

UNIVERSITY OF THE PHILIPPINES MANILA

COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

Novice Assistance

in Java Introduction

A special problem in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Salcedo, Najinar Raysal Marie G.

May 2016

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser No

Available only to those bound by confidentiality agreement No

i

ACCEPTANCE SHEET

 The Special Problem entitled “Novice Assistance in Java Introduction”

prepared and submitted by Najinar Raysal Marie G. Salcedo in partial fulfillment of the

requirements for the degree of Bachelor of Science in Computer Science has been

examined and is recommended for acceptance.

 Ma. Sheila A. Magboo, M.S.
 Adviser

EXAMINERS:

 Approved Disapproved

1. Gregorio B. Baes, Ph.D. (candidate) __________ ___________

2. Avegail D. Carpio, M.S. __________ ___________

3. Richard Bryann L. Chua, Ph.D. (candidate) __________ ___________

4. Perlita E. Gasmen, M.S. (candidate) __________ ___________

5. Marvin John C. Ignacio, M.S. (candidate) __________ ___________

6. Vincent Peter C. Magboo, M.D., M.S. __________ ___________

 Accepted and approved as partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science.

 ________________________ ________________________

Ma. Sheila A. Magboo, M.S. Marcelina B. Lirazan, Ph.D.
 Unit Head Chair

 Mathematical and Computing Sciences Unit Department of Physical Sciences

 Department of Physical Sciences and and Mathematics

 Mathematics

Alex C. Gonzaga Ph.D., Dr. Eng'g

Dean
College of Arts and Sciences

ii

ABSTRACT

Novice Assistance in Java Introduction is an extension developed for BlueJ that

helps new programmers being introduced to Java in their debugging. Its primary objective

is to give a clearer explanation and point out the root cause of a compile error. The compile

errors currently thrown by the compiler error don’t necessarily point the novice

programmers to the right direction. With the help of NAJI, these compile errors are

processed to have a more detailed output like background, root cause, and example.

Keywords: BlueJ, Java, Extension, Novice Programmer

iii

LIST OF FIGURES

Figure 1: Sample Output of Expresso ... 12

Figure 2: Derivation tree ... 14

Figure 3: Context Diagram ... 18

Figure 4: Use-Case Diagram ... 19

Figure 5: Data Flow Diagram ... 21

Figure 6: Flowchart with swimlanes ... 22

Figure 7: Class Diagram ... 23

iv

CONTENTS

Acceptance Sheet .. i

Abstract ... ii

List of Figures ... iii

I. INTRODUCTION ... 1

A. Background of the Study.. 1

B. Statement of the Problem ... 1

C. Objectives of the Study .. 3

D. Significance of the Study ... 3

E. Scope and Limitations .. 4

F. Assumptions ... 5

II. REVIEW OF RELATED LITERATURE ... 6

III. THEORETICAL FRAMEWORK .. 11

IV. DESIGN AND IMPLEMENTATION ... 18

A. Context Diagram .. 18

B. Use-Case Diagram.. 19

C. Data Flow Diagram .. 21

D. Swimlane Flowchart .. 22

E. Class Diagram .. 23

F. Technical Requirements ... 24

V. RESULTS .. 25

VI. DISCUSSION ... 52

VII. CONCLUSION ... 53

VIII. RECOMMENDATION ... 54

IX. BIBLIOGRAPHY... 55

X. APPENDIX .. 59

XI. ACKNOWLEDGEMENT .. 80

1

I. INTRODUCTION

A. Background of the Study

Debugging is a process of removing bugs from coded programs. If the

program is not working according to design, developers must debug the source code

and fix the issues. [1] It has been known to account for more than half of the effort

and time spent in software development. Structured programming lowers the risk

of faulty programs but it can’t guarantee bug-free programs.

Level of debugging skill is one of the major differences between novice and

expert programmers. Experts make fewer errors and locate and correct bugs faster

than novices. [2] Debugging training is even more needed by novice programmers.

Unlike experienced programmers who can easily locate errors or root causes of a

problem, novice programmers often turn to trial and errors for debugging.

Programming classes usually concentrate on teaching programming languages,

syntax, problem analysis, and design. Little time is saved for practicing debugging.

Because of that, novice programmers resort to develop their own skills as they

struggle to find the root causes of errors found in their programs. [3]

There are three types of errors that can occur in a computer program: syntax,

semantic, and logic. Syntax errors are usually caught upon compling the code and

are errors in grammar, punctuation, and the likes. Semantic and logic errors are

usually caught after runtime. [4]

B. Statement of the Problem

Compiler is not helpful all of the time. It may give misleading messages

regarding the error. This can cause confusion to novice programmers. [5] Too

2

often, compile error messages are cryptic, long, or hard to understand even for

experienced programmers. Shneiderman pointed out that “phrasing of error

messages or diagnostic warning is critical“ and “can significantly affect user

performance and satisfaction“. [6]

Though certain compilers may flag correctly some of the most common

mistakes, more often than not, these Java error messages are so cryptic for new

students of the language that they have a hard time identifying the errors, let alone

applying fixes. Syntax errors make a program incomprehensible to compilers and

are then easily pointed out. While compilers detect the obvious syntax errors, their

error messages do not necessarily point the students in the right direction needed to

fix the code.[7]

Compiler design and constructions research seems to have neglected the

area of compiler error messages. The side effect of poorly designed error messages

is that they lead programmers to take actions in the form of source code editing

trying to fix it without actual effort to understand the case. On the other hand, well-

designed error messages help programmers take actions to fix the issue while also

helping them understand the cause. [6]

Using the five errors identified in “Methods and Tools for Exploring Novice

Compilation Behaviour“, we need to develop an extension of the IDE to help novice

programmers understand the compile errors. This way, the errors are described

clearly, real causes are pointed out, and better error messages are generated. This is

3

useful during the early phase of learning Java programming as they become more

proficient and knowledgeable with the language.

Compile error messages will help students to clarify concepts,

misconceptions, or improve their mental models. [6]

C. Objectives of the Study

The goal of this project is to create a debugging tutor that addresses the

needs of novice programmers. In particular, help them become better programmers,

in terms of debugging and writing error-free programs, by improving their program

comprehension skills and giving them debugging experience. The specific

objectives are the following:

1. Determine the compile error

2. Provide information on the error

a. Background

b. Description

c. Suggestion

D. Significance of the Study

Debugging is an integral and time-consuming phase of software

development. [9] Computing curricula rarely provide formal debugging training.

Novice programmers are then left to develop their own skills. [3] When they do,

they devolop debugging skills with limited abilities in formulating ideas about the

possible bugs in their code. Therefore, it seems logical to start them early. In that

4

case, those who are trained early in debugging would become better debuggers

more quickly.

This project is will be useful for students in introductory Java classes. This

improves their program comprehension ability and give them debugging

experience. The error messages and analysis could be used to improve debugging

in other similar languages.

E. Scope and Limitations

1. The project focuses on the following errors:

1.1 Brace expected

1.1.1 parameter list in class

1.1.2 invalid class name

1.1.3 placed a throws Exception in class

1.1.4 bracket used in opening the class code block

1.1.5 extra semicolon after class name declaration

1.2 semicolon expected

1.2.1 extra) in method call

1.2.2 colon instead of a semicolon

1.2.3 comma instead of a period to call method

1.2.4 used ++ instead of + for addition

1.2.5 no * for multiplication

1.3 Can’t find symbol

1.3.1 extra equal sign in method call

1.3.2 undeclared variable

5

1.3.3 misspelled method name in the method call

1.3.4 package not imported

1.3.5 misspelled data type

1.4 Parenthesis expected

1.4.1 return type in a void method

1.4.2 used void as a type for a variable

1.4.3 invalid method name

1.4.4 conditions declared without parentheses

1.4.5 if statement without conditions

1.5 . Incompatible types

1.5.1 did not use boolean in if statement

1.5.2 assigned void to a variable

1.5.3 unfinished assignment statement

1.5.4 wrong return type

1.5.5 assigning null to a primitive

2. Detection is limited to compile errors and does not tackle runtime and logic

errors.

3. Other types of errors such as illegal start of expression, class or interface

expected, missing return, method application error, private access violation are

not be covered.

F. Assumptions

1. The user uses BlueJ as the IDE for Java.

2. NAJI is installed as an extension in BlueJ.

6

II. REVIEW OF RELATED LITERATURE

A study made by Lee and Wu has findings on improving programming skills of

novice programmers by the way they debug. They developed a debugging training which

will uncover and correct any misconceptions of the programmers and improve their

debugging skills. The model they developed called DebugIt covers frequently committed

errors in Pascal language. One-way Analysis of Covariance was done to test the

achievements. The group exposed to DebugIt scored higher. The results showed that the

model of supervised debugging was effective in improving novice programmers‘

debugging skills. [3]

User requests and research continue to push IDEs to improve their recommendation

engines. Bruch et al. Extended Eclipse's auto-complete by taking historical data and

previous users' habits into account. This showed that is's possible to improve auto-complete

by reordering and assigning a confidence value to the suggestions. Hou and Pletcher used

historical data by performing type-hierarchy filter and grouping suggestions by fucntional

roles. [10]

Smith and Webb also did a study called “Transparency Debugging with

Explanations for Novice Programmers“. They made a debugging assistant that provides

the users with explicit models of their programs and hence encourage them to find errors

for themselves. The transparency debugger called Bradman was created to help novice

programmers debug their C programs. This way it also provides an active support during

the debugging process. They have demonstrated novices appreciate having such

information made explicit and that a facility that explains individual statements supports

them in their debugging endeavours. [11]

7

Expresso was done in Bryn Mawr College. It is an educational tool for Java

programming. The tool specifically does not eliminate the need for understandable

compiler error messages; rather, the tool enhances the functions of a compiler. The

intention was to create a helpful interactive tool that would do a better job generating error

messages than existing compilers and also provide suggestions on how to fix the code. [7]

Csallner and Smaragdakis developed Check 'n Crash for Java. It is used in

generation of test cases since testing is the predominant way of discovering bugs.The

programmer can apply the tool to newly written code, inspect reports of conditions

indicating possible crashes, and possibly update the code if the error condtion is possible.

It is not a bug pattern matcher. It only has basic preconceived notion of what the program

text of a bug would look like. [12]

PROUST is a debugging system for Pascal that tries to understand the

programmer's intention. It attempts to compare the programmer's intention with the

program's design. PROUST generates a hypothesis about the user's intention and matches

these against the code; it then explains this to the user. [13] The problem with this approach

of error detection is that it relies on being provide with the program's design, thus it might

have a higher accuracy and be able to detect semantic as well as logic errors, but it would

not be able to handle any source code it is given.

 Adil (Automated Debugger in Learning system) is a knowledge-based automated

debugger in C language. Stereotyped code and bugs are stored as library of plans in the

knowledge-base. Adil is able to understand an error-free program and locate, pinpoint, and

explain logical errors. It also acts as an IDE by having necessary supporting tools to

8

facilitate the recognition and debugging. Given a syntax error-free program and its

specification, this debugger is able to locate, pinpoint and explain logical errors of

programs. [14]

 HelpMeOut is a social recommender system that aids the debugging of errors by

suggesting fixes that peers have applied in the past. It collects examples of code changes

that fix errors in a central database. The user feeds the error to a suggestion interface then

it queries the database for relevant fixes. The system is able to suggest useful fixes for 47%

of the errors. [15]

Jade is a model for Java programs that uses model-based diagnosis as framework.

It allows to localize certain bug occurrences in Java programs by using knowledge about

incorrect outputs (or incorrect parts of the output), specified in terms of observations of

incorrect values. This approach provides flexibility of errors involving multiple variables.

[16]

 Eclipse Guard implements relative debugging where in assertions are the key

construct used by a relative debugger. An assertion defines the names of two data structures

that are to be compared in each code and the locations in the two programs at which

comparisons are to occur. [17]

 Java Intelligent Tutoring System was a prototype developed to aid in tutoring the

language. It focuses on variables, operators, and looping structures. It is a web-based

application where you will upload and run your program and returns the output. [18]

A research was done on compilation behaviour by Jadud. They observed novice

programmers learning Java and collected their compilations. The work involved the

9

development of three tools for the study : code browser to read compilations of a program,

visualization that captures the type and frequency of syntax errors in a programming

session, and algorithm to which they can score sessions and quantitavely compare one

session against another. [8]

This paper presents a program animation system, PlanAni, that is based on the

concept of the roles of variables. Roles represent schematic uses of variables that occur in

programs over and over again, and a set of nine roles covers practically all variables in

novice-level programs. PlanAni has been tested in a teaching experiment comparing

traditional teaching with role-basedteaching and animation. The results of a semi-

structured interview with the teacher indicate that students like to work with the animator

and that the system clarifies many concepts in programming. [19]

 The algorithm is divided into blocks, and a description is given for each block. The

system contains a separate window for code, flowchart, animation, explanations, and

control. Assignments are based on the flowchart and on the coverage conditions of path

testing. Path testing is expected to lead into more accurate evaluation of learning outcomes

because it supports systematic instruction in addition to more free trial-and-error heuristics.

A qualitative analysis of preliminary experiences with the prototype indicates that the

approach helps a student to reflect on her own reasoning about the algorithm. However, a

prerequisite for an successful learning process with the environment is a motivating

introduction, describing both the system and the main idea of the algorithm to be learned.

[20]

10

The key feature of Jeliot is the fully or semi-automatic visualization of the data and

control flows. The development process of Jeliot has been research-oriented, meaning that

all the different versions have had their own research agenda rising from the design of the

previous version and their empirical evaluations. In this process, the user interface and

visualization has evolved to better suit the targeted audience, which in the case of Jeliot 3,

is novice programmers. In this paper we explain the model for the system and introduce

the features of the user interface and visualization engine. Moreover, we have developed

an intermediate language that is used to decouple the interpretation of the program from its

visualization. This has led to a modular design that permits both internal and external

extensibility. [21]

11

III. THEORETICAL FRAMEWORK

Taxonomy of novice programmer difficulties

Ebrahimi et al. developed a taxonomy of novice programmer difficulties in order

to better understand the obstacles novice programmers encounter and so that we can

develop solutions to these problems. [22] The difficulties generally fall under language

construct minsconceptions, plan composition errors, programming environments, and

inability to get help.

Language construct misconceptions refer to misunderstandings of how the

language works. For example, naming a variable “case“ which is a keyword in Java and C.

Plan composition errors refer to problems in how the student plans to solve the problem.

An example forgetting to increment a counter in a loop. Programming environment refers

to difficulties using the IDE, the computer, and the surroundings in general. Inability to get

help is simply that nobody to help or guide the student with something he or she does not

understand. [22]

Error Detection

 One strategy for helping novice programmers is through the detection of errors and

help regarding those errors. This will ease langauge construct misconceptions on the part

of the students.

Methods to detect errors There are generally two methods to analyze source code for

errors: static and dynamic analysis. Static analysis involoves parsing code without

actually running it, while dynamic analysis involves testing a program with input data

sets.

12

 The QUT framework developed in Queensland University of Technology was

designed to be a configurable and extensible framework that can automatically assess a

student's work through static analysis and software metrics. [23] Static analysis is done by

parsing the student's code into an abstract syntax tree and its structure is compared with the

model solution for the given problem. Various software metrics can also be applied such

as measuring the complexity of the code.

 Their implementation does have its limitations. It can only evaluate small fill-in-

the-blanks style programming assignments. An example would be, “Write a simple

program that obtains two integer values lowerLimit and upperLimit from the user. Display

all integers between lowerLimit and upperLimit in ascending order.“ The student is given

nearly complete program, which already handles the input. Only the loop and printing logic

needs to be written. Also, their implementation can handle only compilable programs,

which is not that helpful given the nature of the study.

 Expresso was developed in Bryn Mawr College to overcome the problem of cryptic

compiler messages. [24] The approach Expresso did is to do a better job of generating error

messages and suggesting possible solutions to those errors. It is implemented as a multi-

pass preprocessor. Comments are first stripped then the program is stored into memory and

finally mistakes are detected.

 Figure 1: Sample Output of Expresso

 A sample output message of their program is shown above. The code that caused

the error is “appleSauce == apple sauce;“ This error is a semantic error in which the student

13

mistook the the equality comparison “==“ as the assignment operator “=“. the code will

compile correctly but the result will not be what the student is expecting.

Top-Down Parsing

 It is a strategy in which the start in the parse tree is at the highest level then down

by using the rewriting rules of a formal grammar. It analyzes unknown relationships by

hyphothesizing general parse tree structures and then considering whether the known

structures are compatible with the hypothesis. It attempts to find the left-most derivations

of an input. Consumption of tokens is from left to right. It attemps to figure out the

derivation for the input string, starting from the start symbol. [25]

 An example of top-down parsing is recursive descent parsing. Consider the simple

expression

x+(x+x)

The grammar for the expression above would be

The derivation tree for the expression would be

14

Figure 2: Derivation tree

 A recursive descent parser traverses the tree by first recognizing the E. It then reads

an ‘x‘ and ‘+‘ and then recognizes a T. It then determines whether the T had the form (E)

or x then the appropriate terminals and nonterminals are recongnized. [26]

Errors and subcases

 The five errors considered is from “Methods and Tools for Exploring Novice

Compilation Behaviour“.

“{ expected“

 Java is specific about use of characters such as semicolons, brackets, or parentheses.

Brackets can be more complicated since you may have to read through several blocks of

codes to make sure all brackets match up with each other. Possible causes[27, 28, 29, 30]:

 parameter list in class

 invalid class name

 placed a throws Exception in class

15

 bracket in opening the class code block

 extra semicolon after class name declaration

“; expected“

 This error is most likely thrown when a semicolon is missing at the end of line.

Possible causes[27, 28, 29, 30]:

 extra) in method call

 colon instead of a semicolon

 comma instead of a period to call method

 used ++ instead of +

 no * for multiplication

“Can't find symbol“

 It is an error when the compiler doesn't have enough information to piece together

what the Java code wants to run. Possible causes [27, 28, 29, 30, 31]:

 extra equal sign in method call

 undeclared variable

 misspelled method name in the method call

 package not imported

 misspelled data type

16

“(expected“

 This error most likely shows up when there is a missing parenthesis in the code.

Possible causes[27, 28, 29, 30]:

 extra return type in a void method

 used void as a type for a variable

 invalid method name

 conditions declared without parentheses

 if statement without conditions

“Incompatible types“

 It happens when the the assigned value to a variable is not of the same type. Possible

causes[27, 28, 29, 30]:

 did not use boolean in if statement

 assigned void to a variable

 unfinished assignment statement

 wrong return type

 assigning null to a primitive

BlueJ

BlueJ is an IDE developed to help in learning and teaching Java. It’s a top choice

among introductory programming classes because of ease of use. The environment is

17

designed in such a way that the users would not need to spend significant time struggling

with the IDE and instead focus on the programming task. It has a “code pad“ that evaluates

Java code without having to write “public static void main“ every time just to evaluate

expressions. Most of the functionality in other environments like Eclipse and Jbuilder is

not in BlueJ. This makes BlueJ an educational environment but suitable for small-scale

software development. [32] It offers an extension API that gives third parties to develop

extensions to the IDE. Extensions add functionalities not in the core system. [33]

In NetBeans and Eclipse, programmers spend time looking at lines of code. If all

students see are lines of code, they will think about lines of code. But the developers of

BlueJ aim to make the programmers see classes and objects first; method calls,

interactions, and so on. [34]

18

IV. DESIGN AND IMPLEMENTATION

A. Context Diagram

 The application is implemented as defined in the succeeding

diagrams. Generally, the tool's input and output requirements are defined in the

context diagram below.

Figure 3: Context Diagram, NAJI

 The extension gathers compile logs from the user's compile of the Java

program in BlueJ. It then analyzes the logs and returns the error analysis. If there

are errors, it returns error messages with the proper identification of the root cause

and some suggestions and examples on how to fix it.

19

B. Use-Case Diagram

 Figure 4: Use-Case Diagram, NAJI

 The Novice Assistance in Java Introduction aids the novice programmers

by providing a clearer explanation of the compile errors they encounter. The

programmer compiles the code and views the error messages.

Use Case Name Analyze compile logs

Description The plugin analyzes the compile logs

from BlueJ.

20

Actors

Preconditions Compile error

Flow of Activities 1. NAJI receives the compile logs

from BlueJ.

2. NAJI verifies if the compile

error message falls within the

five implemented errors.

3. If it falls within the five, the

compile logs will be processed.

4. If it doesn’t fall within the five,

the unhandled error in NAJI

will be displayed instead.

Postconditions Compile logs are processed for errors

Use Case Name Check for errors

Description The plugin checks the root cause of the

error determined when the code was

compiled.

Actors

Preconditions Compile error falls within the five

defined errors

Flow of Activities 1. Check for the syntax of the line

that caused the compile error.

2. If it falls within the five

subcases we have resolved,

show the NAJI error message.

3. If it is unhandled by NAJI,

show the BlueJ unhandled error

message.

Postconditions Clearer compile error is returned – root

cause, samples

Use Case Name View error message

21

Description The extension will show a more

specific error message based on the

compile logs.

Actors Novice programmer

Preconditions Compile logs are within the five

implemented errors

Flow of Activities 1. A more specific compile error

message is returned by NAJI.

2. The message is shown in the

other window.

Postconditions Novice programmer views the error

message in another window

C. Data Flow Diagram

Figure 5: Data Flow Diagram, NAJI

 The functionalities of the system are defined in the above data flow diagram.

The novice programmer compiles the code in BlueJ. The compile logs are sent to

22

the processor. It then outputs the error analysis and sends it to the user interface.

The novice programmer views the error messages from the processing.

D. Swimlane Flowchart

Figure 6: Flowchart with swimlanes, NAJI

The diagram above shows how the plugin classifies the compile errors from

BlueJ. The user is responsible for compiling the Java code. BlueJ compiles the code

submitted by the user and then shows the output. NAJI, on the other hand, processes

the compile logs from BlueJ and then categorizes if it falls within the five

23

implemented errors. If it doesn’t, it shows the NAJI unhandled error. If it is one of

the five errors, NAJI analyzes the error and outputs a clearer cause of the error and

some examples on how to fix it.

E. Class Diagram

Figure 7: Class diagram, NAJI

The diagram above shows the classes in NAJI. The class NAJI passes the five error

classes – SemicolonExError, CantFindSymbolError, ParenExError, InTypesError,

BraceExError – to ErrorManager. Each error class checks if it accepts the compile

error from BlueJ and processes it after. The five error classes uses the CodeScanner

class to scan through the code that caused the compile error and Tools class to do

some functions.

24

F. Technical Requirements

 The extension is implemented in Java programming language. Thus a

machine installed with Java Runtime Environment is required to run the it. It also

needs the BlueJ IDE to run the extension.

25

V. RESULTS

Once NAJI is installed as an extension in BlueJ, opening the IDE also loads NAJI.

The shaded classes mean these are not compiled yet.

The novice programmer opens a class and then compiles it. If there’s no compile

error, BlueJ shows the following output. No message is shown in the NAJI window.

26

 The novice programmer is able to view the more specific error message in the NAJI

window which contains the root cause of the issue, suggestion, and examples on how

to fix it.

A. Brace expected errors

1. Parameter list in class

A parameter list ‘()‘ is in the class declaration. This throws the brace

expected error.

27

The output message

by NAJI regarding the

error is shown on the

window.

2. Invalid class name

If the novice programmer adds some illegal characters in naming the class,

brace expected error is thrown by BlueJ.

28

NAJI shows the more specific

cause of the error.

3. Placed a throws Exception in class

Brace expected error is also thrown when a throws statement is added in the

class declaration.

29

 NAJI shows the following output.

4. Bracket in opening the class code block

When an opening bracket is used to start a code block, bracket expected error

is returned.

30

NAJI shows the following output for the error.

5. Extra semicolon after class name declaration

Lastly, when a semicolon is added in the class declaration, it throws a brace

expected error.

31

However, NAJI shows the more specific message below.

B. Semicolon expected errors

1. Extra ‘)‘ in the method call

Semicolon expected is the compile error thrown by BlueJ when there’s an

extra parenthesis in the calling of a method of a class.

32

The output message

shown by NAJI is on the

left.

2. Colon instead of a semicolon

If a colon was used instead of a semicolon to terminate a statement,

semicolon expected error is thrown.

NAJI shows the specific message below.

33

3. Comma instead of a period to call method

Another cause of semicolon expected error is when a comma is used

instead of a period in calling a method of a class.

NAJI explains the error in the following output message.

4. Used ++ instead of +

The user may also use ++ instead of + in adding operands. This causes a

semicolon expected error.

34

NAJI gives the following explanation for this.

5. No * for multiplication

New programmers also commit the mistake of using x to multiply

which throws a semicolon expected error.

35

NAJI, on the other hand, shows the following output.

C. Can’t find symbol errors

1. Extra equal sign in the method call

When an extra equal sign is typed in the method call, this causes the

can’t find symbol error.

On the other hand, NAJI shows the more descriptive message.

36

2. Undeclared variable

Can’t find symbol error is thrown when there’s a variable used but

is not declared in the code.

NAJI describes the error committed in the window below.

3. Misspelled method name in the method call

A method may be misspelled when called in the program. This

causes the compiler to throw the can’t find symbol error.

37

NAJI describes the error committed in the window below.

4. Package not imported

Sometimes a class may be used without importing the package where it is

included. This causes the error below.

NAJI describes the error committed in the window below.

38

5. Misspelled data type

Another error that causes the can’t find symbol compile error is

when a primitive data type is misspelled in the code.

NAJI clarifies this error with the following output.

39

D. Parenthesis expected errors

1. Extra return type in a void method

When a return type is added in declaring a void method, the compiler

throws a parenthesis expected error.

40

NAJI clarifies this error with the following output.

2. Used void as a type for a variable

When the novice programmer declares a variable as void, it throws the

error below.

41

NAJI clarifies this error with the following output.

3. Invalid method name

Method names that have illegal characters throw the parenthesis expected

error.

42

NAJI describes the error

committed in the window.

4. Conditions declared without parentheses

When a condition is declared without parentheses, the compiler detects

this as parenthesis expected error.

43

NAJI describes

the error committed in

the window.

5. If statement without conditions

When an if statement is used without conditions, the compiler throws a

parenthesis expected error.

44

NAJI explains the error in the

window.

E. Incompatible types errors

1. Didn’t use a boolean in if statement

Conditions in the if statement should return a boolean. If it doesn’t,

incompatible types error is detected by the compiler.

45

NAJI describes the error

committed in the window.

2. Assigned void to a variable

A void method can’t be assigned to a variable. This will throw an

incompatible types error.

The output message by NAJI regarding the error is shown in the window.

46

3. Unfinished assignment statement

An unfinished assignment wherein the value to be assigned is missing

causes an incompatible types error.

The output message by NAJI regarding the error is shown below.

47

4. Wrong return type

When a return value is different from the declared data type in the method

declaration, it causes an incompatible types error.

48

 NAJI shows the more descriptive message for the error committed.

5. Assigning null to a primitive type

Primitive data types expect a value. When a null is assigned to it, the

compiler throws an incompatible types error.

49

NAJI explains it elaborately in its window.

F. Unhandled compile errors

There errors unhandled by NAJI and those are still shown in the window.

1. No return type in the method declaration

NAJI can’t process when a return type is not indicated in the method

declaration.

50

NAJI shows the line number and compile error message instead.

2. No ‘class’ keyword in the class declaration

Another unhandled error by NAJI is when the class keyword is missing.

NAJI shows the line number and compile error message instead.

51

3. Non-static method referenced from a static context

Another unhandled error is when a static method calls a non-static method.

NAJI shows the line number and compile error message instead.

52

VI. DISCUSSION

The extension, Novice Assistance in Java Introduction, is a tool that aids novice

programmers in debugging Java programs. The user compiles their code in BlueJ and

if there’s a compile error, the NAJI extension first determines the compile error. The

second step is it provides information on the error and suggests the fixes.

Without the tool, the error messages by the compiler are not helpful and often lead

to confusion for novice programmers. Too often, the compile error messages are

cryptic, long or hard to understand. These don’t necessarily point the students in the

right direction needed to fix the code. New students of the language have a hard time

identifying the errors, let alone applying fixes.

With the tool, the errors are described clearly, real causes are pointed out, and better

error messages are generated. It’s useful during the early phase of learning Java

programming as they become more proficient and knowledgeable with the language.

Once the user compiles the code and a compile error results, the tool then assesses

the line which caused the error and processes the code. It scans the code to check the

syntax, points out the actual error, and suggests the fix for it. It also gives examples for

the students to have better understanding.

Users gain self-confidence and experience in debugging with the assistance of our

tool. They are able to save time and improve their program comprehension skills.

53

VII. CONCLUSION

 NAJI is a debugging assistant that addresses the needs of novice programmers. It

implemented the five errors identified – brace expected, parenthesis expected, semicolon

expected, incompatible types, and can’t find symbol. The more specific errors messages

from the extension help students to clarify concepts, misconceptions, or improve their

mental models. In particular, it helps them become better programmers in terms of

debugging and writing error-free programs by improving their program comprehension

skills and giving them debugging experience.

 Though certain compilers may flag correctly some of the most common mistakes,

these errors are cryptic for new students of the language. With the help of NAJI, an

extension developed, these errors are addressed efficiently since NAJI outputs more

specific messages.

 The extension determines the compile error from BlueJ. NAJI then processes the

errors and provides more information on the error such as background, description,

suggestion, and example. This pointed the novice programmer in fixing the syntax error.

54

VIII. RECOMMENDATION

In the extension developed, only five subcases were handled. It would be better to

optimize how these are caught. Also, expanding the subcases per error would cover more

error messages and in turn, teach more on debugging syntax errors for novice programmers.

 Since only five from the top errors were handled by the current extension, it would

be better to add more to cover to minimize the compile errors committed by the novice

programmers. Another feature to be added could be some quizzes on the common compile

errors committed. The output messages could be improved like a better design and more

examples.

 Lastly, since the extension is written in Java, it could also be extended to other Java

IDE’s. This could mean teaching more programmers being introduced to Java.

55

IX. BIBLIOGRAPHY

 [1] Chmiel, R., and Loui, M. Debugging: From Novice to Expert. Proceedings of the 35th

SIGCSE technical symposium on Computer Science education (2004), 17-21.

[2] Oman, P. W., Cook, R., & Nanja, M. (1989). Effects of programming experience in

debugging semantic errors.Journal of Systems and Software, 9(3), 197-207.

[3] Lee, G. C., & Wu, J. C. (1999). Debug It.Computers & Education, 32(2), 165-179.

[4] Tutorial 18 - Debugging. (n.d.). Java. Retrieved December 4, 2013, from

http://home.cogeco.ca/~ve3ll/jatutori.htm

[5] Reese, D. Detection of Java Errors. ACM SIGCSE Bulletin, 23(1), 31.

[6]Traver, V. J. (2010). On Compiler Error Messages: What They Say and What They

Mean. Advances in Human-Computer Interaction, 2010, 1-26.

[7] Hristova, M., Misra, A., Rutter, M., and Mercuri, R. Identifying and Correcting Java

Programming Errors for Introductory CS Students. In SIGCSE '03: Proceedings of the 34th

SIGCSE technical symposium in Computer Science education (New York, NY, USA,

2003), ACM, 153-156.

[8] Jadud, M. Methods and Tools for Exploring Novice Compilation Behaviour. ICER

'06. (2006), 73-84.

[9] Ahmazadeh, M., Elliman, D., and Higgins, C. An Analysis of Patterns of Debugging

Among Novice Computer Science Students.

56

[10] Brun, Y., Ernst, M., Holmes, R., Muslu, K., and Notkin, D. Improving IDE

Recommendations by Considering Global Implications of Existing Recommendations.

[11] transparency debugging with explanations for novice programmers

[12] Csallner, C. And Smaragdakis, Y. Check 'n Crash: Combining static checking and

testing. In ICSE '05: Proceedings of the 27th International Conference on Software

Engineering (New York, NY, USA, 2005), ACM, pp. 422-431.

[13] Johnson, W. And Soloway, E. Proust: Knowledge-based program understanding. In

ICSE '84: Proceedings of the 7th International Conference on Software Engineering. (NJ,

USA, 1984), IEEE Press, pp. 369-380.

[14] Aljunid, S., Nordin, M., Shukur, Z. and Zin, A. (2000) A Knowledge-based

Automated Debugger in Learning System.

[15] Bradnt, J., Hartmann, B., Klemmer, S, and MacDougall, D. (2010) What Would Other

Programmers Do? Suggesting Solutions to Error Messages.

[16] Sumptner, M., and Wotawa, F. Jade – Java Diagnosis Experiments Status and

Outlook.

[17] Abramson, D., Chu, C., Ho, T., and Goscinski, W. Eclipse Guard: Relative Debugging

in the Eclipse Framework.

[18] Sykes, E., & Franek, F. (2004). A Prototype for an Intelligent Tutoring System for

Students Learning to Program in Java™. Advanced Technology for Learning, 1(1), 1-6.

57

[19] Kuittinen, M., And Sajaniemi, J. 2003. First results of an ex- periment on using roles

of variables in teaching. In The 15th Annual Workshop of the Psychology of Programming

Interest Group (PPIG 2003).

[20] Korhonen, A., Malmi, L., Saikkonen, R.: Design Pattern for Algorithm Animation and

Simulation. In E. Sutinen (Ed.): Proceedings of the First Program Visualization Workshop,

University of Joensuu, Department of Computer Science, 2001, 89–100.

[21] Moreno, A., Myller, N., Ben-Ari, M., & Sutinen, E. (2004). Program animation in

jeliot 3. ACM SIGCSE Bulletin, 36(3), 265.

[22] Ebrahimi, A., Kopec, D., and Schweikert C. Taxonomy of novice programming errors

with plan, web, and object solutions. Unpublished. Submitted ot ACM Computing Surveys,

December 2006.

[23] Truong, N., Roe, P., and Bancroft, P. Static analysis of students' java programs. In

ACE '04: Proceedings of the sixth on Australian computing education. (Darlinghurst,

Australia, Australia, 2004), Australian Computer Society, Inc., pp. 317-325.

[24] Hristova, M., Misra, A., Rutter, M., and Mercuri, R. Identifying and correcting java

programming errors for introductory computer science students. In SIGCSE

'03:Proceedings of the 34th SIGCSE technical symposium on Computer Science education.

(New York, NY, USA, 2003), ACM, pp. 153-156.

[25] Top-down parsing. (n.d.) Top-down parsing. Retrieved April 14, 2016, from

http://www.cs.engr.uky.edu/~lewis/essays/compilers/rec-des.html

58

[26] Recursive Descent Parsing. (n.d.) Recursive Descent Parsing. Retrieved May 1, 2016,

from http://www.cs.engr.uky.edu/~lewis/essays/compilers/rec-des.html

[27] CS 111: Common Java Errors. (n.d.). CS 111: Common Java Errors. Retrieved

December 21, 2013, from http://cs-

people.bu.edu/dgs/courses/cs111/assignments/errors.html

[28] List of common Java syntax errors. (n.d.). The Open University. Retrieved February

1, 2014, from http://www.open.ac.uk/StudentWeb/m874/!synterr.htm

[29] Ben-Ari, M., (2007). Compile and Runtime Errors in Java.

[30] Anderson, T. (n.d.). Compile-time Errors. Java Debugging Reference ::. Retrieved

December 1, 2013, from http://www.terryanderson.ca/debugging/compile.html

[31] Leahy, P. (n.d.). Error Message: Cannot Find Symbol. Java. Retrieved January 10,

2014, from http://java.about.com/od/cerrmsg/g/Definition-Cannot-Find-Symbol.htm

[32] Kölling, M., & Rosenberg, J. (2000). Objects first with Java and BlueJ (seminar

session). ACM SIGCSE Bulletin, 32(1), 429.

[33] BlueJ Extensions. (n.d.). BlueJ Extensions. Retrieved September 4, 2013, from

www.bluej.org/extensions/extensions.html

[34] Thompson, G. (2008). A Discussion of the BlueJ IDE with Two of Its Developers:

Michael Kölling and Ian Utting. Welcome. Retrieved March 2, 2014, from

https://today.java.net/pub/a/today/2008/06/26/bluej-interview.html

59

X. APPENDIX

A. Source code

NAJI.java

package src.SP.NAJI.processor;

import src.SP.NAJI.processor.*;

import bluej.extensions.*;

import bluej.extensions.event.*;

import bluej.extensions.editor.*;

import java.util.*;

import java.io.*;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class NAJI extends

Extension implements

CompileListener {

 ErrorManager Mgr;

 BlueJ bluej = null;

 JFrame frame;

 JLabel messageField;

 JTextArea messageArea;

 public NAJI() {

 Mgr = new ErrorManager();

 Mgr.addHandler(new

BraceExError());

 Mgr.addHandler(new

ParenExError());

 Mgr.addHandler(new

InTypesError());

 Mgr.addHandler(new

CantFindSymbolError());

 Mgr.addHandler(new

SemicolonExError());

 }

 public void startup(BlueJ

bluej) {

bluej.addCompileListener(this);

 this.bluej = bluej;

 // Frame parent = null;

 // try {

 // parent =

bluej.getCurrentPackage().getFram

e();

 // }

 // catch(Exception e) {

 // parent =

bluej.getCurrentFrame();

 // }

 frame = new JFrame() {

 public void

frameInit() {

this.setTitle("NAJI");

 //

this.setSize(400, 200);

 //

this.setVisible(true);

this.setLayout(new

BorderLayout());

 messageField =

new JLabel();

 messageArea = new

JTextArea();

 JPanel panelTop =

new JPanel();

messageArea.setWrapStyleWord(true

);

messageArea.setLineWrap(true);

messageArea.setEditable(false);

messageArea.setOpaque(false);

messageArea.setPreferredSize(new

Dimension(380, 480));

 //

panelTop.add(messageField);

panelTop.add(messageArea);

 //

this.add(messageField);

this.add(panelTop);

this.setDefaultCloseOperation(Win

dowConstants.DO_NOTHING_ON_CLOSE)

;

 //

this.setContentPane(panelTop);

this.setPreferredSize(new

Dimension(400, 500));

this.setMaximumSize(new

Dimension(400, 500));

this.setMinimumSize(new

Dimension(400, 500));

 //

this.setResizable(false);

 this.pack();

this.setVisible(true);

 }

 };

 }

 public void terminate() {}

 public boolean isCompatible()

{

 return true;

60

 }

 public void

compileError(CompileEvent event)

{

 String message =

event.getErrorMessage();

 int lineNumber =

event.getErrorLineNumber();

 File target = null;

 for(File f :

event.getFiles()) {

 target = f;

 break;

 }

 if(target != null) {

 try {

 Scanner reader =

new Scanner(target);

 StringBuilder sb

= new StringBuilder();

while(reader.hasNextLine()) {

sb.append(reader.nextLine() +

"\n");

 }

 String result =

Mgr.process(message, lineNumber,

sb.toString());

 //

messageField.setText(result);

messageArea.setText(result);

 frame.toFront();

 }

 catch (Exception e) {

e.printStackTrace();

 }

 }

 }

 public void

compileFailed(CompileEvent event)

{

 }

 public void

compileStarted(CompileEvent

event) {}

 public void

compileSucceeded(CompileEvent

event) {

 messageArea.setText("");

//refresh

 //frame.toFront();

 }

 public void

compileWarning(CompileEvent

event) {}

 public String getVersion() {

 return "2016.05.21";

 }

 public String getName() {

 return "IDE Extension";

 }

 public String

getDescription() {

 return "A helper for the

java compiler, which aids in

determining " +

 "the actual error more

precisely.";

 }

}

Error.java

package src.SP.NAJI.processor;

public interface Error {

 public boolean

isQualified(String errString);

 public String

OutputResults(int linenum, String

code);

}

CodeScanner.java

package src.SP.NAJI.processor;

public class CodeScanner {

 String code;

 int index;

 public CodeScanner(String text) {

 this.code = text;

 index = 0;

 }

 public void goToEndOfLine(int

line) {

 index = -1;

 while(line-- > 0) {

 index =

code.indexOf("\n", index+1);

 }

 if(index == -1) index = 0;

 }

61

 public boolean

searchForward(String word) {

 int temp =

code.indexOf(word, index+1);

 if(temp > 0) {

 index = temp;

 return true;

 }

 return false;

 }

 public boolean

searchBackward(String word) {

 int temp =

code.lastIndexOf(word, index-1);

 if(temp > 0) {

 index = temp;

 return true;

 }

 return false;

 }

 protected void goToStartOfWord()

{

 if(isWhitespace(index)) {

 do {

 index++;

 }

while(isWhitespace(index));

 }

 /*

 else {

 while(isNotWhitespace(index-1)) {

 index--;

 }

 }*/

 }

 protected void goToEndOfWord() {

 if(isNotWhitespace(index)) {

 if(!isIdentifier(index)) {

 //index++;

 return;

 }

 while(isIdentifier(index+1)) {

 index++;

 }

 }

 else {

 while(isWhitespace(index)) {

 index--;

 }

 }

 }

 protected boolean

isWhitespace(int index) {

 if(index < 0) return

false;

 if(index >= code.length())

return false;

 return

Character.isWhitespace(code.charAt(index)

);

 }

 protected boolean

isIdentifier(int index) {

 if(index < 0) return

false;

 if(index >= code.length())

return false;

 String curr =

code.substring(index, index+1);

62

 return

!curr.matches("[=\\+\\-

*\\/\\{\\}\\(\\);\\s]");

 }

 protected boolean

isNotWhitespace(int index) {

 if(index < 0) return

false;

 if(index >= code.length())

return false;

 return

!Character.isWhitespace(code.charAt(index

));

 }

 public String nextWord() {

 goToStartOfWord();

 if(index == code.length())

{

 return null;

 }

 int start = index;

 goToEndOfWord();

 String retval =

code.substring(start, index+1);

 index++;

 return retval;

 }

 public String previousWord() {

 goToEndOfWord();

 if(index == code.length())

{

 return null;

 }

 int start = index;

 goToStartOfWord();

 String retval =

code.substring(index, start+1);

 index--;

 return retval;

 }

 public boolean

searchOnLine(String word) {

 int temp = index;

 if(code.charAt(temp) ==

'\n') temp--;

 int low =

code.lastIndexOf("\n", temp);

 int high =

code.indexOf("\n", temp);

 int result =

code.indexOf(word, low);

 if(result < high && result

>= 0) {

 index = result;

 return true;

 }

 return false;

 }

 public boolean

searchForward(String word, int wordLimit)

{

 int initial = index;

 for(int i = 0; i <

wordLimit; i++) {

 String nw =

nextWord();

 if(nw == null) {

 break;

 }

 else

if(nw.equals(word)) {

 return

true;

 }

63

 }

 index = initial;

 return false;

 }

 public int getIndex() {

 return index;

 }

 public void setIndex(int index) {

 this.index = index;

 }

 public String getLine(int line) {

 return getLines(line, line);

 }

 public String getLines(int start, int

end) {

 goToEndOfLine(start-1);

 int startIndex = getIndex();

 goToEndOfLine(end);

 int endIndex = getIndex();

 return code.substring(startIndex,

endIndex);

 }

 public static void main(String[]

args) {

 String test = "int a=

5+67;";

 CodeScanner cs = new

CodeScanner(test);

 System.out.println(cs.nextWord())

;

 System.out.println(cs.nextWord())

;

 System.out.println(cs.nextWord())

;

 System.out.println(cs.nextWord())

;

 System.out.println(cs.nextWord())

;

 System.out.println(cs.previousWor

d());

 }

}

Tools.java

package src.SP.NAJI.processor;

public class Tools {

 public static String

getMethodName(String method) {

 return method.substring(0,

method.indexOf("("));

 }

 public static int

levenshteinDistance(String wordA, String

wordB) {

 // d is a table with m+1

rows and n+1 columns

 int m = wordA.length();

 int n = wordB.length();

 int[][] d = new

int[m+1][n+1];

 for(int i = 0; i <= m;

i++) {

 d[i][0] = i;

 }

 for(int j = 0; j <= n;

j++) {

64

 d[0][j] = j;

 }

 for(int j = 1; j <= n;

j++) {

 for(int i = 1; i

<= m; i++) {

 if(wordA.charAt(i-1) ==

wordB.charAt(j-1)) {

 d[i][j] = d[i-1][j-1];

 }

 else {

 d[i][j] = Math.min(Math.min(d[i-

1][j]+1, d[i][j-1]+1), d[i-1][j-1]+1);

 }

 }

 }

 return d[m][n];

 }

}

ErrorManager.java

package src.SP.NAJI.processor;

import java.util.Set;

import java.util.HashSet;

import java.util.Scanner;

import java.io.File;

public class ErrorManager {

 private Set<Error> errors;

 public ErrorManager() {

 errors = new HashSet<Error>();

 }

 public void addHandler(Error e) {

 errors.add(e);

 }

 public String process(String

errorMessage, int lineNumber, String code

) {

 String newline =

System.lineSeparator();

 for(Error e : errors) {

 // return

"h.accepts(errorMessage): " +

h.accepts(errorMessage)+ "\n

errorMessage:" + errorMessage

 // + "

lineNumber: " + lineNumber + " code:" +

code ;

if(e.isQualified(errorMessage)) {

 return

e.OutputResults(lineNumber, code);

 }

 }

 return "Sorry :(" +newline

 + "NAJI can't provide a more

detailed explanation for this BlueJ

compile error." + newline +newline

 + "Echoing right now the BlueJ

compile error:" + newline

 + "Line number: " + lineNumber +

newline

 + "Error message: " +

errorMessage;

 }

}

65

SemicolonExError.java

package src.SP.NAJI.processor;

public class SemicolonExError implements

Error {

 public boolean isQualified(String

errorMessage) {

 return errorMessage.equals("';'

expected") ||

 errorMessage.startsWith("';'

expected");

 }

 public String OutputResults(int

lineNumber, String code) {

 //return "Test:" + test;

 CodeScanner cs = new

CodeScanner(code);

 String newline =

System.lineSeparator();

 String COE = cs.getLine(lineNumber);

if(code.matches("(?s).*\\)\\s*\\(.*")) {

 //return "you have probably used a

'(' instead of a '{'";

 return "Code: " + COE.trim() +

newline + newline//cause of error

 + "Did you use a parenthesis

instead of a brace to start your code

block?" + newline + newline

 + "Curly braces {} mark the start

and end of a code block." + newline +

"Examples:" + newline

 + "1. while (number < 10) {" +

newline + "<do this> } " + newline

 + "2. public static void

main(String args[]) {" + newline + "<code

block> }" + newline + newline

 + "One the other hand, parentheses

() mark the start and of the parameter

list of a method." + newline +

"Examples:" + newline

 + "1. getAverage(num1, num2);" +

newline + "2. input.nextWord();" +

newline + "3. System.out.print(\"Enter a

number: \");";

 }

 String localizedCode =

cs.getLines(lineNumber - 1, lineNumber +

1);

if(localizedCode.matches("(?s).*(\\d+|\\(

(\\d+|\\w+)\\))(\\w+|\\((\\d+|\\w+)\\)).*

")) {

 return "Code: " + COE.trim() +

newline + newline//cause of error

 + "Did you forget to use * for

multiplication?" + newline + newline

 + "The Java programming languages

supports various arithmetic operators." +

newline

 + "For multiplication:" + newline

 + " Operator: *" + newline

 + " Use: op1 * op2" + newline +

newline

 + "Examples: " + newline

 + "1. int x = 34 * 3;" + newline

 + "2. double y = 27.32 * 5.91;" +

newline

 + "3. double z = x * y;";

 }

if(localizedCode.matches("(?s).*\\w+\\s+[

xX]\\s+\\w+.*")) {

 return "Did you forget to use * for

multiplication?" + newline + newline

 + "The Java programming languages

supports various arithmetic operators." +

newline

 + "For multiplication:" + newline

 + " Operator: *" + newline

 + " Use: op1 * op2" + newline +

newline

 + "Examples: " + newline

66

 + "1. int x = 34 * 3;" + newline

 + "2. double y = 27.32 * 5.91;" +

newline

 + "3. double z = x * y;";

 }

if(localizedCode.matches("(?s).*\\w\\s*(\

\+\\+|\\-\\-)\\s*[^);\\s].*")) {

 //return "the ++ or -- is a unary

operator";

 return "Code: " + COE.trim() +

newline + newline//cause of error

 + "Did you use a unary instead of a

binary operator?" + newline + newline

 + "Unary operators require only one

operand." + newline

 + "They are used to increment or

decrement a value by 1." + newline +

newline + "Examples:" + newline

 + "1. int result = 0;" + newline

 + "2. result++; //result is now 1"

+ newline

 + "3. result--; //result is now 0"

+ newline + newline

 + "Binary operators require two

operands." + newline

 + "It follows the format :

<Operand1> <operator> <Operand2>" +

newline + newline

 + "Examples:" + newline +"1. 5 + 1"

+ newline + "2. x = y - z" + newline +

"3. num = a + b";

 }

if(localizedCode.matches("(?s).*\\w+[a-

zA-Z](\\(.*\\))?:\\s+.*")) {

 //return "you may have used a :

instead of a ;";

 return "Code: " + COE.trim() +

newline + newline//cause of error

 + "Did you use a : instead of a ;

to end your statement?" + newline +

newline

 + "Semicolons (;) are a part of the

syntax of the programming language. It is

used at the end of the statement to help

the compiler identity when the statement

ends." + newline + newline

 + "Examples:" + newline

 + "1. inputField.getText();" +

newline

 + "2. double y = 27.32 * 5.91;" +

newline

 + "3. button.setText(\"close\");";

 }

if(localizedCode.matches("(?s).*for\\(.*,

.*\\).*")) {

 //return "you may have used a ,

instead of a ;";

 return "Code: " + COE.trim() +

newline + newline//cause of error

 + "Did you mistype the method

call?" + newline + newline

 + "You may have used a comma

instead of a period." + newline

 + "In Java, calling a method

follows the following format:" + newline

 + "

<class>.<methodname>(<parameters>);" +

newline + newline

 + "Examples:" + newline

 + "1. inputField.getText();" +

newline

 + "2. centerPanel.add(inputField);"

+ newline

 + "3. button.setText(\"close\");";

 }

if(localizedCode.matches("(?s).*\\w+,\\w+

.*")) {

 //return "you may have used a ,

instead of a ;";

 return "Code: " + COE.trim() +

newline + newline//cause of error

67

 + "Did you mistype the method

call?" + newline + newline

 + "You may have used a comma

instead of a period." + newline

 + "In Java, calling a method

follows the following format:" + newline

 + "

<class>.<methodname>(<parameters>);" +

newline + newline

 + "Examples:" + newline

 + "1. inputField.getText();" +

newline

 + "2. centerPanel.add(inputField);"

+ newline

 + "3. button.setText(\"close\");";

 }

 //return "localizedCode:" +

localizedCode;

 String lineCode =

cs.getLine(lineNumber).trim();

 lineCode = lineCode.replace("public

", "");

 lineCode = lineCode.replace("private

", "");

 lineCode =

lineCode.replace("protected ", "");

 lineCode = lineCode.replace("static

", "");

 lineCode = lineCode.replace("abstract

", "");

 lineCode = lineCode.replace("final ",

"");

 lineCode =

lineCode.replace("synchronized ", "");

 if(lineCode.matches("\\w+ \\w+

\\w+\\(.*\\).*")) {

 return "you may have used a space

in your method name";

 }

 if(lineCode.matches("\\w+ \\w+

\\w+;.*")) {

 return "you may have used a space

in your variable name";

 }

 cs.goToEndOfLine(lineNumber);

 //return

"cs.goToEndOfLine(lineNumber)";

 //return "cs.searchOnLine(')'):" +

cs.searchOnLine(")");

 if(cs.searchOnLine(")")) {

 cs.nextWord();

 String nextWord = cs.nextWord();

 //return "word:" + word+ "

nextWord:" + nextWord + "

cs.previousWord():" + cs.previousWord()+

" nextNext:" + nextNext ;

 if(nextWord.equals("{")) {

 cs.goToEndOfLine(lineNumber - 1);

if(!cs.previousWord().equals("}")) {

 return "you may have forgotten

to close the previous block";

 }

 else if(nextWord.equals(";")) {

 if(cs.getLines(lineNumber - 3,

lineNumber +

1).matches("(?s).*[^\\s\\{,]\\s*\\n.*"))

{

 return "the previous line

does not have a semicolon";

 }

 }

 }

 else if(nextWord.equals(")") &&

cs.previousWord().equals(";")) {

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you type an extra ')'

in the method call?" + newline + newline

 + "This error occurs when

there's a typographical error in the

method call." +newline

 + "Calling a method follow

the format below:" + newline

68

 + "

<class>.<methodname>(<parameters>);" +

newline + newline

 + "Examples:" + newline

 + "1. branch.setName(\"Coffee

Bean\");" + newline

 + "2. branch.getAddress();";

 }

 }

 else {

 if(cs.getLines(lineNumber - 3,

lineNumber +

1).matches("(?s).*[^\\s\\{,]\\s*\\n.*"))

{

 return "the previous line does

not have a semicolon";

 }

 }

 return "Semicolon expected error";

 }

}

CantFindSymblError.java

package src.SP.NAJI.processor;

import java.util.*;

public class CantFindSymbolError

implements Error {

 static HashSet<String> methods; {

 methods = new HashSet<String>();

 methods.add("println");

 methods.add("printf");

 }

 static HashSet<String> classes; {

 classes = new HashSet<String>();

 classes.add("String");

 classes.add("void");

 classes.add("boolean");

 classes.add("int");

 classes.add("long");

 classes.add("double");

 classes.add("float");

 classes.add("byte");

 classes.add("char");

 classes.add("return");

 }

 String errorMessage;

 public boolean isQualified(String

errorMessage) {

 this.errorMessage = errorMessage;

 return

errorMessage.startsWith("cannot find

symbol");

 }

 public String OutputResults(int

lineNumber, String code) {

 CodeScanner cs = new

CodeScanner(code);

 String[] temp =

errorMessage.split(" +");

 String symbol = temp[4];

 String name = temp[5];

 String newline =

System.lineSeparator();

 String COE =

cs.getLine(lineNumber);

 if(symbol.equals("variable")) {

 cs.goToEndOfLine(lineNumber);

69

 if(cs.searchOnLine("=")) {

 cs.nextWord();

if(cs.nextWord().equals("(")) {

 return "Code: " +

COE.trim() + newline + newline//cause of

error

 + "Did you use an

equal sign in calling a method?" +

newline + newline

 + "In Java, calling a

method follows the format below:" +

newline

 + "

<class>.<methodname>(<parameters>);" +

newline + newline

 + "Examples:" +

newline

 + "1.

Student.getName();" + newline

 + "2.

Student.setCourse(\"CS\");" + newline

 + "3.

Student.getStudentNumber();" + newline;

 }

 }

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you forget to declare

'" + name + "'?" + newline + newline

 + "The Java programming

language is statically-typed, which means

that all variables must first be declared

before they can be used. "

 + "This involves stating the

variable's type and name before assigning

a value to it." + newline + newline

 + "Examples:" + newline

 + "1. int " + name + ";" +

newline

 + "2. float " + name + ";" +

newline

 + "3. String " + name + ";" +

newline;

 }

 if(symbol.equals("method")) {

 String missingMethod =

Tools.getMethodName(name);

 int min = 6;

 String best = "";

 for(String method : methods)

{

if(method.equals(missingMethod)) {

 return "you probably

forgot to type the fully qualified name

of the method, or are passing it the

wrong parameters";

 }

 int dist =

Tools.levenshteinDistance(method,

missingMethod);

 if(dist < min) {

 min = dist;

 best = method;

 }

 }

 if(min < 6) {

 return "Code: " +

COE.trim() + newline + newline//cause of

error

 + "Did you misspell " +

best + " as " + name + "?" + newline +

newline

 + "Primitive data types

are predefined by the language and named

by a keyword." + newline + newline

 + "Below are some of the

data types used in Java:" + newline

 + "int" + newline +

"long" + newline + "byte" + newline +

"float" + newline+ "String" + newline +

"boolean" +newline + newline

 + "Examples: " + newline

 + "1. String studName;" +

newline

 + "2. int studNumber;" +

newline

 + "3. boolean

isEnrolled;";

 }

70

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you misspell the

method, '" + missingMethod + "'?" +

newline + newline

 + "This error occurs when a

method is called incorrectly: either its

name is mistyped(incorrect casing of

letters)," + " "

 + "or a method is called with

wrong types of parameters, or a method is

called for a wrong type of object or a

wrong class." + newline + newline

 + "For example, the same

error will be reported if you type" +

newline

 + "

input.settext(\"test\");" + newline

 + "instead of" + newline

 + "

input.setText(\"test\");";

 }

 if(symbol.equals("class")) {

 int min = 3;

 String best = "";

 for(String clas : classes) {

 int dist =

Tools.levenshteinDistance(clas, name);

 if(dist < min) {

 min = dist;

 best = clas;

 }

 }

 if(min < 3) {

 return "Code: " +

COE.trim() + newline + newline//cause of

error

 + "Did you misspell " +

best + " as " + name + "?" + newline +

newline

 + "Primitive data types

are predefined by the language and named

by a keyword." + newline + newline

 + "Below are some of the

data types used in Java:" + newline

 + "int" + newline +

"long" + newline + "byte" + newline +

"float" + newline+ "String" + newline +

"boolean" +newline + newline

 + "Examples: " + newline

 + "1. String studName;" +

newline

 + "2. int studNumber;" +

newline

 + "3. boolean

isEnrolled;";

 }

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you forget to import

the required package for '" + name + "'?"

+ newline + newline

 + "When the class you are

using is in a package, importing the

package is needed to be able to access

the class." + newline

 + "Unless installed as a

package and properly imported, files for

classes used in the program shoulde be

available in the same folder." + newline

+ newline

 + "Example:" + newline + "To

be able to use Scanner in the following

code" + newline

 + " Scanner input = new

Scanner(System.in)" + newline

 + "You need" + newline + "

import java.util.Scanner" + newline + "at

the top of your program.";

 //return "you may have

mistyped '" + name + "' or you have

forgotten to import the required

package";

 }

 return "Can't find symbol error";

 }

}

ParenExError.java

package src.SP.NAJI.processor;

71

public class ParenExError implements

Error {

 String errorMessage;

 public boolean isQualified(String

errorMessage) {

 this.errorMessage = errorMessage;

 return errorMessage.equals("'('

expected") ||

 errorMessage.equals("class,

interface, or enum expected") ||

 errorMessage.equals("')'

expected")||

errorMessage.startsWith("<identifier>

expected");

 }

 public String OutputResults(int

lineNumber, String code) {

 CodeScanner cs = new

CodeScanner(code);

 String localizedCode =

cs.getLine(lineNumber);

 CodeScanner cslc = new

CodeScanner(localizedCode);

 String newline =

System.lineSeparator();

 String COE =

cs.getLine(lineNumber);

 if (localizedCode.indexOf("}") >

0) {

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you forget to give a

complete condition list in your if

block?" + newline + newline

 + "The condition is needed to

be evaluated for the succeeding code

block to be executed." + " "

 + "It tells the program to

execute a certain section of code only if

the condition evaluates to true." +

newline

 + "The condition statement

should always return a boolean." +

newline+newline

 + " Format: if

(<condition>) { } " + newline + newline

 + "Some conditional operators

you can use:" + newline

 + " > greater than, <

less than, >= greater than or equal to,

<= less than or equal to, "+ " "

 + " && and, || or, ==

equal, ! not, != not equal" +

newline+newline

 + "Examples: " + newline

 + "1. age > 20" + newline +

"2. input != null" + newline + "3. speed

<= 80";

 } //naji

 cs.goToEndOfLine(lineNumber);

 int newIndex = 0;

 if(cs.searchBackward("new")) {

 newIndex = cs.getIndex();

 }

 // if (true) return

"localized code: " + localizedCode;

 // if

(localizedCode.indexOf("if") > 0 ||

localizedCode.indexOf("while") > 0 ||

localizedCode.indexOf("for") > 0) {

 // return "did

you forget to give a complete parameter

list in your loop block?";

 // } //naji

 if(localizedCode.indexOf("if") >

0 || localizedCode.indexOf("while") > 0

|| localizedCode.indexOf("for") > 0) {

 //||

localizedCode.searchOnLine("while") ||

localizedCode.searchOnLine("for")

72

 //return localizedCode +

newline +"did you forget the

parentheses?";

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you forget the

parentheses in your condition?" + newline

+ newline

 + "Conditions are to be

placed inside paretheses for loops. It

follows the format:" + newline

 + " <loop type>

(<condition>) { }" + newline + newline

 + "Examples:" + newline

 + "1. if (num > 6) { }" +

newline

 + "2. while (age <= 10) { } "

+ newline

 + "3. for (int x = 0; x < 3;

x++) { }";

 }

 cs.goToEndOfLine(lineNumber);

 cs.searchBackward("void");

 if(cs.getIndex() > newIndex) {

 cs.nextWord();

 String word2 = cs.nextWord();

 String word3 = cs.nextWord();

 //debug test

 // return

"cs.getIndex(): "+cs.getIndex() + newline

+ "newIndex: " + newIndex + newline

 // + "word2: " +

word2 + newline + "word3: " + word3;

 if(word3 != null) {

 if(word3.equals("{")) {

 return "'(' expected

after " + word2;

 }

 else

if(word3.equals("[")) {

 return "use a

parenthesis '(', not a bracket '['";

 }

 else

if(word3.equals(";")) {

 //return "void cannot

be used as a variable type";

 return "Code: " +

COE.trim() + newline + newline//cause of

error

 + "Did you use void a

data type for your variable?" + newline +

newline

 + "void is not a

valid type. However, void is a valid

keyword used to indicate that a method

does not return a value."

+newline+newline

 + "Below are some of

the data types used in Java:" + newline

 + "int" + newline +

"long" + newline + "byte" + newline +

"float" + "String" + newline + "boolean"

+newline+newline

 + "Examples: " +

newline

 + "1. String

studName;" + newline

 + "2. int

studNumber;" + newline

 + "3. boolean

isEnrolled;";

 }

 else for(String modifier

: BraceExError.modifiers) {

if(Tools.levenshteinDistance(modifier,

word3) < 2) {

 return "you

forgot the parameter list and opening

'{'";

 }

 }

 }

73

 if

(BraceExError.modifiers.contains(word2))

{

 return "Code: " +

COE.trim() + newline + newline//cause of

error

 + "Did you declare a data

type in your void method?" + newline +

newline

 + "Void methods don't

return any value." + newline

 + "However, it can still

a execute a job for you. Below is a void

method that prints some text." +

newline+newline

 + "Example: " + newline

 + "void print_text(String

someText) {" + newline

 + "

System.out.println(someText);" + newline

+ "}"+ newline + newline

 + "For it to have a

return value that you can assign, the

return type should be changed to the same

data type of the return value." +

newline+newline

 + "Example: " + newline

 + "int getSum (int x, int

y) {" + newline

 + " int sum = x + y;"

+ newline

 + " return sum;" +

newline + "}";

 }

 // for(String

modifier :

BraceExpectedErrorHandler.modifiers) {

 // return

"Too many modifiers" +newline+"modifier:

" + modifier + newline + "word2: " +

word2 +

 // newline +

"Tools.levenshteinDistance(modifier,

word2): " +

Tools.levenshteinDistance(modifier,

word2);

 // //

if(Tools.levenshteinDistance(modifier,

word2) < 2) {

 // //

return "you may be using too many

modifiers";

 // // }

 // }

 cs.goToEndOfLine(lineNumber);

 /*if(cs.searchOnLine("if")||

cs.searchOnLine("while") ||

cs.searchOnLine("for")) {

 return "did you forget to

give a parameter list in your

if/for/while statement";

 }*/

 //return "spaces are not

allowed in the method declaration";

 }

 else {

 if(errorMessage.equals("'['

expected")) {

 return "you forgot to

specify the size of the array, or you are

using new with a primitive incorrectly";

 }

 else {

 return "you are using new

incorrectly or forgot to specify the size

of the array";

 }

 }

 return "Code: " + COE.trim() +

newline + newline//cause of error

 + "Did you include some illegal

characters in your method name?" +

newline + newline

 + "Method names are identifiers

in Java. Java identifiers may be composed

of letters, numbers, underscore, and a

dollar sign." + newline

 + "However, it may only start

with a letter, underscore, and a dollar

sign." + newline + newline

 + "Examples:" + newline

74

 + "1. MyMethod" + newline + "2.

_MyMethod" + newline +"3. My_Method" +

newline + "4. $newMethod" + newline + "5.

_1stMethod" +newline+newline

 + "Not allowed names:" + newline

 + "1. My method //has a space" +

newline + "2. 1stMethod //begins with

number" + newline + "3. Test1-2-3

//hyphen is not an alphanumeric

character";

 }

}

InTypesError.java

package src.SP.NAJI.processor;

import java.util.*;

public class InTypesError implements

Error {

 String errorMessage;

 public boolean isQualified(String

errorMessage) {

 this.errorMessage = errorMessage;

 return

errorMessage.equals("incompatible types")

||

errorMessage.startsWith("incompatible

types");

 }

 public String OutputResults(int

lineNumber, String code) {

 CodeScanner cs = new

CodeScanner(code);

 cs.goToEndOfLine(lineNumber);

 String localizedCode =

cs.getLine(lineNumber);

 CodeScanner cslc = new

CodeScanner(localizedCode);

 String[] codeList = code.split("

+");//code.split(" +");

 String found = "";//temp[4];

 String expected = "";//temp[7];

 String newline =

System.lineSeparator();

 String COE = cs.getLine(lineNumber);

 if(cs.searchOnLine("()")) {

 String[] temp =

Tools.getMethodName(localizedCode).split(

" +");

 String method = temp[temp.length

- 1];

 int index =

Arrays.asList(codeList).indexOf(method+"(

)");

 String datatype = codeList[index

- 1];

// return method + newline +

index ;//+ datatype;

 if

(datatype.trim().equals("void")) {

// return "there is nothing to assign

since the method you are using returns

void";

 return "Code: " +

COE.trim() + newline + newline//cause of

error

 + "Did you assign a void

method?" + newline + newline

 + "Void methods don't

return any value." + newline

 + "However, it can still a

execute a job for you." + newline+

newline +"Example:" + newline

 + "void print_text(String

someText) { " + newline + " //a void

method that prints some text" + newline

 + "

System.out.println(someText);" + newline

+ "}"+ newline + newline

 + "For it to have a return

value that you can assign, the return

type should be changed to the same data

type of the return value." + newline

75

 + "Example:" + newline

 + "int getSum (int x, int

y) {" + newline

 + " int sum = x + y;"

+ newline

 + " return sum;" +

newline + "}";

 }

 }

// return "localizedCode:" +

localizedCode + "

cslc.searchForward(null):"+

cslc.searchForward("null");

 if(cslc.searchForward("null")) {

 //return "you cannot assign null

to a primitive type";

 return "Code: " + COE.trim() +

newline + newline//cause of error

 + "Did you assign null to a

primitive type?" + newline + newline

 + "Primitive data types in java

represent \"value\" while objects

represent references." + newline

 + "There is no null value in

general, it is a special keyword that

\"references to nothing\" or empty

reference." +newline+newline

 + "Examples: " +newline

 + "1. Integer num1 = null;" +

newline + "2. int num2 = 1;" +

newline+newline

 + "In this case, num1 is just a

pointer to an Integer object. Assigning

null to it means that the data of the

object is in null -- that is, not

assigned." + newline

 + "On the other hand, num2 has a

value of 1;";

 }

 if (cs.searchOnLine("if")) {

 cs.nextWord();

 cs.nextWord();

 String varName = cs.nextWord();

 cs.searchBackward(varName);

 cs.searchBackward(varName);

 cs.nextWord();

 cs.nextWord();

 String value = cs.nextWord();

 //String prev =

cs.previousWord();

 if (value != "true" || value !=

"false") { //not a boolean

 //return "1 you may only use

booleans in an if statement";

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you forget to use a

boolean in the if block?" + newline +

newline

 + "An if statement consists

of a boolean expression followed by one

or more statements." + " "

 + "It tells the program to

execute a certain section of code only if

the condition evaluates to true." +

newline

 + "The condition statement

should always return a boolean." +

newline+newline

 + " Format: if

(<condition>) { } " + newline + newline

 + "Some conditional operators

you can use:" + newline

 + " > greater than, <

less than, >= greater than or equal to,

<= less than or equal to, "+ " "

 + " && and, || or, ==

equal, ! not, != not equal" +

newline+newline

 + "Examples: " + newline

 + "1. age > 20" + newline +

"2. input != null" + newline + "3. speed

<= 80";

 }

 }

76

 if((cs.searchOnLine("if") ||

cs.searchOnLine("while") ||

cs.searchOnLine("for")) &&

expected.equals("boolean")) {

 if(cs.searchOnLine("=") &&

cs.nextWord().equals("=")) {

 return "you probably meant

'==' instead of just '='";

 }

 else {

 return "2 you may only use

booleans in an if statement";

 }

 }

 if(cs.searchOnLine("return")) {

//wrongreturntype

 //return "the variable you are

returning has a different type from the

method return type";

 return "Code: " + COE.trim() +

newline + newline//cause of error

 + "Did you return a different

data type from the declared method type?"

+ newline +newline

 + "A method follows the

declaration below:" + newline

 + "<return type> <methodName>

(<parameters>) {" + newline

 + " //statements" + newline

 + " return <value>;" +

newline+ "}" + newline

 + "NOTE : data types of <return

type> should be the same with <value>" +

newline + newline

 + "Examples: " + newline

 + "1. int getSum (int x, int y)

{" + newline

 + " int sum = x + y;" +

newline

 + " return sum;" +

newline + "}" + newline + newline

 + "2. String getName () {" +

newline

 + " return \"Naji\";" +

newline + "}";

 }

// return "unknown";

 //unfinished statement

 if(cs.getLines(lineNumber - 3,

lineNumber +

1).matches("(?s).*[^\\s\\{,]\\s*\\n.*"))

{

 //return "the previous line

does not have a semicolon";

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you forget to finish

the assignment statement of the previous

line?" + newline + newline

 + "An assignment statement in

Java uses the assignment operator (=) to

assign the result of an expression to a

variable."+ newline

 + "You code it like this:" +

newline

 + " variable =

expression;" + newline + newline

 + "Examples: " + newline

 + "1/ int a = (b * c) / 4;" +

newline

 + "2. int x;" + newline + "3.

int y = 4;" + newline

 + "4. x = 7 + y;";

 }

 return "Incompatible types error";

 }

}

BraceExError.java

package src.SP.NAJI.processor;

import java.io.File;

import java.util.Scanner;

import java.util.HashSet;

77

public class BraceExError implements

Error {

 static HashSet<String> modifiers; {

 modifiers = new

HashSet<String>();

 modifiers.add("public");

 modifiers.add("private");

 modifiers.add("protected");

 modifiers.add("int");

 modifiers.add("double");

 modifiers.add("String");

 modifiers.add("float");

 modifiers.add("long");

 modifiers.add("byte");

 modifiers.add("char");

 modifiers.add("boolean");

 }

 public boolean isQualified(String

errorMessage) {

 return errorMessage.equals("'{'

expected") ||

 errorMessage.startsWith("'{'

expected");

 }

 public String OutputResults(int

lineNumber, String code) {

// return "brace process";

 String newline =

System.lineSeparator();

 CodeScanner cs = new

CodeScanner(code);

 String COE =

cs.getLine(lineNumber); //cause of error

 cs.goToEndOfLine(lineNumber);

 cs.searchBackward("class");

 boolean inClass = false;

 boolean foundBrace =

cs.searchBackward("{");

 if(foundBrace) inClass =

cs.searchBackward("class");

 if(foundBrace && !inClass)

cs.searchForward ("class");

 if(inClass)

cs.searchForward("class");

 cs.nextWord();

 cs.nextWord();

 String word3 = cs.nextWord();

 String word4 = cs.nextWord();

// return "word3:" + word3 + "

word4:" + word4 + " inClass:" + inClass;

 if(word3.equals("(")) {

 if(inClass) {

 return "you may have used

class as a type";

 }

 if(word4.equals(")")) {

 //return "you may have

put parameters '()' in the class

declaration";

 return "Code: " +

COE.trim() + newline + newline//cause of

error

 + "Did you put '()' in

the class declaration?" + newline +

newline

 + "Classes don't have a

parameter list when declared. Parameter

lists are used in methods and

constructors." + newline + newline

 + "Examples:" + newline

 + "1. class NameOfClass

{" + newline

 + " //field,

constructor, and" + newline

 + " //method

declarations" + newline

 + "} //end of class" +

newline +newline

78

 +"2. public class Student

{" + newline

 + " private String

name;" + newline

 + " private String

subject;" + newline

 + " private String

grade;" + newline

 + "}";

 }

 //return "you may have used a

parentheses '(', instead of a brace '{'";

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you type '(' instead

of a brace '{' as opening of the code

block?" + newline + newline

 + "The code block after the

class name is opened and closed by

braces, {}." + newline + newline

 + "Examples: " + newline

 + "1. public class Data { }"

+ newline

 + "2. class Rectangle { } " +

newline

 + "3. public class Person {

}";

 }

 if(word3.equals("[")) {

 //return "you may have used a

bracket '[', instead of a brace '{'";

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you type '(' instead

of a brace '{' as opening of the code

block?" + newline + newline

 + "The code block after the

class name is opened and closed by

braces, {}." + newline + newline

 + "Examples: " + newline

 + "1. public class Data { }"

+ newline

 + "2. class Rectangle { } " +

newline

 + "3. public class Person {

}";

 }

 if(word3.equals(";")) {

 if(word4.equals("{") ||

word4.equals("[") || word4.equals("(")) {

 //return "there may be an

extra semicolon in the class

declaration";

 return "Code: " +

COE.trim() + newline + newline//cause of

error

 + "Did you put a

semicolon after the class declaration?" +

newline + newline

 + "Semicolons are used to

terminate. Class definitions are not

terminated. It's followed by a code block

{}." + newline + newline

 + "A class declaration

looks like this:" + newline

 + " [modifiers] class

ClassName { ... }"+ newline + newline

 + "Examples:" + newline +

"1. public class ImaginaryNumber { }" +

newline

 + "2. class

RecursiveNumber { }" + newline + "3.

public class BraceExError{ }";

 }

 return "you may have used

class as a type";

 }

 if(word3.equals("throws")) {

 //return "you may have put a

throws statement in the class

declaration";

 return "Code: " + COE.trim()

+ newline + newline//cause of error

 + "Did you use a throws

statement in the class declaration?" +

newline + newline

 + "Exceptions can only be

thrown from methods or constructors." +

newline + newline

 + "Instead of" + newline +

newline

 + " class TestClass

throws Exception {}" + newline + newline

79

 + "You may follow the

following:" + newline

 + "1. public class TestClass

{" + newline

 + " public TestClass()

throws Exception { } //Exception thrown

from class constructor" + newline

 + "}" + newline + newline

 + "2. public class TestClass

{" + newline

 + " public

methodInClass() throws Exception { }

//Exception thrown from method in the

class" + newline

 + "}";

 }

 if(word3.equals("=")) {

 return "you may have used

class as a type";

 }

 for(String modifier : modifiers)

{

if(Tools.levenshteinDistance(modifier,

word3) < 2) {

 return "you forgot the

opening '{'";

 }

 }

 //return "you may have used a

space in the class name";

 return "Code: " + COE.trim() +

newline + newline//cause of error

 + "Did you include some illegal

characters in your class name?" + newline

+ newline

 + "Class names are identifiers in

Java. Java identifiers may be composed of

letters, numbers, underscore, and a

dollar sign." + newline

 + "However, it may only start

with a letter, underscore, and a dollar

sign." + newline + newline

 + "Examples:" + newline

 + "1. MyClass" + newline + "2.

_MyClass" + newline +"3. My_Class" +

newline + "4. $newClass" + newline +"5.

_1stClass" +newline+newline

 + "Not allowed names:" + newline

 + "1. My class //has a space" +

newline + "2. 1stClass //begins with

number" + newline + "3. Test1-2-3

//hyphen is not an alphanumeric

character";

 }

}

80

XI. ACKNOWLEDGEMENT

Thank you to everyone who never gave up on me, made sure I was on the right

track, supported me all throughout this struggle (lol), and believed I can make it!

 This is for all of us!

