UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

STRIVE-VR: STRABISMUS TRAINING ROUTINES
INDUCING VISION ENHANCEMENTS USING VIRTUAL
REALITY

A special problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Romeo C. Valdez Jr.
June 2018

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser | No

Available only to those bound by confidentiality agreement | No

ACCEPTANCE SHEET

The Special Problem entitled “STRIVE-VR: Strabismus Training
Routines Inducing Vision Enhancements using Virtual Reality” prepared and sub-
mitted by Romeo C. Valdez Jr. in partial fulfillment of the requirements for the
degree of Bachelor of Science in Computer Science has been examined and is rec-
ommended for acceptance.

Perlita E. Gasmen, M.S.
Adviser

EXAMINERS:
Approved Disapproved

Gregorio B. Baes, Ph.D. (candidate)
Avegail D. Carpio, M.S.

Richard Bryann L. Chua, Ph.D. (candidate)
Ma. Sheila A. Magboo, M.S.

Marvin John C. Ignacio, M.S. (candidate)
Vincent Peter C. Magboo, M.D., M.S.
Geoffrey A. Solano, Ph.D. (candidate)

N Tt W

Accepted and approved as partial fulfillment of the requirements for the
degree of Bachelor of Science in Computer Science.

Ma. Sheila A. Magboo, M.S. Marcelina B. Lirazan, Ph.D.
Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Leonardo R. Estacio Jr., Ph.D.
Dean
College of Arts and Sciences

Abstract

Strabismus or ”crossed eyes” is the misalignment of the eyes wherein each eye
may go in different directions. Various treatment procedures are being offered to
correct strabismus. Several traditional vision training techniques are considered
to cure this kind of eye condition. However, people find these vision training
techniques to be uninteresting and boring because of lack in user engagement.
Because of this, serious games are used to promote user engagement, interest, and
active participation among subjects towards vision therapies. A virtual reality
application can be used to implement serious games for treating strabismus.
STRIVE-VR is a virtual reality application that provides vision training tech-
niques incorporated with gamification with in-game objectives to be performed by
the subject with strabismus.
Keywords: Strabismus, Vision Training Techniques, Serious Games, Virtual Reality,

Gamification

Contents

Acceptance Sheet

Abstract

List of Figures

I1.

I1I.

IV.

Introduction

A. Background of the Study
B. Statement of the Problem
C. Objectives of the Study
D. Significance of the Project
E. Scope and Limitations
F. Assumptions

Review of Related Literature

Theoretical Framework

Strabismuso
Vision Therapy in Strabismus
Tondel Arrows L
Lazy Eight

Brock String

| =0 aw

Virtual Reality oo
F.1 VRBox
F.2 VR Box Controller
F.3 Android
F.4 Google VRSDK,

G. Blender.

Design and Implementation

1ii

ii

10

11

18
18
19
19
20
21
22
22
22
23
23
23
23

24

VI

VII.

VIII.

IX.

XI.

Use Case Diagram
Context Case Diagram
Activity Diagramo oo

Flowchart

5 g Qw @

Technical Architecture

Results

A, Main Menu.
A1 Parameters
A2 Tutorials

B. Virtual Environment 00000
B..1 Tondell Arrows Technique
B..2 Lazy Eight Technique
B..3 Brock String Technique,

C. Force Stop e

D. Post Game Screen

Discussion

Conclusions

Recommendations

Bibliography

Appendix

Acknowledgement

v

31
31
33
36
40
41
42
45
47
48

50

52

53

54

59

82

List of Figures

1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

Exotropia 2
Esotropia 2
Hypotropia 2
Hypertropia 2
Diplopia brick game preview o L. 11
Tondel Technique 12
Lazy Eight Technique, 12
Brock String Methodology 13

Squashing virtual bugs preview (left) and its schematic diagram

(right) 13
Low-cost VR car racing game for amblyopia rehabilitation 15
VR Dichoptic training for amblyopic patients 16
Patient using VEHuUNT for wayfinding task 17
Tondel Arrows procedure, 20
Lazy eight technique L. 21
Brock String methodology 22
Overview of Use Case Diagram 24
Overview of Context Case Diagram 25
Overview of Activity Diagram 26
Flowchart of patient for the Tondel Arrows procedure 27
Flowchart of patient for the Lazy Eight technique 28
Flowchart of patient for the Brock String methodology 29
STRIVE-VR Main Menu Screen 31
Choosing a vision training technique to play or to learn about . . . 32

Arrow indicating that the correct direction is to the left of the player 32

Arrow indicating that the correct direction is to the right of the

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ol
52
53
54
%)

Tondell Arrows technique: Choosing difficulty of the game
Lazy Eight technique: Choosing no. of infinity symbols to be traced
Brock String technique: Choosing no. of beads to be gazed at

Brock String technique: Choosing difficulty of the game
Choosing whether or not to have a voice guide for the objectives . .
First section of the Tondell Arrows technique
Second section of the Tondell Arrows technique
Third section of the Tondell Arrows technique
Fourth section of the Tondell Arrows technique
First section of the Lazy Eight technique
Second section of the Lazy Eight technique
Third section of the Lazy Eight technique
Fourth section of the Lazy Fight technique
First section of the Brock String technique
Second section of the Brock String technique
Third section of the Brock String technique
Fourth section of the Brock String technique
First scene from the Tondell Arrows technique
Second scene from the Tondell Arrows technique
First scene from the Lazy Eight technique
Speed multiplier controls for Lazy Eight technique
Second scene from the Lazy Eight technique
Third scene from the Lazy Eight technique
First scene from the Brock String technique
Speed multiplier controls for Brock String technique
Second scene from the Brock String technique
Controls for adjusting bead
Controls for declaring adjustment of bead

Third scene from the Brock String technique

vi

56
57
o8
99

Controls for force stopping a game 48

Post game screen for Tondell Arrows technique 48
Post game screen for Lazy Kight technique 49
Post game screen for Brock String technique 49

vil

I. Introduction

A. Background of the Study

Strabismus, or more commonly known as “crossed eyes”, is a type of eye disor-
der wherein the eyes are not aligned or are in different directions. This causes
an individual’s both eyes to be looking at different objects at the same time [1].
Significantly, strabismus is one of the leading cases of recorded genetic disorders
among humans. It is the most common observed characteristics among people
which, in average, is present in up to 5% of every studied population. Despite the
assumption that most cases of eye misalignments often exist together with rare
complex syndromes, majority of strabismus cases are non-syndromic. However, ex-
isting genes are identified to be associated with both syndromic and non-syndromic
forms of strabismus. This means that strabismus may be passed from one gen-
eration to another. Syndromic strabismus occur with other abnormalities of the
body, while non-syndromic strabismus may occur on its own without being asso-
ciated with other symptoms [2]. Strabismus, which adversely affects the binocular
vision, may also occur when visual stimuli are not addressed immediately during
the critical period of development, specifically at a very young age [3].

People with strabismus, especially the young ones, are adversely affected by
their condition. It does not only cause visual problems in the development stage,
but it also results to various psychosocial problems which may negatively influence
the subject’s self-image, interpersonal relationships, and performance in school and
employment [2].

The condition of strabismus among patients differ according to the direction
that the strabismic eye has gone. Distorted alignment of the eyes affects one or
both of the eyes and can occur in any direction. The strabismic eye can either
be labeled as esotropic, exotropic, hypertropic, or hypotropic. From these types
of strabismic conditions, the strabismic eye has either turned inward, outward,

upward, or downward, respectively [3].

Figure 3: Hypotropia Figure 4: Hypertropia

Moreover, a strabismic eye can be determined through the following screening
procedures: (a) the Hirschberg test, (b) the cover test [1], (¢) the Maddox rod
methodology [5], and (d) genetic testing [2]. For the Hirschberg test, a light is
shone through the eyes of the patient wherein the area around the cornea, where
the light has reflected off, is observed and will become the basis for the alignment
of the eyes. On the other hand, the cover test is done by covering each eye
alternately to determine which eye is strabismic. Meanwhile, in the Maddox rod
method, the patient will be asked to look directly at a light source. After some
time, the Maddox rod will be alternatively placed over the eyes wherein a red line
and a white light can be seen by the patient. Based on the positions of the red
line and the white light, the presence or absence of strabismus will be determined
[5]. Lastly, the genetic testing. This methodology can detect possible risks of
strabismus so that treatment could be done earlier [2].

If strabismus is actually present in a subject, various treatment procedures
exist for curing strabismus eye disorder. One treatment procedure for strabismus
is through surgical means. According to a study led by the Nikookari Ophthal-
mology Hospital of Tabriz in Iran, the cost of a single strabismus surgery was
estimated to be $464 which may still vary depending on the severity of the con-

dition and the hospital that will render the service [6]. To support this, a study

2

held in Canada showed that a total cost of $1632 for a strabismus surgery [2].
Additionally, in the Philippines, according to Tess Yambot of the Vision Therapy
Manila, the cost of strabismus surgery can range from Php50,000 to Php150,000
depending on the case of the patient. Furthermore, strabismus surgery is mainly
used to correct misalignment of the eyes, to keep their proper alignment with
free ocular movement [7], and for eye muscles to compensate from the difficulty
with the coordination of the eye and the brain [3]. On the other hand, strabismus
surgery has its disadvantages too. It can be the main cause of ocular misalignment
instead of its correction [7], and there is still no known standard protocol for the
surgical style of the operation. Strabismus surgery is also subject to the recur-
rence of strabismus which has been reported to be the most common problem after
strabismus surgeries. According to previous studies, incidence reports of under-
correction and recurrence of strabismus varied from 20% to 59% depending on the
case of strabismus as well as the age of the patient [J]. Frequently, strabismus
surgery is cosmetic in nature wherein despite the correct alignment of the eyes,
the information coming from them are still not combined properly by the brain
to produce a single image which, in turn, may lead to subsequent surgeries [3].
Moreover, genetic testing, a type of strabismus screening procedure, is relevant
for strabismus surgery because this screening method allows earlier treatment of
strabismus which may result to decreased probability or frequency of having a
surgery [2].

Another form of treatment procedure is the botulinum toxin injection which
is an alternative for strabismus surgery. Compared to strabismus surgical proce-
dure, the botulinum toxin injection takes shorter time which means that overall
anesthesia exposure of the patient is reduced, and it results to only a minimal
scarring of the extraocular muscles as well as the tissues surrounding them [10].
Also, an additional advantage of the botulinum toxin injection is that its cost is
lower than strabismus surgery [11]. However, the muscle response for this treat-

ment procedure is more variable than in strabismus surgery, the toxin spreads

repeatedly to the surrounding muscles which leads to transient vertical deviation
and ptosis, and is only considered to be a temporary treatment for strabismus [12].
Aside from that, high recurrence rate of strabismus has been also observed after
botulinum toxin injection which means that subsequent injections are necessary
to prevent the recurrence. Although this treatment procedure has similar success
rates statistically with the strabismus surgery, unfortunately, there is still no ex-
isting standardized botulinum toxin dose recommendations for all of the known
strabismus cases [10)].

Aside from strabismus surgery and botulinum toxin injection, there are still
other treatment procedures for strabismus. These are the various vision thera-
pies, involving the eyes and the brain [3], which are supervised by doctors and are
considered as non-surgical procedures [13]. Different set of tools and devices are
needed for these vision therapies which are beneficial for the patient with stra-
bismus. These are used for training, recovery, and development of the binocular
vision skills [3]. Significantly, the important goal of vision therapies is to unify the
two parts of the visual system, namely the motor visual system which is account-
able for the aiming accuracy of both eyes, and the sensory visual system which
is responsible for combining two images into a single three dimensional image in
the brain [14]. Additionally, vision therapies are used for the visual system to
correct itself from its misalignment and insufficient visual depth perception [13].
However, some methods are not proven to work, and the cost for these vision
therapies may still amount up to $152 per visit [3]. In the Philippines, according
to Tess Yambot of the Vision Therapy Manila, at least Php1,500 is needed for a
single session of strabismus vision therapy. Despite its expensiveness, according
to the Vision Therapy Center, the people who have undergone vision therapies for
strabismus have been totally cured [15]. In other cases, performing vision therapy
after strabismus surgery is necessary to maintain the alignment of the eyes and
to improve depth perception [$]. Moreover, other vision therapies include vision

training techniques like the Tondel Arrows technique, the Lazy Eight technique

[3], and the Brock String methodology which all account for the goal of vision
therapy [10].

The Tondel technique is a type of vision training technique which induces
binocular improvements, clear stimulus accommodation, and avoidance of mixed
color perceptions through convergence and near point convergence training. This
technique uses a pyramidal form of a Tondel board, with 6 pairs of colored Tondel
arrows imprinted on it, which is placed against the nose of the patient. The goal
of this technique is for the patient to have a clear perception of every pair of
arrows which will only be possible through convergence and presence of proper
eye alignment [3].

Another type of vision training technique is the Lazy eight technique. This
technique requires tracing of infinity symbols within infinity symbols, and focuses
on the development and improvement of the following skills and abilities: (a) visual
perception, (b) oculomotor skills, (¢) motor integration of the visual function, (d)
concentration and attention, (e) hand-eye coordination, (f) tracking and laterality,
and (g) the working memory.

Lastly, the Brock string technique which establishes and improves convergence
and accurate fixation skills of the subject. It uses a string with 5 differently colored
beads. The objectives of this technique is for the subject to alternate fixation on
the beads while taking note of the visual input and sensation of convergence.

All of the mentioned treatment procedures require operations that are per-
formed manually with the guidance and assistance of the therapist. These meth-
ods need the aid of professional skills from health providers, and some involve
expensive equipment with high amount of money. Because of that, needy people
could be driven out since they could not afford to pay for the necessary treatment
procedures [5].

In the present, our technology advances in a fast rate, and one of those is the
virtual reality technology [17]. Rehabilitation practices being incorporated in vir-

tual reality applications can pave way to an accessible and cost-effective treatment

procedures by just using mobile devices. Recovery times of the patients can also
speed up since these medical techniques and methodologies are readily available
[18]. In fact, unlike in traditional procedures, virtual reality provides experiences
of immersive environments that can be accessed at a low cost. Reporting strategies
through VR applications help in tracking user performance too [19].

Virtual reality can also be incorporated with serious games - computerized
games implemented for serious purposes like rehabilitation. It is evident that
gamification - gaming elements used outside of games, can be used for rehabilita-
tion practices. Gamification provides access to online programs to those who may
not use them, improves user engagement through game-based and serious moti-
vational dynamics, and utilizes mechanisms for change in therapeutic processes
and gaming features. Both serious games and gamification have positive implica-
tions towards education and motivation. In virtual reality therapies, gamification
can be used to add gaming elements such as scoring, in-game rewards, and quest
engagements. In this way, user engagement and motivation can be highly devel-
oped and improved towards therapeutic procedures [20]. Using virtual reality can
be more engaging than the traditional procedures because people happen to be

uninterested towards these vision therapies because they find them boring [19)].

To illustrate, Diplopia, a virtual reality application [21] that specializes in
training an amblyopic eye [22], is a virtual reality application that incorporates
rehabilitation practices and treatment procedures for amblyopia [15] - an eye dis-

order which may result from strabismus, and is caused by lack of eye-brain coor-
dination for the reason that the vision of one of the eyes has been reduced [23].
Having said that, it is evident that those previously mentioned treatment pro-
cedures for strabismus can be actually reflected, specifically through the virtual

reality applications [21]. However, the application is currently available only in

US and Canada [25].

B. Statement of the Problem

As of now, there is a lack of gamification in the traditional vision therapies for
strabismus which is important for promoting user engagement, interest, and active
participation among subjects toward these vision therapies. Additionally, these
existing vision therapies have no virtual reality application counterparts yet which

can be used as an adjunct to them.

C. Objectives of the Study

This research introduces a virtual reality application that allows user to perform
strabismus vision training which will aid in the improvement of the eye conditions

of the subject. The said application will possess the following functionalities:

1. Allows the vision therapist to:

(a) Set up the parameters needed for the following vision training tech-

niques:

i. For the Tondel Arrows procedure:

A. No. of pairs of arrows
1. Minimum of 4 pairs
2. Maximum of 6 pairs

B. Difficulty (the harder, the faster rate of flashing lights)
1. Easy
2. Medium
3. Hard

ii. For the Lazy Eight technique:

A. No. of checkpoints
1. Minimum of 5 checkpoints

2. Maximum of 10 checkpoints

iii. For the Brock String methodology:

A. No. of beads
1. Minimum of 3 beads
2. Maximum of 5 beads
B. Difficulty (the harder, the faster rate of obstacles to appear)
1. Easy
2. Medium
3. Hard

2. Allows the patient to:

(a) Use the Bluetooth VR controller to perform some of the in-game in-

structions
(b) Perform the games corresponding for each vision training technique

i. Tondel Arrows procedure (Scenario: Room)
ii. Lazy Eight technique (Scenario: Open field)

iii. Brock String methodology (Scenario: Activity Area)

(c) Stop the training manually in case he/she feels discomfort or suppres-

sion in the eyes

(d) View the tutorials for the three vision training techniques

D. Significance of the Project

This virtual reality application will serve as an adjunct to strabismus vision train-
ing techniques, namely the Tondel Arrows procedure, the Lazy eight technique,
and the Brock string methodology. Each vision training technique contributes
various advantages for treating strabismus. For the Tondel Arrows procedure, it
results to binocular improvements, clear stimulus accommodation, and avoidance
of mixed color perceptions through convergence and near point convergence train-
ing. For the Lazy eight technique, it promotes development and improvement

of visual perception, oculomotor skills, motor integration of the visual function,

concentration and attention, coordination, tracking and laterality, and working

memory. Lastly, through the Brock string methodology, the establishment and

improvement of the convergence and accurate fixation skills of the subject can be

met.

Gamification of these vision training techniques also induces user engage-

ment, interest, active participation, and user creativity towards their objectives.

E.

10.

Scope and Limitations

. Recording of performance of the virtual reality application results are part

of a separate patient record system.

The VR application is to be done in the eye clinic under the supervision of

the vision therapist.

The scenario specified in the virtual reality application is selected to incor-

porate gamification processes.

The virtual reality application will only be used in the eye clinic and not

outside the facility.

The virtual reality application is made to provide vision training for strabis-

mus and not for other eye disorders.

. A smartphone with an Android OS version of 5.0 (Kitkat) or higher, gyro-

scope, and accelerometer is needed to run the application.

There will be no iOS version of the virtual reality application.

The application will be using a VR controller for in-game actions.

. The colors of the game objects may vary per phone.

The Tondel Arrows procedure will be involving 4 to 6 pairs of arrows with

6 different corresponding colors which will be randomly lighted.

11.

12.

The Lazy Eight technique only includes 5 to 10 checkpoints wherein infinity
symbol/s at each checkpoint must be traced first before the gameplay can

proceed.

The Brock String methodology will have a set of 3 to 5 beads of different

colors.

Assumptions

The therapist will provide the Android smartphone, the VR headset, and

the bluetooth VR controller.

The VR controller must be connected to the smartphone via bluetooth.

10

II. Review of Related Literature

Virtual reality technologies contribute to the rehabilitation processes being used
for treating various disorders. People can readily access different treatment pro-
cedures at a cost-efficient way wherein using their mobile devices. Using virtual
reality for performing medical methodologies also increases recovery times of the
patients [18]. Additionally, because of the technological advancement, the ways of

learning, educating, and working have begun to change [20].

Figure 5: Diplopia brick game preview

Apollo VR company developed a virtual reality application called Diplopia
which is used to assist people who have amblyopia in a way that the vision of
their amblyopic eye will be restored [21] through rebalancing the visual input to
both eyes [22]. The application provides different images to each eye which will
force both eyes to work together to win the game. In the application, the user
must clear the levels of bricks by using a gesture-controlled paddle to bounce the
ball onto the wall. The paddle will only be shown to the normal eye with a highly
dimmed brick wall. Meanwhile, on the weak eye, or the amblyopic eye, only the
ball will be shown together with a very bright brick wall. In this way, both of the
eyes will be used for the brain to understand the correct positions of the game
objects. Also, the visual information coming from both eyes must be integrated by
the brain too to form one coherent picture from them. This methodology ensures

the user to develop depth perception in-game [21].

11

Figure 6: Tondel Technique

Barbu et. al. have carried out a visual training technique, called the Tondel
technique, among preschool children, with and without strabismus, ages 4-6 years
old. In this technique, a Tondel board, formed to a pyramidal shape with 6 pairs
of colored arrows, is placed against the subject’s nose. The subject should be able
to clearly see every pair of arrows in order to develop proper eye alignment which
will enable accurate perception of the arrows through convergence. The Ton-
del technique aims to provide the subjects with physiological diplopia awareness,
convergence training, near point of convergence normalization, and convergence

jumps exercises at different distances [3].

Figure 7: Lazy Eight Technique

Lazy Eight technique, another visual training technique used by Barbu et. al.
in their experiment, requires the tracing of infinity symbol which allows patients
to develop cerebral hemispheres communication and tracking skills, as well as to

improve their visual perception, oculomotor skills, and hand-eye coordination [3].

12

Figure 8: Brock String Methodology

In baseball, since it is a vision-intensive sport, the batter must see the ball
and recognize, process, and decide to swing the bat within a short period of time.
Because of this, visual and cognitive systems must rapidly provide information for
making a swing decision. Clark et. al. recruited 16 members of the University
of Cincinnati intercollegiate baseball team for vision training programs, including
Brock String to assess their positive effects towards the stereopsis and depth per-
ception of the subjects [16] Brock string is also used for strabismus rehabilitation
[27]. This methodology involves a 12-feet string with 5 differently colored, equally
spaced, small wooden beads. An end of the string will be held against the tip of
the nose of the subject and the other end to a fixed point. Each subject is asked to
focus sight from one bead to another. This vision training will help the subjects

to improve depth perception and fixation [10].

Figure 9: Squashing virtual bugs preview (left) and its schematic diagram (right)

Vedamurthy et. al. have developed a virtual reality application using a Crystal

13

Eyes shutter goggles for recovering stereo vision. The objective of the application
is to use a Plexiglass cylinder to squash the small dichoptic virtual bugs, serving
as fixation targets, which are rendered one-by-one on a disc-like slanted plane.
The Plexiglass cylinder will have a corresponding virtual cylinder which will be
rendered only as it moves within the workspace. The challenge in this application
will be based on the slanted angles of the disc plane - the stimuli, which vary
according to the suggested monocular and stereoscopic cues. These stimuli will
also be rendered using regular tiled textures and randomly shaped dot textures.
The regular tiled textures possess an effective monocular cues to slant in depth,
while the randomly shaped dot textures do not. Significantly, in this manner,
subjects will be able to improve the accuracy of their slant judgements for dot
stimuli and textured stimuli [25].

A study led by Ahmed Awadein has used a computerized version of the Lan-
caster red-green test which is a subjective dissociated test for measuring misalign-
ment of the eyes in different gaze positions. In the test, the patient will be needing
to wear red-green goggles while seating 1-2 meters apart from the wall of recti-
linear grid with drawn black dots. The objectives of this test are for the patient
to determine (a) the total number of horizontal and vertical misalignment, and
(b) the subjective torsion in various gaze directions being seen by the patient. In
this manner, both eyes of the patient will be able to work together. This study
has shown that computerized tests for vertical and torsional deviations produced
significant results which are relatively good with respect to the results obtained
from the traditional tests [29)].

Nesaratnam et. al. have also conducted a study involving two dissociated
tests for strabismus namely the virtual reality-based eye misalignment test and
the conventional Lees screen test. The information gathered from these tests will
be beneficial for screening and monitoring of patients with ocular misalignments.
Unfortunately, traditional dissociated tests are subject to operator error which

may rely solely to fixed head position. However, head-mounted displays reject

14

the need of head fixation which is why it is significant for this study to compare
the results between the traditional tests and the virtual reality-based tests. In
the study, patients have undergone both tests. For the virtual reality-based tests,
the patients are subjected for horizontal and vertical measurement which were
followed by torsion test. The results from both tests showed relatively the same
positive impact among the patients which is why it has been concluded that vir-
tual reality applications for screening ocular misalignment are possible alternative

ways for dissociative test for strabismus [30].

Figure 10: Low-cost VR car racing game for amblyopia rehabilitation

A low-cost virtual reality game for amblyopia rehabilitation is developed by the
group of Gargantini et. al. The application uses Google Cardboard - its basis for
being cost-effective. The system used a simple car racing game wherein different
images are shown to the amblyopic eye and the normal eye. The amblyopic eye will
be receiving all information regarding the game while the normal eye will only be
getting a part of those. In this manner, the amblyopic eye will be more simulated
which will encourage fusion among both eyes. As of now, the effectiveness of
the application does not have clinical basis yet, however, several experiments are
currently being conducted to validate the proposed approach [31].

[-BiT system is a computer-based interactive binocular treatment system that
utilizes treatment procedures for amblyopia by using a 3D shutter glasses which
lightens and darkens with respect to the monitor used. The system was devel-

oped through virtual reality to appeal and provide compliance to children and to

15

serve as an alternative for the traditional patching treatment. Herbison et. al.
have conducted a study regarding [-BiT system to achieve results based on the
treatment effects on visual acuity among amblyopic children. The treatment ses-
sions held involved the use of a DVD to display video footages and a computer
game called ‘Nux’. Through I-BiT, both eyes of the patient are presented with
images but some parts are only presented to the amblyopic eye. These images
are distinct, however, visually related to each eye which promotes perception of
dynamic, two-dimensional visual scene. The therapist can also adjust the settings
in case the patient feels suppression or highly reduced visual acuity in their ambly-
opic eye. Significantly, I-BiT has been found to improve the quality of life (QoL)
of amblyopic patients, and may also reduce the duration and cost of the needed

treatments [32].

Figure 11: VR Dichoptic training for amblyopic patients

Ziak et. al. conducted a dichoptic training using virtual reality for amblyopia
treatment of adults. The training used a virtual reality application that requires
a head-mounted display to play the game. The training involves a space game
wherein subjects have control on flying the spaceship through a system of rings.
This differed from the low-cost virtual reality game mentioned a while ago in a
sense that not all information is being fed to the amblyopic eye. This is because
the subject can cheat in a way that they can just close their dominant eye since
everything that is needed to see is already seen by the amblyopic eye. That is

why the game fed different parts of the game for each eye in order for them to

16

work together in playing the game. The study showed significant results which
provided potential usefulness of using virtual reality for dichoptic training [33].
Rectifeye, a vision-correcting system for virtual reality, was developed by Laf-
font et. al. for users who conventionally use corrective eyeglasses and are suffering
from myopia, hyperopia, or astigmatism. The system does automatic adjusting of
the virtual reality headset based on the eyeglasses prescription of the user. Be-
cause of this, users will no longer be needing to wear their eyeglasses in order to
see clearly through the application. Rectifeye has the capability to correct myopia
and hyperopia between -6D and 1D. In the application, images are shown to the
user using ray-tracing and Gullstrand eye model which are used to simulate the
human eye as well as to analyze various eye disorders like myopia, hyperopia, and

astigmatism [34].

Figure 12: Patient using VEHuNT for wayfinding task

Virtual Environment Human Navigation Task, or VEHuNT, is an immersive
VR application wherein patients with glaucoma can undergo a wayfinding proce-
dure. Using VEHuNT, Daga et. al. investigated the behavior and spatial cognition
of patients towards wayfinding. The application is significant because the ability
of the patients with glaucoma to respond to various visual cues can be assessed.
In that way, patients can get an idea regarding their surrounding environment.
In this study, researchers have acquired information about the relationship of the
vision loss of patients with glaucoma to their ability to perform everyday tasks

associated with wayfinding, such as driving and walking [35].

17

III. Theoretical Framework

A. Strabismus

Strabismus, also known as cross-eyed or wall-eyed, is an ocular state wherein both
eyes are abnormally aligned under normal situations [36]. It is a condition where
binocularity is insufficient which results to poor integration of visual information
from both eyes. Strabismus can be an outcome of lesions or seriously damaged
eyes which negatively impacts the oculomotor, trochlear nerve, or higher neu-
rological pathways. Additionally, strabismus can be caused, though rarely, by
developmental or traumatic defects of the extraocular muscles [37]. Moreover,
other strabismus-inducing situations involve the III, IV, and VI cranial nerves
wherein they appear to be weak, paralyzed, or move involuntarily. In this case,
the eye condition is referred to as paralytic strabismus which can either include
third nerve palsy and superior oblique palsy [38]. Subsequently, when six different
muscles around the eyes fail to work in coordination, strabismus may also tran-
spire, and thus, making both eyes to focus on different objects. This makes one
eye to look at one object while the other is turned to a different direction focus-
ing on another object. As an outcome, the brain receives two different images
from each eye which causes confusion to the brain [I]. Initially, the confusion of
the brain may only produce double vision. However, as the condition lingers, the
brain will decide to just ignore the image from the turned eye [39]. It should be
taken note that strabismus affects to a stereoscopic depth wherein it involves the
capacity for stereoscopic of 3 dimensional vision. Most importantly, patients with
strabismus may not only have adverse effects on their personality traits and their
employment opportunities [10], but also to their self-image, interpersonal relation-
ships, and performance in school and work [2]. In fact, according to Tailor et. al.,
significant ocular misalignment can actually lead to unwanted effects towards the

development, social interactions, and emotional well-being of the subject [37].

18

B. Vision Therapy in Strabismus

There exist different treatment procedures which can be used to cure strabismus.
Some of these procedures are the strabismus surgery [7] and the botulinum toxin
injection. However, because of their disadvantages, particularly the high rates of
recurrence of strabismus and their lack of standard procedures [10], these two pro-
cedures have been concluded to be only effective for only a short term. However,
despite those disadvantages, fortunately, alternative treatment procedures for stra-
bismus, specifically the vision therapy, can be used which have been proven to be
effective for a long term [12]. The goal of vision therapy is to unify the motor
visual system which is accountable for the aiming accuracy of both eyes, and the
sensory visual system which is responsible for combining two images into a single
three dimensional image in the brain [11]. Some of these vision therapy include
vision training techniques and eye exercises, namely the Tondel Arrows procedure,
the Lazy Eight technique [3], and the Brock String methodology [10].

Usually, vision therapies are recommended by doctors when strabismus cannot
be successfully treated solely with surgery or botulinum toxin injection. Vision
therapies are done with the supervision of doctors, and are not considered as
self-help vision improvement procedures. Even when prescribed by doctors, a
home-based regimen of vision therapy cannot be counted as a complete program
of vision therapy. According to a study published in Archives of Ophthalmology,
home-based vision therapy was found to be ineffective, while doctor-supervised
procedure was effective [13]. Vision therapies will only be concluded when signif-
icant improvements on the alignment of the eyes of the subject are observed and

when the goal of the vision therapy has been met [14], [13].

C. Tondel Arrows

The Tondel technique involves Tondel boards that are specifically designed for
treating binocular dysfunctions through visual therapy. These Tondel boards in-

clude Tondel arrows which are essential for conducting convergence and near point

19

of convergence training. These strabismus training procedures are means of get-
ting clear stimulus for accommodation and avoidance of confusion or perception
of mixed colors. The goals of this technique are: (a) for physiological diplopia or
double vision awareness, (b) for training the convergence, (c) for normalizing near
point of convergence, and (d) for exercising convergence jumps at different dis-
tances. The Tondel technique requires an A4 format of board containing printed
6 pairs of colored Tondel arrows are needed. The board is then folded along the
central line producing a pyramidal shape making the arrow tips touch along a
vertical central line. Afterwards, the resulting form of the board will be placed
in front of the nose of the patient so that every pair of arrows can be seen and
be clearly defined with the tips together. In order to test the effectiveness of this
technique, correct perception of the arrows must be seen. If that is the case, then

both eyes are in their proper alignment which is possible through convergence [3].

Figure 13: Tondel Arrows procedure

D. Lazy Eight

The Lazy eight technique is used for the development of integration and improve-
ment of the following skills and abilities: (a) visual perception, (b) oculomotor
skills, (¢) motor integration of the visual function, (d) concentration and atten-
tion, (e) hand-eye coordination, (f) tracking and laterality, and (g) the working

memory. This technique makes use of an infinity symbol which is based on the

20

behavioral optometry wherein it plays an important role in the development of vi-
sual perception, tracking skills, and communication of both cerebral hemispheres.
Moreover, Bernell Company integrated numbers, letters, and other shapes in the
lazy eight technique. In the technique, the patient will be tracing the outline using
a marker. The technique will be starting from the center of the symbol towards
the left of the smallest symbol, then to the right of the smallest symbol. After-
wards, the tracing must go back to the starting point wherein this time, the bigger
symbol will be traced. The technique will just stop until the biggest symbol is

completely traced [3].

Figure 14: Lazy eight technique

E. Brock String

The Brock string vision training technique is used to obtain and improve conver-
gence skills and to disrupt suppression of the strabismic eye. Because of that,
accurate fixation skills under binocular conditions can be met and further de-
veloped. This methodology makes use of a 12 feet string together with 5 small
wooden beads of different colors. One end of the string will be held against the
tip of the nose, and the other end will be fixated at one point. The 5 beads will
be inserted and spaced up to the length of the string. The therapist will then ask
the patient to alternate fixation. Afterwards, while the patient observes the visual
input of each eye and the sensation of convergence, he/she must focus from one

bead to the next bead, and so on. However, it will be dependent on the patient

21

whether or not he/she will make the procedure easier or more difficult by moving

the beads closer to or further from his/her nose respectively [16].

Figure 15: Brock String methodology

F. Virtual Reality

Virtual reality refers to a three dimensional, computer generated environment.
The user becomes part of this virtual world where he/she can do exploration,
interaction, and manipulation of virtual elements, as well as perform series of

actions [11].

F..1 VR Box

Virtual Reality Box is a virtual reality platform wherein a head mount is used
together with the smartphone. Additionally, it is a Google Cardboard adoption
of plastic body head-mounted display (HMD) in which the smartphone, either
Android or 108, is placed in order to play virtual reality games, applications, 3D

videos, 360 immersive 3D videos, etc.

F..2 VR Box Controller

Virtual Reality Box controller is a wireless handset used together with the VR
Box with the smartphone in it in order for the user to feel like using his/her own
hands in the virtual world. It contains buttons that may be used to interact with

virtual objects and perform actions within the virtual environment.

22

F..3 Android

Android is a Linux-based mobile operating system developed by Google. It is a
widely-adopted open-source project. Google actively develops its platform and
provides free access to some of its features to hardware manufacturers and phone
carriers who want to use Android on their devices. Today, Android powers most

of the phones, watches, and even car stereos.

F.4 Google VR SDK

Google VR SDK is used in order to create virtual reality applications available in
Android and iOS mobile operating systems. It offers features necessary for vir-
tual reality applications such as spatialized audio rendering, Daydream controller

support, utilities, and samples.

G. Blender

Blender is a modeling software for three dimensional objects which is available
online. It is also an open source tool which solely relies on affordable but efficient
hardware such as the PlayStation Move controllers [11]. Having said that, Blender
was able to and continues to provide a platform for the development of 2D and
3D contents, such as 3D visualizations, static images, quality videos for TV and
cinema, and 3D interactive contents. These contents are produced with the use
of Blender features like modeling, texturing, lighting, animation, and video post

processing [21].

H. Unity

Unity 3D game engine is used for developing virtual reality applications. It also of-
fers a multi-platform development feature which are available for various operating

systems like 10S, Android, Microsoft Windows, and Linux [2].

23

IV. Design and Implementation

A. Use Case Diagram

STRIVE-VR: Strabismus Training Routines
Inducing Vision Enhancements using Virtual Reality

Choose a vision
training technigue

..--""’-'-‘#

—_—

Indicate parameters
needed for each vision

Vision training technigue

Therapist

Use bluetooth VR controller

Follow in-game instructions
to perform vision training

_,/

i-.._._‘_‘_‘_‘_l_-

Patient \

Stop the training when patient
feels suppression in the eyes

View futorials for each
vision training technigue

Figure 16: Overview of Use Case Diagram

The virtual reality application can be used both by the patient and the ther-

apist. The vision therapist has the option to choose from different vision training

24

techniques with their corresponding parameters. The patient can use the blue-
tooth VR controller while performing the in-game objectives of the selected vision
training technique. In case of discomfort or suppression in the eyes, the patient
can force stop the training immediately by pressing a certain button on the blue-
tooth VR controller. Additionally, the patient can view tutorials for the three
vision training techniques to know more the basics, controls, and the things to

remember when performing the vision training techniques.

B. Context Case Diagram

Virtual Environmen
Prajection

Score-based Summary
Performance Review

STRIVE-VR: Strabismus
Training Routines Inducing
Vision Enhancements
using Virtual Reality

Vision

Patient Therapist

In-game Action Parameter
Responses Configuration

Figure 17: Overview of Context Case Diagram

The virtual reality application involves two users, namely the vision therapist
and the patient. The therapist is the one that chooses the vision training tech-
nique with corresponding parameter that will be performed by the patient. Also,
after the training of the patient, the therapist can view the score-based summary
performance. Meanwhile, the patient is the one that uses the virtual reality ap-
plication to perform the vision training. During each vision training technique,
certain in-game objectives need input controls from the bluetooth VR controller

which will be used by the patient.

25

C. Activity Diagram

STRIVE-VR: Strabismus Training Routines
Inducing Vision Enhancements using Virtual Reality

Patient Therapist

Start

Choose a
vision therapy

!

Set parameters nesded
for each vision fraining

l technigues

Perform chosen
» vision training

ompleted vision

training with the
indicated

parameter?

Patient feels
sUppression in
the eyes?

Yes

v

Stop the fraining

End

Figure 18: Overview of Activity Diagram

In the virtual reality application, the vision therapist is the one that chooses
what vision training technique is to be performed by the patient. Afterwards,

the therapist sets the corresponding parameters for the chosen vision training

26

technique. Then, the patient performs the selected vision training technique while
using the bluetooth VR controller for in-game actions. The training will only end
once the required parameters for the vision training technique are met, or when
the patient chooses to force stop the training because of feeling of discomfort or

suppression in the eyes.

D. Flowchart

The following reflects the scenarios of the patient in each virtual environment:

Already
facing the
colorful wall?,

Find the colorful wall

\ 2

Focus on the lighted
pair of armows

~

Press a button Face the colorful wall <€

A A

Press a button on the
controller when a light of Repeat until the game
the same color as the - time is consumed
lighted armows is flashed

¥

Figure 19: Flowchart of patient for the Tondel Arrows procedure

The flow of the Tondel Arrows procedure is indicated by Figure 19. This proce-
dure is done in a room (virtual environment). Before the game starts, the patient
must be able to locate the colorful wall first and press a buttpm afterwards. Then,
the game starts wherein he/she must focus on the lighred pair of arrows. It should
be taken note that a pair of arrows will be randomly lighted in this procedure.
Afterwards, the subject must be able to detect a light that will be flashed on the
screen. Once the flashed light is of the same color as that of the currently lighted
pair of arrows, a button must be pressed on the VR controller for three seconds

in order to gain a point. The procedure will just repeat until the 3-minute game

27

time is totally consumed.

l Nor

) Found the
Find the plane plans?
. Yes
14 [l l
Found the > o Gaze at the plane

Find the checkpoint .

checkpoint? for 2 seconds

0

Yes No

eached th
miaximum
checkpoint
arameter?,

Trace the infinity
symbol

Y

Figure 20: Flowchart of patient for the Lazy Eight technique

The Lazy Eight technique takes place in an open field (virtual environment).
For this vision training technique, as shown in Figure 20, the subject must find
first the plane located somewhere in the environment. Once the plane is found,
the patient must gaze at it for 2 seconds to be able to ride it and be taken up in
the air. Once this objective is successful, the game proper will start. The first
objective is to locate the checkpoint. Upon reaching the checkpoint, the player
will be halted. Then, he/she must gaze at the checkpoint for 2 seconds to trigger
the infinity symbol to show up. This infinity symbol must be traced in order to
continue playing. The number of infinity symbols to be traced at each checkpoint
will be equivalent to the total number of passed checkpoints, e.g. if the subject is
already at the 3rd checkpoint, then the number of infinity symbols to be traced
will be 3. These steps will be repeated until the maximum checkpoint number is

reached.

28

Brock string will
be equipped

Adjust the indicated

bead until it becomes Focus sight on
-« e
Press & bution clear and an X' form of < the bead

the string shows

Reach the first post >

Collect coins and avoid
the obstacles as you > Stop on the post > Press a button
approach the next post

Repeat the steps for
the next beads that
will be indicated until all
beads are used

Figure 21: Flowchart of patient for the Brock String methodology

In Figure 21, the steps for the Brock String methodology are presented. This
vision training technique takes place in an activity area (virtual environment).
The subject must first walk towards the first post to get the brock string. Then
the brock string will be displayed in front of the subject’s visual field. Afterwards,
the subject must gaze at the red bead. If the bead is still blurry, the user may opt
to adjust the bead forward of backward using the VR controller. When the bead
is finally clear to see, an ‘X’ figure of the string must be seen by the user. After
the bead is successfully adjusted, a certain button on the VR controller must be
pressed to continue the game. Then, obstacles will be approaching the user. The
user must be able to avoid them until the next post is reached. A button must be
pressed again to continue the game. The steps will be just repeated for the next

beads that will be indicated, until all beads have been passed through.

29

E. Technical Architecture

The virtual reality application for strabismus treatment procedures requires a

mobile device which has the following specifications:
1. Android OS version 5.0 (Kitkat) or higher
2. Gyroscope sensor

3. Accelerometer

30

V. Results

STRIVE-VR, or Strabismus Training Routines Inducing Vision Enhancements us-
ing Virtual Reality, is a virtual reality mobile application which allows patients
with strabismus to perform the following vision training techniques: the Ton-
dell Arrows technique, the Lazy Eight technique, and the Brock String technique
which are respectively performed in a virtual room, open field, and activity area.
Gamification has been applied to these vision training techniques to promote user
engagement, interest, and active participation among patients. This means that
gaming elements, such as scores, are involved when performing the objectives of

each vision training technique.

A. Main Menu

The very first screen that appears upon starting the STRIVE-VR application is

the main menu screen.

STRIVEZVR:
StabISMUSATRAININGIRCULINES
Inducingvisualienhancements
USINgintualireality

/“’i
’h#i_. ——— ———

RUAY, |

I TUTORIALS

Figure 22: STRIVE-VR Main Menu Screen

31

At this point, the user has the option to select the “Play” button to choose and
perform one of the vision training techniques, or select the “Tutorials” button to

learn first the basics, objectives, and controls for each vision training technique.

Chooselavisualtiaining
technigue

L T |

—

" aayeionioneniriel) T

ockstmofaetiviazeali

Figure 23: Choosing a vision training technique to play or to learn about

If the player could not find the menu on the screen, it is probably outside the
camera view. In this case, two arrows pointing to the left, as shown in Figure 24,
and /or to the right, as shown in Figure 25, will appear on both sides of the screen
to indicate where that gameobject is currently at. This also applies in game to
guide the player to face the correct direction - the direction where where the game

object, involved in the current objective, is.

Figure 24: Arrow indicating that Figure 25: Arrow indicating that
the correct direction is to the left the correct direction is to the
of the player right of the player

32

A..1 Parameters

The parameters section shows up after choosing to play one vision training tech-

nique. For each vision training technique, unique set of parameters are involved.

For the Tondell Arrows technique, the patient can choose from four (4), five (5),
or six (6) pairs of arrows that will be present on the Tondell board. This parameter
is also the basis for the number of point light colors that will be matched to the

pair of arrows. This section can be seen in Figure 26.

chooseinumnberiofazEoWS

Figure 26: Tondell Arrows technique: Choosing no. of pairs of arrows

Afterwards, the patient must choose the difficulty of the game which may either
be easy, medium, or hard. This section can be seen in Figure 27. The difficulty of
the game affects the time in which the patient is required to gaze at the lighted
pair of arrows. In this case, the higher the difficulty, the shorter the time required
for the patient to gaze at the lighted pair of arrows. This implies that having a
higher difficulty will make the patient do more objectives throughout the entire

duration of the game.

For the Lazy Eight technique, the patient can choose from a single set of

33

chogselditficulty

—- - :i‘:‘{,\ s :f‘ﬁl} R —

EdSY \‘ Medium Hard

Figure 27: Tondell Arrows technique: Choosing difficulty of the game

parameters: a minimum of five (5) to a maximum of ten (10) checkpoints to be
visited in the game. This section can be seen in Figure 28. In game, the number
of the checkpoint visted is also the number of infinity symbols to be traced. For

example, visiting the 3rd checkpoint requires tracing of 3 infinity symbols.

chogseumnerioficheckpoints

Figure 28: Lazy Eight technique: Choosing no. of infinity symbols to be traced

For the Brock String technique, the patient must choose from three (3), four

34

(4), or five (5) beads to be gazed at. This section can be seen in Figure 29.

chooSelnumneroineads

I | 5 ‘

}

L&

3 ¢

Figure 29: Brock String technique: Choosing no. of beads to be gazed at

Then, the patient must choose the difficulty of the game. This section can be
seen in Figure 30. The difficulty affects the spawn rate of the obstacles. Higher
the difficulty means faster spawn rate of the obstacles and more obstacles to be

avoided in a short period of time.

chooseldifficulty

e 2SRRI It} a TR

Figure 30: Brock String technique: Choosing difficulty of the game

There will be an in-game voice guide too. Turning it on gives the patient a

35

time to prepare and understand more clearly what the objective is all about.

polvoullikeitoiturnfonsthelvoice
guideitoispeaksthelinfuame
OEENES O omalg

Figure 31: Choosing whether or not to have a voice guide for the objectives

A..2 Tutorials

The tutorials section only shows up when the patient selects the “Tutorials” but-
ton. This section provides basic instructions and things to remember for each
vision training technique. Certain sections of the tutorials for a specific vision

training technique provide in game things to do and not to do.

[UTORIAISTATONdel AR RoWSATEChNIUE
Eorthelrondelljarowsitechniquesthneel)modestanelavailableliolnlaysajtondeliihoandiwith:

[FOP (D) [RIRS O FEHROS RIVEXEMDALISIOMALIOWS ST () PAIIFS Off GFFS

0

Theicolonsiofitheselannowsianeltolbelimatchediwithithelcoloriothellishtsithatiwillibelflashedionithe wall:

Figure 32: First section of the Tondell Arrows technique

36

IRThelfistiohyectiveNsitofindstheicolorfuliwall®
2anolplavithelyameXallfvouihaveltoidolisitoigazelatitheitondellihoana

gapllighiiwillibelilashedizandomiyiavainsiithelwalls
aNpressfanyinutioniorithieel@)secondsiii thelcoloriotithellighted
paicloffarrowsimaichesjihercolorioffanyiilashed lightiinfirontiofiyous
sHEverylcogrectimatchluiveshoufainoint. @)

g

eRMnoIniisydeduclediiorieveryiincorrectimatcht
Zanhelgamelwiliionlyilastiiorkigoisecondsiors3imintiess

Figure 33: Second section of the Tondell Arrows technique

Belowkanesthelhuitonsithaifcanihelusediorimatching
NOTE thejlightedipaioffanrowsiandithe)iiashedilightss

InicaselthelgamelohjecHinvolvediinithe
curnentiobjectivelisioutsidejthelcamera
viewAstworarrowsinointingjto
theflet and/oripighti=="=2willihe
shownlonithelsidesfofithelthetscreenito
indicatelwherejthatiuameonjecHiss

Figure 34: Third section of the Tondell Arrows technique

ImpoLtantjNoie:
NOJTE:

IffeverithelgamelcausesisinessNiniilationsorkany;
uneasyvaleelingitofvourdeyesHiustinzesstanvioifthe,
huttonsjcshowninelow)limmediatelyiinfoRdenRito
stopithelgame:

mhejdifficultyloistheluame

affectsithelimelzequined
folvoultofyazefathe
lightetipaligoifaRROW:S

[(ERDSIT 10 SEEOHS
IMediumifsiseconds
Handiyagseconds

Figure 35: Fourth section of the Tondell Arrows technique

37

EMUTCRIALSFazyJEIghisTechnique
mheneranelithieel@)majoiohjectivesiiniplayingitheltazyviEighijtechnigue:

Afte pwanRdsSwhenlyoukaieralzeaayiinithelaizy1o ok
EIRSIRVOU neqn,ln findithejplanes fopithejchecknoinigjustilikeAwhatjisishowihelows

ey | andluazelilionf2lscconast

2P O 8P ©

Find the checkpoint

Figure 36: First section of the Lazy Eight technique

Lastivavoulivaveltolizacelthelcoinsjofithe;

formuofintinityisymnols mhefgamelwilifonlyviend whenithelchoseninor

offinfinityAsymhoisitojhetpacedihasibeenfimets

HereNeachlisuceessiuljuazinglofcoimfimay, (heinagameterghasiheenineached)

grantjvouleitheF2for3inointss
ImpaitantiNoie:
uponfsuceessiulftzacingfofftneliniinity;
symbolsthelobjectivesiwilifiustizepeatiizom
lookingjfoathelcheckpoints

Iffever‘thelgameicausestsinesssiniitation¥or:
anyviuneasyireelingitolyourieyesyusiniessiany,
ofithielhuttonsitshowninelow) immediatelvain
orderiio’stopithelgames

Irace infinity symbole: 1

Figure 37: Second section of the Lazy Eight technique

BN O TE 2

NOTEL In gallaver hasfajdetaultfand
minimumgsnpeedimultinlie XofFE0X®ThIS
canjbelincreasediunitoaimaximumyof

2008 Thelspeedimutlipliecanibe
MEPEOSEN D (EEFERSE D7 0Lk

Infcaselthejuamelobiectiinvolvediinithe
cuiientiohjectivelisjoutsidestheicamena

viewSstwolazrowsinointingjto
thellefie=" and/onight willibe
shownfonithelsidesjofitheithesscieentio
indicateiwheniekthatigameohjectjiss

UDEFEESE

(EEREGSE

Figure 38: Third section of the Lazy Eight technique

38

mhesekaneithelditterentineticiesnointebenayvionsijtoshelnoted:

mhisjindicatesjthatjthelobject;

Notearnisjtakesju T‘uzsecu ngss

mhisjindicatesjthatithelohjectjyoukane;
gazinglatiisinotitnefcotiec fone?

pnisimeansiihatfaibonusinointicanibelontain ey oy eess o K et I eTnoInte EISICo GrEClly
uponfsuccessiullconsecutivelyazingfotfcoins® SITEnE 19 [FI GOl

uponisuccessiuligazingfalbonusipointiwiliibelgivens

mhisimeansjthatithefreticielpointeniis;
nositionedfatithelwrongfcoint
Note:AThisitakesiupitolo*75ESecs

O -

Figure 39: Fourth section of the Lazy Eight technique

[NUNORIALSIIBROCKESIRINGRTEChNIAUE
EorithelBRocKSStRingitechniquesthieel@Eumaioiohiectivesianestoiheldone:

Thelfizstithingftoldojisjtojuyoitowanidsitne NexiZadjusifthelcuzentfindicatedihead
initialiposijtofgethelequipemenits accondingftofvoureomiontanilitys
mhelequipmentSasishowniongtheliight
pnictunesisjicalledithe Bru@ L puringiadjustimeniFankraiigurelmusiiherseens

(iinlciBth el

Figure 40: First section of the Brock String technique

N OTERT:

Inficaselthelgamelobjeciinvolvediinithe; NOTEF2:
cuiienifobjectivelisjoutsigejthelcameiza
WG, (M0 SHAOWES DO o infgameXihelnlaverinasialdetaultfand
egien AITV/OTP (H line minimumespe eaimuitipiie ioikiioNSnhis
showhinnithe silesaitie e screen to cannelincieasedfupitofalmaximumyot
IndicateAwheeithatioameonjecifiss -
2foxaThefspeedimutliplienicanibe
NOTESS: increasedtandidecreasedibyiokis

mhejlcontiolsjioadjustiingiine
beadfazelthelbutionslindicated
onlthelcontzoliecionithellern

Incpease

decrease

IRth elpositionjoithelneadls;
alneadyigoodiioiyousthenfils; O
e (0 PPESS {DE DOiiom
indicatedionithelcontiollenion
thelnighits

aajust adjust

Comimit
forwanrd backwand

adjustment

Figure 41: Second section of the Brock String technique

39

HowevepsiheReraperalsolobstaclesipresents

Thelnexijgoallisitofgoltoitheine xiinosi*

TneviarelmovinojtowarasiyouRsolneralert
o - n
niwaysizememnbenritofsevouniyazeloniihelhead¥ana andgjugugelthemieeinahiibyviobstacles
C

justonsenvelperipneralyiifitnererareanyiincoaming dusesinoinjdeductionss

obstaclest
mhelgamelwilfonlyiendiwhenithelnoNof

onfvouRiwayscoinsicanibefontaineditofgeifnoiniss headsfistalzeadyithelsamerasitheinoNof
poStsivisiteds

Figure 42: Third section of the Brock String technique

ImpoilantiNolie:
Belowkaneitheldiilenent

Kindsjoifohstacles=: I GEP E e EElSES SIPESS,
il NOTE:

izpitation®orany uneasyiteelinggto)
mp_ytas, s DFGSS a0y af T ihejditiicultylotitnelyame
nutignsitshownibelow) afiectsithefspawniizatelof
[MinEiRiE I order © siop (e ohstacles)
games
—— [ENST7] B 10 7 SEEUHES
MIEDITND 4 0 6 SEEO0ES

DHARDIE3R0FARS econds

Figure 43: Fourth section of the Brock String technique

B. Virtual Environment

The virtual environment for each vision training technique will only be shown
and loaded after the patient has successfully passed the parameters section. To
indicate that the application is still working after the parameter section from
the main menu, a loading screen is provided. The score and the game objective
are displayed on the upper right corner and upper middle part of the screen,

respectively. The game objective changes once the curent objective is completed.

40

B..1 Tondell Arrows Technique

For the Tondell Arrows technique, there are three (3) additional information that
are displayed on the screen, namely: the game time which is displayed on the
upper left corner of the screen, and the light up time duration of random pair of
arrows which is displayed on the upper middle part of the screen just above the
game objective, input progress section, which indicates the length of time for the
button being pressed, located at the top of the screen.

In the game proper, the player is only standing in the middle of the room and
he/she must find the colorful wall. Once found, the player needs to press any

button from the controller to start the game. The indication that the game has

already started is when a random pair of arrows has been lighted.

& 180 @ o

Finel the calerivl weall
Pliiess¥albuittehfec esfolindStofstaljimtielaainle!

Figure 44: First scene from the Tondell Arrows technique

Then, the patient must gaze at the pair of lighted arrows and observe periph-
erally if there is a light that is of the same color as that of the lighted pair of
arrows. If there is, the patient must press any button on the controller for three
(3) seconds in order to gain a point. However, if a button is pressed for three (3)
seconds, and there is no light flashed that is of the same color as the lighted pair of
arrows, then a point will be deducted from the player. The player must do those

objectives for 180 seconds or 3 minutes. The game ends afterwards.

41

.f-:;\ 166 =2 —— WUHNIUN / RROGRESS 0 @
% &l

-

Viarchithellighted; pais @m’owg o G
lightsibyipressing any button forks

Figure 45: Second scene from the Tondell Arrows technique

B..2 Lazy Eight Technique

The first objective for the Lazy Eight technique is to find the plane within the
open field. Once found, the player needs to gaze at the plane for two (2) seconds
in order to ride it. Afterwards, the player will be brought up in the air in order

to complete the next objective.

(0)
Eind the; plane

Figure 46: First scene from the Lazy Eight technique

In game, the player has a default and minimum speed multiplier of 1.0x. This

can be increased up to a maximum of 2.0x. The speed mutliplier can be increased

42

and decreased by 0.1. The controls on increasing and decreasing the speed mul-
tiplier are shown in Figure 47. The speed multiplier can be manipulated while

finding the plane and when riding the plane.

[decrreasc i NChease)

Figure 47: Speed multiplier controls for Lazy Eight technique

For the second objective, the player needs to locate the checkpoint and go near
it until the plane halts. The same as the plane, the player needs to gaze at the
checkpoint for two (2) seconds in order to complete the objective.

2PTSE 0 BPIS O Qo

Find the checkpoint

Figure 48: Second scene from the Lazy Eight technique

43

The third objective of the game requires the player to trace the infinity symbol
which is made of coins. It should be taken note that the no. of infinity symbols
to be traced is equal to the no. of checkpoints reached. For each infinity symbol,
each coin must be gazed at for 0.75 second (bonus time) or 2 seconds (default
time), depending on the no. of successfully gazed coins within a short period of
time.

At the start of tracing, the player is required to gaze at the first coin for 2
seconds. The player will receive two (2) points for every successful gazed coin.
Afterwards, the player will receive a bonus time gaze of 0.75 second. This means
that the next coin that the patient will gaze at can be successfully done within 0.75
second. If successful, the player will receive three (3) points for the successfully
gazed coin, and receive again a bonus time gaze of 0.75 second for the next coin.
However, if the next coin is not successfully gazed at for 0.75 second, the bonus
time gaze will be gone, and the player must gaze at that coin for two (2) seconds.
The idea will apply throughout the entire duration of tracing, until the last coin is

successfully gazed at. Lastly, the second and third objectives of the game will be

repeated until the selected no. of infinity symbols (parameter) has been reached.

2Pfs 0 BPIsE O i
Trace infinity symbols: 1 ‘

Afterwards, the game ends.

Figure 49: Third scene from the Lazy Eight technique

44

B..3 Brock String Technique

The Brock String technique starts with the player being elevated to the activity

grounds. Then, the first objective of the game is for the player to go towards the

initial post. From there, the player can obtain the brock string equipment.

§ o

[Fimd dhE ihifEiEl peost

Figure 50: First scene from the Brock String technique

In game, the player has a default and minimum speed multiplier of 1.0x wich
can be increased to a maximum of 2.0x. Each increase or decrease costs 0.1. The

controls for manipulating the speed multiplier are shown in Figure 51.

[decicascllE n'Cl.eA's €]

Figure 51: Speed multiplier controls for Brock String technique

45

Afterwards, the next objective is for the player to gaze at the first bead, and
adjust it forward or backward depending on the choice of the player. Before
declaring the desired adjustment of the bead, the player must be able to see an
"X’ figure formed by the string. To do so, the player must actually be gazing at
the current bead being adjusted. Otherwise, the core objective of the Brock String

vision training technique will not be met, and the technique will not be effective.

AldjlliisiReicdlbiealcaindRintallkie!
'suefanXdfiiglhhefappleais

Figure 52: Second scene from the Brock String technique

Figures 53 and 54 represent the controls for the objective mentioned above.

)¢ @ T

adjusy adjust Rdjustment]
|backwardl Hfopward] ey
Figure 53: Controls for adjusting Figure 54: Controls for declaring
bead adjustment of bead

46

The next objective requires the player to go to the next post which is located
behind the next door. On the way, coins can be collected by the player in order to
gain a point. However, moving obstacles are also present. These obstacles must

be avoided by the player, otherwise, a point will be deducted.

Remember to fix your gaze
on the adjusted bead!

Gloftokthle
velicdithlefobsiracles]

Figure 55: Third scene from the Brock String technique

The second and third objectives will only be repeated until the no. of posts

reached is already equal to the no. of beads (parameter) present on the string.

C. Force Stop

The patient may opt to force stop the game whenever the vision training technique
that he/she is performing causes discomfort, irritation, or any uneasy feeling to
his/her eyes. The controls for force stopping the game is shown in Figure 56.

After force stopping the game, the post game screen will be displayed.

47

Figure 56: Controls for force stopping a game

D. Post Game Screen

The post game screen consists of the score-based summary of the performance of
the patient in doing the vision training technique. It consists of the breakdown of

accumulated points, deductions, and total score of the patient.

EndiGanerSratistics

(NeteHINEgatiyelscolieskanelconventedatolo))

Press any button to exit

Figure 57: Post game screen for Tondell Arrows technique

48

End Game Statistics

—

Figure 58: Post game screen for Lazy Eight technique

EndiGaAinerSratistics

(Note: Nlegativel scoresianre convented to! Q)

Press any button to exit

Figure 59: Post game screen for Brock String technique

49

VI. Discussion

STRIVE-VR is a virtual reality application that contains three (3) vision training
techniques for patients with strabismus. These vision training techniques contain
different virtual environments for the patient to be immersed with. At the end
of each training routine, a score-based summary performance of the patient is
generated.

Software tools such as Blender and Unity were used in the development of the
application. Blender allows the creation and modelling of 3D objects. In STRIVE-
VR, the equipment used for the Tondell Arrows technique and the Brock String
technique were made using Blender. These pieces of equipment were imported to
Unity, since it supports 3D objects made from Blender. On the other hand, Unity
is a game development tool that is used in the completion of the STRIVE-VR
application. It includes a built-in 3D modelling section known as the ProBuilder
which was used in creating most of the room components for the Tondell Ar-
rows technique and the Brock String technique. Unity also includes downloadable
assets where most of the environment components for STRIVE-VR came from.
Furthermore, the imported game objects were incorporated with C# scripts to
produce interactions, animations, controls, sounds, scoring system, and scene-to-
scene transitions. Moreover, the sound effects used for the game application were
downloaded for free from Youtube. Aside from that, several background music
were also used in the application as part of the gamification. These sound tracks
were obtained from NoCopyrightSounds (NCS) Youtube channel that offers free
and downloadable msuic. Lastly, the in-game voice guide which speaks the game
objectives out loud were made from Natural Readers, an online website which can
be used for free and converts text to speech with various voices you can choose
from. After development, the application was built from Unity to produce an
Android Package Kit (APK) file that can be ran in an Android phone.

Moreover, the objectives of the STRIVE-VR application were all met. The

vision therapist can choose one (1) among the three (3) vision training techniques

20

and set its corresponding parameters from the main menu screen - GoogleVR
SDK provided the means of displaying the main menu in virtual reality mode.
Also, an in-game voice guide can also be turned on or off. Turning it on gives
the patient a time to prepare and understand more clearly what the objective is
all about. Afterwards, the environment for the chosen vision training technique
will be loaded. In the game proper, an automatic walking script was implemented
for the Lazy Eight technique and the Brock String technique. A walking script
for the Tondell Technique is not necessary since the player only stands in the
middle of the room. Subsequently, the objectives of each vision training technique
can be met by interacting with other game objects within the environment which
were incorporated with scripts too, as stated previously. A canvas was used for
displaying these objectives, and they can be viewed any time at the upper middle
part of the screen. It will change as long as it is completed. Lastly, in case the
patient feels irritation, discomfort, or any uneasy feeling, he/she can immediately
force stop the game by pressing the front side buttons on the controller. Every
after finishing a vision training technique, or even force stopping the game, a
score-based summary performance of the patient is generated and be displayed on

the screen.

51

VII. Conclusions

STRIVE-VR is a virtual reality application that allows patients with strabismus
to perform vision training techniques. It includes various virtual environments
for the three (3) vision training techniques: a virtual room environment for the
Tondell Arrows technique, a virtual open field environment for the Lazy Eight
technique, and a virtual activity area for the Brock String technique. Each vision
training technique has different sets of parameters and objectives in the game
that must be done by the patient. Every time a vision training technique has
been finished or force stopped, a score-based summary performance of the patient
will be available and will be displayed on the screen. This summary will contain
the accumulated points, deductions, and total score of the patient throughout the
entire duration of the game.

Unity was used mostly for the development of the STRIVE-VR application.
GoogleVR SDK is used in Unity to convert all scenes into virtual reality mode.
Moreover, although some of the 3D game objects imported in Unity were made
from Blender, Unity has its own 3D modelling section called the ProBuilder which
was used in the creation of several room components. Aside from that, Unity also
has its Asset store wherein readily made game objects and environments can be
imported to the application.

STRIVE-VR is designed to serve as an adjunct to the traditional vision training
techniques. It incorporates these vision training techniques with gamification to
promote user engagement, interest, and active participation among patients. The
application also contains in-game sound effects, several background music for the
patient to feel the full gaming experience while performing the vision training
techniques, and an optional voice guide which speaks the current game objective
out loud - turning this on gives the patient a time to prepare and understand more

clearly what the objective is all about.

52

VIII. Recommendations

Since STRIVE-VR aims to provide vision training techniques for patients with
strabismis, one major improvement that can be applied for STRIVE-VR applica-
tion is by using a virtual reality headset that has eyetracker in it. Although the
objectives of each vision training techniques may ensure that the patient actually
trains his/her eyes, still, having a virtual reality headset that tracks the eye of the
patient would be the best for the application. In that way, the vision therapist
can actually verify the performance of the patient.

Another improvement for the STRIVE-VR application is the implementation
of pure gaze-only in-game actions. Since a VR box controller is not always available
together with the VR box headset, having pure gaze-only in-game actions would

be ideal for the training of the patient.

53

IX. Bibliography

1]

“Strabismus.” https://medlineplus.gov/ency/article/001004.htm,

2017.

X. Ye, V. Pegado, M. Patel, and W. Wasserman, “Strabismus genetics across a
spectrum of eye misalignment disorders,” Clinical Genetics: An International

Journal of Genetics, Molecular and Personalized Medicine, 2014.

D. M. Barbu and I. M. Plesa, “Techniques and optometric tools for visual
training in strabismus for preschool children,” The 5th IEEFE International

Conference on E-Health and Bioengineering - EHB 2015, 2015.

U. Saisara, P. Boonbrahm, and A. Chaiwiriya, “Strabismus screening by eye
tracker and games,” 2017 14th International Joint Conference on Computer

Science and Software Engineering (JCSSE), 2017.

Z. Chen, H. Fu, W.-L. Lo, and Z. Chi2, “Eye-tracking aided digital system
for strabismus diagnosis,” 2015 IEEE International Conference on Systems,

Man, and Cybernetics, 2015.

M. F. Khosravi, A. Janati, A. Imani, A. Javadzadeh, and M. M. Gharamaleki,
“Cost analysis of strabismus surgery by activity based costing,” The I[IOAB

Journal Regular Issue, 2016.

S. B. Ozkan, “Restrictive problems related to strabismus surgery,” Taiwan
Journal of Ophthalmology 6 (2016), 2016.
D. L. Cook, “Strabismus: Non-surgical cure rates.” http:

//cookvisiontherapy.com/strabismus--crossed-eyes-/

strabismus-causes-and-curerates.html, 2017.

T. Wang and L.-H. Wang, “Surgical treatment for residual or recurrent stra-

bismus,” Int J Ophthalmol, 2014.

54

https://medlineplus.gov/ency/article/001004.htm
http://cookvisiontherapy.com/strabismus--crossed-eyes-/strabismus-causes-and-curerates.html
http://cookvisiontherapy.com/strabismus--crossed-eyes-/strabismus-causes-and-curerates.html
http://cookvisiontherapy.com/strabismus--crossed-eyes-/strabismus-causes-and-curerates.html

[10]

[11]

[12]

[16]

[17]

M. Mahan and J. M. Engel, “The resurgence of botulinum toxin injection for

strabismus in children,” 2017 Wolters Kluwer Health, Inc, 2017.

D. M. Sugano, C. L. Fernandez, and J. R. C. de Lima Rehder, “Botulinum

toxin for strabismus correction,” Revista Brasileira de Oftalmologia, 2013.

G. R. Beauchamp and P. R. Mitchell, “A patient and parent guide to stra-
bismus surgery.” http://pediatricophthalmologypa.com/wp-content/
uploads/2013/12/A-Patient-Parent-Guide-to-Strabismus-Surgery.

pdf, 2013.

2

G. Heiting, “Vision therapy for children.” http://www.allaboutvision.

com/parents/vision_therapy.htm, 2017.

J. Cooper and R. Cooper, “What is strabismus?.” http://www.strabismus.

org/surgery_crossed_eyes.html, 2016.

Anonymous, “Testing and treatment costs for vision therapy.” http://

www.thevisiontherapycenter.com/costs-the-vision-therapy-center,

2017.

J. F. Clark, P. Graman, and J. K. Ellis, “Depth perception improvement
in collegiate baseball players with vision training,” Optometry and Visual

Performance, 2015.

N. Singh and S. Singh, “Virtual reality: A brief survey,” 2017 Interna-

tional Conference on Information Communication and Embedded Systems

(ICICES), 2017.

C. G. Tsatsis, K. E. Rice, V. Protopopova, D. Ramos, J. Jadav, D. J. F.
Coppola, M. Broderick, and D. Putrino, “Lateropulsion rehabilitation using
virtual reality for stroke patients,” 2017 IEEE Long Island Systems, Appli-
cations and Technology Conference (LISAT), 2017.

95

http://pediatricophthalmologypa.com/wp-content/uploads/2013/12/A-Patient-Parent-Guide-to-Strabismus-Surgery.pdf
http://pediatricophthalmologypa.com/wp-content/uploads/2013/12/A-Patient-Parent-Guide-to-Strabismus-Surgery.pdf
http://pediatricophthalmologypa.com/wp-content/uploads/2013/12/A-Patient-Parent-Guide-to-Strabismus-Surgery.pdf
http://www.allaboutvision.com/parents/vision_therapy.htm
http://www.allaboutvision.com/parents/vision_therapy.htm
http://www.strabismus.org/surgery_crossed_eyes.html
http://www.strabismus.org/surgery_crossed_eyes.html
http://www.thevisiontherapycenter.com/costs-the-vision-therapy-center
http://www.thevisiontherapycenter.com/costs-the-vision-therapy-center

[19]

[20]

[23]

[24]

[25]

[27]

Anonymous, “Training with immersive technology offers advan-
tages over traditional = methods.” https://360immersive.com/

360i-why-train-with-vr/, 2017.

T. M. Fleming, L. Bavin, K. Stasiak, E. Hermansson-Webb1, S. N. Merry,
C. Cheek, M. Lucassen, H. M. Lau, B. Pollmuller, and S. Hetrick, “Serious
games and gamification for mental health: Current status and promising

directions,” Front. Psychiatry 7:215, 2017.

J. Blaha and M. Gupta, “Diplopia: A virtual reality game designed to help
amblyopics,” Virtual Reality (VR), 2014 iEEE, 2014.

N. Filesler, “Can virtual reality headsets save vision in people
with lazy eye?.” https://vector.childrenshospital.org/2017/04/

virtual-reality-headsets-could-treat-amblyopia/.
Anonymous, “Amblyopia.” https://nei.nih.gov/healthyeyes/problems.

J. Blaha, “Im james from vivid vision.” https://www.reddit.com/r/IAmA/
comments/771x0t/im_james_from_vivid_vision_im_back_to_answer_

your/, 2017.

J. Blaha, “Virtual reality vision therapy is now available to be prescribed for
home use.” https://www.seevividly.com/blog/123/Virtual_Reality_
vision_therapy_is_now_available_to_be_prescribed_for_home_use,

2017.

G. Hristov, J. Raychev, D. Kyuchukova, and P. Zahariev, “Development of
a educational three dimensional computer game by using virtual reality util-
ities,” 2017 16th International Conference on Information Technology Based
Higher Education and Training (ITHET), 2017.

R. Evans, “3 eye exercises to help strabismus.” https://www.healthline.

com/health/eye-health/strabismus-exercises, 2016.

26

https://360immersive.com/360i-why-train-with-vr/
https://360immersive.com/360i-why-train-with-vr/
https://vector.childrenshospital.org/2017/04/virtual-reality-headsets-could-treat-amblyopia/
https://vector.childrenshospital.org/2017/04/virtual-reality-headsets-could-treat-amblyopia/
https://nei.nih.gov/healthyeyes/problems
https://www.reddit.com/r/IAmA/comments/77lx0t/im_james_from_vivid_vision_im_back_to_answer_your/
https://www.reddit.com/r/IAmA/comments/77lx0t/im_james_from_vivid_vision_im_back_to_answer_your/
https://www.reddit.com/r/IAmA/comments/77lx0t/im_james_from_vivid_vision_im_back_to_answer_your/
https://www.seevividly.com/blog/123/Virtual_Reality_vision_therapy_is_now_available_to_be_prescribed_for_home_use
https://www.seevividly.com/blog/123/Virtual_Reality_vision_therapy_is_now_available_to_be_prescribed_for_home_use
https://www.healthline.com/health/eye-health/strabismus-exercises
https://www.healthline.com/health/eye-health/strabismus-exercises

[28]

[31]

[33]

[34]

[35]

I. Vedamurthy, D. C. Knill, S. J. Huang, A. Yung, J. Ding, O.-S. Kwon,
D. Bavelier, and D. M. Levi, “Recovering stereo vision by squashing virtual
bugs in a virtual reality environment,” Phil. Trans. R. Soc. B 371: 20150264,
2016.

A. Awadein, “A computerized version of the lancaster red-green test,” 2013

American Association for Pediatric Ophthalmology and Strabismus, 2013.

N. Nesaratnam, P. Thomas, and A. Vivian, “Restrictive problems related to
strabismus surgery,” Macmillan Publishers Limited, part of Springer Nature,

2017.

A. Gargantini, F. Terzi, M. Zambelli, and S. Bonfanti, “A low-cost virtual
reality game for amblyopia rehabilitation,” REHAB ’15 Proceedings of the
3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research

Techniques, 2015.

N. Herbison, S. Cobb, R. Gregson, I. Ash, R. Eastgate, J. Purdy, T. Hepburn,
D. MacKeith, and A. Foss, “Interactive binocular treatment (i-bit) for ambly-
opia: results of a pilot study of 3d shutter glasses system,” 2013 Macmillan
Publishers Limited, 2013.

P. iak, A. Holm, J. Halika, P. Moji, and D. P. Piero, “Amblyopia treatment
of adults with dichoptic training using the virtual reality oculus rift head

mounted display: preliminary results,” BMC Ophthalmology, 2017.

P.-Y. Laffont, T. Martin, M. Gross, W. D. Tan, C. Lim, A. Au, and R. Wong,
“Rectifeye: A vision-correcting system for virtual reality,” SA 16 SIG-
GRAPH ASIA 2016 Posters, 2016.

F. B. Daga, E. Macagno, C. Stevenson, A. Elhosseiny, A. Diniz-Filho, E. R.
Boer, J. Schulze, and F. A. Medeiros, “Wayfinding and glaucoma: A virtual

reality experiment,” Invest Ophthalmol Vis Sci, 2017.

o7

[36]

[37]

[41]

Anonymous, “What is strabismus?.” Retrievedfromhttp://www.

strabismus.org/.

V. Tailor, S. Balduzzi, S. Hull, J. Rahi, C. Schmucker, G. Virgili, and
A. Dahlmann-Noor, “Tests for detecting strabismus in children age 1 to 6

years in the community (protocol),” 2014 The Cochrane Collaboration, 2014.

Anonymous, “Strabismus.” https://aapos.org/terms/conditions/100,

2014.

Anonymous, “Strabismus (crossed eyes).” https://www.
aoa.org/patients-and-public/eye-and-vision-problems/

glossary-of-eye-and-vison-conditions/strabismus, 2017.

N. Khumdat, P. Phukpattaranont, and S. Tengtrisorn, “Development of a
computer system for strabismus screening,” The 2013 Biomedical Engineering

International Conference (BMEICON-2013), 2015.

Anonymous, “What is virtual reality?.” https://www.vrs.org.uk/

virtual-reality/what-is-virtual-reality.html, 2017.

98

Retrieved from http://www.strabismus.org/
Retrieved from http://www.strabismus.org/
https://aapos.org/terms/conditions/100
https://www.aoa.org/patients-and-public/eye-and-vision-problems/glossary-of-eye-and-vison-conditions/strabismus
https://www.aoa.org/patients-and-public/eye-and-vision-problems/glossary-of-eye-and-vison-conditions/strabismus
https://www.aoa.org/patients-and-public/eye-and-vision-problems/glossary-of-eye-and-vison-conditions/strabismus
https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html
https://www.vrs.org.uk/virtual-reality/what-is-virtual-reality.html

X. Appendix

AdjustBead.cs

using System. Collections;

using System.Collections. Generic;
using UnityEngine;

using UnityEngine.UI;

using System;

using GoogleVR.VideoDemo;

using TMPro;

public class AdjustBead MonoBehaviour {
public GameObject instructions;
public GameObject reminder;

public GameObject player;

public GameObject front_door_checkpoint;
public GameObject adjust_-controls;
public GameObject speed_controls;
public GameObject objective_good;
public Transform vrCamera;

public AudioClip next_-objective;
private Material mat;

private int param-index;

private int sibIdx;

private float pressed_key;
private bool chk_done;

private bool chk_adjusted;

void Start () {

sibldx = transform.GetSiblingIndex ();

mat = GetComponent<Renderer > (). material;
param_index = transform.parent.gameObject.
GetComponent<BrockParam > ().get_parameter ();
if (param_index == 3){

transform . parent.GetChild (1).gameObject .
transform.localPosition =
localPosition.x, —0.333f, —1.744f);
transform . parent.GetChild (2). gameObject .
transform .
localPosition.x, —0.3147739f, —1.616209f);
transform . parent.GetChild (3). gameObject .
transform .
localPosition .x,
} else {
transform . parent.GetChild (1). gameObject .
transform .
localPosition.x, —0.333f, —1.744f);
transform . parent.GetChild (2).gameObject .
transform .
localPosition.x, —0.3251727f, —1.689146f);
transform . parent.GetChild (3).gameObject .
transform .
localPosition.x, —0.3147739f, —1.616209f);
transform . parent.GetChild (4).gameObject .
transform .
localPosition.x, —0.2967456f,
if (param_index == 5)
transform . parent.GetChild (5). gameObject .

—0.2782764f, —1.36091f);

—1.49011f);

transform.localPosition = new Vector3(transform.
localPosition.x, —0.2782764f, —1.36091f);

3

}

transform . parent.parent.gameObject.GetComponent
<BrockPlayerDirection > ().

directions_status (false);

if (objective_good != null){

objective_good .GetComponent<TextMeshProUGUI> ().
text = ”Controls will only apply once the voice
is done speaking.”;

GetComponent<AudioSource >().Play ();

¥

chk_done = false;
pressed_-key = 0.0f;
chk_adjusted = false;

}

void Update () {
vrCamera. transform .
Vector3 (0, 0, 0);
if (! chk_done && !GetComponent<AudioSource > ().
isPlaying){

if (objective_good != null){

objective_good .GetComponent<TextMeshProUGUI> ().
text = ”"Press any button if you understand

the objective\nto continue the game”;

eulerAngles = new

¥

if (Input.anyKey){

if (objective_good != null){

objective_good . GetComponent<CanvasGroup > ().
alpha = 0;

¥

chk_done true;
pressed_-key = Time.time;
¥

new Vector3(transform.

localPosition = new Vector3(transform.

localPosition = new Vector3(transform.

localPosition = new Vector3(transform.

localPosition = new Vector3(transform.

localPosition = new Vector3(transform.

localPosition = new Vector3(transform.

if (chk_-done && !chk_adjusted && (objective_good
null || (objective_good != null &&
pressed_key+1.0f <= Time.time))){

if (Input.GetKey(KeyCode. JoysticklButton0) ||
Input.GetKey (KeyCode.A)){

transform . position = new Vector3(transform.
position.x, transform.position.y + Time.
deltaTime * 0.0071375f % 2, transform.
position.z + Time.deltaTime *x 0.05f =x
} else if(Input.GetKey(KeyCode.
JoysticklButton3) || Input.GetKey
(KeyCode.D)){
transform . position = new
Vector3 (transform . position.x,

2);

transform .

position.y — Time.deltaTime * 0.0071375f

* 2, transform.position.z — Time.deltaTime
* 0.05f = 2);

} else if(Input.GetKey(KeyCode.

JoysticklButton2) ||
(KeyCode .W)) {
adjust_controls.SetActive(false);
speed_controls.SetActive (true);
speed_controls.transform.GetChild (0).
gameObject . GetComponent<Controller
Script >().show_controls ();

transform . parent.parent.gameObject.
GetComponent<BrockPlayerDirection > ().
directions_status (true);
player.transform.localPosition =
Vector3(—40f, —65f, —540f);
player.GetComponent<PlayerMovement > ().
change_bead_ctr(sibIdx);

Input . GetKey

new

instructions .GetComponent<TextMesh
ProUGUI>().text = 7Go to the ” 4+ (mat+477).
Substring (0, (mat+7””).IndexOf(”(”)—1) +

”? Post\nAvoid the obstacles”;
chk_adjusted = true;

pressed_key = Time.time;

if (objective_good != null){

reminder . GetComponent<CanvasGroup > ().
alpha = 1;

GetComponent<AudioSource >().clip =
next_objective;
GetComponent<AudioSource >().Play ();

objective_good .GetComponent<TextMesh
ProUGUI> (). text = ”Controls will only apply
once the voice is done speaking.”;
objective_good .GetComponent<Canvas

Group >().alpha = 1;

String mat_string = " Diffuse-01_7;
if ((mat+””).IndexOf(”Red”) >= 0){
mat_string += "red”;

} else if ((mat+””).IndexOf(” Violet”) >= 0){
mat_string += " violet”;

} else if ((mat+””).IndexOf(” Green”) >= 0){
mat_string += ”green”;

} else if ((mat+””).IndexOf(” Blue”) >= 0){
mat_string += ”blue”;

} else {

mat_string += " yellow”;

Material check_mat = Resources.Load
(mat_string , typeof(Material)) as Material;
for (int i = 0; i < front_door_checkpoint.
transform .childCount; i+4++){

Material [] mat = front_door_checkpoint .

transform . GetChild(i).gameObject.transform .
GetComponent<Renderer > (). materials;

mat [0] = check_mat;
front_-door_checkpoint.transform.GetChild(i).
gameObject.transform . GetComponent<Rend

erer >(). materials = mat;
}

if (param_index == 3){

if (sibIdx == 1){

transform.localPosition = new
Vector3 (transform.localPosition.x, Mathf.
Clamp (transform.localPosition.y, —0.3389896f,

—0.323067f), Mathf.Clamp(transform .
localPosition.z, —1.78613f, —1.674863f));

} else if(sibldx == 2){
transform.localPosition = new

Vector3 (transform.localPosition .x, Mathf.
Clamp (transform . localPosition.y, —0.3258441f,

—0.2990573f), Mathf.Clamp(transform.

39

localPosition.z, —1.694089f, —1.507505f));
} else {
transform.localPosition = new

Vector3 (transform.localPosition.x, Mathf.
Clamp (transform.localPosition.y, —0.3004916f,
—0.2620853f), Mathf.Clamp(transform.

localPosition.z, —1.515928f, —1.247495f));
}

} else {

if (sibldx == 1){

transform.localPosition = new

Vector3 (transform.localPosition.x, Mathf.
Clamp (transform.localPosition.y, —0.3389896f,
—0.3283999f), Mathf.Clamp(transform.

localPosition .z, —1.78613f, —1.712285f));

} else if(sibldx == 2){
transform.localPosition = new

Vector3 (transform.localPosition.x, Mathf.
Clamp (transform.localPosition.y, —0.3254703f,

—0.3178561f), Mathf.Clamp(transform.

localPosition.z, —1.691526f, —1.637754f));
} else if(sibldx == 3){
transform.localPosition = new

Vector3 (transform.localPosition.x, Mathf.
Clamp (transform.localPosition.y, —0.314133f,
—0.3065036f), Mathf.Clamp(transform.
localPosition.z, —1.61157f, —1.55792f));

} else if(sibldx == 4){
transform.localPosition = new

Vector3 (transform.localPosition.x, Mathf.
Clamp (transform.localPosition .y, —0.3003619f ,
—0.2920688f), Mathf.Clamp(transform.
localPosition.z, —1.515501f, —1.4577f));

} else {

transform.localPosition = new

Vector3 (transform.localPosition.x, Mathf.
Clamp (transform.localPosition.y, —0.274361f,

—0.2636645f) ,
localPosition .z,
b
}
}

if (chk_adjusted && !GetComponent<Audio
Source >().isPlaying){

if (objective_good != null){

objective_good . GetComponent<TextMesh
ProUGUI>().text = ”"Press any button if you
understand the objective\nto continue

the game”;

Mathf.Clamp (transform .
—1.332944f, —1.257932f));

if (Input.anyKey){
gameObject.transform . parent . parent.parent.
GetComponent<PlayerMovement > ().

enabled = true;

reminder . GetComponent<ReminderScript > ().
start_reminder ();

if (objective_good != null){
objective_good .GetComponent<Canvas
Group > ().alpha = 0;

GetComponent<AdjustBead >().enabled
= false;

ety

ArrowLights.cs

namespace GoogleVR.VideoDemo {

using System . Collections;

using System . Collections . Generic;
using UnityEngine;

using UnityEngine.UI;

using System;

public class ArrowLights MonoBehaviour {
public GameObject spawn;

public GameObject front_-wall;
public GameObject light_-bar;
public GameObject light_frame;
public GameObject input_bar;
public GameObject input_frame;
public Sprite red_bar;

public Sprite green_bar;

public Sprite yellow_bar;

public Sprite blue_bar;

public Sprite violet_bar;

public Sprite orange_bar;

public Sprite red;

public Sprite greenj;

public Sprite yellow;

public Sprite blue;

public Sprite violet;

public Sprite orange;

public GameObject objective_good;
public GameObject repress_button;
public GameObject light_-label;
public GameObject input_label;

private int param-index;
private int difficulty_index;
private int speed;

private float currentAmount;
private float prev_time;
private float duration_factor;
private float start_time;
private bool chk;

private bool chk_once;

private bool chk_start;
private bool chk_start_duration;
private bool sound_indicator;
private string curr_color;

void Start () {

GameObject menu = GameObject.Find (” Sound
Menu”) ;

param-index = menu.GetComponent<Sound
Comm> ().param_index ;

difficulty_-index = menu.GetComponent<Sound
Comm> (). difficulty_index;

sound_indicator = menu.GetComponent<Sound
Comm> ().sound_indicator;

Destroy (menu);

if (! sound_indicator){

objective_good .transform.parent.GetComponent
<AudioSource >().enabled = false;

Destroy (objective_good);

repress_button .GetComponent<AudioSource > ().
enabled = false;

int num-_arrows = param-index+4;
String mat-string = "wall_67;
if (param_index == 0){

Destroy (gameObject. transform .
gameObject);

Destroy (gameObject.transform.
gameObject) ;

Destroy (gameObject.transform .
gameObject) ;

Destroy (gameObject . transform
gameObject) ;

mat_string = "wall_47;

} else if(param_index == 1){
Destroy (gameObject . transform
gameObject);

Destroy (gameObject . transform
gameObject);

Destroy (gameObject. transform .
gameObject);

mat_string = "wall_5";

} else {

Destroy (gameObject. transform .
gameObject);

Destroy (gameObject. transform .
gameObject) ;

GetChild (0).
GetChild (1).
GetChild (7).

.GetChild (8).

. GetChild (0).
. GetChild (6).

GetChild (8).

GetChild (6).

GetChild (7).

Material wall_mat = Resources.Load
(mat_string , typeof(Material)) as
front_-wall.transform .GetComponent
<Renderer > (). material = wall_mat;
spawn . GetComponent<SpawnFlash > ().
update_num_of_arrows (num_arrows);

Material;

duration_factor = 0.0f;
switch(difficulty_-index){
case 0:

speed = 10;

break;

case 1:

speed = 8;
duration_factor = 4f;
break ;

case 2:

speed = 4;

break ;

default :

speed = 8;

break ;

¥

currentAmount = 100;
prev_time = 0;

chk = true;

chk_once = true;
chk_start = false;
chk_start_duration = false;
start_-time = 0.0f;
curr_color = 77,

}

void Update () {

if (transform . parent.gameObject.
GetComponent<TondellPlayer
Direction >().chk_start_game ()){

60

if (!chk_start){
StartCoroutine (” Flash”);
chk_start = true;
light_bar.SetActive(true);
light_frame.SetActive(true);
input_bar.SetActive (true);
input_frame.SetActive (true);
light_label.SetActive(true);
input_label.SetActive(true);
start_time = Time.time;
chk_start_duration = true;

if (chk_start_duration){

if (Time.time—start_time <
speed){

currentAmount = 100—(Time. time
—start_time)*(100/speed)—
(duration_factor);

light_bar .GetComponent<Image > ().

fillAmount = currentAmount/100;
} else {

currentAmount = 100;

start_time = Time.time;

}

}

b

¥

IEnumerator Flash (){
string color = 77

int numSibs = transform.childCount —1;
int sibldx = 1;
Material default_.render = Resources.

Load (” Default”, typeof(Material)) as
Material;

Sprite bar_frame = null;

Sprite bar_color = null;

while (chk){

for(int i = 0; i < numSibs; i++){
transform . GetChild (i). GetChild (0).
GetComponent<Renderer > (). material
= default_render;
transform . GetChild (i). GetChild (1).
GetComponent<Renderer > (). material
= default_render;

¥

sibIldx = (sibldx + UnityEngine.
Random . Range (1, numSibs)) % (
numsSibs) ;

switch (sibIdx){

case O0:

color = "Red”;
bar_frame = red_bar;
bar_color = red;

break;

case 1:

color = ”Green”;
bar_frame = green_bar;
bar_color = green;
break ;

case 2:

color = ”Yellow”;
bar_frame = yellow_bar;
bar_color = yellow;
break ;

case 3:

color = ”Blue”;
bar_-frame = blue_bar;
bar_-color = blue;
break;

case 4:

color = ”Violet?”;
bar_frame = violet_bar;
bar_color = violet;
break;

case 5:

color = ”Orange”;
bar_frame = orange_bar;
bar_color = orange;
break;

default :

break ;

¥

curr-color = color;
Material new_render = Resources.

Load (” Emissive_-"+color ,
typeof(Material)) as Material;
transform . GetChild (numSibs—1

—sibIdx).

GetChild (0).GetComponent<Rend
erer >().material = new_render;
transform . GetChild (numSibs—1
—sibIdx).

GetChild (1).GetComponent<Rend
erer > (). material = new_render;

light _frame .GetComponent<Image>
().sprite = bar_frame;

light_-bar .GetComponent<Image>

().sprite = bar_color;
input_frame.GetComponent<Image>
().sprite = bar_frame;
input_bar.GetComponent<Image>
().sprite = bar_color;

yield return new WaitForSeconds
(speed);

¥

public string get_curr_color (){
return curr_color;

public void disable_coroutine (){
chk = false;

b

b

¥

BrockParam.cs

namespace GoogleVR.VideoDemo {
using System . Collections;
using System.Collections. Generic;
using UnityEngine;
using UnityEngine.UI;
using System;

public class BrockParam : MonoBehaviour {

private int sibIdx;

private int param_index;

private int difficulty_index;
private int bead_ctr;

private float dist;

private bool sound_-indicator;
public GameObject objective_good;

void Start () {

GameObject menu = GameObject.Find (” Sound
Menu”) ;

param-index = menu.GetComponent<Sound
Comm> ().param_index ;

difficulty-index = menu.GetComponent<Sound
Comm> (). difficulty_index;

sound_indicator = menu.GetComponent<Sound
Comm> ().sound_indicator;

Destroy (menu);

if (! sound_indicator){

gameObject . transform . GetChild (1).gameObject .
GetComponent<AudioSource >().enabled = false;
gameObject.transform . GetChild (2).gameObject .
GetComponent<AudioSource >().enabled = false;
gameObject . transform . GetChild (3).gameObject .
GetComponent<AudioSource >().enabled = false;
gameObject.transform . GetChild (4).gameObject .
GetComponent<AudioSource >().enabled = false;
gameObject.transform . GetChild (5). gameObject .
GetComponent<AudioSource >().enabled = false;
objective_good .transform.parent.GetComponent
<AudioSource >().enabled = false;

Destroy (objective_good);

if (param_index == 0){

Destroy (gameObject . transform . GetChild (2).
gameObject) ;

Destroy (gameObject . transform . GetChild (4).
gameObject) ;

} else if(param_index == 1){

Destroy (gameObject . transform . GetChild (5).
gameObject);

bead_ctr = 0;
gameObject. SetActive (false);

void Update () { }

public int get_difficulty (){
return difficulty_index;

public int get_parameter (){
return param_index+3;

}

public void inc_bead_ctr (){
bead_ctr += 1;
¥

public int get_-bead_ctr(){
return bead_ctr;

3
}

61

BrockPlayerDirection.cs

using System.Collections;
using System. Collections . Generic;
using UnityEngine;

public class BrockPlayerDirection
MonoBehaviour {

public GameObject right_-direction;
public GameObject left_-direction
public GameObject initial_post;
public GameObject game_post;
private Vector3 screenPoint;
private float dirNum;

private bool chk_directions_status;

void Start () {
chk_directions_status = true;
dirNum = 0.0f;

void Update () {
if (initial_-post != null){
screenPoint = GetComponent<Camera> ().

WorldToViewportPoint (initial_post.transform.

position);

} else {

screenPoint = GetComponent<Camera > ().
WorldToViewportPoint (game_post.transform.
position);

}

bool onScreen = screenPoint.z > 0 &&
screenPoint .x > 0 && screenPoint.x < 1
&& screenPoint.y > 0

&& screenPoint.y < 1;

if (!onScreen){

if (chk_directions_status){
right_direction.SetActive(true);
left_direction.SetActive(true);

if (initial_post != null){

dirNum = AngleDir(transform . forward ,
initial_-post.transform. position —
transform . position, transform.up);

} else {

dirNum = AngleDir(transform . forward ,
game_post.transform . position —
transform . position, transform.up);
if (dirNum == 1){

left_direction .transform.localEulerAngles
= new Vector3(0f, 0f, left_direction .
transform .localEulerAngles.z);
right_direction .transform.localEulerAngles
= new Vector3(0f, Of, right_direction.
transform .localEulerAngles.z);

} else {

left_-direction .transform.localEulerAngles
= new Vector3(0f, 180f, left_direction.
transform.

localEulerAngles.z);

right_direction .transform.localEulerAngles
= new Vector3(0f, 180f, right_direction.
transform .

localEulerAngles.z);

}

if (transform.localRotation.x > 0.3f){
left_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform .localEulerAngles.y, 90f);
right_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform.localEulerAngles.y, 90f);

} else
left_-direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform.localEulerAngles.y, —90f);
right_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform .localEulerAngles.y, —90f);

} else {

left_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform.localEulerAngles.y, 0f);
right_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform .localEulerAngles.y, 0f);

}

} else {
right_direction.SetActive(false);
left_direction.SetActive(false);

3
} else {

right_direction.SetActive(false);

if (transform.localRotation.x < —0.3f){

left_direction.SetActive(false);

}

}

public void directions_status (bool status){
chk_directions_status = status;

}

public float AngleDir(Vector3 fwd, Vector3
targetDir , Vector3 up) {

Vector3 perp = Vector3.Cross (fwd,
float dir = Vector3.Dot(perp, up);

if (dir > 0f) {
return 1f;

} else if (dir < 0f) {
return —1f;

} else

return Of;

b

b

}

CheckpointAudio.cs

using System.Collections;
using System. Collections . Generic;
using UnityEngine;
using System;

public class CheckpointAudio
MonoBehaviour {

public GameObject player;

private float dist;

void Start () {

dist = 0.0f;

¥

void Update () {

dist = Vector3.Distance(transform.parent.

position , player.transform.position);
GetComponent<AudioSource >().spatialBlend
= (dist /100);

}
}
CheckpointScriptBrock.cs

namespace GoogleVR.VideoDemo {
using System . Collections;
using System . Collections . Generic;
using UnityEngine;
using UnityEngine.UI;
using TMPro;
using System;

public class CheckpointScriptBrock
MonoBehaviour {

public GameObject player;

public GameObject instructions;
public GameObject adjust_controls;
public GameObject speed_controls;
public GameObject objective_good;

O {13

void Update () {

void Start

if (transform . position.z <= player.transform.

position.z){

GameObject brock = player.transform.

GetChild (0). GetChild (1).gameObject;

brock.SetActive (true);

speed_controls.SetActive(false);

adjust_controls.SetActive(true);

adjust_controls.transform.GetChild (0).

gameObject . GetComponent<Controller

Script >().show_controls ();

if (player.GetComponent<Player

Movement > (). get_bead_ctr () < brock.

GetComponent<BrockParam > ().

get_parameter ()){

GameObject bead = brock.transform.

GetChild (player . GetComponent<Player

Movement > (). get_bead_ctr ()+1).

gameObject ;

Material mat = bead.GetComponent

<Renderer > (). material;

String mat_string = ”Adjust 7;

if ((mat+””).IndexOf(”Red”) >= 0){

mat_string += ”"Red”;

} else if ((mat+7”).IndexOf(” Violet”)
>= 0){

mat_string 4+= ” Violet”;

} else if ((mat+””).IndexOf(” Green”)
>= 0){
mat_string += ” Green”;

62

targetDir);

} else if ((mat+””).IndexOf(” Blue”)
>= 0){
mat_string += ”Blue”;

} else {

mat_string += ” Yellow”;

instructions .GetComponent<TextMesh
ProUGUI>().text = mat_string + ” bead
and make sure an ’'X’ figure appears”;
if (objective_good != null){
objective_good . GetComponent<Canvas
Group >().alpha = 1;

bead . transform .GetComponent<Adjust

Bead >().enabled = true;

} else {

instructions .transform.parent.gameObject.
GetComponent<ForceStopScript > ().
show_end_game ();

¥

player.transform .GetComponent<Player
Movement > ().enabled = false;

if (gameObject .name == ”Initial Check
point”){

Destroy (gameObject);

} else {

gameObject. SetActive (false);

Rt e

CheckpointScriptLazy.cs

namespace GoogleVR.HelloVR {
using System. Collections;
using System . Collections . Generic;
using UnityEngine;
using UnityEngine.UI;
using GoogleVR.VideoDemo;
using TMPro;

[RequireComponent (typeof (Collider))]
public class CheckpointScriptLazy
MonoBehaviour, TimedInputHandler {
private Vector3 startingPosition;
private Renderer renderer;

public GameObject player;

public GameObject trace;

public GameObject infinity ;
public GameObject new_infinity ;
public GameObject coin;

public GameObject cube_room;
public GameObject instructions;
public GameObject propeller;
public GameObject speed_controls;
public Material inactiveMaterial;
public Material gazedAtMaterial;
public AudioClip[] next-objective;
private float dist;

void Start() { }

public void Update(){

dist = Vector3.Distance(transform. position ,

player.transform. position);

if (dist < 7.0f){

player .GetComponent<PlaneScript > ().
enabled = false;

propeller . GetComponent<PropellerScript >
().enabled = false;
speed_controls.SetActive(false);
propeller.transform.localEulerAngles =
new Vector3(—30f, 90f, —90f);

¥

public void SetGazedAt(bool gazedAt) {
if (inactiveMaterial != null &&
gazedAtMaterial != null) {
renderer . material = gazedAt ?
gazedAtMaterial inactiveMaterial;
return ;

}

public void Reset () {
int sibIdx = transform.GetSiblingIndex ();

int numSibs = transform.parent.childCount;
for (int i=0; i<numSibs; i+4++4) {
GameObject sib = transform .parent.

GetChild (i).gameObject;
sib.transform.localPosition =
startingPosition;
sib.SetActive (i == sibldx);

b

¥

public void Recenter () {

#if !UNITY_EDITOR
GvrCardboardHelpers. Recenter ();

#else

if (GvrEditorEmulator.Instance != null) {
GvrEditorEmulator. Instance.Recenter ();

}
#endif // !UNITY_EDITOR

public void HandleTimedInput () {
player.transform.GetChild (1).
gameObject . GetComponent<Audio
Source >().Play ();

new_infinity .SetActive (true);
new_infinity .transform.localPosition =
transform.localPosition;
new_infinity .transform .LookAt
(player.transform);

instructions .GetComponent<TextMesh
ProUGUI>().text = ”Trace infinity
symbols: ” 4+ (new_infinity .
GetComponent<LazyParam > ().
get_checkpoint_ctr ()+1);
transform.localPosition = new
Vector3 (Random.Range (25.0000f ,
175.0000f), 50f, Random.Range
(25.0000f, 175.0000f));
Debug.Log(new_-infinity . GetComponent
<LazyParam > ().get_checkpoint_ctr ());
instructions.transform . parent.
GetComponent<AudioSource >().clip =
next_objective [new_infinity .
GetComponent<LazyParam > ().
get_checkpoint_ctr ()];

instructions .transform.parent.
GetComponent<AudioSource >().Play ();
gameObject. SetActive (false);

}
}

ClockScript.cs

using System. Collections;
using System . Collections. Generic;
using UnityEngine;

public class ClockScript MonoBehaviour
private float minRotation;

private float maxRotation;

private bool chk;

void Start () {

minRotation = —20;

maxRotation = 15;

chk = false;

}

void Update () {

Vector3 currentRotation = transform .

localRotation.eulerAngles;
currentRotation.z = Mathf.Clamp
(currentRotation .z, minRotation,
maxRotation);

transform.localRotation = Quaternion.
Euler (currentRotation);

if (currentRotation.z >= 10.0f){

chk = false;

}

if (currentRotation.z <= 1.0f){
chk = true;

}

if (chk){

transform . Rotate (Vector3. forward ,
10 * Time.deltaTime);

} else {
transform . Rotate (Vector3.back, 10
* Time.deltaTime);

b
b
¥
CoinScript.cs
using System.Collections;

using System . Collections . Generic;
using UnityEngine;

public class CoinScript MonoBehaviour {

void Start () { }

void Update () {
transform . Rotate (Vector3.up,
200 * Time.deltaTime);

3

}

63

{

ControllerScript.cs

using System. Collections;
using System.Collections. Generic;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.SceneManagement ;

public class ControllerScript
MonoBehaviour {

public GameObject upper_control;
public GameObject lower_control;
public Sprite upper_controller;
public Sprite lower_controller;
private float start_-time;
private bool chk_upper;

void Start () {

chk_upper = true;

start_-time = 0.0f;

if (SceneManager. GetActiveScene ().name
== "brock_string”){
transform . parent.gameObject.
SetActive(false);

}

void Update () {

if (Time.time — start_time > 1.0f){
if (chk_upper){
GetComponent<Image >().sprite

= upper_controller;
upper_control.SetActive(true);
lower_control.SetActive(false);
chk_upper = false;

} else {

GetComponent<Image >().sprite

= lower_controller;
lower_control.SetActive(true);
upper_control.SetActive (false);
chk_upper = true;

start_time = Time.time;

}

}

public void show_controls(){
start_time = Time.time;

}
}

Countdown.cs

using System.Collections;
using System . Collections. Generic;
using UnityEngine;
using UnityEngine.UI;
using System;
using GoogleVR.VideoDemo;
using TMPro;

public class Countdown : MonoBehaviour {

public GameObject main_camera;
private bool chk_start;

void Start () {
chk_start = false;

}

void Update () {

if (main_camera.GetComponent<TondellPlayer

Direction >().chk_start_game ()){
if (!chk_start){
StartCoroutine (” Timer”);
chk_start = true;

3

3

}

IEnumerator Timer (){

int new_time;

bool chk = true;

while (chk){

new_time = Int32.Parse(GetComponent
<TextMeshProUGUI > ().text+"7);
new_time —= 1;
GetComponent<TextMeshProUGUI> (). text
= new_time+47"7;

yield return new WaitForSeconds (1);

if (new_time == 0){

chk = false;

transform . parent.parent.gameObject.
GetComponent<ForceStopScript > ().
show_end_game ();

b

¥

-

DeductionScript.cs

using System.Collections;
using System . Collections. Generic;
using UnityEngine;

public class DeductionScript
MonoBehaviour {

private int deductions;
private int true_score;

void Start () {
deductions = 0;
true_score = 0;

void Update () { }

public void inc-deductions (){
deductions += 1;

public void inc_true_score(){
true_score 4= 2;

}

public int get_-deductions (){
return deductions;

}

public int get_true_score (){
return true_score;

b

¥

DifficultyComm.cs

using System. Collections;
using System.Collections. Generic;
using UnityEngine;
using UnityEngine.SceneManagement ;
using UnityEngine.UI;

public class DifficultyComm
MonoBehaviour {

public GameObject main_menu;
public GameObject param_menu;
public GameObject sound_-menu;
public Sprite blue_sprite;
public Sprite yellow_sprite;
public GameObject option_1;
public GameObject option_2;
public GameObject option_3;
public int difficulty_index;
public int game_index;
public int param-index;
public bool chk;

void Start (){
chk = false;

}

public void Update(){

if (main_menu != null && param_menu

!= null){game_index = main_menu.
GetComponent<MainComm > ().game_index;
param_index = param_menu.GetComponent
<ParamComm > ().param_index ;

if (game_index == 0){

option_1.GetComponent<Image >().sprite
= blue_sprite;
option_2.GetComponent<Image >().sprite
= blue_sprite;
option_3.GetComponent<Image >().sprite
= blue_sprite;

} else if(game_index == 1){

if (param_index != -1
Choose_Option (0);

b

} else {
option_1.GetComponent<Image >().sprite
= yellow_sprite;
option_2.GetComponent<Image >().sprite
= yellow_sprite;
option_3.GetComponent<Image >().sprite
= yellow_sprite;

b

b

¥

public void Choose_Option(int index) {
difficulty-index = index;

if (index < 3){

sound_-menu . GetComponent<Canvas > ().
enabled = true;

64

} else {

param_menu . GetComponent<ParamComm>
(). Reset_Param ();

param_menu . GetComponent<Canvas > ().
enabled = true;

GetComponent<Canvas >().enabled = false;
}
}

DifficultyScript.cs

namespace GoogleVR.VideoDemo {
using System;
using UnityEngine;
using UnityEngine.UI;

public class DifficultyScript
MonoBehaviour ,

TimedInputHandler {

public void HandleTimedInput (){

if (transform . parent.transform.

GetSiblingIndex () == 2){

if (transform . parent.name == ”Back”){
Choose_Option (3);

} else {

Choose_Option(transform . parent.transform

GetSiblingIndex ());

}
} else {

Choose_Option(transform.parent.transform.

GetSiblinglIndex ());
}
}

private void Choose_Option(int index) {
if (transform . parent.name == ”Back”){
transform . parent.parent. GetComponent

<DifficultyComm >().Choose_Option (index);

} else {

transform . parent.parent.parent.
GetComponent<DifficultyComm > ().
Choose_Option (index);

}

}

}

}

DirectionScript.cs
using System.Collections;

using System . Collections. Generic;
using UnityEngine;

using UnityEngine.UI;

public class DirectionScript
MonoBehaviour {

private float currentAmount;
private bool chk_gradual;
private bool chk_change;

void Start () {

chk_gradual = true;
chk_change = false;
currentAmount = 0.0f;

void Update () {

if (GetComponent<Image > ().fillAmount
<= 0f){

if (chk_change){

GetComponent<Image >().fillAmount = 0f;
chk_gradual = true;

chk_change = false;
GetComponent<Image > (). fillOrigin = 0;

} else if (GetComponent<Image > ().
fillAmount >= 1f){
GetComponent<Image > (). fillAmount = 1f;
chk_gradual = false;

chk_change = true;
GetComponent<Image > (). fillOrigin = 1;
}

if (chk_gradual){
GetComponent<Image > (). fillAmount
+= (Time.deltaTime * 1.5f);

} else {
GetComponent<Image > (). fillAmount
—= (Time.deltaTime * 1.5f);

}

}

}

DoorScript.cs
using System. Collections;

using System.Collections. Generic;
using UnityEngine;

public class DoorScript
MonoBehaviour {

public GameObject player;
private GameObject left_door;
private GameObject right_door;
private float x_left;

private float x_right;

private bool chk_open;

private bool chk_close;

void Start () {

chk_open = false;

chk_close = false;

left_door = transform.GetChild (0).
gameObject;

right_door = transform.GetChild (1).
gameObject ;

x_left = 0.0f;

x_right = 0.0f;

void Update () {
if (chk_open){
if (transform . parent.parent.gameObject.

name == ”Game Arena”){

x_-left = left_door.transform.
localPosition.x — Time.deltaTime * 5f;
x-right = right_door.transform.

localPosition.x + Time.deltaTime x 5f;

if (x-left > —57f){

left_door .transform.localPosition =
new Vector3(x-left , left_door.
transform.localPosition.y, left_door.
transform.localPosition.z);

} else {
left_door.transform.localPosition =
new Vector3(—57f, left_door.
transform.localPosition.y, left_door.
transform.localPosition.z);

chk_open = false;

}

if (x_right < 57f){
right_door.transform.localPosition =
new Vector3(x-right, right_door.
transform.localPosition.y, right_door.
transform.localPosition.z);

} else {
right_door.transform.localPosition =
new Vector3(57f, right_-door.
transform.localPosition.y, right_door.
transform.localPosition.z);

chk_open = false;

}
}

if (chk_close){

left _door .transform.localPosition =
new Vector3(—30f, left_door.transform.
localPosition.y, left_-door.transform.
localPosition.z);
right_door.transform.localPosition =
new Vector3(30f, right_-door.transform.
localPosition.y, right_-door.transform.
localPosition.z);

chk_close = false;

b

¥

public void do_open_door (){
chk_open = true;

chk_close = false;

¥

public void do_close_door (){
chk_close = true;

chk_open = false;

b

¥

EliminateFlash.cs

using System.Collections;
using System . Collections. Generic;
using UnityEngine;
using UnityEngine.UI;
using System;
using TMPro;
using GoogleVR.VideoDemo;

public class EliminateFlash
MonoBehaviour {

public GameObject tondell;
public GameObject score;

65

public GameObject main_camera;
public GameObject point_light;
public GameObject input_bar;
public GameObject repress_button;
private int true_score;

private float startTime = 0.0f;
private float holdTime = 3.0f
private float waitTime = 0.0f
private bool chk = false;
private bool chk_repress;
private bool chk_allow_press;
private bool chk_faster_play;
private string hold-curr_color;
private string curr_color;

3
3

void Start () {
true_-score = 0;

point-light = GameObject.Find
(” Point light”);

curr_color = 77,

hold_curr_color = curr_color;
chk_allow_press = true;
chk_repress = false;
chk_faster_play = false;

}

void Update () {

if (main_camera.GetComponent<TondellPlayer

Direction >().chk_start_game ()){

if (Input.anyKey) {

if (chk_allow_press){

if (startTime == 0.0f){

curr_-color = tondell.GetComponent<Arrow
Lights >().get_curr_color ();
hold-curr_color = curr-color;

startTime += Time.deltaTime;
input_bar.GetComponent<Image > ().
fillAmount = startTime /3;
curr_color = tondell.GetComponent<Arrow
Lights >().get_curr_color ();

if (curr_color != hold_curr_color){
chk_allow_press = false;
chk_repress = true;
input_bar.GetComponent<Image > ().
fillAmount = 0;

repress_button .GetComponent<Canvas
Group >().alpha = 1;
chk_faster_play = true;

¥

if (startTime >= holdTime){

string score_copy = score.GetComponent
<TextMeshProUGUI > (). text ;

string flash_color = GetComponent
<Light >().color+"7;
string arrow_color =
chk = false;

for (int i = 0; i < tondell.transform.
childCount — i+4){

arrow_color = tondell.transform.
GetChild (i).GetChild (0). transform .
GetComponent<Renderer > (). material +”7;

if (arrow_color.IndexOf(” Default”) < 0){
if ((flash_color.IndexOf(”(1.000, 0.169”)

FRTEN
)

> 0 && arrow_color.IndexOf(”Red”)

> 0) || (flash_color.IndexOf(”(0.1227)
> 0 && arrow._color.IndexOf(” Green”) > 0)

|| (flash_color .IndexOf(”(0.918”) > 0 &&

arrow-color.IndexOf(” Yellow”) > 0) ||
(flash_color .IndexOf(”(0.000”) > 0 &&
arrow_color.IndexOf(” Blue”) > 0) ||

(flash_color .IndexOf(”(0.490”) > 0 &&
arrow_color.IndexOf(” Violet”) > 0) ||
(flash_color .IndexOf(”(0.996”7) > 0 &&
arrow_color.IndexOf(” Orange”) > 0)){

if (gameObject.name != ”Point light”){
int new_score = Int32.Parse(score.
GetComponent<TextMeshProUGUI>

(). text+77);

new-score += 1;

score . GetComponent<TextMesh
ProUGUI>().text = new._score+"";
point_light . GetComponent<Eliminate
Flash >().add_true_score ();

Destroy (gameObject);

}

break ;

chk_allow_press = false;
startTime = 0.0f;
input_bar.GetComponent<Image > ().
fillAmount = O0;

chk_repress = true;
repress_button .GetComponent
<CanvasGroup >().alpha = 1;
chk_faster_play = false;

}

} else {

if (chk_faster_play){
repress_button .GetComponent
<AudioSource >().Play ();

chk_faster_play = false;
chk_repress = false;
}

waitTime += Time.deltaTime;
if (chk_repress && waitTime
>= 1.0f){

repress_button .GetComponent
<AudioSource >().Play ();

chk_repress = false;
chk_faster_play = false;
3

b

} else {

waitTime = 0.0f;
repress_button .GetComponent
<CanvasGroup >().alpha = 0;
chk_allow_press = true;
input_bar.GetComponent<Image>
().fillJAmount = 0;

startTime = 0.0f;

}

b

¥

public void add-true_score(){
true_score += 1;

}

public int get_true_score (){
return true_score;

}

EndGameScript.cs

using System. Collections;
using System . Collections. Generic;
using UnityEngine;

public class EndGameScript
MonoBehaviour {

private int 1i;
private float time_start;

private float time_end;

void Start ()

time_start = Time.time;
time_end = 1.2f;

i = 0;

¥

void Update () {

if (i < transform.childCount){

if (Time.time—time_start >= time_end){
transform . GetChild(i).gameObject.
SetActive (true);

time_end += 1.2f;

i+

R e ade akeed

ForceStopScript.cs

using System.Collections;
using System . Collections . Generic;
using UnityEngine;
using UnityEngine.SceneManagement ;
using UnityEngine.UI;
using GoogleVR.VideoDemo;
using TMPro;

public class ForceStopScript
MonoBehaviour {

public GameObject player;

public GameObject reticle_pointer;
public GameObject plane;

public GameObject walking;

public GameObject gaze;

public GameObject infinity_symbol;
public GameObject checkpoint;
public GameObject instructions;
public GameObject score;

public GameObject total_score;
public GameObject end_game;

public GameObject two_point;
public GameObject two_point_end;
public GameObject three_point;
public GameObject three_point_end;
public GameObject tondell;

public GameObject true_score;
public GameObject deductions;
public GameObject spawn;

66

public GameObject point-light; total_-score.GetComponent

public GameObject obstacle_categories; <TextMeshProUGUI > (). text
ublic GameObject obstacles; = "x ” 4 score.GetComponent
P J 5 P
public GameObject coins; <TextMeshProUGUI> (). text ;
public GameObject initial_coins; end_game . GetComponent
public bool chk; <EndGameScript >().enabled
private Scene scene; = true;

}
void Start () { }
chk = false;
scene = SceneManager.GetActiveScene (); ForwardObstacles.cs
¥ using System. Collections;
void Update () { using System.Collections. Generic;
if (Input.GetKeyDown (KeyCode. using UnityEngine;
JoysticklButtond4 Input .
GZZ};e;CDOWnl(lKe(;nCOEieH npu public class ForwardObstacles
JoysticklButton5) || Input. MonoBehaviour {

GetKey (KeyCode. Space)){

show_end_game () ; private float multiplier;

% void Start () {
multiplier = 1.0f;

public void show_end_game (){ }

if (scene.name == ”lazy_eight”){ .

if (walking != null){ void Update () {

if (gameObject .name.IndexOf(” Clone”) >= 0){
transform.localPosition 4= transform.forward
* 0.8f x multiplier;

walking . GetComponent
<WalkingScript >().enabled = false;

plane . SetActive(false); }
reticle_pointer.SetActive(false); }
gaze.SetActive (false);
infinity-symbol.SetActive(false);
checkpoint.SetActive (false);

public void update_-multiplier
(float speed-multiplier){

player . GetComponent<PlaneScript> multiplier = speed_multiplier;
().enabled = false;
two_point_end . GetComponent ¥
<TextMeshProUGUI>().text = GetCoin.cs
”x 7 4+ two_point.GetComponent
<TextMeshProUGUI> (). text ; using System.Collections;
three_point_end .GetComponent using System. Collections.Generic;
<TextMeshProUGUI > ().text = "x ” using UnityEngine;
+ three_point.GetComponent using UnityEngine.UI;
<TextMeshProUGUI>().text ; using System;
} else if(scene.name == using TMPro;
”tondell_arrows”){
tondell . GetComponent<Arrow public class GetCoin : MonoBehaviour {
Lights >().disable_coroutine ();
for(int i = 0; i < tondell.transform. public GameObject score ;
childCount; i++){ public GameObject obstacle_category ;
tondell . transform . GetChild (i). public GameObject player;
gameObject. SetActive (false);
} void Start () { }
end_game . GetComponent
<EndGameScript >().enabled void Update () { }
= true;
true_score.GetComponent void OnCollisionEnter (Collision col){
<TextMeshProUGUI>().text if (col.gameObject.name == ” Player”){
= 7x 7 + point_light. int new_score = Int32.Parse(score.
GetComponent<EliminateFlash> GetComponent<TextMeshProUGUI>().text+"7);
(). get-true_score ()+""; new_score += 2;
deductions.GetComponent obstacle_-category .GetComponent<DeductionScript>
<TextMeshProUGUI> (). text ().inc-true_score ();
= "x " 4 spawn.GetComponent score . GetComponent<TextMeshProUGUI> ().
<SpawnFlash > (). text = new-score+""7;
get_deductions ()+"7; player . GetComponent<PlayerMovement > ().
spawn. SetActive (false); audio-coin ();
} else {
player.transform.GetChild (0). if (gameObject.name != ”Coin 6”){
GetChild (1).gameObject. gameObject. SetActive (false);
SetActive (false); !
player.GetComponent
<PlayerMovement > ().enabled 1
= false; 1
player.GetComponent
<SummonPlayerScript > (). GoToMainScript.cs
enabled = false;
obstacles.SetActive(false); using System.Collections;
coins.SetActive (false); using System. Collections . Generic;
if (initial_coins != null){ using UnityEngine;
initial_coins.SetActive(false);
} public class GoToMainScript : MonoBehaviour {
end_game . GetComponent
<EndGameScript >().enabled void Start () { }
= true;

void Update () {
true_score .GetComponent if (Input.anyKeyDown){
<TextMeshProUGUI > (). text Application.LoadLevel(” loading”);
= "x ” 4+ obstacle_categories. }
GetComponent<Deduction }
Script >().get_true_score ()+77; }

deductions.GetComponent
<TextMeshProUGUI > (). text

= ”x ” + obstacle_categories.
GetComponent<Deduction

Script >().get_-deductions ()+"";

GvrReticlePointer.cs

using UnityEngine;
using UnityEngine.UI;
using UnityEngine.EventSystems;

! ¢ i ‘ £ ¢ using UnityEngine.SceneManagement ;
instructions .transform . parent. using System;

gameObject. SetActive (false); using TMPro;
;

67

public class GvrReticlePointer
GvrBasePointer {

public const float RETICLE_MIN_

INNER-ANGLE = 0.0f;

public const float RETICLE_MIN_
OUTER.ANGLE = 0.3f;

public const float RETICLE_
GROWTHANGLE = 0.45f;

public const float RETICLE_
DISTANCEMIN = 0.45f;

public float maxReticle
Distance = 10.0f;

public int reticleSegments
= 20;

public float reticleGrowth
Speed = 8.0f;

public GameObject infinity ;
public GameObject score;

public GameObject two_point;
public GameObject three_point;
public GameObject gaze_time;
public GameObject streak_time;
private GameObject gazedAt;
private float currentAmount;
private float currentAmountStreak;
private float gazeStartTime;

private float duration = 1.5f;

private float t_allowance = 0.0f;

private float hold_time;

private bool chk = false;

private bool chk_immed_prev = false;
private bool chk_immed_prev_allow = false;

[Range(—32767, 32767)]
public int reticleSortingOrder = 32767;

public Material MaterialComp {
private get; set; }

public float ReticleInnerAngle {
get; private set; }

public float ReticleOuterAngle {
get; private set; }

public float ReticleDistanceIlnMeters {
get; private set; }

public float ReticleInnerDiameter {
get; private set; }

public float ReticleOuterDiameter {
get; private set; }

public override float MaxPointerDistance {
get { return maxReticleDistance; }

public override void OnPointerEnter
(RaycastResult raycastResultResult,
bool isInteractive) {
SetPointerTarget (raycastResultResult .

worldPosition , isInteractive);
gazedAt = raycastResultResult.gameObject;
gazeStartTime = Time.time;

public override void OnPointerHover
(RaycastResult raycastResultResult ,
bool isInteractive) {
SetPointerTarget (raycastResultResult.
worldPosition, islnteractive);

if (gazedAt != null && isInteractive
&& gazeStartTime > 0f){

Scene scene = SceneManager.
GetActiveScene ();

hold_-time = Time.time — gazeStartTime;
if (scene.name != ”main_menu”){

if (scene.name == ”lazy_eight”){

int sibIdx = raycastResultResult.

gameObject.transform . GetSiblingIndex ();
if (sibldx >= 0){

if (infinity.active){

if (sibIdx—1 < 0){

chk = true;

} else {

GameObject parentPrev = raycastResultResult.

gameObject. transform . parent.gameObject;
GameObject prevSib = parentPrev.transform.
GetChild (sibldx —1).gameObject;

if (! prevSib.active){

chk = true;

} else {
chk = false;

}
3
} else {

chk = true;

}

if (chk){

if (!chk_immed_prev_allow){
currentAmount = (Time.time —
gazeStartTime) /2;

gaze_time . GetComponent<Image > ().

fillAmount = currentAmount;
} else {
currentAmount = ((Time.time —

t_allowance)/2) + 0.625f;
gaze_time . GetComponent<Image > ().
fillAmount = currentAmount;

}

if (((Time.time — gazeStartTime > 2.25f

&& !chk_immed_prev) || (chk_.immed_

prev && Time.time — t_allowance > 1f))

&& ExecuteEvents.CanHandleEvent
<TimedInputHandler >(gazedAt)){

if (infinity .active){

int new_score = Int32.Parse(score.
GetComponent<TextMeshProUGUI>

(). text+"7);

if (chk_immed_prev){

new-score += 3;
three_point.GetComponent<Text
MeshProUGUI> (). text = (Int32.Parse
(three_point . GetComponent<TextMesh
ProUGUI> (). text+77)4+1)4+"";

} else {

new_score += 2;

two_point . GetComponent<TextMesh
ProUGUI>().text = (Int32.Parse
(two_point . GetComponent<TextMesh
ProUGUI> (). text+77)+1)4+"";

}

score . GetComponent<TextMesh
ProUGUI> (). text = new._score+7";

gazeStartTime = —1f;
if(infinity .active){
streak_time .GetComponent
<Image > ().fillAmount = 1;
t_allowance = Time.time;
chk_immed_prev_allow = true;

ExecuteEvents.Execute (gazedAt ,
null , (TimedInputHandler handler ,
BaseEventData data) => handler.
HandleTimedInput ());

}

} else {
GetComponent<Renderer > ().
material.color = Color.red;
b

b

b

} else {

currentAmount = (Time.time —

gazeStartTime);

gaze_-time . GetComponent<Image>
().fillAmount = currentAmount;

if ((Time.time — gazeStartTime >
1.25f) && ExecuteEvents.
CanHandleEvent<TimedInputHandler>
(gazedAt)){

gazeStartTime = —1f;
ExecuteEvents. Execute (gazedAt, null,
(TimedInputHandler handler ,
BaseEventData data) => handler.
HandleTimedInput ());

¥
}
}
}

public override void OnPointerExit
(GameObject previousObject) {

if (gaze_time != null){

gaze_time . GetComponent<Image > ().
fillAmount = 0;

GetComponent<Renderer > (). material .
color = Color.white;

}

public override void
OnPointerClickDown () {}

public override void
OnPointerClickUp () {}

68

public override void GetPointerRadius

(out float enterRadius, out
float exitRadius) {

float min_inner_angle_radians

= Mathf.Deg2Rad * RETICLE_MIN_
INNER-ANGLE;

float max_inner_angle_radians

= Mathf.Deg2Rad * (RETICLE_MIN_
INNER-ANGLE + RETICLE.GROWTH
_ANGLE) ;

enterRadius = 2.0f % Mathf.Tan(min_
inner_angle_radians);
exitRadius = 2.0f % Mathf.Tan(max_
inner_angle_radians);

return false;

}

Vector3 targetLocalPosition = base.
PointerTransform .InverseTransform
Point (target);

ReticleDistanceInMeters =
Mathf.Clamp(targetLocalPosition .z,
RETICLE_DISTANCE_MIN, maxReticle
Distance);

ReticleInnerAngle = RETICLE_MIN_
INNER-ANGLE + RETICLE_.GROWTH._
ANGLE;

ReticleOuterAngle = RETICLE_MIN_

OUTER-ANGLE + RETICLE.GROWTH.-

ANGLE;
public void UpdateDiameters () { return true;
ReticleDistanceInMeters =
Mathf.Clamp(ReticleDistanceInMeters ,
RETICLE_DISTANCE_MIN, maxReticle private void CreateReticleVertices () {
Distance); Mesh mesh = new Mesh ();

gameObject . AddComponent
<MeshFilter >();
GetComponent<MeshFilter > ().

float inner_half_angle_radians =
Mathf.Deg2Rad * ReticleInnerAngle

* 0.5f; mesh = mesh;

float outer_half_angle_radians =

Mathf.Deg2Rad * ReticleOuterAngle int segments_count = reticleSegments;

* 0.5f; int vertex_count = (segments_count
+1)%2;

float inner_-diameter = 2.0f x*

Mathf.Tan(inner_half_angle_radians); #region Vertices

float outer_diameter = 2.0f =x

Mathf.Tan(outer_half_angle_radians); Vector3 [] vertices = new Vector3
[vertex_count];

ReticleInnerDiameter = inner_diameter;

ReticleOuterDiameter = outer_diameter; const float kTwoPi = Mathf.PI
* 2.0f;

if (chk_immed_prev_allow){ int vi = 0;

if (infinity .active){ for (int si = 0; si <= segments_

currentAmountStreak = 1—(Time.time — count; ++si) {

t_allowance); float angle = (float)si / (float)

streak_time .GetComponent<Image> (segments_count) * kTwoPij;

().fillAmount = currentAmountStreak;

float x = Mathf.Sin(angle);

if (Time.time — t_allowance > 1f){ float y = Mathf.Cos(angle);

chk_immed_prev = false;

t_allowance = 0.0f; vertices [vi++4] = new Vector3
chk_immed_prev_allow = false; (x, y, 0.0f);

} else { vertices [vi++4] = new Vector3
chk_immed_prev = true; (x, y, 1.0f);

b

} #endregion

MaterialComp. SetFloat (” _Inner #region Triangles

Diameter”, ReticleInnerDiameter int indices_count = (segments
* ReticleDistanceInMeters); _count +1)*3%2;

MaterialComp. SetFloat (” _Outer int [] indices = new int[indices
Diameter”, ReticleOuterDiameter _count |;

* ReticleDistanceInMeters);

MaterialComp . SetFloat (” _Distance int vert = O0;

InMeters”, ReticleDistancelnMeters); int idx = 0;

} for (int si = 0; si < segments

_count; ++si) {

indices [idx++4+] = vert+1;
indices [idx++4] = vert;
indices [idx++4] = vert+2;

void Awake() {

ReticleInnerAngle = RETICLE_MIN_
INNER-ANGLE + RETICLE_.GROWTH.
ANGLE;

ReticleOuterAngle = RETICLE_-MIN_ indices [idx++4+] = vert+1;

OUTER-ANGLE + RETICLE.GROWTH_ indices [idx++4+] = vert+2;
ANGLE; indices [idx++4] = vert+3;
} vert 4+= 2;

b
protected override void Start () { #endregion
base.Start ();

mesh. vertices = vertices;
Renderer rendererComponent mesh. triangles = indices;

= GetComponent<Renderer >();
rendererComponent .sortingOrder
= reticleSortingOrder;

mesh. RecalculateBounds ();
#if !UNITY_5.5_.OR_.NEWER
mesh. Optimize ();

b
MaterialComp = rendererComponent }
.material; . .
gazeStartTime = —1f; InfinityScript.cs

gazedAt = null; namespace GoogleVR.HelloVR {

using System;

using System . Collections;

using System . Collections. Generic;
using UnityEngine;

using UnityEngine.UI;

using GoogleVR.VideoDemo;

using TMPro;

CreateReticleVertices ();

void Update () {
UpdateDiameters ();

private bool SetPointerTarget
(Vector3 target, bool interactive) {
if (base.PointerTransform == null) {
Debug.LogWarning (” Cannot operate

on a null pointer transform?”);

[RequireComponent (typeof (Collider))]
public class InfinityScript : MonoBehaviour,
TimedInputHandler {

public Material inactiveMaterial;

69

public Material gazedAtMaterial;
public GameObject trace;

public GameObject player;

public GameObject instructions;
public GameObject reticle_pointer;
public GameObject streak_time;
public GameObject checkpoint;
public GameObject propeller;
public GameObject speed_controls;
public AudioClip [] next_objective;
private Material coin_face_brighten;
private Material coin_face_darken;
private Material [] mat;

private Vector3 startingPosition;
private Renderer renderer;

private int loop-count;

void Start () {

startingPosition = transform.localPosition;
renderer = GetComponent<Renderer >();
SetGazedAt (false);

Resources . Load
typeof (Material))

coin_face_brighten =
(” coin_face_brighten”,
as Material;
coin_face_darken =
(” coin_face_darken”,
as Material;

Resources . Load
typeof(Material))

public void Update(){ }

public void SetGazedAt(bool gazedAt) {
public void Reset () {

int sibIdx = transform.GetSiblingIndex ();
int numSibs = transform.parent.childCount;
for (int i=0; i<numSibs; i+4++) {
GameObject sib = transform.parent.
GetChild (i).gameObject;
sib.transform.localPosition =
sib.SetActive (i == sibldx);

b

}

public void Recenter () {

#if !UNITY_EDITOR
GvrCardboardHelpers. Recenter ();

#else

if (GvrEditorEmulator.Instance != null) {
GvrEditorEmulator. Instance . Recenter ();

startingPosition ;

}
#endif // !UNITY.EDITOR
}

public void HandleTimedInput (){

int sibIdx = transform.GetSiblingIndex ();
loop_-count = transform.parent.GetComponent
<LazyParam > ().get_checkpoint_ctr ()+1;

if (sibldx > 0){

GameObject prevSib = transform.parent.
GetChild (sibldx —1).gameObject;

if (! prevSib.active){

int numSibs = transform.parent.childCount;
if (numSibs—1 == siblIdx){

transform . parent . GetComponent<LazyParam>
(). update_checkpoint_ctr ();

loop-count = transform.parent.GetComponent
<LazyParam >().get_checkpoint_ctr ()+1;
instructions .GetComponent<TextMeshProUGUI>
().text = "Trace infinity symbols: ” +
(loop_-count);

if (loop_-count > 0){
instructions.transform.parent.GetComponent
<AudioSource >().clip = next_objective
[loop_-count —1];
instructions.transform.parent.GetComponent
<AudioSource >().Play ();

for (int i = 0; i < numSibs; i4++){
transform . parent.GetChild (i).gameObject.
SetActive (true);

if (i !'= 0){

mat = transform.parent.GetChild(i).
gameObject . GetComponent<Renderer>

(). materials;

mat [1] = coin_-face_-darken;

transform . parent.GetChild (i).gameObject.
GetComponent<Renderer > (). materials

= mat;

}

if (loop-count == 0){
transform . parent . GetComponent
<LazyParam >().inc_checkpoint_ctr ();
if (transform .parent.GetComponent
<LazyParam > ().chk_checkpoint_ctr ()){
player.GetComponent<PlaneScript>
().enabled = false;

instructions .transform.parent.
gameObject . GetComponent
<ForceStopScript >().show_end_game ();
} else {
player.GetComponent<PlaneScript>
().enabled = true;
propeller.GetComponent<Propeller
Script >().enabled = true;
speed_controls.SetActive (true);
streak_time.GetComponent<Image>
(). fillAmount = 0;

¥

transform . parent.gameObject.
SetActive (false);
checkpoint.SetActive (true);

b

} else {

mat = transform .parent.GetChild
(sibIdx+1).gameObject . GetComponent
<Renderer >(). materials;

mat[1] = coin_face_brighten;
transform . parent.GetChild (sibIdx+1).
gameObject . GetComponent<Renderer>
(). materials = mat;

gameObject. SetActive (false);

b

} else {

mat = transform .parent.GetChild
(sibIdx+1).gameObject . GetComponent
<Renderer > (). materials;

mat [1] = coin_face_brighten;
Jransform . parent.GetChild (sibIdx+41).
gameObject . GetComponent<Renderer>
(). materials = mat;

gameObject. SetActive (false);

b

transform . parent.gameObject.
GetComponent<AudioSource >().Play ();
}

}

}

InitiateFlight.cs

using System.Collections;
using System . Collections . Generic;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.EventSystems;
using TMPro;

public class
MonoBehaviour,

InitiateFlight
TimedInputHandler {

public
public
public
public
public

GameObject player;
GameObject instructions;
GameObject checkpoint;
Transform vrCamera;
AudioClip next_objective;

public void HandleTimedInput () {
checkpoint.SetActive(true);

transform . parent = vrCamera;
transform.eulerAngles = vrCamera.eulerAngles;

vrCamera.parent = player.transform;
vrCamera. position = player.transform. position;

transform.localPosition = new Vector3(vrCamera.
localPosition .x, vrCamera.localPosition.y—2f,
vrCamera.localPosition .z—2f);

player . GetComponent<PlaneScript >().enabled = truej;

Destroy (GetComponent<BoxCollider >());
Destroy (GetComponent<EventTrigger >());

instructions .GetComponent<TextMeshProUGUI> ().
text = "Find the checkpoint”;
instructions.transform.parent.GetComponent
<AudioSource >().clip = next_objective;
instructions.transform.parent.GetComponent
<AudioSource >().Play ();

Destroy (this);

¥
LastCoinTrigger.cs

using System.Collections;
using System. Collections . Generic;
using UnityEngine;
using System;

public class LastCoinTrigger
MonoBehaviour {

public GameObject player;
private float prev_pos;

70

private bool chk;

void Start () {
chk = false;

}

void Update () {

if (Math.Abs(transform . position.z — player.
transform . position.z) < 5.0f){

chk = true;

prev_pos = player.transform.position.z;

}

if (chk){

if (Math.Abs(player.transform. position.z
— prev_pos) > 2.0f){
transform . parent . GetComponent
<RegenerateCoins >().do-regenerate ();
chk = false;

b
b
b
}
LazyParam.cs

namespace GoogleVR.VideoDemo {
using System. Collections;

using System . Collections . Generic;
using UnityEngine;
using UnityEngine.UI;
using TMPro;

public class LazyParam MonoBehaviour {
public GameObject player;

public GameObject instructions;

public AudioClip next-objective;

private int param-index;

private int checkpoint_ctr;

private int hold-checkpoint-ctr;

private bool sound_indicator;

void Start () {
GameObject menu = GameObject.Find (” Sound

Menu”) ;

param_index = menu.GetComponent<Sound
Comm> ().param_index ;

sound_indicator = menu.GetComponent<Sound

Comm> ().sound_indicator;
Destroy (menu);

if (! sound_indicator){
instructions.transform.parent.GetComponent
<AudioSource >().enabled = false;

}

checkpoint_ctr = 0;
hold_checkpoint_ctr = checkpoint_ctr;

gameObject.SetActive (false);
}
void Update () { }

public void inc_checkpoint_ctr (){
checkpoint_ctr += 1;

hold_checkpoint_ctr = checkpoint_ctr;
instructions .GetComponent<TextMesh
ProUGUI> (). text = ”"Find the checkpoint”;
instructions.transform.parent.
GetComponent<AudioSource >().clip

= next-objective;

instructions .transform.parent.
GetComponent<AudioSource >().Play ();

}

public bool chk_checkpoint_ctr (){
return checkpoint_ctr == param_index+5;

public int get_checkpoint_ctr(){
return hold_checkpoint_ctr;

public void update_checkpoint_ctr (){
hold_checkpoint_ctr —= 1;

b
b
¥
LazyPlayerDirection.cs
using System.Collections;
using System.Collections. Generic;

using UnityEngine;

public class LazyPlayerDirection
MonoBehaviour {

public GameObject right_direction;

public GameObject left_-direction;
public GameObject plane;

public GameObject checkpoint;
public GameObject infinity ;
private Vector3 screenPoint;
private float dirNum;

void Start () {
dirNum = 0.0f;

void Update () {

if (transform . parent.gameObject.name

= " Walking”) {

screenPoint = GetComponent<Camera>

(). WorldToViewportPoint (plane. transform .
position);

} else {

if (infinity .active){

screenPoint = GetComponent<Camera > ().
WorldToViewportPoint (infinity .transform.
position);

} else {

screenPoint = GetComponent<Camera > ().
WorldToViewportPoint (checkpoint . transform .
position);

}

bool onScreen = screenPoint.z > 0 &&
screenPoint .x > 0 && screenPoint.x < 1
&& screenPoint.y > 0 && screenPoint.y < 1;

if (!onScreen){
right_direction.SetActive (true);
left_direction.SetActive(true);

if (transform . parent.gameObject.name
— "Walking”){

dirNum = AngleDir (transform . forward ,
plane.transform . position — transform.
position, transform.up);

} else if(checkpoint.active){

dirNum = AngleDir(transform . forward ,
checkpoint.transform. position —
transform . position , transform.up);

} else if(infinity.active){

dirNum = AngleDir (transform . forward ,
infinity .transform . position — transform.
position , transform .up);

¥

if (dirNum == 1){

left_-direction .transform.localEulerAngles
= new Vector3(0f, O0f, left_direction.
transform.localEulerAngles.z);
right_direction .transform.localEulerAngles
= new Vector3(0f, O0f, right_direction.
transform.localEulerAngles.z);

} else {

left_direction .transform.localEulerAngles
= new Vector3(0f, 180f, left_direction.
transform.localEulerAngles.z);
right_direction.transform.localEulerAngles
= new Vector3(0f, 180f, right_direction.
transform .localEulerAngles.z);

}

if (transform.localRotation.x > 0.08f){
left_-direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform.localEulerAngles.y, 90f);
right_direction .transform.localEulerAngles
= new Vector3(0f, right_direction.
transform.localEulerAngles.y, 90f);

} else if(transform.localRotation.x

< —0.08f){

left_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform .localEulerAngles.y, —90f);
right_direction.transform.localEulerAngles
= new Vector3(0f, right_direction.
transform .localEulerAngles.y, —90f);

} else {

left_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform.localEulerAngles.y, 0f);
right_direction .transform.localEulerAngles
= new Vector3(0f, right_direction.
transform .localEulerAngles.y, 0f);

}

} else {
right_direction.SetActive(false);
left_direction.SetActive(false);
}

}

public float AngleDir(Vector3 fwd,
Vector3 targetDir, Vector3 up) {
Vector3 perp = Vector3.Cross (fwd,

71

targetDir);
float dir = Vector3.Dot(perp, up);

if (dir > 0f) {

return 1f;

} else if (dir < 0f) {
return —1f;

} else {

return 0f;

}
}

MainComm.cs

using System.Collections;
using System.Collections. Generic;
using UnityEngine;

public class MainComm : MonoBehaviour {

public GameObject play_game;
public GameObject param_menu;
public GameObject tutorials;
public GameObject directions;
public int game_index;

void Start (){
game_index = 0;

}

public void Choose_Scene(int index){
if (index < 3){

game_-index = index;

int play-indicator = play_-game.
GetComponent<PlayComm > ().
play-indicator;

if (play-indicator == 1){

param-menu . GetComponent<Canvas>
().enabled = truej;

} else if(play_-indicator == 2){

for(int i = 0; i < tutorials.transform.
childCount; i++){

if (i == index){

tutorials.transform.GetChild (i).
gameObject. SetActive (true);

} else {
tutorials.transform.GetChild (i).
gameObject. SetActive (false);
directions.SetActive(false);

}
}
} else {

play_game . GetComponent
<Canvas >().enabled = true;

GetComponent<Canvas > ().
enabled = false;

3

}

MainScript.cs
namespace GoogleVR.VideoDemo {
using System;
using UnityEngine;
using UnityEngine.UI;

public class MainScript
MonoBehaviour, TimedInputHandler {

public void HandleTimedInput (){

Choose_Scene (transform . parent.transform .

GetSiblingIndex () —1);
}

private void Choose_Scene(int index) {
transform . parent.parent. GetComponent
<MainComm > (). Choose_Scene (index);

b

b

}

ObstacleAttack.cs

using System.Collections;
using System . Collections . Generic;
using UnityEngine;
using UnityEngine.UI;
using System;
using TMPro;

public class ObstacleAttack
MonoBehaviour {

public GameObject player;

public GameObject score;

public GameObject obstacle_category;
private float prev_pos;

private bool chk;
private bool chk_1;
private bool chk_2;

void Start () {
chk = false;
chk_1 = true;
chk_2 = true;

}

void Update () {

if (transform . parent.gameObject.

name. IndexOf (” Clone”) >= 0){

if (chk-1){

GameObject parent_spawn =

transform . parent.parent.gameObject;
transform . parent.gameObject.
transform.localPosition =
parent_spawn.transform.localPosition;

transform.localScale = new

Vector3 (transform.localScale .xx
5f,transform.localScale.y*5f,
transform.localScale.zx5f);

chk_1 = false;
transform . parent.gameObject.
transform . LookAt(player.transform);

}

if (Math.Abs(transform . position.z

— player.transform . position.z) >
50.0f && !chk){
transform . parent.gameObject.
transform .LookAt(player.transform);

if (Math.Abs(transform . position .z
— player.transform. position.z)
< 10.0f){

if (chk_2){
GetComponent<AudioSource > ().
Play ()3

chk_2 = false;

chk = true;
prev_pos = transform.position.z;

}

if (chk){

if (Math.Abs(transform . position.z
— prev_pos) > 5.0f){

if (! GetComponent<AudioSource>
().isPlaying){

Destroy (transform . parent.
gameObject);

B e

void OnCollisionEnter (Collision
collision){

if (collision.gameObject.name
== "Player”){

int new.score = Int32.Parse
(score.GetComponent<TextMesh
ProUGUI>().text+77);

new-score —= 1;
obstacle_category . GetComponent
<DeductionScript > ().
inc_.deductions ();

if (new_score <= 0){

score . GetComponent<TextMesh
ProUGUI> ().text = 707;

} else {

score . GetComponent<TextMesh
ProUGUI> (). text = new._score+7";

player.GetComponent<Player
Movement > (). audio_obstacle ();
Destroy (gameObject);

}
}

ParamComm.cs

using System.Collections;
using System . Collections. Generic;
using UnityEngine;
using UnityEngine.UI;
using GoogleVR.VideoDemo;
using TMPro;

public class ParamComm : MonoBehaviour {

public GameObject main_menu;
public GameObject difficulty-menu;
public GameObject option_1;

72

public GameObject option-2; }
public GameObject option_3; GetComponent<Canvas > ().

public GameObject message; enabled = false;
public Sprite blue_sprite; }
public Sprite yellow_sprite;
public Sprite green_sprite; public void Reset_Param () {
public int param_index; param_index = —1;
public int game_index; }
}
void Start (){
param_index = —1; ParamScript.cs
} namespace GoogleVR.VideoDemo {
public void Update (){ using System;
game_-index = main_menu.GetComponent using UnityEngine;
<MainComm > ().game_index ;
if (game_index == 0){ public class ParamScript
message . GetComponent<TextMeshProUGUI> : MonoBehaviour, TimedInputHandler {
().text = ”"Choose number of arrows”;
option_1.transform.GetChild (0). GetComponent public void HandleTimedInput (){
<TextMeshProUGUI> (). text = 747 ; if (transform . parent.transform.
option_2.transform.GetChild (0).GetComponent GetSiblinglndex () == 3){
<TextMeshProUGUI>().text = 757; Choose_Option (6);
option_3.transform.GetChild (0).GetComponent } else {
<TextMeshProUGUI> (). text = 767; if (transform .parent.parent.
transform . GetSiblingIndex ()
option_1.GetComponent<Image >().sprite = 1){
= blue_sprite; Choose_Option (transform.
option_2.GetComponent<Image >().sprite parent.transform.GetSiblingIndex ());
= blue_.sprite; } else {
option_3.GetComponent<Image >().sprite Choose_Option(transform .
= blue_sprite; parent . transform . GetSiblingIndex ()+3);
gameObject. transform . GetChild (2). }
gameObject. SetActive (false); }
} else if(game_index == 1){
message . GetComponent<TextMeshPro private void Choose_-Option(int index) {
UGUI>().text = ”Choose number of if (transform . parent.transform.

checkpoints”;
option_1.transform.GetChild (0).
GetComponent<TextMeshProUGUI> ().
text = 75”7
option_2.transform.GetChild (0).
GetComponent<TextMeshProUGUI > ().
text = 767;
option_3.transform.GetChild (0).
GetComponent<TextMeshProUGUI > ().
text = 777

option_-1.GetComponent<Image > ().

sprite = green_sprite;
option_2.GetComponent<Image > ().
sprite = green_sprite;
option_3.GetComponent<Image > ().
sprite = green_sprite;

gameObject . transform . GetChild (2).
gameObject. SetActive (true);

} else {

message . GetComponent<TextMesh

ProUGUI> ().text = ”Choose number
of beads”;

option_1.transform.GetChild (0).
GetComponent<TextMeshProUGUI > ().
text = 737;
option_2.transform.GetChild (0).
GetComponent<TextMeshProUGUI > ().
text = 747;
option_3.transform.GetChild (0).
GetComponent<TextMeshProUGUI > ().
text = 757;

option_1.GetComponent<Image > ().

sprite = yellow_sprite;
option_2.GetComponent<Image > ().
sprite = yellow_sprite;
option_3.GetComponent<Image > ().
sprite = yellow_sprite;

gameObject . transform . GetChild (2).
gameObject. SetActive (false);

b

¥

public void Choose_Option
(int index) {

param-index = index;
if (index < 6){
int game_index = main_menu.

GetComponent<MainComm > ().
game_index;

if (game_index != 1){
difficulty_-menu.GetComponent
<Canvas >().enabled = true;

b

} else {

param_index = —1;

main_menu.GetComponent
<Canvas >().enabled = true;

GetSiblingIndex () == 3){
transform . parent.parent.
GetComponent<ParamComm> ().
Choose_Option (index);

} else {
transform . parent . parent.parent .
GetComponent<ParamComm > ().
Choose_Option (index);

b
b
b
¥
PlaneAudio.cs

using System.Collections;
using System.Collections. Generic;
using UnityEngine;

public class PlaneAudio
MonoBehaviour {

public Transform camera;
private float dist;

void Start () {
dist = 0.0f;
}

void Update () {

if (transform.localPosition.z
= —2){
GetComponent<AudioSource>
().spatialBlend = 0.9f;

} else {
dist = Vector3.Distance (camera.
position , transform.position);

GetComponent<AudioSource > ().
spatialBlend = (dist /100);
if (dist /100 < 0.8f){
GetComponent<AudioSource > ().
spatialBlend = 0.8f;
b
}
}
}
PlaneScript.cs

using System.Collections;
using System . Collections . Generic;
using UnityEngine;

public class PlaneScript
MonoBehaviour {

public GameObject speed;
public Transform vrCamera;
private float multiplier;

void Start () {
Destroy (GameObject .

73

Find (” Walking”)); PlayerMovement.cs
transform . position = new
Vector3 (100, 50, 100);

usin System . Collections ;
multiplier = 1.0f; & Y '

using System. Collections . Generic;
} using UnityEngine;

void Update () { using GoogleVR.VideoDemo;

if (Input.GetKeyDown (KeyCode.
JoysticklButtonO) || Input.
GetKeyDown (KeyCode.A)) {

if (multiplier <= 2f){
multiplier += 0.1f;

speed . GetComponent<SpeedShow>
().show_speed (multiplier);

public class PlayerMovement
MonoBehaviour {

public GameObject initial-door;
public GameObject game_front_door;
public GameObject game_back_door;
public GameObject brock;

} else { public GameObject initial_arena;
speed . GetComponent<SpeedShow> public GameObject game.arena;
()-show.speed (3.0f); public GameObject front_door_checkpoint;
public GameObject coins;

public GameObject obstacles;
public GameObject speed;

public Transform vrCamera;

private int bead_ctr;

private int bead_ctr_holder;
private float z_front;

private float z_back;

} else { private float left_chk_limit ;
speed . GetComponent<SpeedShow> private float right_chk_limit;

(). show-speed (0.0 f); private float x-left;
private float x_right;
} private float y_fix;
private float multiplier;
private bool chk;
private bool chk_1;
private bool chk_2;
private bool chk_coinj;
private bool chk_obstacle;
private bool chk_inside_checkpoint;

b

} else if(Input.GetKeyDown(KeyCode.
JoysticklButton3) || Input.
GetKeyDown (KeyCode.D)) {

if (multiplier >= 1.1f){

multiplier —= 0.1f;

speed . GetComponent<SpeedShow>
().show_speed (multiplier);

transform.localPosition += vrCamera.
transform . forward * 0.2f x multiplier;
transform.localPosition = new

Vector3 (transform. position.x, 50,
transform . position.z);

if (transform . position.x >= 200.0f){

transform.localPosition = new void Start () {
Vec_to'r3(20040f, 50, transform. y_fix = transform .position.y;
position.z); z_front = —625f;
} else if(transform.position.x z_back = —740f:
<= 0.0f){ L left_.chk_limit = —65f;
transform.localPosition = new right_chk_limit = —15f;
Vector3(0.0f, 50, transform. x_left = —125¢f: ’
position.z); x_right = 45f;
} chk = true;
. . chk_1 = true;
if (transform . position.z >= chk.2 — true:
-2 = ;
200.0f){ o bead_ctr = 0;
transform.localPosition = new bead_ctr.holder = bead_ctr:
Vector3 (transform. position.x, 50, chk Cioini_ false : N ’
- = ;
200-0f>i L chk_inside_checkpoint = true;
} else if(transform.position.z multiplier = 1.0f;
<= 0.0f){) '
transform.localPosition = new
Vector3 (transform. position.x, 50, void Update () {
0.0f); if (Input.GetKeyDown (KeyCode.
¥ JoysticklButton0O) || Input.
% GetKeyDown (KeyCode.A)) {

if (multiplier <= 2.0f){
multiplier += 0.1f;

PlayComm.cs
speed . GetComponent<SpeedShow>

using System.Collections; ().show_speed (multiplier);

using System.Collections. Generic; for(int i = 0; i < obstacles.

using UnityEngine; transform.childCount; i++){

using UnityEngine.UI; for(int j = 0; j < obstacles.

using TMPro; transform . GetChild (i). transform .
childCount; j++4){

public class PlayComm : MonoBehaviour { obstacles.transform.GetChild (i).
gameObject.transform . GetChild (j).

public GameObject main_menu; gameObject . GetComponent

public int play_-indicator; <ForwardObstacles > ().

update_multiplier (multiplier);
void Start () {

play_-indicator = 0; }
} } else {
speed . GetComponent
void Update () { } <SpeedShow > ().show_speed (3.0f);
b
public void Choose_Option(int index){ } else if(Input.GetKeyDown (
play_indicator = index; KeyCode. JoysticklButton3) || Input.
main_menu.GetComponent<Canvas > (). GetKeyDown (KeyCode.D)) {
enabled = true; if (multiplier >= 1.1f){
GameObject menu = main_menu. multiplier —= 0.1f;
transform . GetChild (0).gameObject; speed . GetComponent<SpeedShow>
string option = 77; ().show_speed (multiplier);
if (play_indicator == 1){ } else {
option = ” [PLAY]|\n”; speed . GetComponent<SpeedShow>
} else { ().show_speed (0.0f);
option = ” [TUTORIALS]\n”;
¥
menu. GetComponent<TextMesh
ProUGUI>().text = option + ”Choose if (chk_coin){
a visual training technique”; transform . GetChild (0).gameObject .
GetComponent<Canvas > (). GetComponent<AudioSource >().Play ();
enabled = false; chk_coin = false;
b ¥

}

74

if (chk_obstacle){ <= z-back){

transform . GetChild (0). GetChild (1). transform . position = new
gameObject . GetComponent Vector3 (transform . position .x,
<AudioSource >().Play (); y-fix , z_back);
chk_obstacle = false;
} if (transform . position.z

>= z_front){
if (bead_ctr > 0 && (bead_ctr_ if (transform . position.x >
holder != bead_ctr)){ right_chk_limit || transform.
z_back = —585f; position.x < left_chk_limit){
z_front = —150f; transform . position = new
chk_-1 = true; Vector3 (transform . position .x,
chk_-2 = true; y-fix , z_front);
chk_inside_checkpoint = true; } else {
coins . SetActive(true); if (z_front <= transform.
game_back_-door.GetComponent position.z){
<DoorScript >().do-close_door (); obstacles.SetActive(false);
if (bead-ctr > 1){
front_door_checkpoint. if(z_front — transform.position.
SetActive (true); z <= —30f){
} if (chk){
if (bead_-ctr == 1){ chk_inside_checkpoint
Destroy (initial_arena); = true;
game_arena. SetActive (true); z_back = z_front 4 30f;
game_back_door.GetComponent if (bead_-ctr == 0){
<DoorScript >().do_open_door (); initial_door .GetComponent
} <DoorScript >().do-close_
} door ()5

z_front = —150f;
if (chk_1){ } else {
if (transform . position.z >= —560f){ game_front_door.
chk_inside_checkpoint = false; GetComponent<DoorScript>
} ().do-close_door ();
if (bead-ctr > 1){ z_front = —27f;
game_back_door.GetComponent chk_-1 = false;
<DoorScript >().do_open_door (); if (transform . position.z

>= —72f){
front_door_checkpoint . chk_inside_checkpoint
SetActive(true); = false;
transform . eulerAngles = new }
Vector3 (transform.eulerAngles .x, }

0, transform.eulerAngles.z);

if (bead_ctr != 0){ x_left = left_chk_limit;
if (bead_ctr != 1){ x-right = right_chk_limit;
z_front = —150f; chk = false;

¥ b

if (transform . position.z >= —455f){ }

obstacles.SetActive (true); }

if (chk-2){ }
obstacles.transform.GetChild (0). }

gameObject . GetComponent

<SpawnObstacle > (). public void change_bead-
re_enable_coroutine (); ctr(int ctr){
obstacles.transform.GetChild (1). bead_ctr = ctr;

gameObject . GetComponent }

<SpawnObstacle > ().

re_enable_coroutine (); public int get_-bead_ctr(){
obstacles.transform.GetChild (2). return bead_ctr;
gameObject . GetComponent }

<SpawnObstacle > ().

re_enable_coroutine (); public void audio_coin (){
chk_.2 = false; chk_coin = true;

¥ }
game_front_door.GetComponent

<DoorScript >().do_open_door (); public void audio_-obstacle (){
game_back_door.GetComponent chk_obstacle = true;
<DoorScript >().do-close_door (); }

z_back = —455f;

x_-left = —115f; public bool chk_inside (){
x-right = 35f; return chk_inside_-checkpoint;
chk = true;

b ¥

% PlayScript.cs

namespace GoogleVR.VideoDemo {
using System. Collections;
using System. Collections . Generic;
using UnityEngine;
using UnityEngine.UI;

bead_ctr_holder = bead_ctr;

transform.localPosition +=
vrCamera. transform . forward

* 0.3f *x multiplier;
transform.localPosition = new
Vector3 (transform . position .x,
y-fix , transform.position.z);

[RequireComponent (typeof (Collider))]
public class PlayScript
MonoBehaviour, TimedInputHandler {

ii(transform.position.x public void HandleTimedInput (){
<= x-left){ Choose_Option (transform .

transform . position = new parent .transform . GetSiblingIndex ());
Vector3(x_-left , y_fix,

transform . position.z);

public void Choose_Option
int ind
if (transform . position.x (int index){

>= x._right){ transform . parent.parent.

transform . pAosition = new GetComponent<PlayComm > ().
Vector3 (x-right , y-fix, Choose_Option (index);
transform . position.z); 1

} }

}

if (transform . position.z

75

PropellerScript.cs

using System.Collections;
using System. Collections . Generic;
using UnityEngine;

public class PropellerScript
MonoBehaviour {

void Start () { }

void Update () {
transform . Rotate (Vector3.up,
200 * Time.deltaTime);

b

¥

RadialProgressBar.cs

using System. Collections;
using System.Collections. Generic;
using UnityEngine;
using UnityEngine.UI;

public class RadialProgressBar

MonoBehaviour {
[SerializeField] private float
currentAmount ;
[SerializeField] private float
speed ;

void Update () {
if (currentAmount < 100){
currentAmount += speed x*
Time.deltaTime;

GetComponent<Image > ().
fillAmount = currentAmount/100;
3

}

RegenerateCoins.cs

using System.Collections;
using System. Collections . Generic;
using UnityEngine;

public class RegenerateCoins
MonoBehaviour {

public GameObject player;
private bool chk;

void Start () {
chk = false;

}
void Update () {
if (chk){

for(int i=0; i < transform.
childCount; i++){
transform . GetChild (i).
gameObject. SetActive (true);

}

float rand_-x = Random.
Range(—100.00f,20.00f);
if (transform . position.z+
55f < —170f){
transform . position = new

Vector3(rand_x, transform.position.

y, transform.position.z+55f);
} else {

transform . position = new
Vector3(—40f, —65f, —455f);
gameObject. SetActive (false);

¥
chk = false;
b
¥

public void do-regenerate (){
chk = true;

}

}

ReminderScript.cs
using System.Collections;
using System . Collections . Generic;

using UnityEngine;

public class ReminderScript
MonoBehaviour {

private bool chk_gradualj;
private bool chk_change;
private bool chk;

void Start () {

chk = false;

chk_gradual = true;

chk_change = false;

if (transform .parent.gameObject.
name == "End Game”){
start_reminder ();

}

void Update () {

if (GetComponent<CanvasGroup>
().alpha <= 0f){

if (chk_change){
GetComponent<CanvasGroup > ().
alpha = 0f;

chk_gradual = true;
chk_change = false;

chk = false;

if (transform . parent.gameObject.
name == ”"End Game”){
start_reminder ();

} else if (GetComponent
<CanvasGroup >().alpha >= 1f){
GetComponent<CanvasGroup>
().alpha = 1f;

chk_gradual = false;
chk_change = true;

}

if (chk){

if (chk_gradual){
GetComponent<CanvasGroup > ().
alpha += (Time.deltaTime * 0.5f);

} else {
GetComponent<CanvasGroup > ().
alpha —= (Time.deltaTime % 0.5f);
}

}

public void start_reminder (){
chk = true;

b

¥

RotateObstacle.cs

using System.Collections;
using System. Collections . Generic;
using UnityEngine;

public class RotateObstacle
MonoBehaviour {

void Start () { }

void Update () {

if (transform . parent.gameObject.
name. IndexOf(” Clone”) >= 0){
transform . Rotate (Vector3.left ,
200 % Time.deltaTime);

}

}

}

SoundComm.cs

using System.Collections;
using System . Collections . Generic;
using UnityEngine;
using UnityEngine.UI;
using TMPro;

public class SoundComm : MonoBehaviour {

public GameObject difficulty-menu;
public int game_index;

public int param-index;

public int difficulty-index;
public bool sound_indicator;

void Start () {

sound_.indicator = false;

void Update () { }

public void Choose_Option(int index){
if (index == 1){

sound_-indicator = true;

¥

game_index = difficulty_-menu.

GetComponent<DifficultyComm > ().
game_-index;

param-index = difficulty_-menu.
GetComponent<DifficultyComm > ().
param-index ;

difficulty_index = difficulty_menu.

76

GetComponent<DifficultyComm > ().
difficulty_index;
Application.LoadLevel (” loading”);

public

void Awake(){

DontDestroyOnLoad (this);

}
}

SoundScript.cs

namespace GoogleVR.VideoDemo {

using System . Collections;

using System . Collections . Generic;

using UnityEngine;

using UnityEngine.UI;

[RequireComponent (typeof (Collider))]

public class SoundScript
MonoBehaviour, TimedInputHandler {

public void HandleTimedInput (){

Choose_Option (transform . parent.
transform . GetSiblingIndex ());

public

void Choose_Option(int index){

transform . parent.parent.GetComponent
<SoundComm > (). Choose_Option (index);

¥
}

SpawnFlash.cs

using System.Collections;

using
using
using
using
using
using

public

public
public
public
public
public
public
public
privat
privat
privat
privat
privat
privat
privat
privat
privat
privat
privat
privat

void Start

System . Collections . Generic;
UnityEngine;
UnityEngine . UI;
System;
TMPro;
GoogleVR . VideoDemo;
class SpawnFlash MonoBehaviour

GameObject flash ;
GameObject reminder;
GameObject score;
GameObject main_camera;
GameObject tondell;

AudioClip light_correct;
AudioClip light_wrong;

e int ctr;

e int prev_child_count;

e int new_child_count;

e int num_arrows;

e int deductions;

e float startTime = 0.0f;
e float holdTime = 3.0f;
e bool chk;

e bool chk_start;

e bool chk_allow_press;

e string hold_curr_color;
e string curr_color;

O {

ctr = 0;

prev_child_count = 0;
new._child_count = 0;

chk = false;

deductions = 0;

chk_start = false;

curr_color = 77;
hold_-curr_color = curr_color;
chk_allow_press = true;

}

void Update () {
if (main_camera.GetComponent

<Tond
chk_st

ellPlayerDirection > ().
art_game ()){

if (!chk_start){
StartCoroutine (” Spawn”);
chk_start = true;

if (Input.anyKey){

if (chk_allow_press){

if (startTime == 0.0f){
curr_color = tondell.
GetComponent<ArrowLights>

(). get_curr_color ();
hold_curr_color = curr_color;

startT

ime += Time.deltaTime;

curr-color = tondell.
GetComponent<ArrowLights > ().
get_curr_color ();

if (curr_color != hold_curr_color){
chk_allow_press = false;

{

if (startTime >= holdTime){
prev_child_count = transform.
childCount—new_child_count;
StartCoroutine (” Deduction”);
chk = false;

startTime = 0.0f;

}
¥
} else {

for (int i = 0; i < transform.
childCount; i++4){
transform . GetChild (i).transform.
GetComponent<EliminateFlash>
().enabled = true;

startTime = 0.0f;
chk_allow_press = true;
b

b

¥

public void
chk = true;

}

public void update_num_of_
arrows (int param){
num-_arrows = param;

}

IEnumerator Deduction (){
yield return new
WaitForSeconds (0.01f);

if (prev_child_count ==
transform .childCount —
new_child_count){

int new_score = Int32.

Parse (score.GetComponent
<TextMeshProUGUI>().text+"7);
new_score —= 1;

deductions += 1;
GetComponent<AudioSource>
().clip = light_-wrong;

if (new_score < 0){

score . GetComponent<TextMesh
ProUGUI> ().text = 707;

} else {

score . GetComponent<TextMesh
ProUGUI>().text = new._score+"";

3

} else {
GetComponent<AudioSource > ().
clip = light_correct;

update_children (){

GetComponent<AudioSource > ().
Play ()3
new_child_count = 0;

}

IEnumerator Spawn(){

int rand_.num, rand_spawn,
rand_color;

bool chk_exist = false;

while (true){

if (num_arrows > 0){

rand_-color = UnityEngine.
Random.Range (0, num_arrows);
chk_exist = false;

for(int i = 0; i < transform.
childCount; i++){

if (rand_color == 0 && transform.
GetChild (i).gameObject.name

== "Red”){

chk_exist = true;

break;

} else if(rand_color == 1 &&
transform . GetChild (i).gameObject.
name == " Green”){

chk_exist = true;

break ;

} else if(rand_color == 2 &&
transform . GetChild (i).gameObject.
name == " Yellow”){

chk_exist = true;

break ;

} else if(rand-color == 3 &&
transform . GetChild(i).gameObject.

" Blue”){

chk_exist = true;

break;

} else if(rand_color == 4 &&
transform . GetChild (i).gameObject.

name == " Violet”){

chk_exist = true;

break ;

} else if(rand_color == 5 &&
transform . GetChild (i).gameObject.

name == " Orange”){

name ——=

77

chk_exist = true; }

break; ctr++;
} if (ctr == 3){
} reminder . GetComponent<Reminder
Script >().start_reminder ();
if (!chk_exist){ ctr = 0;
GameObject new._flash = }
Instantiate <GameObject>(flash); if (num_arrows > 0){
new_flash.transform .parent if (chk_exist){
= transform; yield return new
float x_-pos = O0f; WaitForSeconds (0);
switch(rand_color){ } else {
case 0: rand_-num = UnityEngine.
new_flash .name = "Red”; Random.Range (7, 12);
new_flash.transform. yield return new
GetComponent<Light >().color WaitForSeconds (rand-num);
= new Color32(255,43,43,255);
} else {
if (num_arrows == 4){ yield return new
x_pos = —22f; WaitForSeconds (0);
} else if(num_arrows == 5){ }
x_pos = —23f; }
} else { }
x_pos = —24.5f;
public int get_-deductions (){
break ; return deductions;
case 1: }
new_flash .name = ” Green”; }
new-_flash.transform.
GetComponent<Light >().color = SpawnObstacle.cs

new Color32(31,143,22,255); using System. Collections;

using System. Collections . Generic;

if (num-arrows == 4){ using UnityEngine;

X-pos = —7f; using GoogleVR.VideoDemo;
} else if(num-arrows == 5){

x_pos = —11f; public class SpawnObstacle
b else { : MonoBehaviour {

x_pos = —14.5f;

) public GameObject missile;
brcak,A public GameObject barrel;
case 2: public GameObject log;
new_flash .name = ” Yellow”;

7fl b . f_) public GameObject book;
new_flash.transform. _ public GameObject ball;
GetComponent<Light >().color = public GameObject brock;

new Color32(234,199,3,255); private int difficulty-index;

private float min_speed;

if (num-arrows == 4){ private float max_speed;
X-pos :'7'5f5 private bool chk;

} else if(num.arrows == 5){

x-pos = 1f; void Start () {

} else { difficulty_index = brock.
x-pos = —4.5f; GetComponent<BrockParam>
} (). get_difficulty ();
break; switch (difficulty_index){
case 3: case 0:

new_flash .name = ” Blue”; min_speed = 5.00f;
new_flash.transform. max_speed = 7A00fj
GetComponent<Light >().color = break ; ’

new Color32(0,177,233,255); case 1:

min_speed = 4.00f;

if (num_arrows == 4){ max_speed = 6.00f;
x_pos = 22.5f; break :
} else if(num_arrows == 5){ case é:
x-pos = 11f; min_speed = 3.00f;
} else { max_speed = 4.00f;
x-pos = 4.5f; break ;

default :
break; min_speed = 3.00f;
case 4: i max_speed = 4.00f;
new-_flash .name = ” Violet”; break :
new_flash .transform . 1 ’
GetComponent<Light >().color = chk = true:
new Color32(125,0,255,255);) ’
if (num_arrows == 5){ void Update () {
x_pos = 24f; if (chk){
} else { StartCoroutine (” Spawn”);
;fpos = 14.5f; chk = false;
break ; {
case 5:
new.-flash .name = ”Orange”; public void re_enable
new-flash .transform . _coroutine (){
GetComponent<Light >().color = chk — true:
new Color32(254,58,0,255);) ’
x_-pos = 24.5f;
break; IEnumerator Spawn(){
default : float rand_num;
break;

int rand_-spawn;

} S while (true){
new_flash.transform . position = rand.num — Random .

new Vector3 (x-pos, 17, 30); Range(min_speed , max_speed);
lf(Inpu-t,anyKey){ yield return new
new.child_count = 1; WaitForSeconds (rand-num);
new_flash.transform.
GetComponent<EliminateFlash>

rand_-spawn = Random.
().enabled = false; Range (0, 4);
¥ switch (rand_spawn){
} case 0:

78

GameObject barrel_-copy =
Instantiate <GameObject>(barrel);
barrel_copy .transform.parent =
gameObject . transform ;
break;
case 1:
GameObject log_copy =
Instantiate <GameObject>(log);
log_copy .transform . parent =
gameObject. transform ;
break;
case 2:
GameObject book_copy =
Instantiate <GameObject>(book);
book_-copy.transform.parent =
gameObject. transform;
break ;
case 3:
GameObject ball_copy =
Instantiate <GameObject>(ball);
ball_copy .transform.parent =
gameObject . transform ;
break;
default:
break ;
b
b
b
}
SpeedShow.cs

using System.Collections;

using System. Collections . Generic;

using UnityEngine;
using TMPro;

public class SpeedShow
MonoBehaviour {

private bool chk_gradual;
private bool chk_change;
private bool chk;

void Start () {
chk = false;

chk_gradual = true;
chk_change = false;
}

void Update () {

if (GetComponent<Canvas
Group >().alpha <= 0f){
GetComponent<Canvas
Group >().alpha = 0f;

if (chk){
GetComponent<Canvas
Group >().alpha = 1;
chk = false;

} else {
GetComponent<Canvas
Group >().alpha —= (Time.
deltaTime * 0.8f);

¥

}

public void show_speed(float
multiplier){
chk = true;

if (multiplier == 3.0f){
GetComponent<TextMeshPro
UGUI>().text = ”Maximum

limit reached!”;

} else if(multiplier == 0.0f){
GetComponent<TextMeshPro
UGUI>().text = ”"Minimum limit
reached!”;

} else {
GetComponent<TextMeshPro
UGUI>().text = "Forward speed x ”
+ multiplier;

b

b

¥

SummonPlayerScript.cs

using System.Collections;
using System. Collections . Generic;
using UnityEngine;

public class SummonPlayerScript
MonoBehaviour {

public GameObject tile-1;

public GameObject tile-2;

public GameObject speed-controls;
private float player_y;

private float tile_y;

void Start () {
player_.y = 0.0f;
tile.y = 0.0f;

void Update () {

player_.y = transform.
localPosition.y 4+ Time.
deltaTime * 5f;

tile_,y = tile_1.transform.
localPosition.y + Time.delta
Time * 0.5f;

if (player.y < —65f){
transform.localPosition = new
Vector3(transform.localPosition .x,

player_.y , transform.localPosition.z);

tile_1.transform.localPosition =
new Vector3(tile_1.transform.
localPosition .x, tile_y , tile_1.
transform.localPosition.z);
tile_2 .transform.localPosition =
new Vector3(tile_2.transform.

localPosition.x, tile_y , tile_2.
transform.localPosition.z);
} else {

tile_1.transform.localPosition =
new Vector3(tile_1.transform.
localPosition.x, 3f, tile_1.
transform.localPosition.z);
tile_2 .transform.localPosition =
new Vector3(tile-2.transform.
localPosition.x, 3f, tile_-2.
transform.localPosition.z);
GetComponent<PlayerMovement>
().enabled = true;
speed_controls.SetActive (true);
GetComponent<SummonPlayer

Script >().enabled = false;

}

¥
}

TondellPlayerDirection.cs

using System. Collections;
using System. Collections . Generic;
using UnityEngine;
using UnityEngine.UI;
using TMPro;
using GoogleVR.VideoDemo;

public class TondellPlayerDirection
MonoBehaviour {

public GameObject right_direction;
public GameObject left_direction;
public GameObject front_-wall;
public GameObject instructions;
public GameObject objective_good;
public GameObject reminder;
public AudioClip objective-1;
public AudioClip objective_2;
private float dirNum;

private float pressed_key;
private bool chk_found;

private bool chk_start;

private Vector3 screenPoint;

void Start () {

chk_found = false;

chk_start = false;

dirNum = 0.0f;

pressed_key = 0.0f;
objective_good .GetComponent
<TextMeshProUGUI>().text =
”Controls will only apply once
the voice is done speaking.”;
objective_good .GetComponent
<CanvasGroup >().alpha = 1;
objective_good .transform . parent.
gameObject . GetComponent
<AudioSource >().clip = objective_1;
objective_good .transform.parent.
gameObject . GetComponent
<AudioSource >().Play ();

}

void Update () {
if (chk_found && !chk_start &&
(objective_good == null ||

(objective_good != null & & !objective_

good . transform . parent.gameObject.
GetComponent<AudioSource > ().
isPlaying))){

objective_good .GetComponent

<TextMeshProUGUI > ().text = ”Press any
button if you understand the objective

79

to start the game”;

if (pressed_key+1.0f <= Time. time &&
Input.anyKey){

objective_good .GetComponent<Canvas

Group >().alpha = 0;

reminder . GetComponent<CanvasGroup>

().alpha = 0;

chk_start = true;

b

¥

screenPoint = GetComponent<Camera>
(). WorldToViewportPoint (front_wall.
transform . position);

bool onScreen = screenPoint.z > 0

&& screenPoint.x > 0 && screenPoint.x
< 1 && screenPoint.y > 0 &&
screenPoint.y < 1;

if (!onScreen){
right_direction.SetActive(true);
left_direction.SetActive(true);

dirNum = AngleDir(transform . forward ,
front_wall.transform . position — transform.
position , transform .up);

if (dirNum == 1){

left_direction .transform.localEulerAngles
= new Vector3(0f, 0f, left_direction .
transform.localEulerAngles.z);
right_direction .transform.localEulerAngles
= new Vector3(0f, Of, right_direction.
transform .localEulerAngles.z);

} else {

left_direction .transform.localEulerAngles
= new Vector3(0f, 180f, left_direction.
transform.localEulerAngles.z);
right_direction .transform.localEulerAngles
= new Vector3(0f, 180f, right_direction.
transform.localEulerAngles.z);

if (transform.localRotation.x > 0.3f){
left_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform .localEulerAngles.y, 90f);
right_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform.localEulerAngles.y, 90f);

} else if(transform.localRotation.x

< —0.3£){

left_-direction .transform.localEulerAngles
= new Vector3(0f, left_direction.

transform.localEulerAngles.y, —90f);
right_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform.localEulerAngles.y, —90f);

} else {

left_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform .localEulerAngles.y, 0f);
right_direction .transform.localEulerAngles
= new Vector3(0f, left_direction.
transform .localEulerAngles.y, 0f);

b

} else {
right_direction.SetActive(false);
left_direction.SetActive(false);

if (! chk_-found && (objective_good null
|| (objective_good != null && !objective_
good . transform . parent.gameObject .
GetComponent<AudioSource >().isPlaying))){
if (objective_good != null){
objective_good .GetComponent<Canvas
Group > ().alpha = 0;

}

if (Input.anyKey){

if (objective_good != null){
objective_good . GetComponent<Canvas
Group>().alpha = 1;

instructions .GetComponent<TextMesh

ProUGUI>().text = ”"Match the lighted
pair of arrows to the flashing lights by
pressing any button for 3 seconds”;

if (objective_good != null){
objective_good .transform . parent.
gameObject . GetComponent<AudioSource>
().clip = objective_2;
objective_good .transform . parent.
gameObject . GetComponent<Audio

Source >().Play ();

reminder . GetComponent<Canvas
Group > ().alpha = 1;

} else {
chk_start = true;
¥

chk_found = true;

80

pressed_key = Time.time;

b

b

b

}

public bool chk_start_game (){
return chk_start;

¥

public float AngleDir(Vector3 fwd,

Vector3 targetDir, Vector3 up) {
Vector3 perp = Vector3.Cross (fwd,
targetDir);
float dir = Vector3.Dot(perp, up);

if (dir > 0f) {

return 1f;

} else if (dir < 0f) {
return —1f;

} else {

return Of;

}

}

}

ToucanScript.cs

using System.Collections;

using System . Collections . Generic;
using UnityEngine;
public class ToucanScript

MonoBehaviour {

private bool chk;
void Start () {

chk = false;

¥

void Update () {

transform .localPosition 4=
transform . forward * 0.05f;
transform.localPosition =
new Vector3(transform.position.x,
70, transform.position.z);

if (transform . position.x >= 200.0f
|| transform.position.x <= 0.0f ||
transform . position.z >= 200.0f ||
transform . position.z <= 0.0f){

chk = true;
¥

if (chk){
chk = false;

transform.eulerAngles = new
Vector3 (transform.eulerAngles.x,
transform.eulerAngles.y+180f,
transform.eulerAngles.z);

}

}

}

TrackRightDirection.cs

using System.Collections;

using System . Collections. Generic;
using UnityEngine;
public class TrackRightDirection

MonoBehaviour {
public GameObject wall;

O {3

void Update () {

transform .LookAt(wall.transform);
3

}

void Start

TutorialsScript.cs

using System;
using UnityEngine;
using UnityEngine.UI;

public class
MonoBehaviour ,

TutorialsScript
TimedInputHandler {

public GameObject main_menu;
public GameObject directions;

public void HandleTimedInput (){
main_-menu . GetComponent<Canvas>
().enabled = true;

GameObject tutotrials = transform.
parent . parent.parent.parent.gameObject;

directions.SetActive(true);

for(int i = 0; i < tutotrials.
transform.childCount; i++){
tutotrials.transform.GetChild (i).
gameObject. SetActive (false);

}
}

‘WalkingScript.cs

using System.Collections;
using System. Collections . Generic;
using UnityEngine;

public class WalkingScript
MonoBehaviour {

public GameObject speed;
public Transform vrCamera;
public Transform plane;
private float dist;
private float multiplier;
private bool chk;

void Start () {
dist = 0.0f;

multiplier = 1.0f;

chk = true;

¥

void Update () {

if (chk){

if (Input.GetKeyDown (KeyCode.
JoysticklButtonO) || Input.

GetKeyDown (KeyCode.A)) {

if (multiplier <= 2.0f){
multiplier += 0.1f;

speed . GetComponent<SpeedShow>
().show_speed (multiplier);

} else {

speed . GetComponent<SpeedShow>
().show_speed (3.0f);

3
} else if(Input.GetKeyDown(KeyCode.
oysticklButton3) || Input.

GetKeyDown (KeyCode.D)) {
if (multiplier >= 1.1f){
multiplier —= 0.1f;

speed . GetComponent<SpeedShow>
().show_speed (multiplier);

} else {

speed . GetComponent<SpeedShow>
().show_speed (0.0f);

b

¥

transform.localPosition 4+= vrCamera.
transform . forward = 0.03f % multiplier;

if (transform . position.x >= 175f){
transform.localPosition = new
Vector3(175f, transform.position.y,
transform . position.z);

} else if(transform. position.x

<= 25f){

transform.localPosition = new
Vector3(25f, transform.position.y,
transform . position.z);

}
if (transform . position.z >= 175f){
transform.localPosition = new

Vector3 (transform . position .x,
transform . position.y, 175f);
} else if(transform.position.z
<= 25f){
transform.localPosition = new
Vector3 (transform . position .x,
transform . position.y, 25f);

dist = Vector3.Distance(plane.
position , transform.position);
if (dist <= 10.0f){

chk = false;

}
¥
¥
}

81

XI. Acknowledgement

Bago magsimula ang SP proposal, desidido na ako na gawing parte ng thesis ko
ang paggamit ng Machine Learning. Ang sabi kasi nila, pag 'yon ang topic mo,
mataas ang chance na maka-graduate ka on time. Kaya ayon, nag-download na
ako ng maraming videos ni Andrew Ng mula sa Coursera para mas maintindihan
ko agad kung paano gumagana ’yon, nagsagot ng mga quiz tungkol sa Machine
Learning, at naghanap ng mga journals para makahanap ng topic para sa thesis.
Pero bakit ganon, tila nagpapanggap lang ako na naiintindihan ang mga ito kasi
wala talaga akong maintindihan. Nag-crash course naman kami tungkol dito noon
kay Sir Marvin, pero bakit parang bago lahat ng concepts? Kaya sinukuan ko
agad ang Machine Learning. Sayang nga 'yung mga videos na na-download ko eh.
Nagtanong nalang ako sa ibang meron nang topic, naghabaka-sakali na makaisip
ng topic mula sa kanila. At sa wakas, may nahanap ako. Salamat kay Angelene
Ronquillo dahil sa Glaucoma VR topic niya, na-inspire ako na maghanap din ng
iba pang eye disorders na pwedeng i-translate ang treatment procedures nito sa
VR.

At ’di nga nagtagal, dumating sa buhay ko ang topic na Strabismus. Sabi
nila, madali ang buhay kapag Virtual Reality ang maging thesis mo, kasi kaya
raw i-cram within 1 month ang buong thesis. Kaya mula Machine Learning,
niyakap ko nang buong buo ang Virtual Reality. Desidido na ko. Vritual. Reality.
Ang. Magiging. Topic. Ko. Kaya nagbasa na ako ng mga journals tungkol sa
Strabismus at VR. Buti nalang, wala pang VR application para sa strabismus
kaya pwede talagang gawing topic. Nakapagpasa ako ng Chapter 1 draft ko on
time, at napunta ako sa magandang adviser ko na si Ma’am Perl na hindi ako
pinabayaan hanggang dulo. Tinanggap niya ako bilang advisee kahit hindi niya
forte ang VR. Kaya, ma’am, maraming salamat. Nagabayan mo ako sa maraming
bagay, lalo na sa structure at strabismus part ng thesis ko. Nagpa-consult din
ako sa Pro sa VR na si Sir Marvin para sa VR side ng thesis ko. Sir, maraming

salamat dahil kahit hindi mo ako advisee, pumayag kang magpaistorbo. Dabhil

82

sayo, mas naging solid 'yung VR part ng thesis ko. Sinama mo rin ako sa Team VR
mo para mabantayan kami, makapag-collaborate, at gumawa nang magkakasama
dahil ganon ang ginawa ng unang Team VR mo. Hindi ako nagsisi na sumama
madalas sa Team VR mates ko na sina Red Quito at Angelene kahit na madalas
ay daldalan lang ang nagagawa natin, kasi, sa mga panahong sama-sama tayong
gumagawa, nakakapag-focus pa rin tayo sa SP natin. Kahit mahal ang mga tinda
sa Coreon Vito at Tim Horton’s, okay lang, kasi nagkakaroon naman tayo ng
progress sa SP. Kaya, salamat peeps.

Lumipas ang panahon, at dumating na ang oras para sa SP proposal. Kabado
ang lahat. Hindi pa ready ang iba kahit tapos na, kasi, sa mismong SP proposal,
walang pwedeng maging handa. Hindi alam ang mga itatanong ng panel, kaya
hindi mo talaga masasabi na ready ka. Isa lang ang sigurado, basta may go signal
ka, pasado ka. Kaya maraming salamat uli, Ma’am Perl, dahil nabigyan mo ako
ng go signal noong 2 days before ng proposal ko.

Noong turn ko na para mag-propose, kulang ako sa tulog, lutang, at sabaw.
Pero nalampasan ko ang proposal kahit sobrang bigat ng semestreng iyon para sa
akin. Nakaya ko pa rin kahit sobrang wasak ko na. Hindi ko iyon magagawa kung
wala ang tulong ng Google, IEEE, sci-hub, CAS Student, at Cisco internet sa
RH114/108. At para makagawa ng thesis nang mas komportable, sinamahan ako
ng musika ng TwentyOnePilots, Kodaline, Paramore, Parachute, Coldplay, MCR,
Green Day, Imagine Dragons, Callalily, Silent Sanctuary, Eraserheads, Parokya ni
Edgar, Ben&Ben, IV of Spades, December Avenue, Autotelic, at nina Ed Sheeran,
James Arthur, James Bay, ni idol Tyler Joseph, at ng kamukha kong si Zayn Malik.
Maraming maraming salamat sa inyo.

Dumating ang huling semestre, at panahon na para sa pag-develop ng thesis.
Nanatili kong kasama ang mga nabanggit kanina. Sabi ko sa sarili ko, bago mag
March, dapat tapos ko na ang thesis ko. Kaya January palang, nagsipag na ko
gumawa. Nagpuyat agad ng maraming gabi para hindi na maging abala ang thesis

kapag malapit nang matapos ang semestre. Dumating ang March, hindi pa rin

83

ako tapos. May pagkakataon pang nabura ko ang project ko. Walang back-up.
Walang kahit ano. Nanlumo ako sa nangyari. 'Yung pinaghirapan ko ng ilang
buwan, nawala lang agad sa loob ng ilang minuto. Na-badtrip ako. Mangiyak-
ngiyak dahil ang sakit, ang sakit sakit. Pero 'di ako nagsayang ng maraming oras,
sinimulan ko uli sa umpisa. Pinilit kong tandaan kung paano ko ginawa ’yung mga
nagawa ko dati. At sa loob ng dalawang araw, nagawa ko uli ang ilang buwan
na pinaghirapan ko. Kaya simula noon, sa tuwing matatapos akong gumawa ng
thesis para sa araw na ’'yon, gumagawa agad ako ng back-up. Sa ngayon, meron
akong 53 back-ups in total. Naging magaan din ang semestreng ito dahil hindi
naging pahirap ang ibang subjects ko. Kaya para sa mga professor ko na hindi
nagpahirap, maraming salamat sa inyo. Dahil sa inyo, nagkaroon ako ng mas
maraming oras para sa thesis ko.

Lumipas ang panahon, at dumating na ang oras para sa SP defense. Hindi
ko inakala na aabutin ang paggawa ko ng SP ng isang araw bago ang defense ko.
Ang before March na sinabi ko ay naging before defense day ko. Hindi ko inakala
na halos apat na buwan akong gumawa ng thesis ko. At mas hindi ko inaakala na
nagawa kong lampasan ang SP defense. Salamat uli kay Angelene dahil pumayag
siyang ibili ako ng Jollibee S5 (burger steak + spaghetti) para sa ibibigay ko sa
panel. Salamat din sa mga panel ko dahil hindi niyo ako masyadong ginisa.

Tapos na ang thesis defense ko. Final requirement nalang, ilang exams, at
matatapos na rin ang huling semestre ko sa UPM. Sobrang malalaking pagsubok
ang hinarap ko, at ilang araw nalang, malalampasan ko na rin mga ito. Gusto
kong magpasalamat sa mga mabubuti at malolokong kaibigan ko. Sa Mumshiez,
mga marz na sina Kenneth Tabornal at Grace Mora, pati na rin si Michael Ramos,
maraming salamat dahil sa kabila ng hirap ng semestreng to, nandiyan kayo para
magloko. Salamat sa mga kalokohan niyo dahil mas naging madali ang semestre
ko. Salamat sa pagkakaibigan na ibinigay niyo sa akin.

At para sa huling bahagi ng Acknowledgement ko, gusto kong pasalamatan

ang pamilya ko na laging nandiyan para sa akin. Sa ate ko na si Princess Jayne

84

na kahit laging busy dahil nagtatrabaho na, maraming salamat - lalo na sa pag-
goodluck sa akin bago ako sumalang sa defense dahil nabuo ’yung loob ko na
makaya ang defense ko, kaya aylabyu. Sa mga pamangkin ko na sina Aedan at
Gabby, labyu mga boys, kayo 'yung nagpapagaan at nagpapalala ng bawat araw na
gumagawa ako ng thesis kasi ang kukulit niyo. Sa kuya ko na si Gerome, salamat,
kuya dahil kung hindi dahil sa’yo, wala ako sa UP ngayon. Ikaw ’yung nagpilit
sa akin na piliin ang UP kaysa UST, na alma mater mo, kahit na desidido na
akong piliin ang UST noon, kasi sabi mo, UP ang para sa akin. Dahil don, labyu
kuya. At sa napakaganda kong mama ko na si Gemma, maraming salamat dahil
inasikaso mo ang mga requirements ko para makapasok ng UP kasi hindi ko pa kaya
gawin 'yung mga ’yon nang mag-isa. Salamat sa mga luto mong masasarap, dahil
nakakalimutan kong nagti-thesis pala ako. Salamat sa bawat paalala mo na wag
ako magpuyat dahil masama sa kalusugan - hindi ko nagagawa dahil napupuyat
pa rin ako para sa thesis ko. Sa bawat pagpunta niyo dito sa Astral ni Aedan,
kahit na nakakapagod magbyahe, sinasamahan niyo pa rin ako dito para hindi ako
mag-isa. Salamat sa bawat pag-asikaso sa akin, sa pag-prepare ng mga damit ko
bago bumalik ng Maynila, sa pagplantsa ng polo ko para sa speech performances
ko at defense, at sa pagpapaalala sa akin na wag magpalipas ng gutom - kahit
minsan nalilipasan ako ng gutom dahil sa thesis. Labyu ma. Sobrang malalaking
bagay para sa akin ang mga maliliit na bagay na ginagawa niyo para sa akin.

Mahal na mahal ko kayong lahat. Para sa inyo ang tagumpay kong ito.

85

	Acceptance Sheet
	Abstract
	List of Figures
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Theoretical Framework
	Strabismus
	Vision Therapy in Strabismus
	Tondel Arrows
	Lazy Eight
	Brock String
	Virtual Reality
	VR Box
	VR Box Controller
	Android
	Google VR SDK

	Blender
	Unity

	Design and Implementation
	Use Case Diagram
	Context Case Diagram
	Activity Diagram
	Flowchart
	Technical Architecture

	Results
	Main Menu
	Parameters
	Tutorials

	Virtual Environment
	Tondell Arrows Technique
	Lazy Eight Technique
	Brock String Technique

	Force Stop
	Post Game Screen

	Discussion
	Conclusions
	Recommendations
	Bibliography
	Appendix
	Acknowledgement

