framework for SARS-CoV-

2 Classification,” CoVnita: An End-to-end Privacy-preserving Framework for

SARS-CoV-2 Classification PREPRINT (Version 1), Nov 2022.

[26] M. A. Remita, A. Halioui, A. A. Malick Diouara, B. Daigle, G. Kiani, and

A. B. Diallo, “A machine learning approach for viral genome classification,”

BMC Bioinformatics, vol. 18, no. 1, 2017.

[27] J. Kim, K. Lee, R. Rupasinghe, S. Rezaei, B. Mart́ınez-López, and X. Liu, “Ap-

plications of machine learning for the classification of porcine reproductive and

respiratory syndrome virus sublineages using amino acid scores of ORF5 gene,”

Frontiers in Veterinary Science, vol. 8, 2021.

[28] A. Lopez-Rincon, A. Tonda, L. Mendoza-Maldonado, D. G. Mulders,

R. Molenkamp, C. A. Perez-Romero, E. Claassen, J. Garssen, and A. D. Kran-

66

eveld, “Classification and specific primer design for accurate detection of SARS-

COV-2 using Deep Learning,” Scientific Reports, vol. 11, no. 1, 2021.

[29] G. B. Câmara, M. G. Coutinho, L. M. Silva, W. V. Gadelha, M. F. Torquato,

R. d. Barbosa, and M. A. Fernandes, “Convolutional neural network applied to

SARS-COV-2 sequence classification,” Sensors, vol. 22, no. 15, p. 5730, 2022.

[30] D. S. Char, N. H. Shah, and D. Magnus, “Implementing machine learning in

health care — addressing ethical challenges,” New England Journal of Medicine,

vol. 378, no. 11, p. 981–983, 2018.

[31] D. S. Char, M. D. Abràmoff, and C. Feudtner, “Identifying ethical considera-

tions for Machine Learning Healthcare Applications,” The American Journal of

Bioethics, vol. 20, no. 11, p. 7–17, 2020.

[32] J. Li, X. Kuang, S. Lin, X. Ma, and Y. Tang, “Privacy preservation for machine

learning training and classification based on homomorphic encryption schemes,”

Information Sciences, vol. 526, p. 166–179, Jul 2020.

[33] A. Akavia, B. Galili, H. Shaul, M. Weiss, and Z. Yakhini, “Efficient privacy-

preserving viral strain classification via K-Mer signatures and FHE,” IBM Re-

search Publications, May 2022.

[34] M. Templ and M. Sariyar, “A systematic overview on methods to protect sensi-

tive data provided for various analyses,” SpringerLink, Aug 2022.

[35] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, “TenSEAL: A library

for encrypted tensor operations using homomorphic encryption,” arXiv.org, Apr

2021.

67

[36] A. Ibarrondo and A. Viand, “Pyfhel: PYthon For Homomorphic Encryption

Libraries,” Proceedings of the 9th on Workshop on Encrypted Computing Applied

Homomorphic Cryptography, p. 11–16, Nov 2021.

[37] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital sig-

natures and public-key cryptosystems,” Communications of the ACM, vol. 21,

no. 2, p. 120–126, 1978.

[38] Microsoft, “Microsoft/SEAL,” GitHub, Mar 2022. Available at https://

github.com/microsoft/SEAL.

[39] Openfheorg, “Openfheorg/openfhe-development,” GitHub, Nov 2022. Available

at https://github.com/openfheorg/openfhe-development.

[40] Zama-AI, “Concrete-ML,” GitHub, Nov 2022. Available at https://github.

com/zama-ai/concrete-ml.

[41] D. Murik, A. Bitar, and S. Martinelli, “IBM/HElayers: IBM HElayers Homo-

morphic Encryption SDK for C++ and Python,” GitHub, Nov 2022. Available

at https://github.com/IBM/helayers.

[42] T.-T. Kuo, T. Bath, S. Ma, N. Pattengale, M. Yang, Y. Cao, C. M. Hudson,

J. Kim, K. Post, L. Xiong, and et al., “Benchmarking blockchain-based gene-

drug interaction data sharing methods: A case study from the iDASH 2019

secure genome analysis competition blockchain track,” International Journal of

Medical Informatics, vol. 154, p. 104559, 2021.

[43] A. K. Ladisla and R. B. Chua, “Theory and practice of computation,” Theory and

Practice of Computation Proceedings of the Workshop on Computation: Theory

and Practice (WCTP 2018), 2019.

68

https://github.com/microsoft/SEAL
https://github.com/microsoft/SEAL
https://github.com/openfheorg/openfhe-development
https://github.com/zama-ai/concrete-ml
https://github.com/zama-ai/concrete-ml
https://github.com/IBM/helayers

[44] E. Sarkar, E. Chielle, G. Gursoy, O. Mazonka, M. Gerstein, and M. Maniatakos,

“Fast and scalable private genotype imputation using machine learning and par-

tially homomorphic encryption,” IEEE Access, vol. 9, p. 93097–93110, 2021.

[45] D. Froelicher, J. R. Troncoso-Pastoriza, J. L. Raisaro, M. A. Cuendet, J. S. Sousa,

H. Cho, B. Berger, J. Fellay, and J.-P. Hubaux, “Truly privacy-preserving feder-

ated analytics for precision medicine with multiparty homomorphic encryption,”

Nature Communications, vol. 12, no. 1, 2021.

[46] K. Lauter, S. Kannepalli, K. Laine, and R. C. Moreno, “Password Monitor:

Safeguarding Passwords in Microsoft Edge,” Microsoft Research, Jan 2021.

[47] IBM Efficient Privacy-Preserving Viral Strain Classification via k-mer Signa-

tures and FHE (Poster), 2022. Available at https://drive.google.com/file/

d/1hAcn_DZPQ5KA837JVoMkMwg__W4FtESA/view.

[48] H. Shaul, B. Galili, A. Akavia, M. Weiss, and Z. Yakhini, “IBM homomorphic

encryption: A DASHing solution for healthcare data privacy,” IBM Developer,

Feb 2022.

[49] A. Akavia, B. Galili, H. Shaul, M. Weiss, and Z. Yakhini, “Efficient privacy-

preserving viral strain classification via K-Mer signatures and FHE,” Cryptology

ePrint Archive, Jan 2023.

[50] M. Creeger and C. Inc., “The rise of fully homomorphic encryption,” The Rise

of Fully Homomorphic Encryption - ACM Queue, Sep 2022.

[51] O. Regev, “Lattice-based cryptography,” Lecture Notes in Computer Science,

p. 131–141, 2006.

69

https://drive.google.com/file/d/1hAcn_DZPQ5KA837JVoMkMwg__W4FtESA/view
https://drive.google.com/file/d/1hAcn_DZPQ5KA837JVoMkMwg__W4FtESA/view

[52] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy

homomorphisms,” Foundations of secure computation, vol. 4, no. 11, p. 169–180,

1978.

[53] C. Gentry, “Fully homomorphic encryption using ideal lattices,” Proceedings of

the 41st annual ACM symposium on Symposium on theory of computing - STOC

’09, 2009.

[54] C. Gentry and S. Halevi, “Implementing Gentry’s fully-homomorphic encryption

scheme,” Advances in Cryptology – EUROCRYPT 2011, p. 129–148, 2011.

[55] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic

encryption over the integers,” https://eprint.iacr.org/, 2010.

[56] I. Chillotti, M. Joye, and P. Paillier, “Programmable bootstrapping enables effi-

cient homomorphic inference of deep neural networks,” whitepaper.zama.ai, 2020.

[57] Zama-AI, “Linear models,” Concrete ML. Available at https://docs.zama.ai/

concrete-ml/built-in-models/linear.

[58] Zama-AI, “Tree-based models,” Concrete ML. Available at https://docs.

zama.ai/concrete-ml/built-in-models/tree.

[59] Zama-AI, “Neural networks,” Concrete ML. Available at https://docs.zama.

ai/concrete-ml/built-in-models/neural-networks.

[60] Zama-AI, “Key concepts,” Concrete ML. Available at https://docs.zama.ai/

concrete-ml/getting-started/concepts.

[61] Zama-AI, “Quantization,” Concrete ML. Available at https://docs.zama.ai/

concrete-ml/advanced-topics/quantization.

[62] Zama-AI, “Compilation,” Concrete ML. Available at https://docs.zama.ai/

concrete-ml/advanced-topics/compilation.

70

https://docs.zama.ai/concrete-ml/built-in-models/linear
https://docs.zama.ai/concrete-ml/built-in-models/linear
https://docs.zama.ai/concrete-ml/built-in-models/tree
https://docs.zama.ai/concrete-ml/built-in-models/tree
https://docs.zama.ai/concrete-ml/built-in-models/neural-networks
https://docs.zama.ai/concrete-ml/built-in-models/neural-networks
https://docs.zama.ai/concrete-ml/getting-started/concepts
https://docs.zama.ai/concrete-ml/getting-started/concepts
https://docs.zama.ai/concrete-ml/advanced-topics/quantization
https://docs.zama.ai/concrete-ml/advanced-topics/quantization
https://docs.zama.ai/concrete-ml/advanced-topics/compilation
https://docs.zama.ai/concrete-ml/advanced-topics/compilation

[63] Zama-AI, “Quick start,” Concrete ML. Available at https://docs.zama.ai/

concrete-numpy/getting-started/quick_start.

[64] Zama-AI, “Production deployment,” Concrete ML. Available at https://docs.

zama.ai/concrete-ml/advanced-topics/client_server.

[65] Zama-AI, “Concrete.ml.deployment.fhe client server,” Concrete ML. Available

at https://docs.zama.ai/concrete-ml/developer-guide/api/concrete.

ml.deployment.fhe_client_server.

[66] Zama-AI, “Concrete-ml/clientserver.ipynb at release/0.5.x · zama-

ai/concrete-ml,” GitHub, Sep 2022. Available at https://github.com/

zama-ai/concrete-ml/blob/release/0.5.x/docs/advanced_examples/

ClientServer.ipynb.

[67] P. Flajolet, Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The analy-

sis of a near-optimal cardinality estimation algorithm,” Discrete Mathematics

amp;amp; Theoretical Computer Science, vol. DMTCS Proceedings vol. AH,...,

no. Proceedings, 2007.

[68] IBM, “What is logistic regression?,” IBM. Available at https://www.ibm.com/

topics/logistic-regression.

[69] A. Pradhan, S. Prabhu, K. Chadaga, S. Sengupta, and G. Nath, “Supervised

learning models for the preliminary detection of COVID-19 in patients using

demographic and epidemiological parameters,” MDPI, Jul 2022.

[70] A. C. Chang, “Machine and deep learning,” Intelligence-Based Medicine, Aug

2020.

[71] M. A. Zeller, Z. W. Arendsee, G. J. Smith, and T. K. Anderson, “Classlog:

Logistic regression for the classification of genetic sequences,” bioRxiv, Jan 2022.

71

https://docs.zama.ai/concrete-numpy/getting-started/quick_start
https://docs.zama.ai/concrete-numpy/getting-started/quick_start
https://docs.zama.ai/concrete-ml/advanced-topics/client_server
https://docs.zama.ai/concrete-ml/advanced-topics/client_server
https://docs.zama.ai/concrete-ml/developer-guide/api/concrete.ml.deployment.fhe_client_server
https://docs.zama.ai/concrete-ml/developer-guide/api/concrete.ml.deployment.fhe_client_server
https://github.com/zama-ai/concrete-ml/blob/release/0.5.x/docs/advanced_examples/ClientServer.ipynb
https://github.com/zama-ai/concrete-ml/blob/release/0.5.x/docs/advanced_examples/ClientServer.ipynb
https://github.com/zama-ai/concrete-ml/blob/release/0.5.x/docs/advanced_examples/ClientServer.ipynb
https://www.ibm.com/topics/logistic-regression
https://www.ibm.com/topics/logistic-regression

[72] S. Khare, C. Gurry, L. Freitas, M. B. Schultz, G. Bach, A. Diallo, N. Akite,

J. Ho, R. TC Lee, W. Yeo, and et al., “GISAID’s role in pandemic response,”

China CDC Weekly, vol. 3, no. 49, p. 1049–1051, 2021.

[73] S. Elbe and G. Buckland-Merrett, “Data, disease and diplomacy: GISAID’s in-

novative contribution to global health,” Global Challenges, vol. 1, no. 1, p. 33–46,

2017.

[74] Y. Shu and J. McCauley, “GISAID: Global initiative on sharing all influenza

data – from vision to reality,” Eurosurveillance, vol. 22, no. 13, 2017.

[75] W. Wirth and S. Duchene, “WYTAMMA/GISAIDR: Programmatically interact

with the GISAID database.,” 2022.

[76] National Center for Biotechnology Information, “FASTA Format for Nucleotide

Sequences,” Feb 2021. Available at https://www.ncbi.nlm.nih.gov/genbank/

fastaformat.

[77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[78] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Nic-

ulae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly,

B. Holt, and G. Varoquaux, “API design for machine learning software: experi-

ences from the scikit-learn project,” in ECML PKDD Workshop: Languages for

Data Mining and Machine Learning, pp. 108–122, 2013.

[79] J. K. E. Yee, “Brief introduction to four categories of feature selection tech-

niques,” Jan 2021.

72

https://www.ncbi.nlm.nih.gov/genbank/fastaformat
https://www.ncbi.nlm.nih.gov/genbank/fastaformat

[80] A. Bajaj, “Performance metrics in machine learning [complete guide],” May 2023.

[81] A. Mishra, “Metrics to evaluate your machine learning algorithm,” Feb 2018.

[82] E. Zvornicanin, “Accuracy vs auc in machine learning,” May 2023.

[83] J. Czakon, “F1 score vs roc auc vs accuracy vs pr auc: Which evaluation metric

should you choose?,” May 2023.

[84] J. Brownlee, “Roc curves and precision-recall curves for imbalanced classifica-

tion,” Sep 2020.

[85] N. Tyagi, “What is confusion matrix?,” Mar 2021.

[86] R. Vidiyala, “Confusion matrix in a nutshell,” May 2020.

[87] D. Corvoysier, “A brief introduction to machine learning models quan-

tization,” May 2023. Available at https://www.kaizou.org/2023/05/

machine-learning-quantization-introduction.html.

[88] L. Mao, “Quantization for neural networks,” Feb 2023. Available at

https://leimao.github.io/article/Neural-Networks-Quantization/

#Quantization.

[89] “google/gemmlowp: low-precision matrix multiplication,” Sep 2022. Available

at https://github.com/google/gemmlowp/tree/master.

[90] J. Frery, A. Stoian, R. Bredehoft, L. Montero, C. Kherfallah, B. Chevallier-

Mames, and A. Meyre, “Privacy-preserving tree-based inference with fully ho-

momorphic encryption,” Mar 2023.

[91] E. B. Barker, W. C. Barker, W. E. Burr, W. T. Polk, and M. E. Smid, “Sp

800-57. recommendation for key management, part 1: General (revised),” tech.

rep., Gaithersburg, MD, USA, 2007.

73

https://www.kaizou.org/2023/05/machine-learning-quantization-introduction.html
https://www.kaizou.org/2023/05/machine-learning-quantization-introduction.html
https://leimao.github.io/article/Neural-Networks-Quantization/#Quantization
https://leimao.github.io/article/Neural-Networks-Quantization/#Quantization
https://github.com/google/gemmlowp/tree/master

[92] Ibarrond, “Ibarrond/pyfhel: Python for homomorphic encryption libraries, per-

form encrypted computations such as sum, mult, scalar product or matrix mul-

tiplication in python, with numpy compatibility. uses seal/palisade as back-

ends, implemented using cython.,” GitHub, Nov 2022. Available at https:

//github.com/ibarrond/Pyfhel.

74

https://github.com/ibarrond/Pyfhel
https://github.com/ibarrond/Pyfhel

X. Appendix

A. Source Code

1 # %%

2 from numpy import mean

3 from numpy import std

4 import matplotlib.pyplot as plt

5 from sklearn.model_selection import train_test_split

6 from sklearn import preprocessing

7 from sklearn.metrics import accuracy_score , roc_auc_score , recall_score , confusion_matrix , ConfusionMatrixDisplay

8 from concrete.ml.sklearn import LogisticRegression , LinearRegression

9 from concrete.ml.sklearn.svm import LinearSVC

10 from sklearn.svm import LinearSVC as skSVC

11 from concrete.ml.sklearn.rf import RandomForestClassifier

12 from sklearn.ensemble import RandomForestClassifier as skRF

13 from sklearn.linear_model import LogisticRegression as skLR

14 from sklearn.linear_model import LinearRegression as skLinear

15 from sklearn.preprocessing import StandardScaler

16 from sklearn.model_selection import RepeatedKFold

17 from sklearn.model_selection import cross_val_score

18 from sklearn.feature_selection import VarianceThreshold

19 from sklearn.feature_selection import SelectKBest , chi2

20 from sklearn.preprocessing import StandardScaler

21 from sklearn.decomposition import PCA

22 import time , numpy

23 import pandas as pd

24
25 start_time = time.time()

26
27 dataset = pd.read_csv("AFHE DATASET (05 -18 -2023).csv")

28
29 feature_cols = [c for c in dataset.columns [2:]]

30
31 x = dataset.loc[:, feature_cols]. values #must be floats

32 y = dataset.loc[:,’Lineage ’]. values #must be integers

33
34 # Preprocessing with labels for the lineage

35 le = preprocessing.LabelEncoder ()

36 y = le.fit_transform(y)

37 print(le.classes_)

38
39 x = x.astype(float)

40
41 print("Shape of x: ", x.shape)

42 print("Shape of y:", y.shape)

43
44 print(f"Running time is {time.time() - start_time} seconds")

45
46 # %%

47 # Feature Selection

48
49 start_time = time.time()

50
51 print("\nUsing K best features feature selection ...")

52 print("Shape of x before selection: ", x.shape)

53 selector = SelectKBest(chi2 , k=20)

54 x = selector.fit_transform(x, y)

55 col_idxs = selector.get_support(indices=True)

56 print("Shape of x after selection: ", x.shape)

57
58 print(f"Running time is {time.time() - start_time} seconds")

59
60 # %%

61 # Retrieve train and test sets

62 start_time = time.time()

63 X_train , X_test , y_train , y_test = train_test_split(

64 x, y, test_size =.20)

65 print(f"Test set size: {X_test.shape}")

66 print(f"Running time is {time.time() - start_time} seconds")

67
68 # %%

69 #NOTE WE HAVE A MULTICLASS BUT NOT MULTILABEL PROBLEM. only one label selected from multiple classes is assigned

70 print("Getting metrics for scikit -learn model (Plaintext)...")

71 skmodel = skLR(C=1)

72
73 start_time = time.time()

74 skmodel.fit(X_train ,y_train)

75 print(f"Training time is {time.time() - start_time} seconds")

76
77 start_time = time.time()

78 y_pred_sklearn = skmodel.predict(X_test)

79 print(f"Prediction time is {time.time() - start_time} seconds")

80 print(f"Accuracy: {skmodel.score(X_test ,y_test)*100}%")

81 print(f"Macro -averaged ROC AUC Score: {roc_auc_score(y, skmodel.predict_proba(x), multi_class=’ovr ’)}")

75

82 print(f"Recall: {recall_score(y_test , y_pred_sklearn , average=’weighted ’)*100}%")

83 sklearn_cm_display = ConfusionMatrixDisplay(confusion_matrix(y_test , y_pred_sklearn), display_labels=le.classes_)

84 sklearn_cm_display.plot()

85 plt.show()

86
87 # %%

88 print("Getting metrics for Concrete -ML model (Quantized Plaintext)...")

89 model = LogisticRegression(C=1)

90
91 # Fit the model

92 start_time = time.time()

93 model.fit(X_train , y_train)

94 print(f"Training time is {time.time() - start_time} seconds")

95
96 # Run the predictions on non -encrypted data as a reference

97 start_time = time.time()

98 y_pred_clear = model.predict(X_test)

99 print(f"Prediction time is {time.time() - start_time} seconds")

100 print(f"Accuracy: {model.score(X_test ,y_test) * 100}%")

101 print(f"Macro -averaged ROC AUC Score: {roc_auc_score(y, model.predict_proba(x), multi_class=’ovr ’)}")

102 print(f"Recall: {recall_score(y_test , y_pred_clear , average=’weighted ’)*100}%")

103 concrete_plain_display = ConfusionMatrixDisplay(confusion_matrix(y_test , y_pred_clear), display_labels=le.

classes_)

104 concrete_plain_display.plot()

105 plt.show()

106
107 #%%

108 print("Getting metrics for Concrete -ML model (FHE)...")

109
110 start_time = time.time()

111 print("Compiling the quantized model ...")

112 model.compile(x)

113 print("Model compiled!")

114 print(f"Compilation time is {time.time() - start_time} seconds")

115
116 start_time = time.time()

117 y_pred_fhe = model.predict(X_test , fhe="execute")

118 print(f"Prediction time is {time.time() - start_time} seconds")

119 print(f"Accuracy: {accuracy_score(y_test , y_pred_fhe) * 100}%")

120 print(f"Macro -averaged ROC AUC Score: {roc_auc_score(y, model.predict_proba(x), multi_class=’ovr ’)}")

121 print(f"Recall: {recall_score(y_test , y_pred_fhe , average=’weighted ’)*100}%")

122 print(f"Comparison (FHE vs Plaintext): {int((y_pred_fhe == y_pred_sklearn).sum()/len(y_pred_fhe)*100) }% similar")

123 print(f"Comparison (FHE vs Quantized Plaintext): {int((y_pred_fhe == y_pred_clear).sum()/len(y_pred_fhe)*100) }%

similar")

124 concrete_fhe_display = ConfusionMatrixDisplay(confusion_matrix(y_test , y_pred_fhe), display_labels=le.classes_)

125 concrete_fhe_display.plot()

126 plt.show()

127
128 # %%

129 print(f"Sklearn Accuracy (Linear Reg , RF, SVC):")

130
131 #SKLEARN LINEAR REGRESSION

132 skmodel2 = skLinear ()

133 skmodel2.fit(X_train ,y_train)

134 skmodel2.predict(X_test)

135 print("Sklearn Linear Regression Accuracy: ", skmodel2.score(X_test ,y_test)*100,"%")

136
137 #SKLEARN RANDOM FOREST

138 skmodel3 = skRF()

139 skmodel3.fit(X_train , y_train)

140 skmodel3.predict(X_test)

141 print("Sklearn Random Forest Accuracy: ",skmodel3.score(X_test ,y_test)*100,"%")

142
143 #SKLEARN SVC

144 skmodel4 = skSVC()

145 skmodel4.fit(X_train , y_train)

146 skmodel4.predict(X_test)

147 print("Sklearn SVC Accuracy: ",skmodel4.score(X_test ,y_test)*100,"%")

148
149 print(f"\nConcrete -ML Accuracy (Linear Reg , RF , SVC):")

150
151 model2 = LinearRegression ()

152 model2.fit(X_train ,y_train)

153 model2.predict(X_test)

154 print("Concrete -ML Linear Regression Accuracy: ", model2.score(X_test ,y_test)*100,"%")

155
156 model3 = RandomForestClassifier ()

157 model3.fit(X_train , y_train)

158 model3.predict(X_test)

159 print("Concrete -ML Random Forest Accuracy: ",model3.score(X_test ,y_test)*100,"%")

160
161 model4 = LinearSVC ()

162 model4.fit(X_train , y_train)

163 model4.predict(X_test)

164 print("Concrete -ML SVC Accuracy: ",model4.score(X_test ,y_test)*100,"%")

165
166 model2.compile(x)

167 model3.compile(x)

168 model4.compile(x)

169 model2.predict(X_test)

170 model3.predict(X_test)

171 model4.predict(X_test)

76

172
173 print("\nFHE Concrete -ML Linear Regression Accuracy: ", model2.score(X_test ,y_test)*100,"%")

174 print("FHE Concrete -ML Random Forest Accuracy: ",model3.score(X_test ,y_test)*100,"%")

175 print("FHE Concrete -ML SVC Accuracy: ",model4.score(X_test ,y_test)*100,"%")

176
177 # %%

178 import json

179
180 #Attempting to save the model

181 from concrete.ml.deployment import FHEModelClient , FHEModelDev , FHEModelServer

182
183 start_time = time.time()

184 fhemodel_dev = FHEModelDev("./concrete -covid -classifier", model)

185 fhemodel_dev.save()

186 print(f"Running time for saving the FHE model is {time.time() - start_time} seconds")

187
188 for col in col_idxs:

189 print(feature_cols[col])

190
191 for c in le.classes_:

192 print(c)

193
194 start_time = time.time()

195 with open("features_and_classes.txt", "w") as f:

196 classes_list = list(le.classes_)

197 temp_dict = {"features":[feature_cols[col] for col in col_idxs], "classes":{ classes_list.index(x):x for x in

classes_list }}

198
199 f.write(json.dumps(temp_dict))

200 print(f"Running time for saving the features and classes is {time.time() - start_time} seconds")

Listing 3: Source code for the logistic regression model training script

1 import shutil

2 from django.http import FileResponse

3 from django.shortcuts import render , HttpResponse , HttpResponseRedirect

4 from concreteClassifierApp.settings import BASE_DIR

5 import os

6 import io, zipfile , requests

7 import subprocess

8 from pandas import DataFrame as pd

9 from pandas import read_csv

10 from concrete.ml.deployment import FHEModelServer

11
12 # Create your views here.

13 def index(request):

14
15 return render(request , ’index.html’, context ={’classes_list ’:{0: ’B.1.1.529 (Omicron)’, 1: ’B.1.617.2 (Delta)

’, 2: ’B.1.621 (Mu)’, 3: ’C.37 (Lambda)’}})

16
17 def start_classification(request):

18
19 clean_predictions_folder ()

20
21 count = 0

22 model_path = os.path.join(BASE_DIR , "Compiled Model")

23 keys_path = os.path.join(BASE_DIR , "classifier/keys")

24 keys_file = request.FILES[’keys_file ’]

25 pred_dir = os.path.join(BASE_DIR , "classifier/predictions")

26
27 data = request.FILES[’inputs ’].read().strip ()

28
29 enc_file_list = []

30
31 print(f"Data received from client is {data [:200]}")

32 count += 1

33 serialized_evaluation_keys = keys_file.read()

34 encrypted_prediction = FHEModelServer(model_path).run(data , serialized_evaluation_keys)

35 pred_file_name = f"encrypted_prediction_{count}.enc"

36 pred_file_path = os.path.join(pred_dir , pred_file_name)

37 with open(pred_file_path , "wb") as f:

38 f.write(encrypted_prediction)

39
40 #send all predictions as a zip file to client

41 enc_file_list.append(pred_file_path)

42
43 zipfile = create_zip(enc_file_list)

44
45 return zipfile

46
47 def create_zip(file_list):

48 count = 0

49 zip_filename = os.path.join(BASE_DIR , "classifier/predictions/enc_predictions.zip")

50 zip_download_name = "enc_predictions.zip"

51 buffer = io.BytesIO ()

52 zip_file = zipfile.ZipFile(buffer , ’w’)

53 #zip_file = zipfile.ZipFile(zip_filename , ’w’)

54
55 for filename in file_list:

56 count += 1

77

57 with open(filename , "rb") as file_read:

58 zip_file.write(filename , f"encrypted_prediction_{count}.enc")

59 zip_file.close()

60
61 #craft download response

62 resp = HttpResponse(buffer.getvalue (), content_type = "application/force -download")

63 resp[’Content -Disposition ’] = f’attachment; filename ={ zip_download_name}’

64
65 return resp

66
67 def clean_predictions_folder ():

68 pred_dir = os.path.join(BASE_DIR , f"classifier/predictions")

69
70 if(os.listdir(pred_dir)):

71 for f in os.listdir(pred_dir):

72 os.remove(os.path.join(pred_dir , f))

Listing 4: Source code for the server-side classification function

1 from django.contrib import admin

2 from django.urls import path

3 from . import views

4
5 app_name = "classifier"

6
7 urlpatterns = [

8 path(’’, views.index , name=’index ’),

9 path(’start_classification ’, views.start_classification , name=’start_classification ’),

10]

Listing 5: Source code for the server-side URL settings

1 {% load static %}

2
3 <!doctype html>

4 <html lang="en">

5 <head>

6 <meta charset="utf -8">

7 <meta name="viewport" content="width=device -width , initial -scale=1, shrink -to-fit=no">

8 <meta name="description" content="">

9 <meta name="author" content="">

10 <link rel="icon" href="/docs /4.0/ assets/img/favicons/favicon.ico">

11
12 <title>FHE -enabled SARS -CoV -2 Sequence Classifier (Server -Side)</title>

13
14 <link rel="canonical" href="https :// getbootstrap.com/docs /4.0/ examples/jumbotron/">

15
16 <!-- Bootstrap core CSS -->

17 <link href="{% static ’css/bootstrap.min.css ’ %}" rel="stylesheet">

18
19 <!-- Custom styles for this template -->

20 <link href="{% static ’css/jumbotron.css ’ %}" rel="stylesheet">

21 </head>

22
23 <body>

24
25 <form action="{% url ’classifier:start_classification ’ %}" method="post">

26 {% csrf_token %}

27 <div class="form -group mt -3" hidden >

28 <label class="mr -2">Upload your encrypted inputs:</label>

29 <input type="file" name="file">

30 </div>

31 <div class="form -group mt -3" hidden >

32 <label class="mr -2">Upload your evaluation keys (.ekl):</label >

33 <input type="file" name="keys_file">

34 </div>

35 </form>

36
37 <main role="main">

38
39 <!-- Main jumbotron for a primary marketing message or call to action -->

40 <div class="jumbotron">

41 <div class="container">

42 <h1 class="display -3">FHE -enabled SARS -CoV -2 Sequence Classifier </h1>

43 <p>This is the homepage for the server -side application of an FHE -enabled SARS -CoV -2 classification

system. This site hosts links to the Github repository of the application , and the download link for the

client GUI app (requirements are listed in requirements.txt in the Github repository).</p>

44 <p><a class="btn btn -primary btn -lg" href="https :// github.com/bjorgkav/concreteml -covid -classifier"

role="button" target="_blank">Access the Github repository »</p>

45 </div>

46 </div>

47
48 <div class="container">

49 <!-- Example row of columns -->

50 <div class="row">

51 <div class="col -md -4">

52 <h2>Technologies Used</h2>

53

78

54

Concrete -ML v1.0.3

55 Django

Framework v4.2.1

56 Dashing

by dnbaker

57 <a href="https :// github.com/TomSchimansky/CustomTkinter" target="_blank" rel="noopener

noreferrer">CustomTkinter v5.1.3

58 Pandas v2.0.1

59

60 <p><a class="btn btn -secondary" href="https :// github.com/bjorgkav/concreteml -covid -classifier/blob/

main/requirements.txt" target="_blank" role="button">Show more »</p>

61 </div>

62 <div class="col -md -4">

63 <h2>Client -side application </h2>

64 <p>This classification system is intended to be used with the client -side GUI application , which can

be accessed here (see requirements.txt for the required packages):</p>

65 <p><a class="btn btn -secondary" href="https :// github.com/bjorgkav/concreteml -covid -classifier/blob/

main/client/GUI/Client_GUI_App.py" role="button">Download the Client -side GUI Application »</p>

66 </div>

67 <div class="col -md -4">

68 <h2>SARS -CoV -2 Strains Currently Supported </h2>

69

70 {% for value in classes_list.values %}

71 {{ value }}

72 {% endfor %}

73

74 </div>

75 </div>

76
77 <hr>

78
79 </div> <!-- /container -->

80
81 </main>

82
83 <footer class="container">

84 <p>Website developed by Johann Benjamin P. Vivas (last updated June 3, 2023) </p>

85 </footer >

86
87 <!-- Bootstrap core JavaScript

88 == -->

89 <!-- Placed at the end of the document so the pages load faster -->

90 <script src="js/vendor/popper.min.js"></script >

91 <script src="js/bootstrap.min.js"></script >

92 </body>

93 </html>

Listing 6: Source code for the server-side web application homepage

1 #!/usr/bin/python3

2 import shutil , subprocess , zipfile , requests

3 from customtkinter import (

4 CTk ,

5 CTkButton ,

6 CTkEntry ,

7 CTkFont ,

8 CTkFrame ,

9 CTkLabel ,

10 IntVar ,

11 StringVar ,

12 CTkTextbox ,

13 set_appearance_mode ,

14 set_default_color_theme)

15
16 from tkinter import filedialog as fd

17 from tkinter import END , INSERT

18 from datetime import date , datetime

19 from concrete.ml.deployment import FHEModelClient

20 import os, requests , stat , numpy , json , traceback

21 from pandas import DataFrame as pd

22 from pandas import read_csv

23 from sklearn.preprocessing import LabelEncoder

24
25 #region class

26 class ClientTkinterUiDesignApp:

27 def __init__(self , master=None):

28 # initialize FHEModelClient and output dictionary

29 self.fhe_model_client = FHEModelClient(os.path.dirname(__file__), os.path.join(os.path.dirname(__file__),

"keys"))

30 self.data_dictionary = {}

31
32 # create required folders if not exists

33 this_folder = os.path.dirname(__file__)

34
35 required_folder_names = ["fastas", "keys", "predictions"]

36
37 for name in required_folder_names:

38 if not os.path.exists(os.path.join(this_folder , f"{name}")):

79

39 os.mkdir(os.path.join(this_folder , f"{name}"))

40
41 # build ui

42 self.root = CTk(None)

43 self.root.configure(padx=60, pady =10)

44 set_appearance_mode("dark")

45 set_default_color_theme("dark -blue")

46 self.root.geometry("800 x900")

47 self.root.resizable(True , True)

48 self.root.title(

49 "FHE -Enabled SARS -CoV -2 Classifier System (Client -side)")

50 self.encrypt_name_var = StringVar ()

51 self.decrypt_name_var = StringVar ()

52 self.title = CTkLabel(self.root)

53 self.title.configure(

54 bg_color="#035690",

55 font=CTkFont(

56 "roboto",

57 20,

58 None ,

59 "roman",

60 False ,

61 False),

62 justify="center",

63 text=’FHE -Enabled SARS -CoV -2 Classifier System (Client -side)’)

64 self.title.pack(anchor="n", fill="x", ipady =10, side="top")

65 self.description_frame = CTkFrame(self.root)

66 self.about_label = CTkLabel(self.description_frame)

67 self.about_label.configure(

68 font=CTkFont(

69 "roboto",

70 24,

71 None ,

72 "roman",

73 False ,

74 False),

75 text=’About’)

76 self.about_label.pack(expand=False , fill="both", pady=10, side="top")

77 self.description_label = CTkLabel(self.description_frame)

78 self.description_label.configure(

79 justify="left",

80 text=’This tool allows clients to convert their FASTA files to a numerical format and encrypt them

for classification \non the server -side application. \n\nOn startup , this app automatically downloads the

required files and scripts for operations \n(est. size 50 MB, internet connection required).’)

81 self.description_label.pack(expand=False , fill="x", side="top")

82 self.description_frame.pack(

83 fill="both", ipady=10, padx=20, pady=20, side="top")

84 self.dashing_frame = CTkFrame(self.root)

85 self.dashing_label = CTkLabel(self.dashing_frame)

86 self.dashing_label.configure(

87 anchor="w",

88 justify="left",

89 text=’Enter your fasta file filepath for processing:’)

90 self.dashing_label.grid(column=0, padx=10, pady=10, row=0, sticky="nw")

91 self.dashing_filename = CTkEntry(self.dashing_frame)

92 self.dashing_name_var = StringVar ()

93 self.dashing_filename.configure(

94 exportselection=False ,

95 justify="left",

96 state="disabled",

97 takefocus=False ,

98 textvariable=self.dashing_name_var ,

99 width =460)

100 self.dashing_filename.grid(column=0, padx=10, row =1)

101 self.dashing_browse = CTkButton(self.dashing_frame , hover=True)

102 self.dashing_browse.configure(hover_color="#299 cd9", text=’Browse ...’)

103 self.dashing_browse.grid(column=2, padx=10, row=1)

104 self.dashing_browse.configure(command=self.getDashingInput)

105 self.dashing_begin = CTkButton(self.dashing_frame)

106 self.dashing_begin.configure(

107 hover_color="#299 cd9",

108 text=’Submit for FHE Classification ’,

109 width =300)

110 self.dashing_begin.grid(column=0, columnspan =3, pady=10, row=2)

111 self.dashing_begin.configure(command=self.processData)

112 self.dashing_frame.pack(

113 anchor="w",

114 fill="x",

115 padx=20,

116 pady=10,

117 side="top")

118 ctkframe2 = CTkFrame(self.root)

119 self.app_output_label = CTkLabel(ctkframe2)

120 self.app_output_label.configure(text=’Output Window ’)

121 self.app_output_label.pack(side="top")

122 self.app_output = CTkTextbox(ctkframe2)

123 self.app_output.configure(height =75, state="disabled")

124 _text_ = ’App activity will be displayed here.’

125 self.app_output.configure(state="normal")

126 self.app_output.insert("0.0", _text_)

127 self.app_output.configure(state="disabled")

128 self.app_output.pack(expand=True , fill="both", padx=10, pady =10)

80

129 self.app_pred_history = CTkTextbox(ctkframe2)

130 self.app_pred_history.configure(height =75, state="disabled")

131 _text_ = ’Prediction History :\n’

132 self.app_pred_history.configure(state="normal")

133 self.app_pred_history.insert("0.0", _text_)

134 self.app_pred_history.configure(state="disabled")

135 self.app_pred_history.pack(expand=True , fill="both", padx=10, pady =10)

136 ctkframe2.pack(expand=True , fill="both", padx=20, pady=10, side="top")

137
138 # Main widget

139 self.mainwindow = self.root

140
141 def run(self):

142 self.mainwindow.mainloop ()

143
144 def writeOutput(self , string , delete_switch = False):

145 """ Function for writing argument ’string ’ to the app’s output window. Set argument ’delete_switch ’ to

True to clear the window before printing."""

146 self.app_output.configure(state="normal")

147 if(delete_switch):

148 self.app_output.delete("1.0", END) #tk.END

149 self.app_output.insert("0.0", f"{string }\n\n")

150 else:

151 self.app_output.insert(INSERT , f"{string }\n\n")

152 self.app_output.see(END)

153 self.app_output.configure(state="disabled")

154
155 def writePredOutput(self , string , delete_switch = False):

156 """ Function for writing argument ’string ’ to the app’s prediction output window. Set argument ’

delete_switch ’ to True to clear the window before printing."""

157 self.app_pred_history.configure(state="normal")

158 if(delete_switch):

159 self.app_pred_history.delete("1.0", END) #tk.END

160 self.app_pred_history.insert("0.0", f"{string }\n")

161 else:

162 self.app_pred_history.insert(INSERT , f"{string }\n")

163 self.app_pred_history.see(END)

164 self.app_pred_history.configure(state="disabled")

165
166 def get_size(self , file_path , unit=’bytes ’):

167 file_size = os.path.getsize(file_path)

168 exponents_map = {’bytes ’: 0, ’kb’: 1, ’mb’: 2, ’gb’: 3}

169 if unit not in exponents_map:

170 raise ValueError("Must select from \

171 [’bytes ’, ’kb’, ’mb’, ’gb ’]")

172 else:

173 size = file_size / 1024 ** exponents_map[unit]

174 return round(size , 3)

175
176 def processData(self):

177 self.getFeaturesAndClasses ()

178 self.writeOutput("", True)

179 self.beginDashing ()

180 self.beginEncryption ()

181 self.beginDecryption ()

182
183 def getDashingInput(self):

184 dashing_filename = fd.askopenfilename ()

185 self.dashing_name_var.set(dashing_filename)

186
187 def getEncryptInput(self):

188 encrypt_filename = fd.askopenfilename ()

189 self.encrypt_name_var.set(encrypt_filename)

190
191 def getDecryptInput(self):

192 decrypt_filename = fd.askopenfilename ()

193 self.decrypt_name_var.set(decrypt_filename)

194
195 def beginDashing(self):

196 """ Function to begin dashing the user’s input. Expects the ’self.dashing_name_var ’ to point to a .fasta

file or zip file. Outputs a CSV file for encryption."""

197 try:

198 if(os.listdir(os.path.join(os.path.dirname(__file__), "fastas"))):

199 for f in os.listdir(os.path.join(os.path.dirname(__file__), "fastas")):

200 os.remove(os.path.join(os.path.join(os.path.dirname(__file__), "fastas"), f))

201
202 self.writeOutput("Beginning Dashing ...", False)

203
204 filename = self.dashing_name_var.get()

205 if filename.endswith(".fasta"):

206 first_line , sequence , id = self.readTruncateSequence(filename)

207 self.writeFasta(id, first_line , sequence)

208 self.useDashing ()

209
210 self.writeOutput("Writing dashed sequences to output.csv in the current directory ...")

211
212 dashing_output = os.path.join(os.path.dirname(__file__), f"output.csv")

213 self.dropColumns(dashing_output)

214 self.encrypt_name_var.set(dashing_output)

215
216 self.writeOutput("Dashing Completed!")

217 else:

81

218 raise Exception("Invalid file type: supported file types include .fasta , .zip")

219 except Exception as e:

220 self.writeOutput(f"Error: {traceback.format_exc ()}")

221
222 def beginEncryption(self , check_size = False):

223 """ Function to begin the encryption of the user’s dashed SARS -CoV -2 sequences. Expects ’self.

encrypt_name_var ’ to point to the CSV file containing dashed sequences. Outputs a text file and .ekl file

for the encrypted inputs and serialized evaluation keys respectively in this app’s directory."""

224 try:

225
226 for f in os.listdir(os.path.dirname(__file__)):

227 if f.split("/")[-1] in ["encrypted_input.txt", "serialized_evaluation_keys.ekl"]:

228 os.remove(f)

229
230 if(not self.encrypt_name_var.get().endswith(".csv")):

231 raise Exception("Invalid file type. Only .csv files are supported.")

232
233 self.writeOutput("Generating Keys ...", False)

234
235 self.generateKeys ()

236
237 self.writeOutput("Key generation complete! Key files written to folder inside ’keys’ directory.")

238
239 self.writeOutput("Beginning encryption ...")

240
241 dashing_output = self.encrypt_name_var.get()

242 df = read_csv(dashing_output)

243 arr_no_id = df.drop(columns =[’Accession ID’]).to_numpy(dtype="uint16")

244
245 #encrypted rows for input to server

246 encrypted_rows = []

247
248 #encrypted dictionary for outputs

249 count = 0

250 for id in df[’Accession ID’]:

251 self.data_dictionary[count] = {’id’:id , ’result ’:’’}

252
253 for row in range(0, arr_no_id.shape [0]):

254 self.encrypted_id = self.data_dictionary[row][’id’]

255 clear_input = arr_no_id [[row],:]

256
257 encrypted_input = self.fhe_model_client.quantize_encrypt_serialize(clear_input)

258 self.writeOutput(f"New row encrypted of {type(encrypted_input)}; adding to list of encrypted

values ...")

259 encrypted_rows.append(encrypted_input)

260
261 self.encrypted_rows = encrypted_rows

262
263 self.writeOutput(f"Encryption complete! Here are the first 15 character of your encrypted output :\n{

encrypted_rows [0][0:16]}")

264
265 enc_filename = self.saveEncryptedOutput(self.encrypted_id)

266
267 self.writeOutput("Saved encrypted inputs and key files to ’encrypted_input.txt’ and ’

serialized_evaluation_keys.ekl’ respectively .\ nPlease do not move these files until after prediction.")

268
269 app_url = "http :// localhost :8000"

270
271 client = requests.session ()

272
273 client.get(app_url)

274
275 predictions_zip_name = self.sendEncryptRequestToServer(enc_filename , client=client)

276
277 self.decrypt_name_var.set(predictions_zip_name)

278
279 except Exception as e:

280 self.writeOutput(f"Error: {traceback.format_exc ()}")

281
282 def sendEncryptRequestToServer(self , encrypt_filename , client):

283 """ Sends ’encrypted_input.txt’ and ’serialized_evaluation_keys.ekl’ (expected to be located in the same

directory as the app) to the server -side app through the Python requests library. URL is set to localhost

:8000 in development."""

284
285 app_url = "http :// localhost :8000"

286
287 if ’csrftoken ’ in client.cookies:

288 # Django 1.6 and up

289 csrftoken = client.cookies[’csrftoken ’]

290 else:

291 # older versions

292 csrftoken = client.cookies[’csrf’]

293
294 eval_keys_file = open(’serialized_evaluation_keys.ekl’, "rb")

295 inputs_file = open(encrypt_filename , "rb")

296 request_data = dict(csrfmiddlewaretoken=csrftoken)

297 request_files = dict(inputs=inputs_file , keys_file=eval_keys_file)

298
299 self.writeOutput("Sending encrypted inputs and keys to server for classification ...")

300
301 self.writeOutput("Waiting for server ’s response ...")

302

82

303 #send the above files to "localhost :8000/{ function_name }"

304 request_output = client.post(f"{app_url }/ start_classification", data = request_data , files=request_files ,

headers=dict(Referer=app_url),)

305
306 if request_output.ok:

307 self.writeOutput(f"Response Code {request_output.status_code }: Classification completed!")

308
309 with open(os.path.join(os.path.dirname(__file__), "predictions/enc_predictions.zip"), "wb") as z:

310 z.write(request_output.content)

311
312 return os.path.join(os.path.dirname(__file__), "predictions/enc_predictions.zip")

313
314 def generateKeys(self):

315 model_dir = os.path.dirname(__file__)

316 key_dir = os.path.join(os.path.dirname(__file__), "keys")

317
318 if(os.listdir(key_dir)):

319 for f in os.listdir(key_dir):

320 shutil.rmtree(os.path.join(key_dir , f))

321
322 fhemodel_client = FHEModelClient(model_dir , key_dir=key_dir)

323
324 # The client first needs to create the private and evaluation keys.

325 fhemodel_client.generate_private_and_evaluation_keys ()

326
327 # Get the serialized evaluation keys

328 self.serialized_evaluation_keys = fhemodel_client.get_serialized_evaluation_keys ()

329
330 def saveEncryptedOutput(self , id , show_key_sizes = True):

331 """ Saves encrypted rows as a text file to send to the server for classification. Also shows key sizes for

comparison by default."""

332 filename = f"{id}_encrypted_input.txt"

333 with open(os.path.join(os.path.dirname(__file__), filename), "wb") as enc_file:

334 for line in self.encrypted_rows:

335 enc_file.write(line)

336
337 with open(os.path.join(os.path.dirname(__file__), r’serialized_evaluation_keys.ekl’), "wb") as f:

338 f.write(self.serialized_evaluation_keys)

339
340 if show_key_sizes:

341 eval_key_size = self.get_size("./ serialized_evaluation_keys.ekl", ’kb’)

342 print(f"Evaluation key size: {eval_key_size} kB")

343
344 # Check the size of the evaluation keys (in MB)

345 priv_key_size = self.get_size("./keys", ’kb’)

346 print(f"Private key size: {priv_key_size} kB")

347
348 return filename

349
350 def getFeaturesAndClasses(self , file = os.path.join(os.path.dirname(__file__), "features_and_classes.txt")):

351 """ Parses ’features_and_classes.txt’ in the current directory and extracts a dictionary containing the

selected features and the original class labels for decryption."""

352 with open(file , "r") as fc_file:

353 dictionary = json.loads(fc_file.readline ())

354 self.selected_features = dictionary["features"]

355 self.classes_labels = dictionary["classes"]

356 self.classes_labels = {int(key):value for key , value in self.classes_labels.items()}

357 print(self.selected_features)

358 print(self.classes_labels)

359
360 def dropColumns(self , dashing_output):

361 """ Drops columns from the Dashing output based on the parsed selected features from getFeaturesAndClasses

()."""

362 features = self.selected_features

363 feature_list = ["Accession ID"] + features

364
365 drop_df = read_csv(dashing_output)

366 drop_df = drop_df [[column.strip() for column in feature_list]]

367 drop_df.to_csv("./ output.csv", index=False , header=True)

368
369 def readTruncateSequence(self , fasta_fpath , verbose = False):

370 """ Reads the entire sequence from the input file and truncates it before creating a new FASTA file with

the truncated sequence."""

371 truncated_seq = ""

372
373 with open(fasta_fpath , "r") as f:

374 for line in f.readlines (): #chunks () method is essentially opening the file in binary mode.

375 if ">" not in line:

376
377 to_add = line.strip().replace(’\n’, ’’)

378
379 truncated_seq += to_add

380 else:

381 if verbose:

382 print("> found.")

383 if("|" not in line):

384 self.writeOutput("Warning: Please follow the recommended input file structure: >Reference

/Database|AccessionID|DateCollected")

385 first_line = line

386 id = line.split(" ")[0]. strip().replace(’>’, ’’)

387 else:

388 first_line = line

83

389 id = line.split("|")[1]. strip ()

390
391 decoded_truncated_seq = truncated_seq [20000:]

392
393 return first_line , decoded_truncated_seq , id

394
395 def writeFastaBytes(self , id, first_line , sequence):

396 """ Writes a .fasta BYTES file in the ’fastas ’ folder named after the fasta ’s ID and containing the

truncated sequence."""

397 fasta_folder = os.path.join(os.path.dirname(__file__), f"fastas")

398 if not os.path.exists(fasta_folder):

399 os.mkdir(fasta_folder)

400
401 with open(os.path.join(fasta_folder , f"{id}.fasta"), "wb") as output_file:

402 output_file.write(first_line)

403 output_file.write(sequence)

404
405 def writeFasta(self , id, first_line , sequence):

406 """ Writes a .fasta file in the ’fastas ’ folder named after the fasta’s ID and containing the truncated

sequence."""

407 fasta_folder = os.path.join(os.path.dirname(__file__), f"fastas")

408 if not os.path.exists(fasta_folder):

409 os.mkdir(fasta_folder)

410
411 with open(os.path.join(fasta_folder , f"{id}.fasta"), "w") as output_file:

412 output_file.write(first_line)

413 output_file.write(sequence)

414
415 def verifyDashingIntegrity(self , list):

416 """ Checks if the Dashing files have been downloaded properly. Forces re -download as needed."""

417 for dashing_file in list:

418 try:

419 mb_size = os.stat(dashing_file).st_size / (1024*1024)

420 if(mb_size < 18): #dashing files should not be less than 18 mb

421 raise Exception("Dashing files may not have been downloaded correctly. Redownloading the

files ...")

422 except Exception as e:

423 self.writeOutput(str(e))

424 getRequiredFiles(force_download=True)

425
426 def useDashing(self):

427 """ Calls the appropriate shell scripts (dashingShell <bits >.sh) and files after giving them execution

permissions.

428 Takes into account instruction set incompatibility and attempts to use lower -bit binary releases if

possible."""

429
430 files_to_allow = [

431 os.path.join(os.path.dirname(__file__),’dashingShell512.sh’),

432 os.path.join(os.path.dirname(__file__),’dashing_s512 ’),

433 os.path.join(os.path.dirname(__file__),’readHLLandWrite512.sh’),

434 os.path.join(os.path.dirname(__file__),’dashingShell256.sh’),

435 os.path.join(os.path.dirname(__file__),’dashing_s256 ’),

436 os.path.join(os.path.dirname(__file__),’readHLLandWrite256.sh’),

437 os.path.join(os.path.dirname(__file__),’dashingShell128.sh’),

438 os.path.join(os.path.dirname(__file__),’dashing_s128 ’),

439 os.path.join(os.path.dirname(__file__),’readHLLandWrite128.sh’),

440]

441
442 files_to_verify = [

443 os.path.join(os.path.dirname(__file__),’dashing_s512 ’),

444 os.path.join(os.path.dirname(__file__),’dashing_s256 ’),

445 os.path.join(os.path.dirname(__file__),’dashing_s128 ’),

446]

447
448 for f in files_to_allow:

449 st = os.stat(f)

450 os.chmod(f, st.st_mode | stat.S_IEXEC)

451
452 self.verifyDashingIntegrity(files_to_verify)

453
454 #calls the shell script and returns CalledProcessError if an exit code is not zero

455 try:

456 subprocess.check_output ([’sh’, ’dashingShell512.sh’])

457 except subprocess.CalledProcessError as e:

458 self.writeOutput(f"Error running default dashing_s512: {’OS must support AVX512BW instructions ’}.")

459 self.writeOutput("Trying dashing_s256 ...")

460 try:

461 subprocess.check_output ([’sh’, ’dashingShell256.sh’])

462 except subprocess.CalledProcessError as e:

463 self.writeOutput(f"Error running default dashing_s256: {’OS must support AVX2 instructions .’}")

464 self.writeOutput("Trying dashing_s128 ...")

465 try:

466 subprocess.check_output ([’sh’, ’dashingShell128.sh’])

467 except subprocess.CalledProcessError as e:

468 self.writeOutput(f"Error running all dashing binaries: {’OS must support AVX512BW , AVX2 , or

SSE2 instructions ’}")

469
470 def beginDecryption(self):

471 """ Begins decryption of the encrypted prediction results received from the server after classification.

Expects the input filepath (self.decrypt_name_var) to be a .zip file , and raises an error if not.

472 Also saves the prediction results to a CSV file for viewing later."""

473 try:

84

474
475 if not self.decrypt_name_var.get().endswith(".zip"):

476 raise Exception("Invalid file type: Only .zip files are supported. Was there an error the server?

")

477
478 self.writeOutput("Beginning decryption of encrypted predictions recieved from server ...")

479
480 decrypted_predictions = []

481
482 #setting classes dictionary

483 try:

484 classes_dict = self.classes_labels

485 except:

486 classes_dict = {0: ’B.1.1.529 (Omicron)’, 1: ’B.1.617.2 (Delta)’, 2: ’B.1.621 (Mu)’, 3: ’C.37 (

Lambda)’}

487
488 pred_folder = os.path.join(os.path.dirname(__file__), "predictions")

489
490 zip_name = self.decrypt_name_var.get()

491
492 with zipfile.ZipFile(zip_name , "r") as zObject:

493 zObject.extractall(path=pred_folder)

494
495 enc_file_list = [filename for filename in os.listdir(pred_folder) if filename.endswith(".enc")]

496
497 for filename in enc_file_list:

498 with open(os.path.join(pred_folder , filename), "rb") as f:

499 decrypted_prediction = self.fhe_model_client.deserialize_decrypt_dequantize(f.read())[0]

500 decrypted_predictions.append(decrypted_prediction)

501
502 decrypted_predictions_classes = numpy.array(decrypted_predictions).argmax(axis =1)

503 final_output = [classes_dict[output] for output in decrypted_predictions_classes]

504
505 for i in range(len(final_output)):

506 self.data_dictionary[i][’result ’] = final_output[i]

507
508 self.writeOutput("Prediction Results:")

509 for dictionary in self.data_dictionary.values ():

510 self.writeOutput(f"ID {dictionary[’id ’]}: {dictionary[’result ’]}")

511 self.writePredOutput(f"\n{datetime.now().strftime(’%d/%m/%Y %H:%M:%S’)} -- ID {dictionary[’id ’]}:

{dictionary[’result ’]}")

512
513 self.writeOutput("Saving prediction results to output file ...")

514
515 #create a file to save the prediction into

516 self.savePredictionResult ()

517 self.writeOutput("Saving completed! Thank you for using the tool!")

518
519
520 except Exception as e:

521 self.writeOutput(f"Error: {str(e)}")

522
523 def savePredictionResult(self):

524 for dict in self.data_dictionary.values ():

525 print(dict)

526 df = pd.from_dict ({key: [str(value).split(" ")[0]] for key , value in dict.items ()})

527 output_name = f"prediction_result_{dict[’id ’]}_{date.today()}.csv"

528 df.to_csv(os.path.join(os.path.dirname(__file__), f"predictions /{ output_name}"), index=False , header=

True)

529 #endregion

530
531 #region functions outside the class

532
533 def getRequiredFiles(force_download = False):

534 """ Downloads the required files for the application. Set force_download to True to download the files even if

present in the directory. Will be called if the Dashing binaries were not downloaded correctly.

535
536 By default , targets the project ’s GitHub repository (see ’files ’ array) for downloading the files , but can be

set to localhost :8000 to download from the local deployment server."""

537 files = [

538 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/ClientDownloads/

dashing_s512",

539 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/Compiled %20 Model/client.zip

",

540 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/ClientDownloads/

selected_features.txt",

541 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/ClientDownloads/

dashingShell512.sh",

542 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/

AlternativeDashingDownloads/dashingShell128.sh",

543 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/

AlternativeDashingDownloads/dashingShell256.sh",

544 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/ClientDownloads/

readHLLandWrite512.sh",

545 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/

AlternativeDashingDownloads/readHLLandWrite128.sh",

546 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/

AlternativeDashingDownloads/readHLLandWrite256.sh",

547 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/Compiled %20 Model/client.zip

",

548 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/ClientDownloads/

features_and_classes.txt",

85

549 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/

AlternativeDashingDownloads/dashing_s128",

550 r"https :// raw.githubusercontent.com/bjorgkav/concreteml -covid -classifier/main/client/

AlternativeDashingDownloads/dashing_s256",

551]

552
553 for file in files:

554 parsed_name = file.split("/")[-1]. replace("%20", " ")

555 print(f"Checking current directory for file: {parsed_name}")

556 if (parsed_name not in os.listdir(os.path.dirname(__file__))) or force_download:

557 download(file , os.path.dirname(__file__))

558
559 def download(url , dest_folder):

560 if not os.path.exists(dest_folder):

561 os.makedirs(dest_folder)

562
563 filename = url.split(’/’)[-1]. replace(" ", "_")

564 file_path = os.path.join(dest_folder , filename)

565
566 r = requests.get(url , stream=True)

567
568 if r.ok:

569 print("saving to", os.path.abspath(file_path))

570 with open(file_path , ’wb’) as f:

571 for chunk in r.iter_content(chunk_size =1024 * 8):

572 if chunk:

573 f.write(chunk)

574 f.flush()

575 os.fsync(f.fileno ())

576 else: # HTTP status code 4XX/5XX

577 print("Download failed: status code {}\n{}".format(r.status_code , r.text))

578 #endregion

579
580 if __name__ == "__main__":

581 getRequiredFiles ()

582
583 app = ClientTkinterUiDesignApp ()

584 app.run()

Listing 7: Source code for client-Side application

1 #!/usr/bin/bash

2
3 #given the data from the paths indicated in path.txt ,

4 #split the each sequence into k-mers , and

5 #compute the HLL sketch of each sequence , with a sketch size (spacing) of 9

6
7 echo "Running Dashing tool ..."

8
9 ./ dashing_s128 sketch -k31 -p13 -S9 fastas /*. fasta

10
11 if [$? -ne 0]; then

12 echo "Error encountered using this dashing binary. Use a different binary."

13 exit 1

14 fi

15
16 echo "Reading output and Creating CSV..."

17
18 ./ readHLLandWrite128.sh #(requires chmod +x readHLLandWrite.sh for execution permissions)

Listing 8: Source code for Dashing Script (128-bit instruction set)

1 #!/usr/bin/bash

2
3 #given the data from the paths indicated in path.txt ,

4 #split the each sequence into k-mers , and

5 #compute the HLL sketch of each sequence , with a sketch size (spacing) of 9

6
7 echo "Running Dashing tool ..."

8
9 ./ dashing_s256 sketch -k31 -p13 -S9 fastas /*. fasta

10
11 if [$? -ne 0]; then

12 echo "Error encountered using this dashing binary. Use a different binary."

13 exit 1

14 fi

15
16 echo "Reading output and Creating CSV..."

17
18 ./ readHLLandWrite256.sh #(requires chmod +x readHLLandWrite.sh for execution permissions)

Listing 9: Source code for Dashing Script (256-bit instruction set)

1 #!/usr/bin/bash

2
3 #given the data from the paths indicated in path.txt ,

86

4 #split the each sequence into k-mers , and

5 #compute the HLL sketch of each sequence , with a sketch size (spacing) of 9

6
7 echo "Running Dashing tool ..."

8
9 ./ dashing_s512 sketch -k31 -p13 -S9 fastas /*. fasta

10
11 if [$? -ne 0]; then

12 echo "Error encountered using this dashing binary. Use a different binary."

13 exit 1

14 fi

15
16 echo "Reading output and Creating CSV..."

17
18 ./ readHLLandWrite512.sh #(requires chmod +x readHLLandWrite.sh for execution permissions)

Listing 10: Source code for Dashing Script (512-bit instruction set)

1 #!/bin/bash

2 #clear output file

3 rm ./ output.txt

4
5 #assume feature count is 512

6 echo -n "Accession ID ," >> ./ output.txt

7
8 no_of_features =512

9 for ((i=1; i<$no_of_features; i++))

10 do

11 printf %s "feature_$i ," >> ./ output.txt

12 done

13
14 printf "%s\n" "feature_$i" >> ./ output.txt

15
16 for f in ./ fastas /*.hll

17 do

18 content=$(./ dashing_s128 view $f)
19 echo "$f, $content" >> ./ output.txt

20 done

21
22 #remove all occurrences of [and] in output

23 echo "Removing [and] from output and placing in csv..."

24 echo -n "$(sed -i ’s/[][]//g’ ./ output.txt)"

25 echo -n "$(sed -i ’s/\<fastas \>//g’ ./ output.txt)"

26 echo -n "$(sed -i ’s/\///g’ ./ output.txt)"

27 echo -n "$(sed -i ’s/\.//g’ ./ output.txt)"

28 echo "$(sed -i ’s/fastas //g’ ./ output.txt)"

29 echo "$(sed -i ’s/fastaw31spacing9hll //g’ ./ output.txt)"

30
31 mv ./ output.txt ./ output.csv

Listing 11: Shell script for converting Dashing output to CSV (128-bit instruction
set)

1 #!/bin/bash

2 #clear output file

3 rm ./ output.txt

4
5 #assume no is 512

6 echo -n "Accession ID ," >> ./ output.txt

7
8 no_of_features =512

9 for ((i=1; i<$no_of_features; i++))

10 do

11 printf %s "feature_$i ," >> ./ output.txt

12 done

13
14 printf "%s\n" "feature_$i" >> ./ output.txt

15
16 for f in ./ fastas /*.hll

17 do

18 content=$(./ dashing_s256 view $f)
19 echo "$f, $content" >> ./ output.txt

20 done

21
22 #remove all occurrences of [and] in output

23 echo "Removing [and] from output and placing in csv..."

24 echo -n "$(sed -i ’s/[][]//g’ ./ output.txt)"

25 echo -n "$(sed -i ’s/\<fastas \>//g’ ./ output.txt)"

26 echo -n "$(sed -i ’s/\///g’ ./ output.txt)"

27 echo -n "$(sed -i ’s/\.//g’ ./ output.txt)"

28 echo "$(sed -i ’s/fastas //g’ ./ output.txt)"

29 echo "$(sed -i ’s/fastaw31spacing9hll //g’ ./ output.txt)"

30
31 mv ./ output.txt ./ output.csv

Listing 12: Shell script for converting Dashing output to CSV (256-bit instruction
set)

87

1 #!/bin/bash

2 #clear output file

3 rm ./ output.txt

4
5 #assume feature count is 512

6 echo -n "Accession ID ," >> ./ output.txt

7
8 no_of_features =512

9 for ((i=1; i<$no_of_features; i++))

10 do

11 printf %s "feature_$i ," >> ./ output.txt

12 done

13
14 printf "%s\n" "feature_$i" >> ./ output.txt

15
16 for f in ./ fastas /*.hll

17 do

18 content=$(./ dashing_s512 view $f)
19 echo "$f, $content" >> ./ output.txt

20 done

21
22 #remove all occurrences of [and] in output

23 echo "Removing [and] from output and placing in csv..."

24 echo -n "$(sed -i ’s/[][]//g’ ./ output.txt)"

25 echo -n "$(sed -i ’s/\<fastas \>//g’ ./ output.txt)"

26 echo -n "$(sed -i ’s/\///g’ ./ output.txt)"

27 echo -n "$(sed -i ’s/\.//g’ ./ output.txt)"

28 echo "$(sed -i ’s/fastas //g’ ./ output.txt)"

29 echo "$(sed -i ’s/fastaw31spacing9hll //g’ ./ output.txt)"

30
31 mv ./ output.txt ./ output.csv

Listing 13: Shell script for converting Dashing output to CSV (512-bit instruction
set)

88

XI. Acknowledgment

This project would not have come to fruition if not for the following people:

My adviser, Sir Richard Bryann Chua, to whom I would like to express my deepest

appreciation and gratitude for his invaluable guidance, supervision, and patience

in the course of this project. The consistency with which he meets me weekly for

consultations allowed me to make regular progress in my project, and his willingness

to teach and guide me as I learned the various technologies used in this study was

invaluable to the success of this endeavor. I could not have finished this project

without his help. I also could not have completed this journey without the guidance

and feedback of my defense committee.

I am also grateful to my fellow member of the Homomorphic Encryption Subgroup,

Gwyneth Rose C. Rosario, for her assistance and feedback in the implementation of

the project and editing. I would like to extend my sincere thanks to my blockmates,

especially my group-mates in the Security and Cryptography Research Group, Mirai

Reyes Yoshizaki, Kyle Mari Angelo M. Aquino, Julius Allen Reyes, and Gabriel Austin

Untalan, for their feedback, assistance in formatting, and moral support.

Lastly, I would be remiss in not mentioning my family, especially my mother,

Sarah Jane M. Pañares, and my brother, Ian Miguel P. Vivas, as well as my partner,

Anjelle Julene A. Cadeliña, for providing me with mental, emotional, and occasional

financial support as I saw this project through to its completion. I would not have

gotten this far without your faith in me. I would also like to thank my dogs and cats

for their emotional support.

89

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Machine Learning and its use in Viral Strain Classification
	Privacy concerns with Machine Learning in the Medical Domain
	Fully Homomorphic Encryption
	FHE libraries and the Concrete-ML FHE ML library
	Applications of FHE

	Theoretical Framework
	Developments of FHE
	FHE Across the Generations
	The Concrete-ML FHE ML Library
	Concrete-ML Workflow
	Viral Strain Classification Workflow
	The Dashing Preprocessing Tool
	Logistic Regression

	Design and Implementation
	Threat Model
	Dataset
	Input File Structure
	Preprocessing Techniques and Tools
	Feature Selection Algorithm
	Implementation of Classification
	System Architecture
	Technical Architecture

	Results
	ConcreteML Performance
	Test Machine Specifications and Details
	Training Workflow
	Models Trained
	Comparison of Logistic Regression with other ML Algorithms
	Model Accuracy

	Client-Server Classification System

	Discussions
	Accuracy
	Error Analysis
	Model Training and Classification Speed
	Key and Ciphertext Size Comparison
	Issues Encountered in Development
	System Assessment

	Conclusions
	Recommendations
	Bibliography
	Appendix
	Source Code

	Acknowledgment

