Please use this identifier to cite or link to this item: http://dspace.cas.upm.edu.ph:8080/xmlui/handle/123456789/460
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQuisote, Micah-
dc.date.accessioned2019-08-17T13:06:27Z-
dc.date.available2019-08-17T13:06:27Z-
dc.date.issued2018-05-
dc.identifier.urihttp://dspace.cas.upm.edu.ph:8080/xmlui/handle/123456789/460-
dc.description.abstractRadiolarian assemblages have played a signi ficant role as a biostratigraphic and paleoenvironmental tool used in age-dating, correlation, and studying deep-sea sedimentary rocks that lacks calcareous fossils. The species rapid classi fication would allow micropaleontologists to proceed further into studying the structure and way of living of these Radiolarians. RaDSS V02 is a deep learning based system that could help researchers in classifying Radiolarian species' microfossil images through image processing and convolutional neural network.en_US
dc.language.isoenen_US
dc.subjectRadiolarianen_US
dc.subjectDeep Learningen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectImage Recognitionen_US
dc.subjectImage processingen_US
dc.titleRaDSS V02: A Radiolarian Classifier Using Convolutional Neural Networken_US
dc.typeThesisen_US
Appears in Collections:Computer Science SP

Files in This Item:
File Description SizeFormat 
QUISOTE, Micah P..pdfSP Document4.06 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.