
University of the Philippines Manila

College of Arts and Sciences

Department of Physical Sciences and Mathematics

Fully Homomorphic Encryption-based Machine

Learning for Secure Multi-class Tumor

Classification

A special problem in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Gwyneth Rose C. Rosario

June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser No

Available only to those bound by confidentiality agreement No

ACCEPTANCE SHEET

The Special Problem entitled “Fully Homomorphic Encryption-based
Machine Learning for Secure Multi-class Tumor Classification” prepared and sub-
mitted by Gwyneth Rose C. Rosario in partial fulfillment of the requirements for
the degree of Bachelor of Science in Computer Science has been examined and is
recommended for acceptance.

Richard Bryann L. Chua, M.Sc.
Adviser

EXAMINERS:
Approved Disapproved

1. Avegail D. Carpio, M.Sc.
2. Perlita E. Gasmen, M.Sc. (cand.)
3. Ma. Sheila A. Magboo, Ph.D. (cand.)
4. Vincent Peter C. Magboo, M.D.
5. Marbert John C. Marasigan, M.Sc. (cand.)
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.

Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences

Department of Physical Sciences and Mathematics
and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean

College of Arts and Sciences

i

Abstract

ML outsourcing is one approach to building AI solutions but involves sharing a client’s

data with external parties and thus, poses risks on data privacy. Genomic data

holds properties that distinguish it from traditional medical data and make it more

sensitive with regards to data confidentiality. As patients’ information is at risk with

ML outsourcing, there is a need to build a solution that would address this problem.

That is, a system that would allow for ML outsourcing in the medical field that would

ensure data confidentiality. This paper proposes fully homomorphic encryption-based

machine learning to achieve a secure multi-class tumor classifier using ConcreteML.

Keywords: Fully Homomorphic Encryption, Tumor Classification, Machine Learning, Pri-

vacy, Security, Genomic Data

Contents

Acceptance Sheet i

Abstract ii

List of Figures vi

List of Tables vii

I. Introduction 1

A. Background of the Study . 1

B. Statement of the Problem . 3

C. Objectives of the Study . 5

D. Significance of the Project . 6

E. Scope and Limitations . 6

F. Assumptions . 6

II. Review of Related Literature 8

III. Theoretical Framework 19

A. Homomorphic Encryption . 19

B. Fully Homomorphic Encryption 19

C. Workflow of ConcreteML . 21

D. Machine Learning Models in ConcreteML 24

E. Logistic Regression . 24

F. Special Features of Genomic Data 25

IV. Design and Implementation 26

A. Dataset Description . 26

B. Preprocessing Techniques . 26

iii

C. Machine Learning Model . 27

D. Performance Metrics . 27

E. ML Model Training Workflow . 28

F. Input File Structure . 30

G. Use Case . 31

H. Threat Model . 32

I. System Architecture . 32

J. Technical Architecture . 36

V. Results 37

A. Performance of the Machine Learning Models 37

A..1 Test Machine Specifications 37

A..2 Model Accuracy and F1 Score 37

B. Client-Server System . 39

B..1 Client-Side . 40

B..2 Server-Side . 42

VI. Discussions 43

A. ConcreteML Performance . 44

A..1 Running Time Analysis . 44

A..2 Error Analysis . 48

A..3 Ciphertext Size and Key Size 51

A..4 Additional Investigation on Error Analysis 54

B. System Assessment . 56

VII. Conclusions 59

VIII. Recommendations 60

IX. Bibliography 61

iv

X. Appendix 73

A. Source Code . 73

XI. Acknowledgment 93

v

List of Figures

1 Overall communications protocol to allow cloud deployment of Con-

crete ML model [1]. 23

2 General workflow of the ML model development. 30

3 Use case diagram of the client-server system. 31

4 Detailed workflow of the client-server system. 34

5 Client GUI upon launching. 40

6 Client GUI with status outputs after FHE prediction. 41

7 Server home page. 42

8 Confusion matrices of the models in run 1. 49

9 Confusion matrices of the models in run 2. 50

10 Confusion matrices of the models in run 3. 51

11 Similarity on the prediction of the RF models on the entire test set. . 55

vi

List of Tables

1 Device and system specifications of the machine used for performance

evaluation of the ML models. 37

2 Performance metrics of each LR model in each run. 37

3 Performance metrics of each RF model in each run. 38

4 Performance metrics of each SVC model in each run. 38

5 Average of performance metrics of each model for all runs. 39

6 Training time of plaintext models and quantization time of quantized

model (in milliseconds). 44

7 Increase in training time of the models. 44

8 Compilation time of quantized plaintext models into FHE (in millisec-

onds). 45

9 Prediction time of models (in milliseconds) for the entire test set. . . 46

10 Increase in prediction time for the entire test set of the models. . . . 46

11 Prediction time of models (in milliseconds) per sample. 47

12 Increase in prediction time per sample of the models. 47

13 Average slow down in prediction time of the models for the entire test

set and per sample. 47

14 Comparison between ConcreteML FHE and 128-bit security level RSA

encryption key size (in kilobytes). 52

15 Size of clear input for encryption over five runs (in kilobytes). 53

16 Comparison between ConcreteML FHE and standard encryption ci-

phertext size (in kilobytes). 53

17 Performance metrics of RF models where ConcreteML performed bet-

ter than scikit-learn. 54

18 Condition number of the models in the RF algorithm case where Con-

creteML performed better than scikit-learn. 56

vii

I. Introduction

A. Background of the Study

A tumor is a solid mass of abnormal tissue formed in the body when cells divide and

grow excessively. It can affect different organs, bones, tissues, and other parts of the

human body. Tumors can either be benign or malignant. Benign tumors are non-

cancerous and aren’t much life-threatening while malignant tumors are cancerous and

can spread into the body. Furthermore, tumors may be present in people, regardless

of their ages. While not all tumors are cancerous, they can still affect the human

body by the pressure they put on organs, bones, tissues, etc. Treatments provided

on a tumor also depend on factors such as its type, subtype, and location [2]. In

line with this, tumor classification is essential in understanding tumor cells which in

return may help in providing new solutions to diagnosis and treatment methods for

cancer patients [3].

Diagnosis of a certain disease plays a vital role in the medical system. Not only

does it give awareness about the condition of the patient, it is also helpful in finding

out suggested care and treatment choices for a patient. Medical diagnosis serves as a

guide for medical professionals in their decision making processes. While this process

has significantly improved over time with technology, diagnostic errors may occur

from misjudgments or misinterpretations and other factors. Such errors may be min-

imized with machine learning (ML), one of the fastest-growing technical disciplines

in the present. Through using this technique in analytics and data science, medical

professionals can be provided with more knowledge about a disease to give better

care for patients and at the same time minimize the errors [4].

In the area of clinical genomics, pathogenicity - which refers to the probability

of a genetic variant being disease-causing - is known to be one of its prime con-

cepts. While there are specific established guidelines for pathogenicity, laboratories

1

still stumble upon disagreements on classifying a variant’s pathogenicity status due to

differences in assertions. With machine learning applied to clinical genomics, perfor-

mance metrics related to prediction quality can be optimized. ML algorithms are also

said to be well suited for problems like improving and reframing pathogenicity con-

cepts that involve complex and huge amounts of data. For example, supervised ML

approaches improved support vector machine classification of deleterious variants as

well as scoring pathogenicity in hypertrophic cardiomyopathy. Thus, the practice of

ML is acknowledged vital towards the expanding domain of clinical genomics research

[5].

Unlike the traditional symptom-driven approach in medicine, precision medicine

addresses the problem that patients may react differently to the same kind of medica-

tion. It paved the way for improving healthcare with developing specific treatments

based on clinical data associated with a patient and his genomic data. Through

clinical genomics, gene-disease relationships are studied and can reveal abnormalities

and patient susceptibility depending on the disease and the patient himself. By an-

alyzing such information, precision medicine improves with developing more specific

treatment options as well as potential medications for rare diseases. Currently, the

integration of different approaches in precision medicine is being considered for fur-

ther development. This enables a more in-depth understanding of a medical case and

can lead to a more accurate and precise treatment for a particular condition [6]. An

example of this is the integration of clinical genomics and artificial intelligence (AI),

specifically machine learning.

Through the years, countless studies have already been made with regards to

the application of ML in different domains. Since machine learning entails data

processing, protection of sensitive data especially during analysis must be ensured

to avoid information leakage. However, standard practices (e.g. anonymization)

aren’t enough due to lack of guidance on how to use these available methods as

2

well as differences in their use cases. For example, k-anonymity is deemed suitable

for data publishing while differential privacy is recommended for interactive queries.

Both methods also suffer from drawbacks. Inference attacks and homogeneity attacks

are still possible with k-anonymity and high dimensionality caused by extra quasi

identifiers may lead to increased utility loss. Differential privacy has also received

criticisms due to the large information loss that comes with its implementation [7, 8,

9].

In the case of using ML in healthcare, the confidentiality of patients’ informa-

tion is put at high risk. While some treat genomic data similar to traditional health

data (those found in medical records), it has properties that distinguish it namely:

health/behavior, static, unique, mystique, value, and kinship [10]. With DNA, di-

agnosing conditions is possible because it has information on an individual’s health

and behavior. Tests conducted using such data are capable of determining which

conditions are likely present in a person. Furthermore, this information is static and

has long-lasting value. Genomic data of an individual has little changes over time.

Thus, the information it holds can be used for long periods of time unlike traditional

medical data such as blood pressure and glucose level whose value tends to decline

with time. Genomic data also reveals family relationships since part of it is common

with an individual’s blood relatives. At the same time, it is unique to a person, which

enables its use in forensics. With these properties, it is important to address the in-

creasing concerns in its privacy that goes in parallel with its increasing availability

for genomic research.

B. Statement of the Problem

With the wide range and rapid growth of machine learning applications, ML be-

came one of the most promising and common commercial approaches in building AI

solutions. ML outsourcing focuses on building ML models that satisfies a client’s

3

specifications or requirements and allows for reduced time and cost [11]. At the same

time, this approach does not ensure data confidentiality.

ML outsourcing involves sharing of a company or a client’s data with third parties

and is a potential risk due to data privacy regulations. When data breach happens, the

client may face penalties such as fines and lose credibility due to reputation damage.

For patient health information, numerous laws are present in different countries to

address data breach. In the US, the Department of Health and Human Services (HHS)

issued the Health Insurance Portability and Accountability Act of 1996 (HIPAA), a

law that requires creation of national standards that would protect sensitive health

information of patients from unauthorized disclosure. It entails a privacy rule with

established standards of an individual’s rights to understand and control how his

health information is used [12]. Australia also implemented a similar law, Privacy

Act of 1988, that covers privacy for health service providers (including those who hold

health information) and provides protections on handling of health information [13].

The General Data Protection Regulation (GDPR) is a healthcare privacy legislation

in the European Union that considers health-related data as a special category of data

and provides definition of such data in relation to data protection purposes [14]. In the

Philippines, Republic Act No. 10173 also known as Data Privacy Act of 2012 protects

an individual’s personal information in information and communications systems both

in the government and the private sector [15]. This covers implementation of Joint

Administrative Order No. 2016-0002, a health privacy code that provides guidelines

on health information exchange in the country [16].

In the case of medical practice, patients’ information are subjected to risk of data

privacy when there is ML outsourcing. Hence, the need for a solution for preserving

the privacy of genetic data when it is used in tumor classification using ML techniques.

Homomorphic encryption (HE) is an encryption technique that allows computa-

tions to be performed over encrypted data without the need to decrypt them first

4

[17]. The application of HE in ML is proposed as a solution so that confidential data

could be shared with external parties and clients could access computational services

securely without the problem of violating data privacy regulations.

C. Objectives of the Study

The study aims to build a system that implements FHE-based logistic regression for

multi-class tumor classification using genomic data.

The proposed system had two entities: a client and a server. A medical institution,

such as a hospital, that holds genomic information of patients and would outsource

ML computation for tumor classification is represented as a client while an ML service

provider is represented as the server. The following functionalities were implemented

in the proposed system:

1. Allow the medical institution (client) to

(a) Encrypt genomic data of a patient;

(b) Send encrypted genomic data to the ML service provider for tumor classi-

fication; and

(c) Receive and decrypt the classification result returned by the ML service

provider.

2. Allow the ML service provider (server) to

(a) Accept encrypted genomic data from the medical institution;

(b) Perform FHE-based multi-class tumor classification on the encrypted ge-

nomic data; and

(c) Send the encrypted result of FHE inference back to the medical institution.

5

D. Significance of the Project

Having a secure multi-class tumor classification system is beneficial for both medical

professionals and patients. The proposed solution could help medical professionals

in their decision making choices with regards to care and treatment that they would

suggest to patients. In particular, the use of genomic data for tumor classification

would provide development to treatments, such as drugs and therapies, that are

tailored to a specific type of tumor and could lead to advancements in precision

medicine [18]. In return, this study also aids to improvements in the newly rising

medical specialty of genomic medicine, which is linked with precision medicine [19].

Additionally, the integration of HE on the system would ensure confidentiality and

privacy preservation of patients’ information.

E. Scope and Limitations

1. The study used brain cancer gene expression data from CuMiDa, a curated

microarray database for benchmarking and testing of ML approaches in cancer

research. Thus, no data collection was conducted.

2. The study used genomic data for the training and testing of the model. Other

types of data such as CT Scans and MRIs were not used in the implementation.

3. The study used an existing FHE ML library, specifically ConcreteML, in imple-

menting the proposed system.

4. The study did not cover determination of treatment based on the type of tumor

that was classified.

F. Assumptions

1. The client will only input encrypted data to the server.

6

2. The client will not use other types of data other than genomic data.

7

II. Review of Related Literature

Machine learning application in healthcare has always been an active topic in the

research industry for years up until the present. It is known to have many clinical

applications, such as high-risk patient identification, early detection of diseases, di-

agnosing conditions based on specific data, etc. [20]. Its application in the medical

domain helps in suggesting improved healthcare services while being able to minimize

errors from misjudgments or misinterpretations [4]. Numerous studies have been con-

ducted on the application of ML in tumor and cancer classification. Various ML

algorithms have been implemented, some including a hybrid of multiple algorithms,

and various types of datasets have also been used for comparisons.

Some studies involved the use of image-based data, such as magnetic resonance

imaging (MRI) and computed tomography (CT) scan. For instance, Tang et al. [21]

used MRIs for an image-based classification of tumor type as well as its growth rate

prediction. ML models used in the study were decision tree, random forest, and

support vector machine (SVM). The results are promising in terms of achieving a

noninvasive marker for tumor type classification. Another image-based tumor classi-

fication study was performed by Rinesh et al. [22] using hyperspectral imaging (HSI).

In this study, tumor localization in the brain was analyzed through performing dif-

ferent operations on hyperspectral images. By using k-nearest neighbors, k-means

clustering, and multilayer feedforward neural network (MFNN), they were able to

locate the tumor and label the areas of the brain. The proposed method was able

to address the brain-molecule optimization process while minimizing error and trial

techniques. In 2020, a study by Assiri et al. [23] classified breast tumors using

an ensemble machine learning method. The data was obtained from the Wisconsin

Breast Cancer Dataset (WBCD) that was based on a digitized image of a fine nee-

dle aspirate of a breast mass [24]. The classifiers used in the ensemble classification

were simple logistic regression, SVM, and multilayer perceptron network. Hard vot-

8

ing mechanism was also implemented. Findings showed that the proposed method

outperformed state-of-the-art algorithms used in the WBCD, and can be considered

as a good starting point for image-based breast tumor classification.

The implementation of machine learning algorithms for tumor and cancer clas-

sification is also applicable to genomic data. The use of biological markers is being

practiced to determine more specific tumor types and subtypes, and to refine known

classifications of tumors, i.e. classifications of malignant tumors developed by World

Health Organization (WHO) and Union for International Cancer Control (UICC). By

refining these established classifications using molecular-genetic data, their applica-

tion can provide help in cancer management studies, cancer genomics, and precision

medicine [25].

Li et al. [26] performed pan-cancer classification using The Cancer Genome At-

las (TCGA) RNA-seq data. The TCGA dataset contains comprehensive molecular

profiles of 31 tumor types for 9,096 patients. Along with this, RNA-seq samples of

602 “normal” tissue adjacent to tumors (of 17 types) were also used for testing. The

study aimed to identify sets of genes with expression patterns that can distinguish

various tumor types using genetic algorithm (GA) for feature selection and k-nearest

neighbors (KNN) for the classification model. The proposed GA/KNN method is

capable of identifying gene signatures that separates different classes of samples and

reveals subtypes present in a class. The model was evaluated in two different ways.

A pan-cancer classification of all tumors regardless of genders of the samples identi-

fied many sets of 20 genes that were able to correctly classify 90% of the testing set.

Similar results were obtained when the model was evaluated by analyzing 23 non-

sex-specific tumor types for females and another separate analysis for males. Li et

al. inferred that these identified sets of genes may also become biomarkers for tumor

diagnosis and drug development. Comparing the results of evaluation from the tumor

samples with the “normal” samples showed that the top-ranked discriminative genes

9

in actual tumor samples reflect tumor-specific expression differences. They were also

able to identify genes that may be incorporated with sexual dimorphism of specific

cancer types.

With the emerging DNA microarray technology, molecular level research of tumors

continuously rises. Data mining from gene expression data provides a more in-depth

understanding of tumors at their genetic level. Furthermore, such data gives com-

prehensive information about disease pathology of tumors and comparison of genes

between normal or abnormal/diseased conditions. A study by Liu et al. [27] classi-

fied tumors via gene expression data and sample-expansion based deep learning (DL).

With the proposed sample expansion method, the problem of having rare DL-based

studies in tumor classification due to inadequate training samples of gene expression

data has been addressed. Feature selection was used to reduce the dimensionality

of data to be used. Expanded samples were then obtained through randomly clean-

ing of corrupted input several times. These expanded samples were then used in two

deep learning methods, Sample Expansion-Based Stacked Autoencoder (SESAE) and

Sample Expansion-Based 1-dimensional Convolutional Neural Network (SE1DCNN).

Testing was performed using three tumor datasets: breast cancer (30,006 genes on

20 samples), leukemia (12,600 genes on 60 samples), and colon cancer (2000 genes

on 62 samples). They showed that both methods were effective in tumor classifi-

cation as they achieved high classification accuracies on all three testing sets. This

implied that the corrupted samples from the expansion method were deemed useful.

Moreover, the expanded samples can generate a variety of gene combinations able to

determine biological processes and represent the classes more effectively.

Upon examining these existing studies, one can see advantages brought by us-

ing genomic data in the field of tumor classification. Previous image-based studies

achieved high performance measures on classifying tumors. However, they were not

able to reveal in-depth differences between known tumor types and were not able to

10

identify other possible types of tumors. Genetic data on the other hand, has the

potential to uncover these things. In addition to the goal of the studies to classify dif-

ferent tumor types, genetic data were able to reveal even more specific tumor subtypes

as well as potential gene expression markers, gene combinations, and tumor-specific

expressions that in return can be used as starting points for further studies of genetic

interactions and processes.

e-Healthcare is a newly rising concept in the medical and healthcare sciences. This

entails the integration of healthcare systems with information and communication

technology (ICT). One characteristic of an ideal e-Healthcare system is that it allows

for complete patient privacy. This covers provision of better data management to

avoid issues like information leakage, data breach, and the like. While e-Healthcare

offers advantages better than traditional healthcare methods, security and privacy

concerns, especially in the case of patients, are among the major reasons that hold

back its progress for practical applications [28].

Despite the progress of machine learning in tumor classification, one major prob-

lem that continues to be a concern is ensuring privacy-preserving computations of

data, especially in the case of ML outsourcing. As observed in the aforementioned

studies, they are greatly concerned with the performance of the classification models.

However, there are no in-depth discussions that mention addressing potential viola-

tion of privacy rights of patients when their data is shared with external parties for

computation processes.

In the area of machine learning, data collection and transfer to a central point

is necessary in training a model. This poses a risk of information leakage for data

with confidential and sensitive contents [29]. For instance, using genomic data holds

confidential genetic information of patients which may be disclosed during the process

of implementing ML techniques [30]. In return, this exhibits non-compliance with the

first among the three security goals that must be maintained in applications of big

11

data - confidentiality, integrity, and availability (CIA) [31].

One possible solution to address data privacy problems is through the use of fully

homomorphic encryption (FHE). FHE is a developing technology that supports arbi-

trary computations on encrypted data. Private machine learning has been gaining in-

terest and FHE allows the ideal learning from data while keeping itself private [32]. In

general, FHE is a type of homomorphic encryption (HE). HE is an encryption method

that allows computations to be performed on encrypted data without the need of de-

cryption. Similarly, the results returned by HE computations are encrypted and can

only be decrypted by the private key owner. FHE to be more specific, supports any

mathematical operation for an unlimited number of times [17]. With HE, the privacy

of data is preserved because no disclosure of information is involved [30]. HE was

also acknowledged as one of the central concepts for privacy-preserving computations

in Templ and Sariyar’s overview on methods for protecting sensitive data [7]. They

identified HE to be among the backbones of federated analysis applications including

banking, insurance, healthcare and medicine, retailing, and recommendation systems.

With its low disclosure risk, HE is a promising approach for ML predictions.

Before the advancements in FHE, there are other state-of-the-art privacy-preserving

techniques that are being used to address data privacy concerns as discussed by Mon-

dal et al. [33]. k-Anonymization avoids the data of an individual to be identifiable

by hiding within k similar records. While it prevents linkage attacks, sensitive infor-

mation can still be revealed through homogeneity attacks and background knowledge

attacks. It is also discouraged in precision medicine, which involves longitudinal

follow-up studies, since anonymization prevents re-identification [34]. Meanwhile,

differential privacy (DP) provides data privacy by adding calibrated random noise

to data and thus, preventing reverse engineering on the data. With DP, one cannot

determine if an individual’s data is included in the original dataset because its pres-

ence hardly affects the output. However, drawbacks of DP include a limit for the

12

number of queries. Once the limit is reached, privacy is no longer guaranteed. It is

also open to side channel attacks and like anonymization, sensitive data disclosure is

still possible. In genomics, disadvantages of DP application include trade-off between

privacy and utility as well as the pre-defined queries [7, 33, 34]. In particular, DP-

based approaches are deemed inefficient because the amount of noise to be injected to

genomic data containing millions of single nucleotide polymorphisms (SNPs) would

greatly degrade the information’s utility [35].

FHE can be used in a wide range of areas. As commercial-grade FHE is being

pushed to be more available, opportunities centered around efficient data protection

and handling can be seen. In his article, Creeger [36] mentioned about the different

use cases of FHE. Implementing privacy-preserving computations on encrypted data

ensures that data together with its results are protected against breach throughout

its life cycle even on untrusted environments. FHE also secures data from quantum

computing attack with its lattice-based post-quantum cryptography (PQC). Unau-

thorized disclosure of data and analytic results and models can be addressed with

FHE-secure services. Even on combined datasets of multiple organizations, analysis

can be performed securely (i.e. aggregating data from different vendors for facilitat-

ing pharmaceutical drug trials). Network traffic analysis is another domain that can

be improved when FHE is applied. One can detect a threat actor without revealing

threat signature, hence proving its potential use in computer network security and

anti-money laundering. It is also possible for FHE to query if particular data exists

in a larger data store without giving away the contents of the query or the data store,

otherwise known as private set intersection. In blockchain, FHE together with Zero-

Knowledge Proofs enables private transactions and can prove that they occurred even

without data disclosure. Lastly, establishing confidential data resources using FHE

can produce revenue streams for allowing them to be used by untrusted platforms.

Weng et al. [37] demonstrated the use of FHE in an artificial pancreas device

13

(APD) system that aids in monitoring and regulating a patient’s blood glucose level.

The problem lies with implementing the system in a cloud computing environment

as it is highly concerned with data privacy risk of diabetes patients. Compromised

data may lead to potentially life-threatening conditions of these patients or any other

negative impact on their health status. Weng et al. proposed a secure APD sys-

tem based on an FHE scheme, Cheon-Kim-Kim-Song (CKKS), with a Proportional-

Integral-Derivative (PID) controller. They used Microsoft SEAL library that already

implements their chosen scheme but there were limitations such as lack of support for

division and comparison operations, need for polynomial approximation to evaluate

more general functions, and more time and memory required for the computations.

Hence, the rationale for using a PID-based controller since its algorithm can ad-

dress these issues. To evaluate the proposed privacy-preserving APD system, it was

compared with a plaintext APD system. There was no significant difference found

between the two systems.

In recent years, there has been an increase in the number of studies related to

integration of homomorphic encryption with artificial intelligence due to its promising

approach to data privacy protection. Machine learning and deep learning studies

[38, 39, 40] have been conducted and are still being developed with HE for different

classification problems such as text classification [41], tumor classification [30], viral

strain classification [42], etc. These wide range of HE applications with ML continue

to expand with the help of existing libraries such as Microsoft SEAL, nGraph-HE,

nGraph-HE2, IBM HElayers, TenSEAL, and ConcreteML implemented in varying

programming languages like C++ and Python [43, 44, 45, 46, 47, 48].

Some of these libraries, namely Microsoft SEAL, HElayers, and TenSEAL, are

generally used to perform homomorphic encryption operations. ConcreteML and

nGraph-HE distinguish themselves from the others as they focus on integrating HE

into ML. nGraph-HE allows for HE-based deep learning through Intel’s graph com-

14

piler for neural networks [44, 45]. However, this project was declared to be only a

proof-of-concept not intended for production and was recently announced to be dis-

continued and no longer maintained by Intel. ConcreteML provides an open-source

set of tools for privacy-preserving ML inference framework based on FHE. It has

ready-to-use built-in FHE-friendly ML models that are similar to the Scikit-learn ML

library in Python and are compatible with its main workflows [48, 49].

Among these existing HE libraries, ConcreteML is more promising in ML appli-

cations for a number of reasons. Apart from its built-in FHE-based ML models, Con-

creteML supports division operation that is not implemented in the other libraries

[50]. It also allows for comparison operation that is generally hard to implement

in FHE, and this is evident in the tree-based models that it offers [51]. To add,

ConcreteML uses the Torus FHE (TFHE) scheme that supports programmable boot-

strapping to evaluate homomorphic non-linear functions efficiently while reducing

noise growth [52]. The parameter setting is also eased as it is handled in the library’s

compiler. Lastly, ConcreteML is implemented with Python, a high-level language,

and makes it a user-friendly library. With these features, ConcreteML can be used

even without extensive knowledge of cryptography.

In ConcreteML, the model is trained in plaintext and then compiled into its FHE

equivalent. However, quantization of the model is required before compilation. It

limits the scope of an input from a continuous set of values (real numbers) to a

discrete set (integers). With quantization, the model becomes compatible with FHE,

which is limited to 16-bit integers. Quantization method also varies depending on

the ML model that will be used. Current limitations of the library include required

quantization of the models and lack of support for pre-processing and post-processing

of inputs and outputs. Improvements are expected in the coming months as these

issues are currently being addressed [48, 49, 53].

In 2020, the iDASH privacy and security workshop held a competition for secure

15

genome analysis [3]. On the first track of the competition, participants were tasked

to build a secure multi-label tumor classification using homomorphic encryption. A

study that was awarded co-first place in this competition is the “Secure tumor clas-

sification by shallow neural network using homomorphic encryption” by Hong et al.

[30]. The dataset used in the study was obtained from two publicly available datasets

of TCGA samples, one containing somatic Somatic Nucleotide Variation (SNV) mu-

tations and the other containing gene-level Copy Number Variation (CNV), for differ-

ent tumor locations. Specifically, the dataset contains 3,622 instances from 11 cancer

types and genetic features from 25,128 genes. They proposed a privacy-preserving

solution to the problem by using a shallow neural network with softmax activation

based on HE through an approximation method. CKKS scheme was implemented

through the HEaaN library to perform inference step over encrypted data. The study

addressed both problems of reducing the size of large-scale genetic data and diffi-

culty in softmax function due to exponential and inverse functions. Findings of the

study proved that their introduced CN and Variants data filtering methods during

preprocessing was able to reduce the number of genes from 25,128 to 4,096 or less and

attained a microAUC value of 0.9882 with a 1-layer shallow neural network. Overall,

the proposed model was able to accomplish tumor classification inference on the test-

ing set in a duration of only 3.75 minutes. In addition, this study was considered to

be the first implementation of a neural network model with softmax activation using

HE.

Another solution that won first place in the said competition was that of Inpher’s

team. Carpov et al. [54] built a framework, GenoPPML, for a privacy-preserving

genomics ML pipeline. There were three actors involved in the framework: genomic

database owners, data analyst, and final users. GenoPPML architecture was also di-

vided into two phases: learning phase and prediction phase. In the learning phase, a

joint logistic regression model is trained on datasets from the genomic database owners

16

through multiparty computation (MPC). To ensure privacy against model inversion

attacks, differential privacy is implemented before revealing the trained model to the

data analyst. Prediction phase commences when the analyst gets a hold of the differ-

ential private model and private prediction services are provided. Specifically, FHE

inference is performed over the users’ genomic data. Apart from being one of the most

basic ML models applied in genomics, Carpov et al. chose logistic regression since it

doesn’t require any assumption on the hardware when implementing computations

securely on medical data and thus, making it a promising approach in outsourced

medical computations. Tools used in the study were the Inpher XOR library (for

learning phase) and the open-source TFHE library (for prediction phase). The so-

lution was benchmarked with three datasets from the TCGA database namely: (1)

BC-TCGA, (2) GSE2034, and (3) BC12-TCGA. The first dataset consists of 17,814

genes and 590 samples in which 61 are normal tissues and the remaining 529 are

breast cancer tissues. The second dataset has a total of 12,635 genes and 286 samples

where 107 are recurrence tumor samples and 179 are no recurrence samples. The

third and last dataset used in the solution is the same as the dataset used in the

study of Hong et al. Overall, Inpher’s HE for model prediction achieved one of the

highest accuracies, 97.05%, and the lowest prediction time of 0.75 seconds in the

iDASH 2020 track I competition. It was also awarded first place in track III of the

same competition with the task on differentially private federated learning for cancer

prediction [54, 55, 56]. Other teams that were part of the four-way tie for first place

in iDASH’s competition were Samsung SDS and Desilo. Samsung SDS also proved

their HE technology in the competition by attaining high scores for both speed and

accuracy of their analysis [57].

With regards to application of FHE-based machine learning in tumor classifica-

tion, the amount of studies conducted over the years are not as many as compared to

that of implementing traditional ML models. Thus, supporting the idea of the need

17

for exploration of FHE in this particular field of study. By doing so, it is not only

the data privacy issues in ML that will be addressed but also the lack of practice of

private machine learning. Additionally, combining this with the use of genomic data

can provide a gateway for a secure research environment in the domain of precision

medicine and genomic medicine.

18

III. Theoretical Framework

A. Homomorphic Encryption

Homomorphic encryption is an emerging technology - introduced in 1978 by Ronald

Rivest, Len Adelman, and Michael Dertouzos - that lets direct computations be exe-

cuted on encrypted data [36]. They recognized privacy homomorphism properties on

encryption schemes wherein computations performed on plaintext data have the same

result as the decrypted result of computations performed on their encrypted forms.

In their observation of the Rivest-Shamir-Adleman (RSA) encryption, the product

of encrypted numbers gave the same product as that of the plaintext numbers en-

crypted with the same key. With HE, it was found that it is possible to separate

data access from data processing as it ensures data confidentiality even in untrusted

environments and returns the result of the operations in its encrypted form that can

only be decrypted by its corresponding private key.

Over time, three main types of HE were established: partially homomorphic en-

cryption (PHE), somewhat homomorphic encryption (SHE), and fully homomorphic

encryption (FHE). PHE allows only one operation between addition and multiplica-

tion to be performed for an unlimited number of times on ciphertext. SHE allows

for both addition and multiplication on encrypted data but with a limit on the num-

ber of times they can be performed. Meanwhile, FHE encompasses both limitations

of PHE and SHE since it allows for unrestricted homomorphic computations - both

operations can be performed for an unlimited number of times [58, 59].

B. Fully Homomorphic Encryption

In 2009, Craig Gentry proposed the first FHE scheme. Originally, noise aggregated

during HE computation and this limited the application of HE. In Gentry’s paper,

he was able to address this problem and showed that unrestricted computation on

19

encrypted data is possible through his noise reset process called bootstrapping [36].

It goes with decrypting and re-encrypting a ciphertext through a homomorphic com-

putation that uses an encrypted secret key and a public key. However, two significant

limitations were noted in his work. Bootstrapping computation exceeded the per-

formance capabilities of available hardware platforms and conditionals that allow for

both programmatic comparison and selection operations lacked efficient implementa-

tion. With continued research, four generations of FHE have been established and a

variety of advancements has been made to improve the original Gentry scheme.

The first generation of FHE consisted of Gentry’s 2009 scheme and the Dijk-

Gentry-Halevi-Vaikutanathan (DGHV) scheme that changed the SHE portion of Gen-

try’s, with an integer-based scheme, due to its slow computation. In 2011 and 2012,

Brakerski-Gentry-Vaikuntanathan (BGV) and Brakerski/Fan-Vercauteren (BFV)

schemes that make up the second generation introduced the concepts of learning with

errors (LWE) and ring learning with errors (RLWE) security models. These models

are similar to solving the closest vector problem in lattice mathematics and are based

on the inability of determining coefficients, with each equation having a small and

random additive error. LWE uses a system of linear equations while RLWE uses

polynomial rings over finite fields. BGV and BFV also introduced leveling which

enabled execution of a logic-gate circuit with a preset depth before bootstrapping.

Relinearization reduces the length of ciphertext in order to minimize computational

cost and storage burden but is a computationally expensive method itself. With

Gentry-Sahai-Waters (GSW) scheme, relinearization in homomorphic multiplication

was avoided and slow noise growth was observed. Bootstrapping was then simpli-

fied and optimized by the Ducas-Micciancio-“Fastest Homomorphic Encryption in

the West” (FHEW) scheme. It also allowed for more efficient ring variants. These

two schemes account for FHE’s third generation. Lastly, the fourth generation of

FHE consists of the Cheon-Kim-Kim-Song (CKKS) and torus fully homomorphic

20

encryption (TFHE) schemes. In 2016, the number of bootstraps in a logic circuit

were lessened using the programmable bootstrapping (PBS) technique introduced by

TFHE. This development was further extended by CKKS as it was able to control

noise growth in HE multiplication through rounding operations for encrypted data

[36].

Apart from their specific advancements over FHE, the aforementioned schemes

differ in terms of their computation model. Homomorphic computation has three

models: boolean circuits, exact/modular arithmetic, and approximate number arith-

metic [36, 60]. In the boolean circuits approach, bits are used to represent plaintext

while arbitrary boolean logic-gate circuits express the computations. It supports fast

number comparison and bootstrapping and is implemented in GSW, FHEW, and

TFHE. BGV and BFV, on the other hand, implement a modular arithmetic model

that represents plaintext as integers modulo a plaintext modulus t and expresses

its computations as integer arithmetic circuits mod t. Its features include fast and

high-precision scalar multiplication and integer arithmetic, efficient single-instruction

multiple data (SIMD) computations on vectors of integers, and a leveled design that

can be used even without bootstrapping. The approximate number arithmetic im-

plemented in CKKS makes use of computations that are similar with floating-point

arithmetic and expresses plaintext as real numbers, including complex numbers. In

addition to modular arithmetic’s efficient SIMD computations and leveling, approx-

imate number arithmetic can also support fast polynomial approximation and deep

approximate computations. It also allows for relatively fast multiplicative inverse and

discrete Fourier transform.

C. Workflow of ConcreteML

The lifecycle of a Concrete-ML model can be divided into two major parts: (1) model

development and (2) model deployment [61].

21

Generally, there are four steps in the model development process of ConcreteML.

First is the model training. Since ConcreteML only supports FHE inference as of

the moment, the model can only be trained using plaintext data. The second step is

quantization which can be performed either during training or post-training, depend-

ing on the ML model that is being developed. Quantization converts the model into

an integer equivalent and makes it compatible with FHE. In ConcreteML, the number

of bits, n bits, parameter is used for this process. For linear models, n bits can use a

single integer value dependent on the number of attributes where it is recommended

to use a lower value if the number of attributes is high. However, n bits can also

use different values through a dictionary passed to this parameter. For tree-based

models, the value of n bits must be less than 8 since such models need n bits+1 bits

for its maximum accumulator bit-width. Additionally, Concrete framework can only

support up to 8-bit integers. The quantized model then undergoes compilation using

Concrete’s FHE compiler to obtain the final FHE ML model. This step is done en-

tirely by the Concrete-Numpy backend of ConcreteML and complexity is hidden since

execution is done simply through the compile() function. Lastly, FHE inference is

done on encrypted data [53, 61, 62].

ConcreteML also allows the developed FHE ML model to be deployed in a clien-

t/server setting. Upon saving the model, three different files are generated - client.zip,

server.zip, and versions.json. The client file consists of cryptographic parameters

that will be used to generate both private and public evaluation keys. It also has

the serialized processing.json file which contains metadata about pre- and post-

processing (e.g. quantization parameters). In ConcreteML, the user does not have

to worry on security parameters since they are handled by the backend. It only uses

a 128-bit security level and the optimal cryptographic parameters are automatically

computed and included in the compile() method of the library that is handled by its

Concrete-Numpy backend [63]. The server file consists of the compiled FHE model

22

and is used to run the model on a server. The last file holds information on which

versions of ConcreteML and Python are used to compile the model. To allow for this

process, ConcreteML uses its concrete.ml.deployment.fhe client server module

that contains several APIs for FHE deployment [61, 64, 65].

To save the model and export all files for the client-server system, the save()

method from FHEModelDev API is used. FHEModelServer API loads the FHE

circuit and runs the model on the server via its load() and run() methods. FHE-

ModelClient is the client API concerned with data encryption and decryption. The

client uses generate private and evaluation keys() method to produce both pri-

vate and evaluation keys. Then, the serialized evaluation keys are obtained using

get serialized evaluation keys() method. The input is quantized, encrypted,

and serialized by calling quantize encrypt serialize(). Together with the eval-

uation keys, the encrypted input are sent to the server and prediction can now be

performed. After FHE inference and sending the result back to the client,

deserialize decrypt dequantize() is called to decrypt the prediction [65, 66].

Figure 1: Overall communications protocol to allow cloud deployment of Concrete
ML model [1].

23

D. Machine Learning Models in ConcreteML

ConcreteML provides a number of regression and classification ML models catego-

rized into linear models, tree-based models, and neural networks. For linear models,

it supports linear regression, logistic regression, linear support vector classification,

linear support vector regression, poisson regression, tweedie regression, gamma re-

gression, least absolute shrinkage and selection operator (LASSO), ridge regression,

and elastic net [67]. Decision tree classifier, decision tree regression, random forest

classification, and random forest regression compose the built-in tree-based models of

ConcreteML. Extreme gradient boosting classification and extreme gradient boost-

ing regression are also included in this category [51]. Neural network models include

neural net classification and neural net regression which use Torch as a scikit-learn

estimator and Skorch for scikit-learn compatibility [68, 69]. All models supported

in ConcreteML are also supported in scikit-learn and are compatible with its main

workflows.

E. Logistic Regression

Logistic regression is a widely used statistical model for classification problems and

predictive analytics. While it is often used for binary classification, it can also be

extended for a multi-class classification problem using multinomial logistic regres-

sion in which the dependent variable has three or more possible outcomes [70, 71].

Implementing this model is also simple and relatively faster than other supervised

classification algorithms [72, 73]

In machine learning, logistic regression is often used in disease prediction [71]

and is considered one of the most basic ML algorithms applied in genomic studies.

In fact, previous studies such as that of Assiri et al. [23] and Carpov et al. [54]

incorporated this model in tumor classification and demonstrated high accuracy and

low computational time. In Assiri et al.’s study, simple logistic regression was one

24

of the top three among eight state-of-the-art ML models they evaluated on breast

cancer dataset and used it to propose an ensemble classification for breast tumor

classification. Carpov et al. enumerated two possible approaches to implement secure

computations on medical data. The first is a distributed setting where multiple

parties compute a function such as logistic regression and the second is assigning the

computation to a third party in a non-interactive setting where trust is required on

the hardware. As such, they chose the first approach as a promising way to outsource

medical computation since it has no requirements of any assumption on the hardware.

F. Special Features of Genomic Data

With the rapid pace of advancements in genome sequencing technology, genomic data

became widely available for collection, storage, processing, and sharing to support re-

search in expanding and exploring its applications. However, its increasing availability

also led to security and privacy concerns. The use of patients’ information in research

puts their confidentiality at high risk and this is more true for genomic data due to

the complexity of information it holds [10].

According to Naveed et al. [10], genomic data has six properties that distinguish it

from traditional health data: behavior, static, unique, mystique, value, and kinship.

This type of data holds information about the health and behavior of an individual

which allows for diagnosing medical conditions with high chances of being present

in a person. Since genomic data doesn’t change much over time, it can be used for

long periods of time and has a highly important value that is likely to increase with

time unlike traditional ones whose value often decreases with time. While it also con-

tains information on an individual’s blood relatives and reveals family relationships,

genomic data is still unique for every person. There is also a public perception of

mystery established about genomic data due to the fear of the unknown as everything

about the genome is yet to be discovered and more studies are being conducted.

25

IV. Design and Implementation

A. Dataset Description

The study used brain cancer gene expression dataset found in Kaggle [74]. This

dataset is part of a curated microarray database called CuMiDa[75]. Data consists of

130 samples, each having a sample ID and 54,675 genes as features.

A total of 5 classes were included in the dataset. Among these classes, four are dif-

ferent kinds of brain tumors namely: ependymoma, glioblastoma, medulloblastoma,

and pilocytic astrocytoma. The remaining one class consists of normal samples. The

brain tumor classes differ in which cell or part of the brain they start to grow from.

Ependymoma starts from ependymal cells that can be found both in the brain and in

the spinal cord [76]. Glioblastoma begins from astrocytes which are cells that gives

nourishment and support to neurons [77]. Medulloblastoma usually forms in the bot-

tom part of the brain, cerebellum [78]. Similar to glioblastoma, pilocytic astrocytoma

also begins to form from astrocytes. Both brain tumors belong under astrocytoma

tumors. However, glioblastoma is cancerous while pilocytic astrocytoma is considered

non-cancerous [79].

Data imbalance is observed in the brain cancer dataset since there is a huge differ-

ence between the numbers of samples for each classes. Majority of the samples, 46, are

under ependymoma and takes up 35% of the data. This is followed by glioblastoma

with 34 samples or 26% of the data. Medulloblastoma, pilocytic astrocytoma, and

normal samples make up 17% (22), 12% (15), and 10% (10) of the dataset respectively.

B. Preprocessing Techniques

The dataset was queried for checking of null values and it was determined that no

missing values were found. Since the dataset was already normalized, as stated in

CuMiDa’s work [75], no more data normalization was performed. All genetic fea-

26

tures in the dataset were floats while only the class column contained string val-

ues. Label encoding was performed via the LabelEncoder module of scikit-learn’s

preprocessing package to convert the classes into integers that are compatible with

the ML models to be used. To address the high dimensionality of the dataset, feature

selection was implemented via scikit-learn’s feature selection module. A univari-

ate feature selection method was performed through the SelectKBest module to

select k highest scoring features based on univariate statistical tests [80, 81]. With

k set to 20, the original 54,676 features in the dataset were reduced to the top 20

features.

C. Machine Learning Model

Several ML methods have been used in past studies of tumor classification. Inte-

gration of a few ML models have also been conducted. From these, models that

have achieved high performance include k-nearest neighbors and k-means clustering

combined with MFNN [22], ensemble classifier based on simple logistic regression,

SVM, and multilayer perceptron network [23], 1-dimensional CNN [26], 1-layer shal-

low neural network [30], and logistic regression [54]. ML methods were also applied

on datasets of CuMiDa [75] with SVM and random forest being the top performing

algorithms. Among these models, only logistic regression, SVC, and random forest

are supported by ConcreteML [67].

D. Performance Metrics

To compare the performance of the models, different metrics such as accuracy, bal-

anced accuracy, and F1 score were obtained. Accuracy can be used to determine how

often the model classifies a sample correctly. It refers to the fraction of the number

of correct predictions out of the total number of predictions made by the model [82].

Balanced accuracy is the average of recall obtained on each class. F1 score is the

27

harmonic mean of the precision and recall [80].

While accuracy and F1 score are common metrics used in classification problems,

it must be noted that the dataset is imbalanced. Between these two metrics, F1 score

is considered a good metric for data imbalance since it keeps balance between the

precision and recall of the model [83]. The average parameter on F1 score was set

to the value ‘weighted’ to account for imbalance. Balanced accuracy is an adjusted

version of the standard accuracy metric to perform better on imbalanced datasets [84].

Computation of all three metrics were done for all models (scikit-learn, quantized

plaintext, and FHE) through scikit-learn’s metrics package.

E. ML Model Training Workflow

In the model training proper of the study, there were three kinds of models trained

for each of the three ML algorithms trained:

1. Scikit-learn model. This is the standard plaintext ML model using scikit-

learn library for which the models trained from ConcreteML will be compared

to.

2. Quantized plaintext model. This is the plaintext ML model trained via

ConcreteML’s library. What makes it different from the scikit-learn plaintext

model is the use of quantization process in training the model. Quantization

is the process of converting the ML model from real numbers to integers. The

conversion of floating point values in the model implies that there is trade-off

between the accuracy and the representation of the values and thus, possibly

leading to a degradation of the model [53]. However, this process is required

to make the model compatible with FHE since the FHE model obtained in

ConcreteML is a result of compiling the quantized plaintext model. Hence, this

model is necessary to show the effect of quantization on the performance of the

28

trained models.

3. FHE model. This is the final FHE model that was obtained through com-

pilation of the quantized plaintext model and will be used in the client-server

system.

Each model was trained using the same dataset, preprocessing techniques, and

train-test split. Training of these models were necessary to compare the performance

of the standard ML implementation and FHE implementation. The training workflow

for each algorithm is described with the following steps:

1. The Comma Separated Values (CSV) file of brain cancer gene expression dataset

of CuMiDa [74] is read into a DataFrame using pandas’ read csv().

2. Using scikit-learn’s preprocessing.LabelEncoder, classes in the dataset are

transformed from string into integers.

3. Feature selection is performed through scikit-learn’s

feature selection.SelectKBest module. The value of k is set to 20 which

reduces the number of features from 54,676 to 20.

4. The dataset is split into 90% training data and 10% testing data using scikit-

learn’s model selection.train test split function.

5. The training data is used to fit the model. For quantized plaintext model, the

compile() function of ConcreteML has to be called, after fitting, to obtain its

corresponding FHE model.

6. Performance metrics are obtained using scikit-learn’s metrics module.

29

Figure 2: General workflow of the ML model development.

F. Input File Structure

The input file used in training the model and running the client-server system is a

CSV file consisting of cancer gene expression data that has the following structure:

1. The input consists of a column for the sample’s name or ID number. Value in

this column may be a string (if name is used) or an integer (if ID is used).

2. The input has 54,675 columns representing genes. Value in these columns must

be floats.

For the training input, an additional column is included in the CSV file consisting

30

of the tumor “type” (class) of the sample. Values in this column are string objects.

For the client input, the columns for genetic features must follow the same genes used

in the training dataset.

G. Use Case

A client-server system, representing a medical institution and an ML service provider

respectively, was implemented to perform FHE inference on multi-class tumor clas-

sification. The medical institution encrypts genomic data and sends this to the ML

service provider as an input for which FHE inference will be performed on. The ML

service provider then returns the encrypted tumor classification result back to the

medical institution for them to decrypt the result and to see the classification. Figure

3 shows the use case diagram of the system.

Figure 3: Use case diagram of the client-server system.

31

H. Threat Model

Consider the following threat models. We assume the system to be semi-honest,

meaning the server follows the system’s protocol honestly. We also assume that all

communication channels between the client and the server are private and secure.

If the security of the FHE scheme can be guaranteed, then there is no information

leakage of the client’s encrypted data even in malicious settings. We also assume that

the client and the server does not collude with each other.

The security goals are as follows:

1. The server should not obtain information on the client’s encrypted inputs.

2. The server should not obtain information on the encrypted inference results.

I. System Architecture

Before the actual system development, model training using logistic regression, ran-

dom forest, and support vector classifier was performed to determine the best per-

forming model. The following tools were used in implementing this part of the study:

• pandas - open-source library that provides data structures and analysis tools

[85].

• scikit-learn - an open-source library that provides built-in ML models and

tools for predictive data analysis [80].

• ConcreteML - open-source library that supports privacy-preserving ML infer-

ence based on FHE [48].

• Google Colab - a hosted Jupyter Notebook service [86].

Model training and development was mainly performed using pandas, scikit-learn,

and ConcreteML in a Jupyter notebook via Google Colab. To read the dataset’s CSV

32

file and create the dataframe, pandas library was used. The dataframe then went

through preprocessing using packages from the scikit-learn library. These includes

label encoding, feature selection, and splitting of the dataset for training and testing.

Both scikit-learn and ConcreteML were used for fitting of the different models. To get

the performance metrics of the trained models, the metrics package of scikit-learn

was used. After selecting and saving the best performing model, the actual system

development followed.

The system consists of two sides: a client and a server. The client-side consists

of a graphical user interface (GUI) application and the server-side is a Django web

application.The entire client-server system was implemented using the following tech-

nologies:

• WSL2 - a tool that allows running of Linux environment on Windows [87].

• Tkinter - package used as the standard Python interface to the Tk GUI toolkit

[88].

• CustomTkinter - a modern UI-library that was developed based on Tkinter

[89].

• ConcreteML

• pandas

• Django Web Framework - a Python web framework mainly used for rapid

web development [90].

• Bootstrap - a popular CSS framework for web and mobile applications [91].

Tkinter and CustomTkinter were the main tools used in developing the client

GUI application. To define the methods, pandas and ConcreteML were used. The

pandas library was used to implement the feature selection on the client’s input data.

33

ConcreteML was then used to define the methods in the GUI application that would

handle data encryption and prediction decryption. The GUI application sends the

encrypted input to the server for prediction and decrypts the prediction result it

receives from the server.

The server that holds the FHE model for classification was built using Django

web framework. ConcreteML was used for the functionalities of FHE prediction.

Bootstrap was used for the front-end development of the server. When the server

receives the input sent by the client through the GUI application, it performs FHE

prediction and sends back the prediction to the client.

Figure 4: Detailed workflow of the client-server system.

Figure 4 shows the general workflow of the system. The data scientist is assigned

with model development. This includes training of the models, model evaluation,

compilation of the final model into FHE, and saving the compiled model. ConcreteML

provides the FHEModelDev API that is used to save the final FHE model along with

all files required to deploy it into a client-server system. This step can be done by

simply calling the save() command of the said API. Saving the model generates

three files (client.zip, server.zip, and versions.json) that are then stored in the

FHE-Compiled-Model found in the Django project directory for the server. The

features and classes.txt file containing the set of features selected in the dataset

34

preprocessing and the original class labels of the dataset before label encoding is also

stored in the same folder. Using Python’s os library to define filepaths, the server

accesses the files needed in the different functionalities of the system. The client.zip

stored in the folder is accessed to be sent to the client upon request and the server.zip

is accessed whenever FHE inference is performed.

The server in the system represents ML service providers while a client represents

medical institutions that will outsource ML computation. Upon launching the client

application, the client requests for the client.zip file containing the cryptographic pa-

rameters for generating private and evaluation keys. The features and classes.txt

file to be used for feature selection class translation is also requested. Once these files

are received, the client can now use the application to submit input genomic data

for preprocessing (feature selection). The output for preprocessing is then automati-

cally subjected to encryption. ConcreteML uses commands from its FHEModelClient

API to perform key generation and encryption. The following are the steps taken to

encrypt the preprocessed input of the client:

1. Using the generate private and evaluation keys()method, private and eval-

uations keys are produced in the client side.

2. Serialized evaluation keys are accessed with the

get serialized evaluation keys() method.

3. The preprocessed input is subjected to quantization and encryption through

the quantize encrypt serialize() method.

4. The final encrypted input is saved along with the evaluation keys.

After key generation and encryption, the client application sends the encrypted

genomic data and evaluation key to the server. Interaction between the client and

the server is implemented using Python’s requests library. The client sends the

35

files to http://localhost:8000/start classification where localhost:8000 is

the Django-based server ran in the local machine. When the server receives these

files, FHE multi-class brain tumor classification is performed by running the run()

method in ConcreteML’s FHEModelServer API. The encrypted prediction result is

compressed into a ZIP file before being sent back automatically to the client. Once

the client application receives the result sent by the server, it accesses the ZIP file of

the encrypted prediction and performs decryption to determine the plaintext classifi-

cation result. The client application calls the deserialize decrypt dequantize()

method from ConcreteML’s FHEModelClient API to perform decryption on the pre-

diction ZIP file using the private keys that were generated before encryption. The

final decrypted inference of the client input is then displayed in the output window

of the client application and is also saved into a CSV file.

J. Technical Architecture

The following are the requirements to run the developed client-server system:

• Operating System: Linux or Windows Subsystem for Linux 2

• Storage Space: 4.5GB free disk space

Linux is required to run the system. If using Windows, a Linux environment

can be ran using the Windows Susbsytem for Linux. At least 4.5GB free disk space

is needed considering the packages and dependencies used to run the system. In-

ternet connection is also required since the client downloads required files, the fea-

tures and classes.txt file and the client.zip file, upon launching of the client GUI

application.

36

V. Results

A. Performance of the Machine Learning Models

A..1 Test Machine Specifications

The performance of the machine learning models trained was evaluated on a machine

with the following specifications.

Test Machine Specifications

Operating System Windows 11 Home Single Language ver. 22H2

Processor 11th Gen Intel(R) Core(TM) i3-1115G4 @ 3.00GHz

Installed RAM 12.0 GB

System Type 64-bit operating system, x64-based processor

Table 1: Device and system specifications of the machine used for performance eval-
uation of the ML models.

A..2 Model Accuracy and F1 Score

The models used in the study were logistic regression, random forest, and support vec-

tor classifier. Model development was conducted in three runs using the same dataset

and preprocessing methods. For each algorithm, three types of models were de-

veloped: scikit-learn plaintext, ConcreteML plaintext (quantized), and ConcreteML

FHE models. To determine the performance of the models, three metrics were used:

accuracy, balanced accuracy, and F-1 score.

Accuracy Balanced Accuracy F1 Score

Sklearn Quantized FHE Sklearn Quantized FHE Sklearn Quantized FHE

Run 1 84.6154% 84.6154% 84.6154% 85.0000% 85.0000% 85.0000% 84.6154% 84.6154% 84.6154%

Run 2 84.6154% 84.6154% 84.6154% 87.1429% 87.1429% 87.1429% 85.0888% 85.0888% 85.0888%

Run 3 92.3077% 92.3077% 92.3077% 95.0000% 95.0000% 95.0000% 95.7265% 95.7265% 95.7265%

Table 2: Performance metrics of each LR model in each run.

37

Table 2 consists of the computed metrics for each kind of logistic regression model

in all three runs. As observed here, there is no difference between the performances

of the scikit-learn plaintext, quantized plaintext, and FHE models. Additionally, the

values for each metric are all above 80%.

Accuracy Balanced Accuracy F1 Score

Sklearn Quantized FHE Sklearn Quantized FHE Sklearn Quantized FHE

Run 1 92.3077% 92.3077% 92.3077% 90.0000% 90.0000% 90.0000% 91.7949% 91.7949% 91.7949%

Run 2 69.2308% 53.8462% 53.8462% 64.4444% 55.5556% 55.5556% 67.6627% 59.1270% 59.1270%

Run 3 84.6154% 76.9231% 76.9231% 90.0000% 86.6667% 86.6667% 84.6154% 79.2308% 79.2308%

Table 3: Performance metrics of each RF model in each run.

For random forest models, performance metrics are shown in table 3. A similar

observation with LR models was observed in the first run wherein all kinds of models

has similar performances. However, in the second and third runs, there was a decrease

in the performance metrics of the quantized plaintext and FHE models. The range

of values of the metrics is also wider as compared to LR models. While some reached

as high as 92%, metrics also went as low as almost 54%.

Accuracy Balanced Accuracy F1 Score

Sklearn Quantized FHE Sklearn Quantized FHE Sklearn Quantized FHE

Run 1 76.9231% 76.9231% 76.9231% 80.4167% 80.4167% 80.4167% 80.2198% 80.2198% 80.2198%

Run 2 61.5385% 61.5385% 61.5385% 68.0000% 68.0000% 68.0000% 56.5934% 56.5934% 56.5934%

Run 3 76.9231% 76.9231% 76.9231% 73.3333% 73.3333% 73.3333% 77.7855% 77.7855% 77.7855%

Table 4: Performance metrics of each SVC model in each run.

Table 4 shows the performance of all SVC models in all runs. Like the LR mod-

els, all kinds of models for SVC have similar performances. There was no observed

decrease or increase in each metric for all three kinds of SVC models and for all three

runs done.

38

Accuracy Balanced Accuracy F1 Score

Sklearn Quantized FHE Sklearn Quantized FHE Sklearn Quantized FHE

LR 87.1795% 87.1795% 87.1795% 89.0476% 89.0476% 89.0476% 88.4769% 88.4769% 88.4769%

RF 82.0513% 74.3590% 74.3590% 81.4815% 77.4074% 77.4074% 81.3577% 76.7176% 76.7176%

SVC 71.7949% 71.7949% 71.7949% 73.9167% 73.9167% 73.9167% 71.5329% 71.5329% 71.5329%

Table 5: Average of performance metrics of each model for all runs.

To compare the overall performance of the different ML algorithms, the average of

each model for each metric was computed. Results are displayed in table 5. Looking

at the values, logistic regression outperformed both random forest and support vector

classifier in all metrics.

The behavior of the similar performance between the scikit-learn, quantized, and

FHE models can be attributed to the quantization bits used in training. The train-

ing of the ConcreteML models used the default value for quantization bits which

is 8. In Li’s article covering the application of ConcreteML, an example using 8

bits for quantization achieved the same results where ConcreteML models have the

same performance as the scikit-learn model [92]. Li’s results also showed that the

quantized plaintext and FHE models achieved the same performance even on cases

where scikit-learn performed best. Additionally, linear models in ConcreteML tend to

achieve the same performance as their FP32 counterparts since they only require very

little quantization. Meanwhile, tree-based classifiers in ConcreteML are expected to

achieve good performance but not exactly identical to their FP32 counterparts [93].

Thus, possibly explaining the difference between the scikit-learn and the ConcreteML

models using random forest.

B. Client-Server System

The system consists of two main parts: client and server. The client refers to med-

ical institutions, such as hospitals, that holds genetic information of patients and

39

outsources machine learning for tumor classification. The server is an ML service

provider for multi-class tumor classification.

B..1 Client-Side

For the client, a graphical user interface was built such that it contains all function-

alities necessary to process the data for feature selection, encryption, and sending to

server for prediction. It also has a function for decrypting the prediction returned by

the server.

Figure 5: Client GUI upon launching.

Figure 5 shows how the client GUI would look like upon launching of the appli-

cation. A short description about the main function of tool is provided. A separate

40

section for the client input is also seen. This is where the client would input the

filepath or browse for the input file before submission. The output window is where

the status of the whole process from preprocessing to prediction decryption is dis-

played.

Figure 6: Client GUI with status outputs after FHE prediction.

Figure 6 demonstrates how the output window would look like when the client has

finally entered an input file. First, the input file undergoes feature selection. Next,

keys are generated to be used for the encryption and decryption processes. Once data

encryption is done, the client GUI sends the encrypted data and evaluation keys to the

server for FHE tumor classification. The server’s role stops at sending back the result

to the client. In an FHE ML model, the result of the prediction is also encrypted.

41

Thus, the client needs to decrypt it to be able to know the final classification output.

Once the client receives the prediction result sent by the server, the GUI automatically

starts the decryption process and displays the decrypted classification result. It also

saves the prediction in a .csv file containing the ID of the sample as well as its FHE

tumor classification.

B..2 Server-Side

The server side of the system is a simple home page that holds the model, as seen in

figure 7. Since the client GUI automatically processes the client data and sends it to

the server once encrypted, the server no longer asks for a file upload of the encrypted

input as well as the evaluation keys to be used for FHE prediction. It also doesn’t

include an output window since all processes can already be tracked in the output

window of the client GUI. Apart from this, the server home page can redirect the

client to the Github page of the whole system. The Github of the system is a public

repository that contains all source codes and documentations.

Figure 7: Server home page.

42

VI. Discussions

The FHE-based Multi-class Tumor Classification Client-Server system is a simple sys-

tem that aims to implement a privacy-preserving classification tool that uses genomic

data as its input.

The dataset used for training of the models is publicly available in Kaggle [74].

Before the training proper, preprocessing techniques were performed in the data.

Since no missing values were found and the data was already normalized [75], only

label encoding of the classes and feature selection were performed.

A train test split of 90-10 was used, meaning 90% (117) of the samples were used

in training the model while 10% (13) of the samples were used in testing. Since the

dataset is imbalanced, the class weights parameter in fitting the models were set

equal to ‘balanced’ to address this problem.

The results of the ML model development showed that logistic regression yielded

the best performance among the three algorithms tested. For all runs, SVC achieved

the lowest metrics. While random forest also achieved high metrics, results ranged

from 69.2308% to 92.3077% for scikit-learn and 53.8462% to 92.3077% for Con-

creteML. For logistic regression, metrics for all models, scikit-learn and ConcreteML,

performed similarly and ranged from 84.6154% to 95.7265%. The average of perfor-

mance metrics of all models for all runs also showed that logistic regression indeed

had the highest accuracy, balanced accuracy, and F1 score. Hence, logistic regression

was used as the final model in building the proposed client-server system.

The logistic regression model used in run 3 achieved the highest metrics among

all runs of the said model. Its accuracy, balanced accuracy, and F1 score are all over

90% which are considered to be excellent values [94, 95, 84]. Specifically, the accuracy

of the model is 92.3077%, balanced accuracy is 95.0000%, and F1 score is 95.7265%.

Its FHE model was used in the implementation of the client-server system.

Logistic regression algorithm, as applied in scikit-learn, quantized plaintext, and

43

FHE models, was further evaluated by testing its performance in terms of running

time and error analysis. The FHE model had an additional evaluation on its key size

and ciphertext size since this model includes encryption and decryption.

A. ConcreteML Performance

A..1 Running Time Analysis

A runtime analysis was performed by comparing the difference between the scikit-

learn plaintext, quantized plaintext, and FHE. This includes the training time and

prediction time for all models and compilation time for the FHE models.

Sklearn Quantized Quantization Time

Run 1 34.4493 81.3487 46.8993

Run 2 60.7603 128.1841 67.4238

Run 3 27.0460 88.1531 61.1072

Average 40.7519 99.2286 58.4768

Table 6: Training time of plaintext models and quantization time of quantized model
(in milliseconds).

Sklearn vs Quantized

Run 1 136.1400%

Run 2 110.9670%

Run 3 225.9382%

Average 157.6817%

Table 7: Increase in training time of the models.

A total of three runs were performed to check the running time of the LR models

in terms of training. As seen in table 6, the training times recorded are only in the two

plaintext models since there is no actual training performed for FHE. In ConcreteML,

44

the trained quantized plaintext model is simply compiled to obtain its equivalent FHE

model.

For all runs, the training time of quantized plaintext are higher than that of scikit-

learn’s. The increase in the training time of quantized plaintext is also computed and

displayed in table 7. The average training for quantized plaintext and FHE is 99.2286

milliseconds which is 157.6817% higher than scikit-learn’s average training time of

40.7519 milliseconds. This is due to quantization performed to obtain these models.

In ConcreteML, quantization is performed post-training for linear models such as

logistic regression[53]. Since the function for fitting the model already includes the

quantization process, the time it takes to quantize the model adds up to the total

training time measured. To compute the quantization time, the training time in

scikit-learn was subtracted from the total running time of quantized plaintext model

training and quantization. An average of 58.4768 milliseconds adds up to the running

time of quantized plaintext model due to the added quantization task.

Compilation Time (milliseconds)

Run 1 174.7668

Run 2 178.0674

Run 3 376.7128

Average 243.1823

Table 8: Compilation time of quantized plaintext models into FHE (in milliseconds).

The running time of compiling the quantized plaintext models into FHE was also

recorded in table 8. Over three runs, the average compilation time was 243.1823

milliseconds.

Prediction time of the models was also tested over three runs. Two categories

for prediction time were checked: one for the entire test set and the other one is per

sample. For the FHE model, prediction time only includes the actual inference step

45

and not the decryption step. The results are displayed in the following tables.

Sklearn Quantized FHE

Run 1 0.3514 0.6166 53.8583

Run 2 0.4718 0.5169 84.7387

Run 3 0.3741 0.4826 46.1643

Average 0.3991 0.5387 61.5871

Table 9: Prediction time of models (in milliseconds) for the entire test set.

Sklearn vs Quantized Sklearn vs FHE Quantized vs FHE

Run 1 75.4410% 15225.5088% 8635.4215%

Run 2 9.5503% 13644.0062% 16293.9114%

Run 3 28.9994% 12240.7903% 9466.5514%

Average 37.9969% 13703.4351% 11465.2948%

Table 10: Increase in prediction time for the entire test set of the models.

The entire test set consists of 13 samples, equivalent to 10% of the whole dataset.

The results in tables 9 and 10 hold the actual average prediction time for the entire

test set in milliseconds and the average increase in prediction time of the quantized

plaintext and FHE model compared to scikit-learn and the FHE model compared to

the quantized plaintext. Scikit-learn has the shortest average prediction time of 0.3991

milliseconds followed by quantized plaintext with 0.5387 milliseconds. Compared to

these two, the increase in FHE is quite large, resulting to an average prediction time

of 61.5871 milliseconds. In table 10, results show that the least average increase

in prediction time is scikit-learn versus quantized plaintext, followed by quantized

plaintext versus FHE, then scikit-learn versus FHE.

In computing the prediction time per sample, one sample for each of the 5 classes

were used. Hence, a total of 5 samples were predicted in each run and the running

46

time in predicting each of them was averaged. The mean running time of prediction

per sample in each run is recorded in table 11.

Sklearn Quantized FHE

Run 1 0.2785 0.5038 5.0600

Run 2 0.2174 0.4469 7.5726

Run 3 0.3989 0.7658 4.9873

Average 0.2983 0.5722 5.8733

Table 11: Prediction time of models (in milliseconds) per sample.

Sklearn vs Quantized Sklearn vs FHE Quantized vs FHE

Run 1 80.8937% 1716.7437% 904.3157%

Run 2 105.5714% 3383.3955% 1594.4942%

Run 3 91.9555% 1150.1913% 551.2921%

Average 92.8069% 2083.4435% 1016.7007%

Table 12: Increase in prediction time per sample of the models.

The results of the prediction time per sample in tables 11 and 12 show a similar

behavior with the results in the prediction time for the entire test set. Scikit-learn

has the shortest prediction time while FHE has the highest prediction time. The

increase in prediction time per sample also shows that the least increase can be seen

in scikit-learn versus quantized and the greatest increase is in scikit-learn versus FHE.

Entire Test Set Per Sample

Sklearn vs Quantized 0.35x slower 0.92x slower

Quantized vs FHE 113.33x slower 9.27x slower

Sklearn vs FHE 153.31x slower 18.69x slower

Table 13: Average slow down in prediction time of the models for the entire test set
and per sample.

47

The average slow down in prediction time for the entire test set and per sample

were also computed and results are shown in table 13. The greatest slow down is

observed on scikit-learn versus FHE and the least slow down is on scikit-learn versus

quantized plaintext. These results go in parallel with the increase in prediction time

shown in tables 10 and 12.

Combining the results from tables 9 to 13, there is an increase in the prediction

time of both quantized plaintext and FHE models which can be attributed to the

quantization applied as part of the model development in ConcreteML. Performing

matrix multiplications or convolutions with quantized values lead to more complex

computing equations [53]. While most ML operations use integer arithmetics that

are compatible with quantized values, a model cannot simply replace floating point

operations with an equivalent integer operation. Important quantization parameters

such as scale factor and zero point are used in operations over quantized values to

ensure that the final output of the operation is also quantized [96, 97]. Hence, making

the operation more complex and in return may affect the running time of the task.

A..2 Error Analysis

To further evaluate the performance logistic regression, error analysis was also per-

formed. The performances of scikit-learn, quantized plaintext, and FHE models were

compared in terms of misclassifications.

48

(a) Scikit-learn (b) Quantized Plaintext

(c) FHE

Figure 8: Confusion matrices of the models in run 1.

Figure 8 displays the confusion matrices of the three LR models trained in the

first run. It is observed that the performance of the three models do not differ from

each other due to the same number of correctly classified samples as well as the same

misclassified samples.

49

(a) Scikit-learn (b) Quantized Plaintext

(c) FHE

Figure 9: Confusion matrices of the models in run 2.

The results of the second run in figure 9 also shows the same results observed in

the first run. All models have the same confusion matrix which means they have the

same misclassified samples and correctly classified samples.

50

(a) Scikit-learn (b) Quantized Plaintext

(c) FHE

Figure 10: Confusion matrices of the models in run 3.

For the third run of the model, the same results were still observed. That is, scikit-

learn, quantized plaintext, and FHE had the same confusion matrix. Misclassification

of the scikit-learn model is the same as the misclassification of the quantized plaintext

and the FHE model. These results are also expected since the performance metrics

obtained for logistic regression did not show any difference between the three kinds

of models trained.

A..3 Ciphertext Size and Key Size

Additional factors such as ciphertext size and key size were recorded to further discuss

the performance of the FHE model. Since a ConcreteML FHE model has fixed cryp-

tographic security parameters computed by its Concrete-Numpy backend [63] and

51

saved to the client and server files, the encryption process is the same every time an

FHE inference is performed. Thus, explaining why the key size and ciphertext size

measured in ConcreteML are constant as shown in tables 14 and 15.

Key Size (kB) Increase

ConcreteML FHE Evaluation Key 0.023 -

ConcreteML FHE Private Key 4.000 65.70%

128-bit Security Level RSA Encryption 2.414 -

Table 14: Comparison between ConcreteML FHE and 128-bit security level RSA
encryption key size (in kilobytes).

In cryptography, the current strongest standard key size for encryption is the

2048-bit RSA key [98]. It follows the National Institute of Standards and Technology

(NIST) recommendation to use keys with a minimum strength of 112 bits of security in

data protection until year 2030 since a 2048-bit RSA key provides 112-bit of security

[99]. However, ConcreteML’s security level is set to 128-bit [63]. To ensure a fair

comparison, the standard reference used in this study is the RSA encryption with

128-bit security level.

Table 14 indicates that there is an increase of 65.70% in the private key size

of ConcreteML FHE as compared to the standard RSA 128-bit security algorithm.

From 2.414 kilobytes, the key size increased to 4 kilobytes. This can be expected

since a stronger encryption, in this case FHE that allows computations on ciphertext,

is expected to have higher key size [100]. However, this doesn’t mean that FHE is

entirely better than the RSA algorithm. The large increase in the key size also implies

that there is a trade-off between efficiency and memory. The result shows that FHE

requires more memory for its private key just to attain the same security level as the

RSA algorithm. A larger key size also means that more computation time is needed

on both sides of the system [99].

52

Clear Input Size (kB)

Run 1 0.325

Run 2 0.330

Run 3 0.329

Run 4 0.332

Run 5 0.332

Average 0.330

Table 15: Size of clear input for encryption over five runs (in kilobytes).

Ciphertext Size (kB) Increase

ConcreteML FHE 240.197 63952.53%

128-bit Security Level RSA Encryption 0.375 -

Table 16: Comparison between ConcreteML FHE and standard encryption ciphertext
size (in kilobytes).

FHE preserves the privacy of data by only using encrypted data as an input for

inference. The trade-off comes in the size of the encrypted input data. To evaluate

the system in this aspect, five runs using different gene expression data inputs were

subjected to two encryption schemes: FHE and RSA. The average size of the clear

input for encryption is 0.330 kilobytes, as indicated in table 15. Table 16 shows that

for all encrypted data produced, the size is consistent for the two encryption schemes.

Before the encryption process, the raw data inputs undergo the same preprocessing,

in this case feature selection, that already results to a designated format to be then

encrypted. The same encryption process is also applied to every input so it is expected

that the size of the ciphertext produced is also the same for each run.

RSA’s ciphertext size is 0.375 kilobytes while FHE’s ciphertext size is 240.197

kilobytes. This shows an increase of 63952.53% in the standard encryption. Similar

53

to the key size, these results demonstrate the trade-off between efficiency and memory

when using FHE. While FHE provides a stronger encryption in the data, it needs more

space for the ciphertext it generates to achieve the same security level as the RSA

encryption.

A..4 Additional Investigation on Error Analysis

While not directly related to the final model’s performance evaluation, a unique case

encountered in the early stages of trying out the model training is when the two models

from ConcreteML performed better than the scikit-learn model. This is particularly

observed in a Random Forest model.

Accuracy Balanced Accuracy F1 Score

Sklearn Quantized FHE Sklearn Quantized FHE Sklearn Quantized FHE

84.6154% 92.3077% 92.3077% 85.4167% 93.7500% 93.7500% 84.4156% 92.3077% 92.3077%

Table 17: Performance metrics of RF models where ConcreteML performed better
than scikit-learn.

In table 17, there is a noticeable difference between the performance of the scikit-

learn model and the ConcreteML models. Normally, this can be expected as the

quantization process may cause degradation in the model performance. However,

this case shows that no degradation was observed in the ConcreteML models and

they even performed better than scikit-learn.

54

Figure 11: Similarity on the prediction of the RF models on the entire test set.

Figure 11 shows the prediction of the RF models on the entire test set and the

actual labels of the samples in the set. The testing set comprises 10% (13 samples) of

the dataset. Out of the two misclassifications predicted by the scikit-learn model, one

is also misclassified by the ConcreteML models while the other is correctly classified

by them. Thus, explaining why the similarity between the prediction of the scikit-

learn model and the FHE model is only 92%.

To better understand this case, we computed the condition number of each RF

model on the entire testing set. The condition number is used to measure the sensi-

tivity of a solution to changes in the input data [101]. It gives an idea on the precision

of a solution wherein a larger value implies a larger change in the output when in-

put changes are observed [102]. The condition number, however, does not directly

describe a comparison of performance between the models. Results are recorded in

the following table.

55

Condition Number

Sklearn 27.1759

Quantized 65.2992

FHE 65.2992

Table 18: Condition number of the models in the RF algorithm case where Con-
creteML performed better than scikit-learn.

Looking at table 18, the condition number of the ConcreteML models are signifi-

cantly larger than that of the scikit-learn. If the same change was performed over the

three models, the ConcreteML models tend to have greater changes in their outputs.

In this case, there is a high possibility that the ConcreteML models are able to pro-

duce the correct classifications only because of chance caused by the large change in

their outputs. However, further investigations are still needed to ensure the reasoning

behind such cases.

B. System Assessment

Next to model evaluation is the testing of the actual client-server system. Upon

running all functionalities of the system, all of the main objectives were implemented.

The client was able to preprocess their data, generate keys to be used for encryption

and decryption, generate evaluation keys to be sent to the server, and encrypt their

preprocessed data. Following the key generation and data encryption, the client

GUI was able to successfully send the required files for the server to perform FHE

classification. The functionality for the client to decrypt the prediction sent by the

server is also working as intended. Likewise, the server’s functionalities also fulfilled

the objectives of the study. It was able to perform FHE classification with the client’s

encrypted input and was able to send this back to the client for decryption.

The developed client-server system stands out from existing tumor classification

56

FHE works for several reasons. The works of Seoul National University [30] and In-

pher [54] used HEaaN and TFHE libraries respectively in implementing homomorphic

encryption. The ConcreteML library that was used to fulfill the main objective of

the study was not used in the previous works. Both HEaan and TFHE are capable

of implementing FHE. However, these libraries do not offer built-in machine learning

models unlike ConcreteML. Additionally, ConcreteML is relatively easy to use as it

follows the standard workflow of scikit-learn. The use of ConcreteML in the study

made the overall process easier with its feature of easily converting the quantized

plaintext model into an FHE model and automatically setting the optimal crypto-

graphic security parameters through its compile() function. Its built-in functions on

key generation, encryption, and decryption also made the use of the system easier for

the client. All the client needs to do in the developed system is to upload their data

and these processes are already called upon submission.

SNU and Inpher’s works used only a single type of ML model in their studies.

SNU used a shallow neural network and Inpher used logistic regression. Meanwhile,

this study used different machine learning algorithms before deciding which model to

apply in the final development of the proposed system. This allowed for a comparison

to see which model worked best for the dataset. The comparison between the standard

plaintext ML model and FHE ML model included in this study was also not done

in the previous works. Doing this provided information on the difference between

the performances of the two models which could be a great factor to consider when

developing FHE ML models in the future.

Overall, the developed client-server system addresses the problem of privacy preser-

vation in ML outsourcing. It allows for a secure tumor classification prediction tool

that can help medical professionals outsource ML services without violating data

privacy regulations. The use of genomic data and having them undergo encryption

addressed the problem of sensitive and confidential data involved in conducting ge-

57

nomic machine learning studies. Lastly, the system that was built can be easily

repurposed by simply changing and updating the model files applied in the server

and the client files required in the client GUI.

58

VII. Conclusions

The proposed system in the study is a client-server system that implements FHE-

based logistic regression for multi-class tumor classification. In order to achieve this,

several steps were done in the development stage.

From obtaining a publicly available cancer gene expression dataset, the data went

through preprocessing before being used to train three ML algorithms namely: logistic

regression, random forest, and support vector classifier. For each algorithm, three

models were created: scikit-learn plaintext, quantized plaintext, and finally FHE

model. The performance of the models were compared by using metrics such as

accuracy, balanced accuracy, and F1 score. After comparing the results, logistic

regression with an accuracy of 92.3077%, balanced accuracy of 95.0000%, and F1

score of 95.7265% was selected to be the best model for system implementation.

The client-server system was developed with a GUI for the client and a web server.

The GUI is Python-based and was mainly built with CustomTkinter library while

Django web framework was used to build the server side of the system. The client

GUI handles data preprocessing, key generation, input encryption and prediction de-

cryption for the client. The server holds the model to be used for FHE inference once

it receives an input from the client. FHE multi-class tumor classification was suc-

cessfully implemented both in the client and server sides of the system. ConcreteML

contributed greatly to the success of FHE implementation in machine learning with

its built-in FHE functions and FHE models.

By incorporating FHE into multi-class tumor classification, the system was able

to address the problem of potential data privacy risks with ML outsourcing. It also

addressed the need for ensured confidentiality on genomic data which is deemed more

sensitive that traditional medical data. The system developed in this study showed

the potential of FHE in building privacy-preserving ML solutions in the medical

industry.

59

VIII. Recommendations

The client-server system built with FHE-based logistic regression for secure multi-

class tumor classification can be further improved in different aspects. In future

studies, it is recommended to:

1. Use different methods of handling data imbalance such as resampling;

2. Apply different feature selection methods;

3. Use machine learning models that weren’t tested in the study;

4. Build the system with a different genomic dataset for other tumor types;

5. Investigate cases where FHE tends to perform better than plaintext models;

6. Explore other open-source FHE libraries to implement FHE machine learning;

and

7. Implement batch FHE inference.

60

IX. Bibliography

[1] Zama-AI, “Inference in the Cloud,” Nov 2022. https://docs.zama.ai/

concrete-ml/getting-started/cloud.

[2] “Tumor: What is it, types, symptoms, treatment & prevention.” https://my.

clevelandclinic.org/health/diseases/21881-tumor.

[3] “Three tracks of competition tasks.” http://www.humangenomeprivacy.org/

2020/competition-tasks.html.

[4] K. A. Bhavsar, J. Singla, Y. D. Al-Otaibi, O.-Y. Song, Y. B. Zikriya, and A. K.

Bashir, “Medical Diagnosis Using Machine Learning: A Statistical Review,”

Computers, Materials & Continua, vol. 67, no. 1, p. 107–125, 2021.

[5] J. A. Diao, I. S. Kohane, and A. K. Manrai, “Biomedical Informatics and Ma-

chine Learning for Clinical Genomics,” Human Molecular Genetics, vol. 27,

no. R1, 2018.

[6] H. Abdelhalim, A. Berber, M. Lodi, R. Jain, A. Nair, A. Pappu, K. Pa-

tel, V. Venkat, C. Venkatesan, R. Wable, and et al., “Artificial Intelligence,

Healthcare, Clinical Genomics, and Pharmacogenomics Approaches in Preci-

sion Medicine,” Frontiers in Genetics, vol. 13, Jul 2022.

[7] M. Templ and M. Sariyar, “A systematic overview on methods to protect sensi-

tive data provided for various analyses,” International Journal of Information

Security, vol. 21, no. 6, p. 1233–1246, 2022.

[8] N. Holohan, S. Antonatos, S. Braghin, and P. Mac Aonghusa, “(k,

ϵ)-Anonymity: k-Anonymity with ϵ-Differential Privacy,” arXiv preprint

arXiv:1710.01615, 2017.

61

https://docs.zama.ai/concrete-ml/getting-started/cloud
https://docs.zama.ai/concrete-ml/getting-started/cloud
https://my.clevelandclinic.org/health/diseases/21881-tumor
https://my.clevelandclinic.org/health/diseases/21881-tumor
http://www.humangenomeprivacy.org/2020/competition-tasks.html
http://www.humangenomeprivacy.org/2020/competition-tasks.html

[9] K. Rajendran, M. Jayabalan, and M. E. Rana, “A Study on k-anonymity, l-

diversity, and t-closeness Techniques,” IJCSNS, vol. 17, no. 12, p. 172, 2017.

[10] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P. Hubaux,

B. A. Malin, and X. Wang, “Privacy in the Genomic Era,” ACM Computing

Surveys (CSUR), vol. 48, no. 1, pp. 1–44, 2015.

[11] C. Dilmegani, “Machine Learning Outsourcing in 2022: Benefits & Challenges,”

Aug 2021. https://research.aimultiple.com/ml-outsourcing/.

[12] “Health Insurance Portability and Accountability Act of 1996 (HIPAA),” Jun

2022. https://www.cdc.gov/phlp/publications/topic/hipaa.html.

[13] Office of the Australian Information Commissioner, “Privacy for

Health Service Providers.” https://www.oaic.gov.au/privacy/

privacy-for-health-service-providers.

[14] European Data Protection Supervisor, “Health.” https://edps.europa.eu/

data-protection/our-work/subjects/health_en.

[15] “Republic Act 10173 – Data Privacy Act of 2012,” Nov 2021. https://www.

privacy.gov.ph/data-privacy-act/, journal=National Privacy Commission.

[16] National eHealth Governance, “Health Privacy Code.” http://ehealth.doh.

gov.ph/images/HealthPrivacyCode.pdf.

[17] C. Dilmegani, “What is Homomorphic Encryption? Benefits & Challenges,”

Aug 2021. https://research.aimultiple.com/homomorphic-encryption/.

[18] National Cancer Institute Center for Cancer Research, “Genomic Classi-

fication of Tumors.” https://ccr.cancer.gov/news/landmarks/article/

genomic-classification-of-tumors.

62

https://research.aimultiple.com/ml-outsourcing/
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.oaic.gov.au/privacy/privacy-for-health-service-providers
https://www.oaic.gov.au/privacy/privacy-for-health-service-providers
https://edps.europa.eu/data-protection/our-work/subjects/health_en
https://edps.europa.eu/data-protection/our-work/subjects/health_en
https://www.privacy.gov.ph/data-privacy-act/
https://www.privacy.gov.ph/data-privacy-act/
http://ehealth.doh.gov.ph/images/HealthPrivacyCode.pdf
http://ehealth.doh.gov.ph/images/HealthPrivacyCode.pdf
https://research.aimultiple.com/homomorphic-encryption/
https://ccr.cancer.gov/news/landmarks/article/genomic-classification-of-tumors
https://ccr.cancer.gov/news/landmarks/article/genomic-classification-of-tumors

[19] S. Quazi, “Artificial intelligence and machine learning in precision and genomic

medicine,” Medical Oncology, vol. 39, Jun 2022.

[20] J. Waring, C. Lindvall, and R. Umeton, “Automated machine learning: Review

of the state-of-the-art and opportunities for healthcare,” Artificial Intelligence

in Medicine, vol. 104, p. 101822, 2020.

[21] T. T. Tang, J. A. Zawaski, K. N. Francis, A. A. Qutub, and M. W. Gaber,

“Image-based classification of tumor type and growth rate using Machine Learn-

ing: A preclinical study,” Scientific Reports, vol. 9, Aug 2019.

[22] S. Rinesh, K. Maheswari, B. Arthi, P. Sherubha, A. Vijay, S. Sridhar, T. Rajen-

dran, and Y. A. Waji, “Investigations on brain tumor classification using hybrid

machine learning algorithms,” Journal of Healthcare Engineering, vol. 2022, Feb

2022.

[23] A. S. Assiri, S. Nazir, and S. A. Velastin, “Breast tumor classification using an

ensemble machine learning method,” Journal of Imaging, vol. 6, no. 6, p. 39,

2020.

[24] W. H. Wolberg, N. Street, and O. L. Mangasarian, “Breast Cancer Wiscon-

sin (Diagnostic) Data Set.” https://archive.ics.uci.edu/ml/datasets/

breast+cancer+wisconsin+(diagnostic).

[25] A. Carbone, “Cancer Classification at the Crossroads,” Cancers, vol. 12, p. 980,

Apr 2020.

[26] Y. Li, K. Kang, J. M. Krahn, N. Croutwater, K. Lee, D. M. Umbach, and L. Li,

“A comprehensive genomic pan-cancer classification using The Cancer Genome

Atlas gene expression data,” BMC Genomics, vol. 18, Jul 2017.

63

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)

[27] J. Liu, X. Wang, Y. Cheng, and L. Zhang, “Tumor gene expression data

classification via sample expansion-based deep learning,” Oncotarget, vol. 8,

p. 109646–109660, Nov 2017.

[28] M. A. Sahi, H. Abbas, K. Saleem, X. Yang, A. Derhab, M. A. Orgun, W. Iqbal,

I. Rashid, and A. Yaseen, “Privacy Preservation in e-healthcare Environments:

State of the Art and Future Directions,” IEEE Access, vol. 6, p. 464–478, Feb

2018.

[29] H. Fang and Q. Qian, “Privacy preserving machine learning with homomorphic

encryption and federated learning,” Future Internet, vol. 13, p. 94, Apr 2021.

[30] S. Hong, J. H. Park, W. Cho, H. Choe, and J. H. Cheon, “Secure tumor classi-

fication by shallow neural network using homomorphic encryption,” BMC Ge-

nomics, vol. 23, Apr 2022.

[31] M. Alloghani, M. M. Alani, D. Al-Jumeily, T. Baker, J. Mustafina, A. Hus-

sain, and A. J. Aljaaf, “A systematic review on the status and progress of

homomorphic encryption technologies,” Journal of Information Security and

Applications, vol. 48, p. 102362, Oct 2019.

[32] Ravital, “An Intro to Fully Homomorphic Encryption for

Engineers,” Aug 2021. https://blog.sunscreen.tech/

an-intro-to-fully-homomorphic-encryption-for-engineers/.

[33] S. Mondal, M. S. Gharote, and S. P. Lodha, “Privacy of Personal Information,”

ACM Queue, vol. 20, Jul 2022.

[34] M. Phillips, “Can Genomic Data Be Anonymised?,” 2018. https://www.

ga4gh.org/news/can-genomic-data-be-anonymised/.

64

https://blog.sunscreen.tech/an-intro-to-fully-homomorphic-encryption-for-engineers/
https://blog.sunscreen.tech/an-intro-to-fully-homomorphic-encryption-for-engineers/
https://www.ga4gh.org/news/can-genomic-data-be-anonymised/
https://www.ga4gh.org/news/can-genomic-data-be-anonymised/

[35] Z. He, Y. Li, J. Li, K. Li, Q. Cai, and Y. Liang, “Achieving differential pri-

vacy of genomic data releasing via belief propagation,” Tsinghua Science and

Technology, vol. 23, no. 4, pp. 389–395, 2018.

[36] M. Creeger, “The Rise of Fully Homomorphic Encryption,” ACM Queue,

vol. 20, Sep 2022.

[37] H. Weng, C. Hettiarachchi, C. Nolan, H. Suominen, and A. Lenskiy, “Ensuring

security of artificial pancreas device system using homomorphic encryption,”

Biomedical Signal Processing and Control, vol. 79, p. 104044, 2023.

[38] D. Arnold, J. Saniie, and A. Heifetz, “Homomorphic Encryption for Machine

Learning and Artificial Intelligence applications,” Argonne National Laboratory,

Aug 2022.

[39] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee, J. Lee,

D. Yoo, Y.-S. Kim, and et al., “Privacy-Preserving Machine Learning with Fully

Homomorphic Encryption for Deep Neural Network,” IEEE Access, vol. 10,

p. 30039–30054, 2022.

[40] A. Wood, K. Najarian, and D. Kahrobaei, “Homomorphic Encryption for Ma-

chine Learning in Medicine and Bioinformatics,” ACM Computing Surveys,

vol. 53, no. 4, p. 1–35, 2020.

[41] A. A. Badawi, L. Hoang, C. F. Mun, K. Laine, and K. M. Aung, “PrivFT:

Private and Fast Text Classification with Homomorphic Encryption,” IEEE

Access, vol. 8, p. 226544–226556, 2020.

[42] A. Akavia, B. Galili, H. Shaul, M. Weiss, and Z. Yakhini, “Efficient privacy-

preserving viral strain classification via K-Mer signatures and FHE,” May 2022.

65

[43] “Microsoft SEAL (release 4.0).” https://github.com/Microsoft/SEAL,

March 2022.

[44] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “nGraph-HE: A Graph

Compiler for Deep Learning on Homomorphically Encrypted Data,” Proceedings

of the 16th ACM International Conference on Computing Frontiers, 2018.

[45] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “nGraph-HE2:

A High-Throughput Framework for Neural Network Inference on Encrypted

Data,” Proceedings of the 7th ACM Workshop on Encrypted Computing & Ap-

plied Homomorphic Cryptography - WAHC’19, 2019.

[46] E. Aharoni, A. Adir, M. Baruch, N. Drucker, G. Ezov, A. Farkash, L. Greenberg,

R. Masalha, G. Moshkowich, D. Murik, H. Shaul, and O. Soceanu, “HeLayers:

A Tile Tensors Framework for Large Neural Networks on Encrypted Data,”

Privacy Enhancing Technology Symposium (PETs) 2023, 2023.

[47] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, “TenSEAL: A Library

for Encrypted Tensor Operations Using Homomorphic Encryption,” 2021.

[48] Zama-AI, “What is Concrete ML?,” Nov 2022. https://docs.zama.ai/

concrete-ml.

[49] A. Meyre, B. Chevallier-Mames, J. Frery, A. Stoian, R. Bredehoft, L. Montero,

and C. Kherfallah, “Concrete-ML: a privacy-preserving machine learning library

using fully homomorphic encryption for data scientists,” 2022-*. https://

github.com/zama-ai/concrete-ml.

[50] Zama-AI, “Operations and Examples,” Nov 2022. https://docs.zama.ai/

concrete/getting-started/operations_and_examples.

66

https://github.com/Microsoft/SEAL
https://docs.zama.ai/concrete-ml
https://docs.zama.ai/concrete-ml
https://github.com/zama-ai/concrete-ml
https://github.com/zama-ai/concrete-ml
https://docs.zama.ai/concrete/getting-started/operations_and_examples
https://docs.zama.ai/concrete/getting-started/operations_and_examples

[51] Zama-AI, “Tree-based Models,” Nov 2022. https://docs.zama.ai/

concrete-ml/built-in-models/tree.

[52] M. Joye, “Homomorphic Encryption 101,” Dec 2021. https://www.zama.ai/

post/homomorphic-encryption-101.

[53] Zama-AI, “Quantization,” Nov 2022. https://docs.zama.ai/concrete-ml/

advanced-topics/quantization.

[54] S. Carpov, N. Gama, M. Georgieva, and D. Jetchev, “GenoPPML–a framework

for genomic privacy-preserving machine learning,” in 2022 IEEE 15th Interna-

tional Conference on Cloud Computing (CLOUD), pp. 532–542, IEEE, 2022.

[55] R. S. Sagar, “Inpher’s Research on Privacy-Preserving Machine Learning Pub-

lished in Two Premier Conferences,” July 2022. https://inpher.io/news/

inphers-research-on-privacy-preserving-machine-learning-published-in-two-premier-conferences/.

[56] R. S. Sagar, “Inpher wins the iDASH Secure Genome Anal-

ysis Competition,” Dec 2020. https://inpher.io/news/

inpher-wins-the-idash-secure-genome-analysis-competition/.

[57] “Samsung SDS Wins iDASH Competition with Homomorphic

Encryption Tech,” Dec 2020. https://mobileidworld.com/

samsung-sds-wins-idash-competition-homomorphic-encryption-tech-122206/.

[58] A. Bhattacharya, “Homomorphic Encryption - Basics,”

Dec 2020. https://www.encryptionconsulting.com/

introduction-to-homomorphic-encryption/.

[59] M. Townend, “How Homomorphic Encryption Works & When To

Use It,” Nov 2022. https://www.splunk.com/en_us/blog/learn/

homomorphic-encryption.html.

67

https://docs.zama.ai/concrete-ml/built-in-models/tree
https://docs.zama.ai/concrete-ml/built-in-models/tree
https://www.zama.ai/post/homomorphic-encryption-101
https://www.zama.ai/post/homomorphic-encryption-101
https://docs.zama.ai/concrete-ml/advanced-topics/quantization
https://docs.zama.ai/concrete-ml/advanced-topics/quantization
https://inpher.io/news/inphers-research-on-privacy-preserving-machine-learning-published-in-two-premier-conferences/
https://inpher.io/news/inphers-research-on-privacy-preserving-machine-learning-published-in-two-premier-conferences/
https://inpher.io/news/inpher-wins-the-idash-secure-genome-analysis-competition/
https://inpher.io/news/inpher-wins-the-idash-secure-genome-analysis-competition/
https://mobileidworld.com/samsung-sds-wins-idash-competition-homomorphic-encryption-tech-122206/
https://mobileidworld.com/samsung-sds-wins-idash-competition-homomorphic-encryption-tech-122206/
https://www.encryptionconsulting.com/introduction-to-homomorphic-encryption/
https://www.encryptionconsulting.com/introduction-to-homomorphic-encryption/
https://www.splunk.com/en_us/blog/learn/homomorphic-encryption.html
https://www.splunk.com/en_us/blog/learn/homomorphic-encryption.html

[60] R. A. Hallman, K. Laine, W. Dai, N. Gama, A. J. Malozemoff, Y. Polyakov, and

S. Carpov, “Building Applications with Homomorphic Encryption,” in Proceed-

ings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security, pp. 2160–2162, 2018.

[61] Zama-AI, “Lifecycle of a ConcreteML Model,” Nov 2022. https://docs.zama.

ai/concrete-ml/getting-started/concepts.

[62] Zama-AI, “Compilation,” Nov 2022. https://docs.zama.ai/concrete-ml/

advanced-topics/compilation.

[63] J. Frery, A. Stoian, R. Bredehoft, L. Montero, C. Kherfallah, B. Chevallier-

Mames, and A. Meyre, “Privacy-preserving tree-based inference with fully ho-

momorphic encryption,” arXiv preprint arXiv:2303.01254, 2023.

[64] Zama-AI, “Production Deployment,” Nov 2022. https://docs.zama.ai/

concrete-ml/advanced-topics/client_server.

[65] Zama-AI, “concrete.ml.deployment.fhe client server,” Nov 2022. https:

//docs.zama.ai/concrete-ml/developer-guide/api/concrete.ml.

deployment.fhe_client_server.

[66] Zama-AI, “Client Server in Concrete ML,” Sep 2022. https://github.com/

zama-ai/concrete-ml/blob/release/0.5.x/docs/advanced_examples/

ClientServer.ipynb.

[67] Zama-AI, “Linear Models,” Nov 2022. https://docs.zama.ai/concrete-ml/

built-in-models/linear.

[68] Zama-AI, “Neural Networks,” Nov 2022. https://docs.zama.ai/

concrete-ml/built-in-models/neural-networks.

68

https://docs.zama.ai/concrete-ml/getting-started/concepts
https://docs.zama.ai/concrete-ml/getting-started/concepts
https://docs.zama.ai/concrete-ml/advanced-topics/compilation
https://docs.zama.ai/concrete-ml/advanced-topics/compilation
https://docs.zama.ai/concrete-ml/advanced-topics/client_server
https://docs.zama.ai/concrete-ml/advanced-topics/client_server
https://docs.zama.ai/concrete-ml/developer-guide/api/concrete.ml.deployment.fhe_client_server
https://docs.zama.ai/concrete-ml/developer-guide/api/concrete.ml.deployment.fhe_client_server
https://docs.zama.ai/concrete-ml/developer-guide/api/concrete.ml.deployment.fhe_client_server
https://github.com/zama-ai/concrete-ml/blob/release/0.5.x/docs/advanced_examples/ClientServer.ipynb
https://github.com/zama-ai/concrete-ml/blob/release/0.5.x/docs/advanced_examples/ClientServer.ipynb
https://github.com/zama-ai/concrete-ml/blob/release/0.5.x/docs/advanced_examples/ClientServer.ipynb
https://docs.zama.ai/concrete-ml/built-in-models/linear
https://docs.zama.ai/concrete-ml/built-in-models/linear
https://docs.zama.ai/concrete-ml/built-in-models/neural-networks
https://docs.zama.ai/concrete-ml/built-in-models/neural-networks

[69] Zama-AI, “concrete.ml.sklearn.qnn,” Nov 2022. https://docs.zama.ai/

concrete-ml/developer-guide/api/concrete.ml.sklearn.qnn.

[70] A. Tripathi, “What is Logistic Regression?,” Jun 2019. https://

towardsdatascience.com/what-is-logistic-regression-60a273e6bd91.

[71] IBM, “What is logistic regression?.” https://www.ibm.com/topics/

logistic-regression.

[72] A. Pradhan, S. Prabhu, K. Chadaga, S. Sengupta, and G. Nath, “Supervised

learning models for the preliminary detection of covid-19 in patients using de-

mographic and epidemiological parameters,” Information, vol. 13, no. 7, p. 330,

2022.

[73] A. C. Chang, “Machine and deep learning,” Intelligence-based medicine: Ar-

tificial intelligence and human cognition in clinical medicine and healthcare,

pp. 67–140, 2020.

[74] B. Grisci, “Brain cancer gene expression - cumida,” Feb

2020. https://www.kaggle.com/datasets/brunogrisci/

brain-cancer-gene-expression-cumida.

[75] B. C. Feltes, E. B. Chandelier, B. I. Grisci, and M. Dorn, “Cumida: an exten-

sively curated microarray database for benchmarking and testing of machine

learning approaches in cancer research,” Journal of Computational Biology,

vol. 26, no. 4, pp. 376–386, 2019.

[76] “Ependymoma,” Apr 2023. https://www.mayoclinic.org/

diseases-conditions/ependymoma/cdc-20350144.

[77] “Glioblastoma,” Jan 2023. https://www.mayoclinic.org/

diseases-conditions/glioblastoma/cdc-20350148.

69

https://docs.zama.ai/concrete-ml/developer-guide/api/concrete.ml.sklearn.qnn
https://docs.zama.ai/concrete-ml/developer-guide/api/concrete.ml.sklearn.qnn
https://towardsdatascience.com/what-is-logistic-regression-60a273e6bd91
https://towardsdatascience.com/what-is-logistic-regression-60a273e6bd91
https://www.ibm.com/topics/logistic-regression
https://www.ibm.com/topics/logistic-regression
https://www.kaggle.com/datasets/brunogrisci/brain-cancer-gene-expression-cumida
https://www.kaggle.com/datasets/brunogrisci/brain-cancer-gene-expression-cumida
https://www.mayoclinic.org/diseases-conditions/ependymoma/cdc-20350144
https://www.mayoclinic.org/diseases-conditions/ependymoma/cdc-20350144
https://www.mayoclinic.org/diseases-conditions/glioblastoma/cdc-20350148
https://www.mayoclinic.org/diseases-conditions/glioblastoma/cdc-20350148

[78] “Medulloblastoma,” Apr 2023. https://www.mayoclinic.org/

diseases-conditions/medulloblastoma/cdc-20363524.

[79] “Astrocytoma,” Mar 2023. https://my.clevelandclinic.org/health/

diseases/17863-astrocytoma.

[80] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[81] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Nic-

ulae, P. Prettenhofer, A. Gramfort, J. Grobler, et al., “Api design for machine

learning software: experiences from the scikit-learn project,” arXiv preprint

arXiv:1309.0238, 2013.

[82] “Classification: Accuracy.” https://developers.google.com/

machine-learning/crash-course/classification/accuracy.

[83] S. Mazumder, “5 Techniques to Handle Imbalanced Data for a Classification

Problem,” Dec 2022. https://www.analyticsvidhya.com/blog/2021/06/

5-techniques-to-handle-imbalanced-data-for-a-classification-problem/.

[84] S. Allwright, “What is a good balanced accuracy score?,” Aug 2022. https:

//stephenallwright.com/balanced-accuracy/.

[85] “Pandas documentation,” May 2023. https://pandas.pydata.org/docs/

#pandas-documentation.

[86] “Google colaboratory.” https://colab.google/.

70

https://www.mayoclinic.org/diseases-conditions/medulloblastoma/cdc-20363524
https://www.mayoclinic.org/diseases-conditions/medulloblastoma/cdc-20363524
https://my.clevelandclinic.org/health/diseases/17863-astrocytoma
https://my.clevelandclinic.org/health/diseases/17863-astrocytoma
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://www.analyticsvidhya.com/blog/2021/06/5-techniques-to-handle-imbalanced-data-for-a-classification-problem/
https://www.analyticsvidhya.com/blog/2021/06/5-techniques-to-handle-imbalanced-data-for-a-classification-problem/
https://stephenallwright.com/balanced-accuracy/
https://stephenallwright.com/balanced-accuracy/
https://pandas.pydata.org/docs/#pandas-documentation
https://pandas.pydata.org/docs/#pandas-documentation
https://colab.google/

[87] Craigloewen-Msft, “What is the Windows Subsystem for Linux?,” Aug 2022.

https://learn.microsoft.com/en-us/windows/wsl/about.

[88] “tkinter - Python interface to Tcl/Tk.” https://docs.python.org/3/

library/tkinter.html.

[89] “Customtkinter.” https://customtkinter.tomschimansky.com/.

[90] Django Software Foundation, “Django.” https://djangoproject.com.

[91] “What is Bootstrap?.” https://www.w3schools.com/whatis/whatis_

bootstrap.asp.

[92] P. Li, F. Michel, and J. Wilson, “FHE and Ma-

chine Learning,” Nov 2022. https://optalysys.com/

fhe-and-machine-learning-a-student-perspective-with-examples/.

[93] Zama-AI, “Classifier Comparison,” Apr 2023. https://github.com/

zama-ai/concrete-ml/blob/release/1.0.x/docs/advanced_examples/

ClassifierComparison.ipynb.

[94] R. Hendricks, “What is a good accuracy score in machine

learning?,” Nov 2022. https://deepchecks.com/question/

what-is-a-good-accuracy-score-in-machine-learning/#:~:text=

Industry%20standards%20are%20between%2070%25%20and%2090%25.

%20Everything,as%20a%20realistic%20and%20valuable%20model%20data%

20output.

[95] S. Allwright, “What is a good f1 score?,” Apr 2022. https://

stephenallwright.com/good-f1-score/.

71

https://learn.microsoft.com/en-us/windows/wsl/about
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://customtkinter.tomschimansky.com/
https://djangoproject.com
https://www.w3schools.com/whatis/whatis_bootstrap.asp
https://www.w3schools.com/whatis/whatis_bootstrap.asp
https://optalysys.com/fhe-and-machine-learning-a-student-perspective-with-examples/
https://optalysys.com/fhe-and-machine-learning-a-student-perspective-with-examples/
https://github.com/zama-ai/concrete-ml/blob/release/1.0.x/docs/advanced_examples/ClassifierComparison.ipynb
https://github.com/zama-ai/concrete-ml/blob/release/1.0.x/docs/advanced_examples/ClassifierComparison.ipynb
https://github.com/zama-ai/concrete-ml/blob/release/1.0.x/docs/advanced_examples/ClassifierComparison.ipynb
https://deepchecks.com/question/what-is-a-good-accuracy-score-in-machine-learning/#:~:text=Industry%20standards%20are%20between%2070%25%20and%2090%25.%20Everything,as%20a%20realistic%20and%20valuable%20model%20data%20output.
https://deepchecks.com/question/what-is-a-good-accuracy-score-in-machine-learning/#:~:text=Industry%20standards%20are%20between%2070%25%20and%2090%25.%20Everything,as%20a%20realistic%20and%20valuable%20model%20data%20output.
https://deepchecks.com/question/what-is-a-good-accuracy-score-in-machine-learning/#:~:text=Industry%20standards%20are%20between%2070%25%20and%2090%25.%20Everything,as%20a%20realistic%20and%20valuable%20model%20data%20output.
https://deepchecks.com/question/what-is-a-good-accuracy-score-in-machine-learning/#:~:text=Industry%20standards%20are%20between%2070%25%20and%2090%25.%20Everything,as%20a%20realistic%20and%20valuable%20model%20data%20output.
https://deepchecks.com/question/what-is-a-good-accuracy-score-in-machine-learning/#:~:text=Industry%20standards%20are%20between%2070%25%20and%2090%25.%20Everything,as%20a%20realistic%20and%20valuable%20model%20data%20output.
https://stephenallwright.com/good-f1-score/
https://stephenallwright.com/good-f1-score/

[96] D. Corvoysier, “A brief introduction to Machine Learning mod-

els quantization,” May 2023. https://www.kaizou.org/2023/05/

machine-learning-quantization-introduction.html.

[97] Google, “Building a quantization paradigm from first principles,” Jan 2019.

https://github.com/google/gemmlowp/blob/master/doc/quantization.

md.

[98] S. Security, “Understand Private Key and Public Key with an

Example,” Jan 2019. https://cheapsslsecurity.com/blog/

private-key-and-public-key-explained/#:~:text=As%20such%2C%

20they%20help%20encrypt%20and%20protect%20users%E2%80%99,

strongest%20industry%20standard%20is%20a%202048-bit%20RSA%20key.

[99] “TLS Key Size: Why Bigger isn’t Always Better,” Nov 2022. https://

www.fastly.com/blog/key-size-for-tls, journal=Fastly, author=Thayer,

Wayne.

[100] “What is key length in cryptography and why is it important?,” Oct 2022.

https://justcryptography.com/key-length/, journal=Just Cryptography.

[101] N. Higham, “What is a condition number?,” Mar 2020. https://nhigham.

com/2020/03/19/what-is-a-condition-number/.

[102] S. Glen, “Ill-Conditioned & Condition Number.” https:

//www.statisticshowto.com/calculus-definitions/

ill-conditioned-condition-number/.

72

https://www.kaizou.org/2023/05/machine-learning-quantization-introduction.html
https://www.kaizou.org/2023/05/machine-learning-quantization-introduction.html
https://github.com/google/gemmlowp/blob/master/doc/quantization.md
https://github.com/google/gemmlowp/blob/master/doc/quantization.md
https://cheapsslsecurity.com/blog/private-key-and-public-key-explained/#:~:text=As%20such%2C%20they%20help%20encrypt%20and%20protect%20users%E2%80%99,strongest%20industry%20standard%20is%20a%202048-bit%20RSA%20key.
https://cheapsslsecurity.com/blog/private-key-and-public-key-explained/#:~:text=As%20such%2C%20they%20help%20encrypt%20and%20protect%20users%E2%80%99,strongest%20industry%20standard%20is%20a%202048-bit%20RSA%20key.
https://cheapsslsecurity.com/blog/private-key-and-public-key-explained/#:~:text=As%20such%2C%20they%20help%20encrypt%20and%20protect%20users%E2%80%99,strongest%20industry%20standard%20is%20a%202048-bit%20RSA%20key.
https://cheapsslsecurity.com/blog/private-key-and-public-key-explained/#:~:text=As%20such%2C%20they%20help%20encrypt%20and%20protect%20users%E2%80%99,strongest%20industry%20standard%20is%20a%202048-bit%20RSA%20key.
https://www.fastly.com/blog/key-size-for-tls
https://www.fastly.com/blog/key-size-for-tls
https://justcryptography.com/key-length/
https://nhigham.com/2020/03/19/what-is-a-condition-number/
https://nhigham.com/2020/03/19/what-is-a-condition-number/
https://www.statisticshowto.com/calculus-definitions/ill-conditioned-condition-number/
https://www.statisticshowto.com/calculus-definitions/ill-conditioned-condition-number/
https://www.statisticshowto.com/calculus-definitions/ill-conditioned-condition-number/

X. Appendix

A. Source Code

1 # Brain Tumor Classifier Final Training Script for Logistic Regression using Google Colaboratory

2
3 # Installing packages for concrete -ml on colab

4 !pip install -U pip wheel setuptools

5 !pip install concrete -ml

6
7
8 # Accessing google drive

9 from google.colab import drive

10 drive.mount(’/content/gdrive ’)

11
12
13 # Importing modules

14 from sklearn.model_selection import train_test_split

15 from sklearn import preprocessing

16
17 from sklearn.metrics import accuracy_score

18 from sklearn.metrics import balanced_accuracy_score

19 from sklearn.metrics import f1_score

20
21 from concrete.ml.sklearn import LogisticRegression

22 from sklearn.linear_model import LogisticRegression as skLR

23
24 import time

25 import pandas as pd

26 import numpy as np

27 from numpy import mean

28 from numpy import std

29
30
31 # Reading the dataset

32 dataset = pd.read_csv("gdrive/MyDrive/Special -Problem -Colab/Brain_GSE50161.csv")

33 dataset.head()

34
35 feature_cols = [c for c in dataset.columns [2:]]

36 x = dataset.loc[:, feature_cols]. values # must be floats

37 y = dataset.loc[:,’type’]. values # must be integers

38
39
40 # Preprocessing with labels for the lineage

41 le = preprocessing.LabelEncoder ()

42 y = le.fit_transform(y)

43 le_mapping = dict(zip(le.classes_ , range(len(le.classes_))))

44 print(le_mapping)

45 print(le.classes_)

46
47
48 # Feature Selection

49 from sklearn.feature_selection import SelectKBest , chi2

50
51 print("\nUsing K best features feature selection ...")

52 print("Shape of x before selection: ", x.shape)

53 selector = SelectKBest(chi2 , k = 20)

54 x_new = selector.fit_transform(x, y)

55 x = x_new

56 print("Shape of x after selection: ", x.shape)

57 print("\n", x)

58
59
60 # Get most important features accorting to Kbest

61 cols_index = selector.get_support(indices=True)

62 most_important_features = []

63
64 print("\nSelected features: ")

65 for col in cols_index:

66 most_important_features.append(str(feature_cols[col]))

67 print(most_important_features)

68
69
70 # Train -test split

71 X_train , X_test , y_train , y_test = train_test_split(

72 x, y, test_size =0.10)

73
74 print(f"training set size: {X_train.shape [0]}")

75 print(f"testing set size: {X_test.shape [0]}")

76
77
78 # Logistic Regression Model Training

79 # Scikit -learn plaintext

80 skmodel_LR = skLR(class_weight=’balanced ’)

81 start_time = time.time()

73

82 skmodel_LR.fit(X_train ,y_train)

83 print(f"Running time for sklearn training is {time.time() - start_time} seconds")

84 start_time = time.time()

85 y_pred_clear_LR = skmodel_LR.predict(X_test)

86 print(f"Running time for sklearn prediction is {time.time() - start_time} seconds")

87
88 # Quantized plaintext

89 quant_LR = LogisticRegression(class_weight=’balanced ’)

90 start_time = time.time()

91 quant_LR.fit(X_train , y_train)

92 print(f"Running time for quantized plaintext training is {time.time() - start_time} seconds")

93 start_time = time.time()

94 y_pred_q_LR = quant_LR.predict(X_test)

95 print(f"Running time for quantized plaintext prediction is {time.time() - start_time} seconds")

96
97
98 # Metrics for scikit -learn and quantized plaintext

99 print("\n Logistic Regression Results \n")

100 # Accuracy

101 skLR_accuracy = accuracy_score(y_test , y_pred_clear_LR) * 100

102 quantLR_accuracy = accuracy_score(y_test , y_pred_q_LR) * 100

103 print(f"Sklearn accuracy: {skLR_accuracy :.4f}")

104 print(f"Quantized Clear Accuracy: {quantLR_accuracy :.4f}")

105 # Balanced Accuracy

106 skLR_bal_accuracy = balanced_accuracy_score(y_test , y_pred_clear_LR) * 100

107 quantLR_bal_accuracy = balanced_accuracy_score(y_test , y_pred_q_LR) * 100

108 print(f"Sklearn Balanced accuracy: {skLR_bal_accuracy :.4f}")

109 print(f"Quantized Clear Balanced Accuracy: {quantLR_bal_accuracy :.4f}")

110 # F1 Score

111 skLR_f1 = f1_score(y_test , y_pred_clear_LR , average=’weighted ’) * 100

112 quantLR_f1 = f1_score(y_test , y_pred_q_LR , average=’weighted ’) * 100

113 print(f"Sklearn F1 Score: {skLR_f1 :.4f}")

114 print(f"Quantized Clear F1 Score: {quantLR_f1 :.4f}")

115
116
117 # Logistic Regression FHE Model Compilation and Prediction on Test Set

118 start_time = time.time()

119 fhe_LR = quant_LR.compile(x)

120 print(f"Running time for FHE compilation is {time.time() - start_time} seconds")

121 start_time = time.time()

122 y_pred_fhe_LR = quant_LR.predict(X_test , fhe=’execute ’)

123 print(f"Running time for FHE prediction is {time.time() - start_time} seconds")

124
125
126 # Metrics for FHE Model

127 print("FHE Logistic Regression Results \n")

128 # Accuracy

129 fheLR_accuracy = accuracy_score(y_test , y_pred_fhe_LR) * 100

130 print(f"Accuracy: {fheLR_accuracy :.4f}")

131 # Balanced Accuracy

132 fheLR_bal_accuracy = balanced_accuracy_score(y_test , y_pred_fhe_LR) * 100

133 print(f"Balanced accuracy: {fheLR_bal_accuracy :.4f}")

134 # F1 Score

135 fheLR_f1 = f1_score(y_test , y_pred_fhe_LR , average=’weighted ’) * 100

136 print(f"F1 Score: {fheLR_f1 :.4f}")

137
138
139 # Model prediction on test set vs Actual test set for error analysis

140 print("\n")

141 print("SKLEARN PREDICTION :\n", y_pred_clear_LR)

142 print("QUANTIZED CLEAR PREDICTION :\n", y_pred_q_LR)

143 print("FHE PREDICTION :\n", y_pred_fhe_LR)

144 print("ACTUAL :\n", y_test)

145
146 print("\n")

147 print(f"Quantized vs FHE Comparison: {int((y_pred_fhe_LR == y_pred_q_LR).sum()/len(y_pred_fhe_LR)*100)}% similar"

)

148 print(f"Sklearn vs FHE Comparison: {int((y_pred_fhe_LR == y_pred_clear_LR).sum()/len(y_pred_fhe_LR)*100)}%

similar")

149
150
151 # Error analysis using confusion matrix

152 start_time = time.time()

153 import matplotlib.pyplot as plt

154 from sklearn.metrics import confusion_matrix , ConfusionMatrixDisplay

155
156 print("*** Note: The diagonal elements are the correctly predicted samples. ***")

157
158 print("Confusion matrix for SKLearn Plaintext: ")

159 sklearn_cm_display = ConfusionMatrixDisplay(confusion_matrix(y_test , y_pred_clear_LR), display_labels=le.classes_

)

160 sklearn_cm_display.plot()

161 plt.show()

162
163 print("Confusion matrix for Quantized Plaintext: ")

164 concrete_plain_display = ConfusionMatrixDisplay(confusion_matrix(y_test , y_pred_q_LR), display_labels=le.classes_

)

165 concrete_plain_display.plot()

166 plt.show()

167
168 print("Confusion matrix for FHE: ")

169 concrete_fhe_display = ConfusionMatrixDisplay(confusion_matrix(y_test , y_pred_fhe_LR), display_labels=le.classes_

74

)

170 concrete_fhe_display.plot()

171 plt.show()

172
173 print(f"Running time is {time.time() - start_time} seconds")

174
175
176 # Obtaining one sample per class

177 ependymoma_sample = dataset[dataset[’samples ’] == 879][most_important_features]. to_numpy(dtype="uint16")

178 glioblastoma_sample = dataset[dataset[’samples ’] == 913][most_important_features]. to_numpy(dtype="uint16")

179 medulloblastoma_sample = dataset[dataset[’samples ’] == 935][most_important_features]. to_numpy(dtype="uint16")

180 normal_sample = dataset[dataset[’samples ’] == 948][most_important_features]. to_numpy(dtype="uint16")

181 pilocytic_astrocytoma_sample = dataset[dataset[’samples ’] == 963][most_important_features]. to_numpy(dtype="uint16

")

182
183
184 # Sklearn Inference Time

185 average = 0

186
187 start_time = time.time()

188 skmodel_LR.predict(ependymoma_sample)

189 end_time = time.time()

190 print(f"Running time for Sklearn inference of ependymoma_sample is {end_time - start_time} seconds")

191
192 average += end_time - start_time

193
194 start_time = time.time()

195 skmodel_LR.predict(glioblastoma_sample)

196 end_time = time.time()

197 print(f"Running time for Sklearn inference of glioblastoma_sample is {end_time - start_time} seconds")

198
199 average += end_time - start_time

200
201 start_time = time.time()

202 skmodel_LR.predict(medulloblastoma_sample)

203 end_time = time.time()

204 print(f"Running time for Sklearn inference of medulloblastoma_sample is {end_time - start_time} seconds")

205
206 average += end_time - start_time

207
208 start_time = time.time()

209 skmodel_LR.predict(normal_sample)

210 end_time = time.time()

211 print(f"Running time for Sklearn inference of normal_sample is {end_time - start_time} seconds")

212
213 average += end_time - start_time

214
215 start_time = time.time()

216 skmodel_LR.predict(pilocytic_astrocytoma_sample)

217 end_time = time.time()

218 print(f"Running time for Sklearn inference of pilocytic_astrocytoma_sample is {end_time - start_time} seconds")

219
220 average += end_time - start_time

221
222 average /= 5

223
224 print(f"Average running time of Sklearn inference for each class is {average} seconds")

225
226
227 # Quantized Plaintext Inference Time

228 average = 0

229
230 start_time = time.time()

231 quant_LR.predict(ependymoma_sample)

232 end_time = time.time()

233 print(f"Running time for quantized plaintext inference of ependymoma_sample is {end_time - start_time} seconds")

234
235 average += end_time - start_time

236
237 start_time = time.time()

238 quant_LR.predict(glioblastoma_sample)

239 end_time = time.time()

240 print(f"Running time for quantized plaintext inference of glioblastoma_sample is {end_time - start_time} seconds"

)

241
242 average += end_time - start_time

243
244 start_time = time.time()

245 quant_LR.predict(medulloblastoma_sample)

246 end_time = time.time()

247 print(f"Running time for quantized plaintext inference of medulloblastoma_sample is {end_time - start_time}

seconds")

248
249 average += end_time - start_time

250
251 start_time = time.time()

252 quant_LR.predict(normal_sample)

253 end_time = time.time()

254 print(f"Running time for quantized plaintext inference of normal_sample is {end_time - start_time} seconds")

255
256 average += end_time - start_time

257

75

258 start_time = time.time()

259 quant_LR.predict(pilocytic_astrocytoma_sample)

260 end_time = time.time()

261 print(f"Running time for quantized plaintext inference of pilocytic_astrocytoma_sample is {end_time - start_time}

seconds")

262
263 average += end_time - start_time

264
265 average /= 5

266
267 print(f"Average running time of quantized plaintext inference for each class is {average} seconds")

268
269
270 # FHE Inference Time

271 average = 0

272
273 start_time = time.time()

274 quant_LR.predict(ependymoma_sample , fhe="execute")

275 end_time = time.time()

276 print(f"Running time for FHE inference of ependymoma_sample is {end_time - start_time} seconds")

277
278 average += end_time - start_time

279
280 start_time = time.time()

281 quant_LR.predict(glioblastoma_sample , fhe="execute")

282 end_time = time.time()

283 print(f"Running time for FHE inference of glioblastoma_sample is {end_time - start_time} seconds")

284
285 average += end_time - start_time

286
287 start_time = time.time()

288 quant_LR.predict(medulloblastoma_sample , fhe="execute")

289 end_time = time.time()

290 print(f"Running time for FHE inference of medulloblastoma_sample is {end_time - start_time} seconds")

291
292 average += end_time - start_time

293
294 start_time = time.time()

295 quant_LR.predict(normal_sample , fhe="execute")

296 end_time = time.time()

297 print(f"Running time for FHE inference of normal_sample is {end_time - start_time} seconds")

298
299 average += end_time - start_time

300
301 start_time = time.time()

302 quant_LR.predict(pilocytic_astrocytoma_sample , fhe="execute")

303 end_time = time.time()

304 print(f"Running time for FHE inference of pilocytic_astrocytoma_sample is {end_time - start_time} seconds")

305
306 average += end_time - start_time

307
308 average /= 5

309
310 print(f"Average running time of FHE inference for each class is {average} seconds")

311
312
313 # Saving the model into desired directory/path

314 from concrete.ml.deployment import FHEModelClient , FHEModelDev , FHEModelServer

315
316 start_time = time.time()

317
318 fhemodel_dev = FHEModelDev("gdrive/MyDrive/Special -Problem -Colab/Brain -Tumor -Models/", quant_LR)

319 fhemodel_dev.save()

320
321 print(f"Running time for saving the FHE model is {time.time() - start_time} seconds")

322
323
324 # Saving the selected features and the classes into text file

325 import json

326
327 for col in cols_index:

328 print(feature_cols[col])

329
330 for classLabel in le.classes_:

331 print(classLabel)

332
333 with open("features_and_classes.txt", "w") as f:

334 classes_list = list(le.classes_)

335 temp_dict = {"features":[feature_cols[col] for col in cols_index], "classes":{ classes_list.index(x):x for x

in classes_list }}

336
337 f.write(json.dumps(temp_dict))

Listing 1: Logistic regression model training (logisticRegression-training.py).

1 # Brain Tumor Classifier Final Training Script for Random Forest using Google Colaboratory

2
3 # Installing packages for concrete -ml on colab

4 !pip install -U pip wheel setuptools

5 !pip install concrete -ml

76

6
7
8 # Accessing google drive

9 from google.colab import drive

10 drive.mount(’/content/gdrive ’)

11
12
13 # Importing modules

14 from sklearn.model_selection import train_test_split

15 from sklearn import preprocessing

16
17 from sklearn.metrics import accuracy_score

18 from sklearn.metrics import balanced_accuracy_score

19 from sklearn.metrics import f1_score

20
21 from concrete.ml.sklearn.rf import RandomForestClassifier

22 from sklearn.ensemble import RandomForestClassifier as skRF

23
24 import time

25 import pandas as pd

26 import numpy as np

27 from numpy import mean

28 from numpy import std

29
30
31 # Reading the dataset

32 dataset = pd.read_csv("gdrive/MyDrive/Special -Problem -Colab/Brain_GSE50161.csv")

33 dataset.head()

34
35 feature_cols = [c for c in dataset.columns [2:]]

36 x = dataset.loc[:, feature_cols]. values # must be floats

37 y = dataset.loc[:,’type’]. values # must be integers

38
39
40 # Preprocessing with labels for the lineage

41 le = preprocessing.LabelEncoder ()

42 y = le.fit_transform(y)

43 le_mapping = dict(zip(le.classes_ , range(len(le.classes_))))

44 print(le_mapping)

45 print(le.classes_)

46
47
48 # Feature Selection

49 from sklearn.feature_selection import SelectKBest , chi2

50
51 print("\nUsing K best features feature selection ...")

52 print("Shape of x before selection: ", x.shape)

53 selector = SelectKBest(chi2 , k = 20)

54 x_new = selector.fit_transform(x, y)

55 x = x_new

56 print("Shape of x after selection: ", x.shape)

57 print("\n", x)

58
59
60 # Get most important features accorting to Kbest

61 cols_index = selector.get_support(indices=True)

62 most_important_features = []

63
64 print("\nSelected features: ")

65 for col in cols_index:

66 most_important_features.append(str(feature_cols[col]))

67 print(most_important_features)

68
69
70 # Train -test split

71 X_train , X_test , y_train , y_test = train_test_split(

72 x, y, test_size =0.10)

73
74 print(f"training set size: {X_train.shape [0]}")

75 print(f"testing set size: {X_test.shape [0]}")

76
77
78 # Random Forest Model Training

79 # Scikit -learn plaintext

80 skmodel_RF = skRF(class_weight=’balanced ’)

81 start_time = time.time()

82 skmodel_RF.fit(X_train ,y_train)

83 print(f"Running time for sklearn training is {time.time() - start_time} seconds")

84 start_time = time.time()

85 y_pred_clear_RF = skmodel_RF.predict(X_test)

86 print(f"Running time for sklearn prediction is {time.time() - start_time} seconds")

87
88 # Quantized plaintext

89 quant_RF = RandomForestClassifier(class_weight=’balanced ’)

90 start_time = time.time()

91 quant_RF.fit(X_train , y_train)

92 print(f"Running time for quantized plaintext training is {time.time() - start_time} seconds")

93 start_time = time.time()

94 y_pred_q_RF = quant_RF.predict(X_test)

95 print(f"Running time for quantized plaintext prediction is {time.time() - start_time} seconds")

96
97

77

98 # Metrics for scikit -learn and quantized plaintext

99 print("\n Random Forest Results \n")

100 # Accuracy

101 skRF_accuracy = accuracy_score(y_test , y_pred_clear_RF) * 100

102 quantRF_accuracy = accuracy_score(y_test , y_pred_q_RF) * 100

103 print(f"Sklearn accuracy: {skRF_accuracy :.4f}")

104 print(f"Quantized Clear Accuracy: {quantRF_accuracy :.4f}")

105 # Balanced Accuracy

106 skRF_bal_accuracy = balanced_accuracy_score(y_test , y_pred_clear_RF) * 100

107 quantRF_bal_accuracy = balanced_accuracy_score(y_test , y_pred_q_RF) * 100

108 print(f"Sklearn Balanced accuracy: {skRF_bal_accuracy :.4f}")

109 print(f"Quantized Clear Balanced Accuracy: {quantRF_bal_accuracy :.4f}")

110 # F1 Score

111 skRF_f1 = f1_score(y_test , y_pred_clear_RF , average=’weighted ’) * 100

112 quantRF_f1 = f1_score(y_test , y_pred_q_RF , average=’weighted ’) * 100

113 print(f"Sklearn F1 Score: {skRF_f1 :.4f}")

114 print(f"Quantized Clear F1 Score: {quantRF_f1 :.4f}")

115
116
117 # Random Forest FHE Model Compilation and Prediction on Test Set

118 start_time = time.time()

119 fhe_RF = quant_RF.compile(x)

120 print(f"Running time for FHE compilation is {time.time() - start_time} seconds")

121 start_time = time.time()

122 y_pred_fhe_RF = quant_RF.predict(X_test , fhe="execute")

123 print(f"Running time for FHE prediction is {time.time() - start_time} seconds")

124
125
126 # Metrics for FHE Model

127 print("FHE Random Forest Results \n")

128 # Accuracy

129 fheRF_accuracy = accuracy_score(y_test , y_pred_fhe_RF) * 100

130 print(f"Accuracy: {fheRF_accuracy :.4f}")

131 # Balanced Accuracy

132 fheRF_bal_accuracy = balanced_accuracy_score(y_test , y_pred_fhe_RF) * 100

133 print(f"Balanced accuracy: {fheRF_bal_accuracy :.4f}")

134 # F1 Score

135 fheRF_f1 = f1_score(y_test , y_pred_fhe_RF , average=’weighted ’) * 100

136 print(f"F1 Score: {fheRF_f1 :.4f}")

137
138
139 # Model prediction on test set vs Actual test set

140 print("\n")

141 print("SKLEARN PREDICTION :\n", y_pred_clear_RF)

142 print("QUANTIZED CLEAR PREDICTION :\n", y_pred_q_RF)

143 print("FHE PREDICTION :\n", y_pred_fhe_RF)

144 print("ACTUAL :\n", y_test)

145
146 print("\n")

147 print(f"Quantized vs FHE Comparison: {int((y_pred_fhe_RF == y_pred_q_RF).sum()/len(y_pred_fhe_RF)*100)}% similar"

)

148 print(f"Sklearn vs FHE Comparison: {int((y_pred_fhe_RF == y_pred_clear_RF).sum()/len(y_pred_fhe_RF)*100)}%

similar")

149
150
151 # Obtaining one sample per class

152 ependymoma_sample = dataset[dataset[’samples ’] == 879][most_important_features]. to_numpy(dtype="uint16")

153 glioblastoma_sample = dataset[dataset[’samples ’] == 913][most_important_features]. to_numpy(dtype="uint16")

154 medulloblastoma_sample = dataset[dataset[’samples ’] == 935][most_important_features]. to_numpy(dtype="uint16")

155 normal_sample = dataset[dataset[’samples ’] == 948][most_important_features]. to_numpy(dtype="uint16")

156 pilocytic_astrocytoma_sample = dataset[dataset[’samples ’] == 963][most_important_features]. to_numpy(dtype="uint16

")

157
158
159 # Sklearn Inference Time

160 average = 0

161
162 start_time = time.time()

163 skmodel_RF.predict(ependymoma_sample)

164 end_time = time.time()

165 print(f"Running time for Sklearn inference of ependymoma_sample is {end_time - start_time} seconds")

166
167 average += end_time - start_time

168
169 start_time = time.time()

170 skmodel_RF.predict(glioblastoma_sample)

171 end_time = time.time()

172 print(f"Running time for Sklearn inference of glioblastoma_sample is {end_time - start_time} seconds")

173
174 average += end_time - start_time

175
176 start_time = time.time()

177 skmodel_RF.predict(medulloblastoma_sample)

178 end_time = time.time()

179 print(f"Running time for Sklearn inference of medulloblastoma_sample is {end_time - start_time} seconds")

180
181 average += end_time - start_time

182
183 start_time = time.time()

184 skmodel_RF.predict(normal_sample)

185 end_time = time.time()

186 print(f"Running time for Sklearn inference of normal_sample is {end_time - start_time} seconds")

78

187
188 average += end_time - start_time

189
190 start_time = time.time()

191 skmodel_RF.predict(pilocytic_astrocytoma_sample)

192 end_time = time.time()

193 print(f"Running time for Sklearn inference of pilocytic_astrocytoma_sample is {end_time - start_time} seconds")

194
195 average += end_time - start_time

196
197 average /= 5

198
199 print(f"Average running time of Sklearn inference for each class is {average} seconds")

200
201
202 # Quantized Plaintext Inference Time

203 average = 0

204
205 start_time = time.time()

206 quant_RF.predict(ependymoma_sample)

207 end_time = time.time()

208 print(f"Running time for quantized plaintext inference of ependymoma_sample is {end_time - start_time} seconds")

209
210 average += end_time - start_time

211
212 start_time = time.time()

213 quant_RF.predict(glioblastoma_sample)

214 end_time = time.time()

215 print(f"Running time for quantized plaintext inference of glioblastoma_sample is {end_time - start_time} seconds"

)

216
217 average += end_time - start_time

218
219 start_time = time.time()

220 quant_RF.predict(medulloblastoma_sample)

221 end_time = time.time()

222 print(f"Running time for quantized plaintext inference of medulloblastoma_sample is {end_time - start_time}

seconds")

223
224 average += end_time - start_time

225
226 start_time = time.time()

227 quant_RF.predict(normal_sample)

228 end_time = time.time()

229 print(f"Running time for quantized plaintext inference of normal_sample is {end_time - start_time} seconds")

230
231 average += end_time - start_time

232
233 start_time = time.time()

234 quant_RF.predict(pilocytic_astrocytoma_sample)

235 end_time = time.time()

236 print(f"Running time for quantized plaintext inference of pilocytic_astrocytoma_sample is {end_time - start_time}

seconds")

237
238 average += end_time - start_time

239
240 average /= 5

241
242 print(f"Average running time of quantized plaintext inference for each class is {average} seconds")

243
244
245 # FHE Inference Time

246 average = 0

247
248 start_time = time.time()

249 quant_RF.predict(ependymoma_sample , fhe="execute")

250 end_time = time.time()

251 print(f"Running time for FHE inference of ependymoma_sample is {end_time - start_time} seconds")

252
253 average += end_time - start_time

254
255 start_time = time.time()

256 quant_RF.predict(glioblastoma_sample , fhe="execute")

257 end_time = time.time()

258 print(f"Running time for FHE inference of glioblastoma_sample is {end_time - start_time} seconds")

259
260 average += end_time - start_time

261
262 start_time = time.time()

263 quant_RF.predict(medulloblastoma_sample , fhe="execute")

264 end_time = time.time()

265 print(f"Running time for FHE inference of medulloblastoma_sample is {end_time - start_time} seconds")

266
267 average += end_time - start_time

268
269 start_time = time.time()

270 quant_RF.predict(normal_sample , fhe="execute")

271 end_time = time.time()

272 print(f"Running time for FHE inference of normal_sample is {end_time - start_time} seconds")

273
274 average += end_time - start_time

275

79

276 start_time = time.time()

277 quant_RF.predict(pilocytic_astrocytoma_sample , fhe="execute")

278 end_time = time.time()

279 print(f"Running time for FHE inference of pilocytic_astrocytoma_sample is {end_time - start_time} seconds")

280
281 average += end_time - start_time

282
283 average /= 5

284
285 print(f"Average running time of FHE inference for each class is {average} seconds")

286
287
288 # Saving the model into desired directory/path

289 from concrete.ml.deployment import FHEModelClient , FHEModelDev , FHEModelServer

290
291 start_time = time.time()

292
293 fhemodel_dev = FHEModelDev("gdrive/MyDrive/Special -Problem -Colab/Brain -Tumor -Models/", quant_RF)

294 fhemodel_dev.save()

295
296 print(f"Running time for saving the FHE model is {time.time() - start_time} seconds")

297
298
299 # Saving the selected features and the classes into text file

300 import json

301
302 for col in cols_index:

303 print(feature_cols[col])

304
305 for classLabel in le.classes_:

306 print(classLabel)

307
308 with open("features_and_classes.txt", "w") as f:

309 classes_list = list(le.classes_)

310 temp_dict = {"features":[feature_cols[col] for col in cols_index], "classes":{ classes_list.index(x):x for x

in classes_list }}

311
312 f.write(json.dumps(temp_dict))

Listing 2: Random forest model training (randomForest-training.py).

1 # Brain Tumor Classifier Final Training Script for Linear SVC using Google Colaboratory

2
3 # Installing packages for concrete -ml on colab

4 !pip install -U pip wheel setuptools

5 !pip install concrete -ml

6
7
8 # Accessing google drive

9 from google.colab import drive

10 drive.mount(’/content/gdrive ’)

11
12
13 # Importing modules

14 from sklearn.model_selection import train_test_split

15 from sklearn import preprocessing

16
17 from sklearn.metrics import accuracy_score

18 from sklearn.metrics import balanced_accuracy_score

19 from sklearn.metrics import f1_score

20
21 from concrete.ml.sklearn.svm import LinearSVC

22 from sklearn.svm import LinearSVC as skSVC

23
24 import time

25 import pandas as pd

26 import numpy as np

27 from numpy import mean

28 from numpy import std

29
30
31 # Reading the dataset

32 dataset = pd.read_csv("gdrive/MyDrive/Special -Problem -Colab/Brain_GSE50161.csv")

33 dataset.head()

34
35 feature_cols = [c for c in dataset.columns [2:]]

36 x = dataset.loc[:, feature_cols]. values # must be floats

37 y = dataset.loc[:,’type’]. values # must be integers

38
39
40 # Preprocessing with labels for the lineage

41 le = preprocessing.LabelEncoder ()

42 y = le.fit_transform(y)

43 le_mapping = dict(zip(le.classes_ , range(len(le.classes_))))

44 print(le_mapping)

45 print(le.classes_)

46
47
48 # Feature Selection

49 from sklearn.feature_selection import SelectKBest , chi2

80

50
51 print("\nUsing K best features feature selection ...")

52 print("Shape of x before selection: ", x.shape)

53 selector = SelectKBest(chi2 , k = 20)

54 x_new = selector.fit_transform(x, y)

55 x = x_new

56 print("Shape of x after selection: ", x.shape)

57 print("\n", x)

58
59
60 # Get most important features accorting to Kbest

61 cols_index = selector.get_support(indices=True)

62 most_important_features = []

63
64 print("\nSelected features: ")

65 for col in cols_index:

66 most_important_features.append(str(feature_cols[col]))

67 print(most_important_features)

68
69
70 # Train -test split

71 X_train , X_test , y_train , y_test = train_test_split(

72 x, y, test_size =0.10)

73
74 print(f"training set size: {X_train.shape [0]}")

75 print(f"testing set size: {X_test.shape [0]}")

76
77
78 # Linear SVC Model Training

79 # Scikit -learn plaintext

80 skmodel_SVC = skSVC(class_weight=’balanced ’)

81 start_time = time.time()

82 skmodel_SVC.fit(X_train ,y_train)

83 print(f"Running time for sklearn training is {time.time() - start_time} seconds")

84 start_time = time.time()

85 y_pred_clear_SVC = skmodel_SVC.predict(X_test)

86 print(f"Running time for sklearn prediction is {time.time() - start_time} seconds")

87
88 # Quantized plaintext

89 quant_SVC = LinearSVC(class_weight=’balanced ’)

90 start_time = time.time()

91 quant_SVC.fit(X_train , y_train)

92 print(f"Running time for quantized plaintext training is {time.time() - start_time} seconds")

93 start_time = time.time()

94 y_pred_q_SVC = quant_SVC.predict(X_test)

95 print(f"Running time for quantized plaintext prediction is {time.time() - start_time} seconds")

96
97
98 # Metrics for scikit -learn and quantized plaintext

99 print("\n Linear SVC Results \n")

100 # Accuracy

101 skSVC_accuracy = accuracy_score(y_test , y_pred_clear_SVC) * 100

102 quantSVC_accuracy = accuracy_score(y_test , y_pred_q_SVC) * 100

103 print(f"Sklearn accuracy: {skSVC_accuracy :.4f}")

104 print(f"Quantized Clear Accuracy: {quantSVC_accuracy :.4f}")

105 # Balanced Accuracy

106 skSVC_bal_accuracy = balanced_accuracy_score(y_test , y_pred_clear_SVC) * 100

107 quantSVC_bal_accuracy = balanced_accuracy_score(y_test , y_pred_q_SVC) * 100

108 print(f"Sklearn Balanced accuracy: {skSVC_bal_accuracy :.4f}")

109 print(f"Quantized Clear Balanced Accuracy: {quantSVC_bal_accuracy :.4f}")

110 # F1 Score

111 skSVC_f1 = f1_score(y_test , y_pred_clear_SVC , average=’weighted ’) * 100

112 quantSVC_f1 = f1_score(y_test , y_pred_q_SVC , average=’weighted ’) * 100

113 print(f"Sklearn F1 Score: {skSVC_f1 :.4f}")

114 print(f"Quantized Clear F1 Score: {quantSVC_f1 :.4f}")

115
116
117 # Linear SVC FHE Model Compilation and Prediction on Test Set

118 start_time = time.time()

119 fhe_SVC = quant_SVC.compile(x)

120 print(f"Running time for FHE compilation is {time.time() - start_time} seconds")

121 start_time = time.time()

122 y_pred_fhe_SVC = quant_SVC.predict(X_test , fhe="execute")

123 print(f"Running time for FHE prediction is {time.time() - start_time} seconds")

124
125
126 # Metrics for FHE Model

127 print("FHE Linear SVC Results \n")

128 # Accuracy

129 fheSVC_accuracy = accuracy_score(y_test , y_pred_fhe_SVC) * 100

130 print(f"Accuracy: {fheSVC_accuracy :.4f}")

131 # Balanced Accuracy

132 fheSVC_bal_accuracy = balanced_accuracy_score(y_test , y_pred_fhe_SVC) * 100

133 print(f"Balanced accuracy: {fheSVC_bal_accuracy :.4f}")

134 # F1 Score

135 fheRF_f1 = f1_score(y_test , y_pred_fhe_SVC , average=’weighted ’) * 100

136 print(f"F1 Score: {fheRF_f1 :.4f}")

137
138
139 # Model prediction on test set vs Actual test set

140 print("\n")

141 print("SKLEARN PREDICTION :\n", y_pred_clear_SVC)

81

142 print("QUANTIZED CLEAR PREDICTION :\n", y_pred_q_SVC)

143 print("FHE PREDICTION :\n", y_pred_fhe_SVC)

144 print("ACTUAL :\n", y_test)

145
146 print("\n")

147 print(f"Quantized vs FHE Comparison: {int((y_pred_fhe_SVC == y_pred_q_SVC).sum()/len(y_pred_fhe_SVC)*100) }%

similar")

148 print(f"Sklearn vs FHE Comparison: {int((y_pred_fhe_SVC == y_pred_clear_SVC).sum()/len(y_pred_fhe_SVC)*100)}%

similar")

149
150
151 # Obtaining one sample per class

152 ependymoma_sample = dataset[dataset[’samples ’] == 879][most_important_features]. to_numpy(dtype="uint16")

153 glioblastoma_sample = dataset[dataset[’samples ’] == 913][most_important_features]. to_numpy(dtype="uint16")

154 medulloblastoma_sample = dataset[dataset[’samples ’] == 935][most_important_features]. to_numpy(dtype="uint16")

155 normal_sample = dataset[dataset[’samples ’] == 948][most_important_features]. to_numpy(dtype="uint16")

156 pilocytic_astrocytoma_sample = dataset[dataset[’samples ’] == 963][most_important_features]. to_numpy(dtype="uint16

")

157
158
159 # Sklearn Inference Time

160 average = 0

161
162 start_time = time.time()

163 skmodel_SVC.predict(ependymoma_sample)

164 end_time = time.time()

165 print(f"Running time for Sklearn inference of ependymoma_sample is {end_time - start_time} seconds")

166
167 average += end_time - start_time

168
169 start_time = time.time()

170 skmodel_SVC.predict(glioblastoma_sample)

171 end_time = time.time()

172 print(f"Running time for Sklearn inference of glioblastoma_sample is {end_time - start_time} seconds")

173
174 average += end_time - start_time

175
176 start_time = time.time()

177 skmodel_SVC.predict(medulloblastoma_sample)

178 end_time = time.time()

179 print(f"Running time for Sklearn inference of medulloblastoma_sample is {end_time - start_time} seconds")

180
181 average += end_time - start_time

182
183 start_time = time.time()

184 skmodel_SVC.predict(normal_sample)

185 end_time = time.time()

186 print(f"Running time for Sklearn inference of normal_sample is {end_time - start_time} seconds")

187
188 average += end_time - start_time

189
190 start_time = time.time()

191 skmodel_SVC.predict(pilocytic_astrocytoma_sample)

192 end_time = time.time()

193 print(f"Running time for Sklearn inference of pilocytic_astrocytoma_sample is {end_time - start_time} seconds")

194
195 average += end_time - start_time

196
197 average /= 5

198
199 print(f"Average running time of Sklearn inference for each class is {average} seconds")

200
201
202 # Quantized Plaintext Inference Time

203 average = 0

204
205 start_time = time.time()

206 quant_SVC.predict(ependymoma_sample)

207 end_time = time.time()

208 print(f"Running time for quantized plaintext inference of ependymoma_sample is {end_time - start_time} seconds")

209
210 average += end_time - start_time

211
212 start_time = time.time()

213 quant_SVC.predict(glioblastoma_sample)

214 end_time = time.time()

215 print(f"Running time for quantized plaintext inference of glioblastoma_sample is {end_time - start_time} seconds"

)

216
217 average += end_time - start_time

218
219 start_time = time.time()

220 quant_SVC.predict(medulloblastoma_sample)

221 end_time = time.time()

222 print(f"Running time for quantized plaintext inference of medulloblastoma_sample is {end_time - start_time}

seconds")

223
224 average += end_time - start_time

225
226 start_time = time.time()

227 quant_SVC.predict(normal_sample)

228 end_time = time.time()

82

229 print(f"Running time for quantized plaintext inference of normal_sample is {end_time - start_time} seconds")

230
231 average += end_time - start_time

232
233 start_time = time.time()

234 quant_SVC.predict(pilocytic_astrocytoma_sample)

235 end_time = time.time()

236 print(f"Running time for quantized plaintext inference of pilocytic_astrocytoma_sample is {end_time - start_time}

seconds")

237
238 average += end_time - start_time

239
240 average /= 5

241
242 print(f"Average running time of quantized plaintext inference for each class is {average} seconds")

243
244
245 # FHE Inference Time

246 average = 0

247
248 start_time = time.time()

249 quant_SVC.predict(ependymoma_sample , fhe="execute")

250 end_time = time.time()

251 print(f"Running time for FHE inference of ependymoma_sample is {end_time - start_time} seconds")

252
253 average += end_time - start_time

254
255 start_time = time.time()

256 quant_SVC.predict(glioblastoma_sample , fhe="execute")

257 end_time = time.time()

258 print(f"Running time for FHE inference of glioblastoma_sample is {end_time - start_time} seconds")

259
260 average += end_time - start_time

261
262 start_time = time.time()

263 quant_SVC.predict(medulloblastoma_sample , fhe="execute")

264 end_time = time.time()

265 print(f"Running time for FHE inference of medulloblastoma_sample is {end_time - start_time} seconds")

266
267 average += end_time - start_time

268
269 start_time = time.time()

270 quant_SVC.predict(normal_sample , fhe="execute")

271 end_time = time.time()

272 print(f"Running time for FHE inference of normal_sample is {end_time - start_time} seconds")

273
274 average += end_time - start_time

275
276 start_time = time.time()

277 quant_SVC.predict(pilocytic_astrocytoma_sample , fhe="execute")

278 end_time = time.time()

279 print(f"Running time for FHE inference of pilocytic_astrocytoma_sample is {end_time - start_time} seconds")

280
281 average += end_time - start_time

282
283 average /= 5

284
285 print(f"Average running time of FHE inference for each class is {average} seconds")

286
287
288 # Saving the model into desired directory/path

289 from concrete.ml.deployment import FHEModelClient , FHEModelDev , FHEModelServer

290
291 start_time = time.time()

292
293 fhemodel_dev = FHEModelDev("gdrive/MyDrive/Special -Problem -Colab/Brain -Tumor -Models/", quant_SVC)

294 fhemodel_dev.save()

295
296 print(f"Running time for saving the FHE model is {time.time() - start_time} seconds")

297
298
299 # Saving the selected features and the classes into text file

300 import json

301
302 for col in cols_index:

303 print(feature_cols[col])

304
305 for classLabel in le.classes_:

306 print(classLabel)

307
308 with open("features_and_classes.txt", "w") as f:

309 classes_list = list(le.classes_)

310 temp_dict = {"features":[feature_cols[col] for col in cols_index], "classes":{ classes_list.index(x):x for x

in classes_list }}

311
312 f.write(json.dumps(temp_dict))

Listing 3: Linear SVC model training (linearSVC-training.py).

1 from django.shortcuts import render , HttpResponse , HttpResponseRedirect

83

2 from django.http import HttpResponse , FileResponse

3 from web_project.settings import BASE_DIR

4 import os, io, zipfile , requests , shutil , subprocess

5 from pandas import DataFrame as pd

6 from pandas import read_csv

7 from concrete.ml.deployment import FHEModelServer

8
9 ### Loading the home page

10 def index(request):

11 return render(request , ’index.html’,

12 context = {’classes_list ’:{0: ’ependymoma ’, 1: ’glioblastoma ’, 2: ’medulloblastoma ’, 3: ’normal

’, 4: ’pilocytic_astrocytoma ’}}

13)

14
15
16 ### Perform FHE inference

17 def start_classification(request):

18
19 clean_predictions_folder ()

20
21 count = 0

22 model_path =os.path.join(BASE_DIR , "FHE -Compiled -Model/")

23 keys_path = os.path.join(BASE_DIR , "tumorClassifier/keys")

24 keys_file = request.FILES[’keys_file ’]

25 pred_dir = os.path.join(BASE_DIR , "tumorClassifier/predictions")

26
27 data = request.FILES[’inputs ’].read().strip ()

28 # print(f"Data received from client is {data [:200]}")

29
30 enc_file_list = []

31
32 count += 1

33 serialized_evaluation_keys = keys_file.read()

34 encrypted_prediction = FHEModelServer(model_path).run(data , serialized_evaluation_keys)

35 pred_file_name = f"encrypted_prediction_{count}.enc"

36 pred_file_path = os.path.join(pred_dir , pred_file_name)

37 with open(pred_file_path , "wb") as f:

38 f.write(encrypted_prediction)

39
40 # Send prediction to client as a zip file

41 enc_file_list.append(pred_file_path)

42 zipfile = create_zip(enc_file_list)

43
44 return zipfile

45
46
47 ### Creating a zip file

48 def create_zip(file_list):

49 count = 0

50 zip_filename = os.path.join(BASE_DIR , "tumorClassifier/predictions/enc_predictions.zip")

51 zip_download_name = "enc_predictions.zip"

52 buffer = io.BytesIO ()

53 zip_file = zipfile.ZipFile(buffer , ’w’)

54
55 for filename in file_list:

56 count += 1

57 with open(filename , "rb") as file_read:

58 zip_file.write(filename , f"encrypted_prediction_{count}.enc")

59 zip_file.close()

60
61 # Craft download response

62 resp = HttpResponse(buffer.getvalue (), content_type = "application/force -download")

63 resp[’Content -Disposition ’] = f’attachment; filename ={ zip_download_name}’

64
65 return resp

66
67
68 def clean_predictions_folder ():

69 pred_dir = os.path.join(BASE_DIR , f"tumorClassifier/predictions")

70
71 if(os.listdir(pred_dir)):

72 for f in os.listdir(pred_dir):

73 os.remove(os.path.join(pred_dir , f))

Listing 4: Server functionalities (views.py).

1 from django.urls import path

2 from tumorClassifier import views

3
4 urlpatterns = [

5 path("", views.index , name="home"),

6 path("index", views.index , name="index"),

7 path("start_classification", views.start_classification , name="start_classification"),

8]

Listing 5: Server URL settings (urls.py).

1

84

2 <!DOCTYPE html>

3 <html lang="en">

4 <head>

5 {% load static %}

6
7
8 <!-- Required meta tags -->

9 <meta charset="utf -8">

10 <meta name="viewport" content="width=device -width , initial -scale=1, shrink -to-fit=no">

11 <title>FHE Brain Tumor Classifier </title>

12 <link rel="icon" href="{% static ’img/favicon.png ’ %}">

13 <!-- Bootstrap CSS -->

14 <link rel="stylesheet" href="{% static ’css/bootstrap.min.css ’ %}">

15 <!-- animate CSS -->

16 <link rel="stylesheet" href="{% static ’css/animate.css ’ %}">

17 <!-- owl carousel CSS -->

18 <link rel="stylesheet" href="{% static ’css/owl.carousel.min.css ’ %}">

19 <!-- themify CSS -->

20 <link rel="stylesheet" href="{% static ’css/themify -icons.css ’ %}">

21 <!-- flaticon CSS -->

22 <link rel="stylesheet" href="{% static ’css/flaticon.css ’ %}">

23 <!-- magnific popup CSS -->

24 <link rel="stylesheet" href="{% static ’css/magnific -popup.css ’ %}">

25 <!-- nice select CSS -->

26 <link rel="stylesheet" href="{% static ’css/nice -select.css ’ %}">

27 <!-- swiper CSS -->

28 <link rel="stylesheet" href="{% static ’css/slick.css ’ %}">

29 <!-- style CSS -->

30 <link rel="stylesheet" href="{% static ’css/style.css ’ %}">

31
32 </head>

33
34 <body>

35 <!--:: header part start::-->

36 <header class="main_menu home_menu">

37 <div class="container">

38 <div class="row align -items -center">

39 <div class="col -lg -12">

40 <nav class="navbar navbar -expand -lg navbar -light">

41 <h2 class="navbar -brand" href="#"></h2>

42 <button class="navbar -toggler" type="button" data -toggle="collapse"

43 data -target="#navbarSupportedContent" aria -controls="navbarSupportedContent"

44 aria -expanded="false" aria -label="Toggle navigation">

45

46 </button >

47
48 <div class="collapse navbar -collapse main -menu -item justify -content -center"

49 id="navbarSupportedContent">

50 <ul class="navbar -nav align -items -left">

51 <li class="nav -item active">

52 Home<

/a>

53

54 <li class="nav -item">

55 <a class="nav -link" href="https :// github.com/gcrosario/concreteML -FHE -Tumor -

Classification" target="_blank" style="font -weight: bold;">Github

56

57

58 </div>

59 </nav>

60 </div>

61 </div>

62 </div>

63 </header >

64 <!-- Header part end -->

65
66 {%block content %}

67 {% endblock %}

68
69 <!-- footer part start -->

70 <footer class="footer -area">

71 <div class="copyright_part">

72 <div class="container">

73 <div class="row align -items -center">

74 <p class="footer -text m-0 col -lg -8 col -md -12">By Gwyneth Rose C. Rosario (June 2023)</p>

75 </div>

76 </div>

77 </div>

78 </footer >

79
80 <!-- footer part end -->

81
82 <script src="{% static ’js/jquery -1.12.1. min.js’ %}"></script >

83 <!-- popper js -->

84 <script src="{% static ’js/popper.min.js ’ %}"></script >

85 <!-- bootstrap js -->

86 <script src="{% static ’js/bootstrap.min.js’ %}"></script >

87 <!-- owl carousel js -->

88 <script src="{% static ’js/owl.carousel.min.js’ %}"></script >

89 <script src="{% static ’js/jquery.nice -select.min.js’ %}"></script >

90 <!-- contact js -->

91 <script src="{% static ’js/jquery.ajaxchimp.min.js ’ %}"></script >

85

92 <script src="{% static ’js/jquery.form.js’ %}"></script >

93 <script src="{% static ’js/jquery.validate.min.js ’ %}"></script >

94 <script src="{% static ’js/mail -script.js’ %}"></script >

95 <script src="{% static ’js/contact.js’ %}"></script >

96 <!-- custom js -->

97 <script src="{% static ’js/custom.js ’ %}"></script >

98
99 </body>

100
101 </html>

Listing 6: Base code for server home page (base.html).

1 {% extends ’base.html ’ %}

2 {% load static %}

3 {% block content %}

4
5
6 <!-- banner part start -->

7 <section class="banner_part">

8 <div class="container">

9 <div class="row align -items -center">

10 <div class="col -lg -5 col -xl -5">

11 <div class="banner_text">

12 <div class="banner_text_iner">

13 <h1>FHE -based Brain Tumor Classifier (Server)</h1>

14 <h5>Powered by Concrete -ML</h5>

15
16 <form accept -charset="UTF -8" action="{% url ’start_classification ’ %}" method="

POST" enctype="multipart/form -data">

17 {% csrf_token %}

18 </form>

19 </div>

20 </div>

21 </div>

22 <div class="col -lg -7">

23 <div class="banner_img">

24

25 </div>

26 </div>

27 </div>

28 </div>

29 </section >

30 <!-- banner part start -->

31
32 {% endblock %}

Listing 7: Server home page (index.html).

1 import tkinter as tk

2 import customtkinter

3
4 from tkinter import messagebox , filedialog , END , INSERT

5 from customtkinter import (

6 CTk ,

7 CTkButton ,

8 CTkEntry ,

9 CTkFont ,

10 CTkFrame ,

11 CTkLabel ,

12 CTkTextbox ,

13 IntVar ,

14 StringVar ,

15 set_appearance_mode ,

16 set_default_color_theme)

17
18 import os, requests , stat , pathlib , shutil , subprocess , zipfile , traceback , urllib , json

19 import pandas , numpy

20 from pandas import DataFrame , read_csv

21 from numpy import save

22 from datetime import datetime

23 from concrete.ml.deployment import FHEModelClient

24
25 class ClientGUI:

26 def __init__(self , master=None):

27
28 # Initialize FHEModelClient

29 self.fhe_model_client = FHEModelClient(os.path.dirname(__file__), os.path.join(os.path.dirname(__file__),

"keys"))

30 self.data_dictionary = {}

31
32
33 # Create folder for keys and predictions if they don’t exist

34 this_folder = os.path.dirname(__file__)

35 required_folder_names = ["keys", "predictions"]

36
37 for name in required_folder_names:

38 if not os.path.exists(os.path.join(this_folder , f"{name}")):

86

39 os.mkdir(os.path.join(this_folder , f"{name}"))

40
41
42 ### Building the user interface of the app

43 # Initialize customtkinter

44 self.root = CTk()

45
46 # System Settings

47 set_appearance_mode("system")

48 set_default_color_theme("green")

49
50 # Custom CTk appearance

51 self.root.configure(padx=20, pady=20,

52 fg_color=’#3 d4539’,

53)

54 self.root.geometry("900 x950")

55 self.root.resizable(True , True)

56 self.root.title("FHE -based Brain Tumor Classifier (Client)")

57
58 # Top Label

59 self.title = CTkLabel(self.root)

60 self.title.configure(

61 text=’FHE -based Multi -Class Brain Tumor Classifier (Client)’,

62 fg_color=’#aee895 ’,

63 font=CTkFont(size=30, weight=’bold’),

64 text_color=’#1d2b17’,

65 justify =’center ’,

66)

67 self.title.pack(fill=’x’, pady = 10,)

68
69 # Description of the App

70 self.description_frame = CTkFrame(self.root)

71 self.about_label = CTkLabel(self.description_frame)

72 self.about_label.configure(

73 font=CTkFont(size=20, weight=’bold’),

74 text=’About the Tool’,

75 text_color=’#1d2b17’,

76)

77 self.about_label.pack(

78 # expand=False , fill="both",

79 pady=10, side="top"

80)

81 self.description_label = CTkLabel(self.description_frame)

82 self.description_label.configure(

83 justify=’center ’,

84 text=’This tool implements FHE -based logistic regression model for tumor classification using gene

expression data.’,

85 font=CTkFont(size =16),

86 text_color=’#1d2b17’,

87 fg_color=’white ’,

88)

89 self.description_label.pack(expand=False , fill="x", side="top")

90 self.description_frame.pack(

91 fill="both", ipady=10, padx=20, pady=20, side="top")

92
93 # Data Preprocessing: Feature Selection and Encryption

94 # Variables for filenames

95 self.preprocessing_var = StringVar ()

96 self.decryption_var = StringVar ()

97
98 # Preprocessing Frame

99 self.preprocessing_frame = CTkFrame(self.root)

100
101 self.preprocessing_label = CTkLabel(self.preprocessing_frame)

102 self.preprocessing_label.configure(

103 text=’Upload your .csv file for feature selection , encryption , and prediction here:’,

104 justify=’left’,

105 text_color=’#1d2b17’,

106 font=CTkFont(size =16),

107)

108 self.preprocessing_label.grid(row=0, column=0, padx=10, pady=10, sticky="nw")

109
110 self.preprocessing_filename = CTkEntry(self.preprocessing_frame , textvariable=self.preprocessing_var)

111 self.preprocessing_filename.configure(

112 justify=’left’,

113 width =640,

114 exportselection=False ,

115 state="disabled",

116 takefocus=False ,

117)

118 self.preprocessing_filename.grid(row=1, column=0, padx =10)

119
120 self.preprocessing_browse = CTkButton(

121 self.preprocessing_frame ,

122 hover=True ,

123)

124 self.preprocessing_browse.configure(

125 hover_color=’#2c780b ’,

126 text=’Browse File’,

127 # width =300,

128 font=CTkFont(size =15),

129 command=self.browseRawFile

87

130)

131 self.preprocessing_browse.grid(row=1, column=2, padx =10)

132
133 self.preprocessing_begin = CTkButton(self.preprocessing_frame)

134 self.preprocessing_begin.configure(

135 hover_color="#2c780b",

136 text=’Submit Data for FHE Classification ’,

137 width =300,

138 font=CTkFont(size =15),

139 command = self.processInput

140)

141 self.preprocessing_begin.grid(row=2, column=0, columnspan =3, pady =10)

142
143 self.preprocessing_frame.pack(anchor="w", fill="x", padx=20, pady=10, side="top")

144
145 # Output Status Frame

146 output_tracker_frame = CTkFrame(self.root)

147
148 self.output_tracker_label = CTkLabel(output_tracker_frame)

149 self.output_tracker_label.configure(

150 text=’Output Window ’,

151 text_color=’#1d2b17’,

152 font=CTkFont(size=20, weight=’bold’),

153 justify=’center ’,

154)

155 self.output_tracker_label.pack(pady=10, side="top")

156 self.output_tracker = CTkTextbox(output_tracker_frame)

157 self.output_tracker.configure(height =75, state="disabled")

158 _text_ = ’Track the status of your data here.’

159 self.output_tracker.configure(state="normal",

160 text_color=’#1d2b17’,

161 font=CTkFont(size =18),

162)

163 self.output_tracker.insert("0.0", _text_)

164 self.output_tracker.configure(state="disabled")

165 self.output_tracker.pack(expand=True , fill="both", padx=10, pady =10)

166
167 output_tracker_frame.pack(expand=True , fill="both", padx=20, pady=10, side="top")

168
169 self.root.protocol("WM_DELETE_WINDOW", self.on_closing)

170
171 # Main Widget

172 self.mainwindow = self.root

173
174 ### Running the UI

175 def run(self):

176 self.mainwindow.mainloop ()

177
178
179 ### Verifying the action of closing the app

180 def on_closing(self):

181 if messagebox.askyesno(title="Quit?", message="Do you really want to quit?"):

182 self.root.destroy ()

183
184
185 ### Function for writing argument ’string ’ to the app’s output window. Set argument ’delete_switch ’ to True

to clear the window before printing.

186 def writeOutput(self , string , delete_switch = False):

187 self.output_tracker.configure(state="normal")

188 if(delete_switch):

189 self.output_tracker.delete("1.0", END) #tk.END

190 self.output_tracker.insert("0.0", f"{string }\n\n")

191 else:

192 self.output_tracker.insert(INSERT , f"{string }\n\n")

193 self.output_tracker.see(END)

194 self.output_tracker.configure(state="disabled")

195
196
197 # Function for getting the size of a file (i.e. private key , eval key , encrypted input)

198 def get_size(self , file_path , unit=’bytes ’):

199 file_size = os.path.getsize(file_path)

200 exponents_map = {’bytes ’: 0, ’kb’: 1, ’mb’: 2, ’gb’: 3}

201 if unit not in exponents_map:

202 raise ValueError("Must select from \

203 [’bytes ’, ’kb’, ’mb’, ’gb ’]")

204 else:

205 size = file_size / 1024 ** exponents_map[unit]

206 return round(size , 3)

207
208
209 ### Function for running the entire processing of input data from feature selection to FHE inference proper

210 def processInput(self):

211 self.getFeaturesAndClasses ()

212 self.dropColumns ()

213 self.encryptInput ()

214 self.decryptPrediction ()

215
216
217 ### Browse raw input file of client

218 def browseRawFile(self):

219 filename = filedialog.askopenfilename(initialdir = "./",

220 title = "Select a File",

88

221 # filetypes = (("all files " ,"*.*"))

222)

223 self.preprocessing_var.set(filename)

224
225
226 ### Get the classes and final features used in the model from features_and_classes.txt file

227 def getFeaturesAndClasses(self , file = os.path.join(os.path.dirname(__file__), "features_and_classes.txt")):

228 with open(file , "r") as fc_file:

229 dictionary = json.loads(fc_file.readline ())

230 self.selected_features = dictionary["features"]

231 self.classes_labels = dictionary["classes"]

232 self.classes_labels = {int(key):value for key , value in self.classes_labels.items()}

233
234
235 ### Feature Selection

236 def dropColumns(self):

237 filename = self.preprocessing_var.get()

238
239 if(not filename.endswith(".csv")):

240 raise Exception("Invalid file type. Only .csv files are supported.")

241
242 self.writeOutput("Beginning to process your data for feature selection ...")

243
244 features = self.selected_features

245 feature_list = ["samples"] + features

246
247 drop_df = read_csv(filename)

248 drop_df = drop_df [[column for column in feature_list]]

249 drop_df.to_csv("./client -gui/feature_selection_output.csv", index=False , header=True)

250
251 self.writeOutput("Feature Selection DONE!")

252
253
254 ### Encryption of pre -processed client input (feature_selection_output.csv)

255 def encryptInput(self):

256 try:

257
258 for f in os.path.join(os.path.dirname(__file__)):

259 if f.split("/")[-1] in ["encrypted_input.txt", "serialized_evaluation_keys.ekl"]:

260 os.remove(f)

261
262 self.writeOutput("Generating keys ...")

263
264 # Client generates private key and evaluation key

265 self.generateKeys ()

266
267 encryption_input = os.path.join(os.path.dirname(__file__), "feature_selection_output.csv")

268 df = read_csv(encryption_input)

269 arr_no_id = df.drop(columns =[’samples ’]).to_numpy(dtype="uint16")

270
271 # Encrypted rows for input to server

272 encrypted_rows = []

273
274 # Encrypted dictionary for outputs

275 count = 0

276 for id in df[’samples ’]:

277 self.data_dictionary[count] = {’id’:id , ’result ’:’’}

278
279 for row in range(0, arr_no_id.shape [0]):

280 clear_input = arr_no_id [[row],:]

281 encrypted_input = self.fhe_model_client.quantize_encrypt_serialize(clear_input)

282 self.writeOutput("Encrypting pre -processed data ...")

283 encrypted_rows.append(encrypted_input)

284
285 # Final encrypted input

286 self.encrypted_rows = encrypted_rows

287
288 self.writeOutput("Data Encryption DONE!")

289
290 # Save encrypted input into a .txt file and the eval key into a .ekl file

291 self.saveEncryption ()

292
293 self.writeOutput("Encrypted inputs and key files saved to ’encrypted_input.txt’ and ’

serialized_evaluation_keys.ekl ’. Please do not move these files until after prediction.")

294
295 # Size of encrypted input

296 encrypted_input_path = os.path.join(os.path.dirname(__file__), "encrypted_input.txt")

297 encrypted_input_size = self.get_size(encrypted_input_path , ’kb’)

298 print("Encrypted input size (kB): ", encrypted_input_size)

299
300 # Initialize requests object for client -server interaction

301 app_url = "http :// localhost :8000"

302 client = requests.session ()

303 client.get(app_url)

304
305 pred_zip_name = self.sendEncryptRequestToServer(client=client)

306
307 self.decryption_var.set(pred_zip_name)

308
309 except Exception as e:

310 self.writeOutput(f"Error: {traceback.format_exc ()}")

311

89

312
313 ### Client key generation function

314 def generateKeys(self):

315 model_dir = os.path.dirname(__file__)

316 key_dir = os.path.join(os.path.dirname(__file__), "keys")

317
318 if(os.listdir(key_dir)):

319 for f in os.listdir(key_dir):

320 shutil.rmtree(os.path.join(key_dir , f))

321
322 fhemodel_client = FHEModelClient(model_dir , key_dir=key_dir)

323
324 # The client first need to create the private and evaluation keys.

325 fhemodel_client.generate_private_and_evaluation_keys ()

326
327 # Get the serialized evaluation key

328 self.serialized_evaluation_keys = fhemodel_client.get_serialized_evaluation_keys ()

329
330 # Check the size of the private key (in kB)

331 priv_key_size = self.get_size("./client -gui/keys", ’kb’)

332 print("Private key size (kB): ", priv_key_size)

333
334
335 ### Saving the output of encryption into a .txt file and the generated eval key into .ekl file

336 def saveEncryption(self):

337 filename = "encrypted_input.txt"

338 with open(os.path.join(os.path.dirname(__file__), filename), "wb") as enc_file:

339 for line in self.encrypted_rows:

340 enc_file.write(line)

341
342 with open(os.path.join(os.path.dirname(__file__), r’serialized_evaluation_keys.ekl’), "wb") as f:

343 f.write(self.serialized_evaluation_keys)

344
345 # Check the size of the evaluation key (in kB)

346 eval_key_size = self.get_size("./client -gui/serialized_evaluation_keys.ekl", ’kb’)

347 print("Evaluation key size (kB): ", eval_key_size)

348
349
350 ### Sends encrypted_input.txt and serialized_evaluation_keys.ekl (expected to be located in the same

directory as the app) to the server -side app through the Python requests library. URL is set to localhost

:8000 in development.

351 def sendEncryptRequestToServer(self , client):

352
353 app_url = "http :// localhost :8000"

354
355 if ’csrftoken ’ in client.cookies:

356 # Django 1.6 and up

357 csrftoken = client.cookies[’csrftoken ’]

358 else:

359 # Older versions

360 csrftoken = client.cookies[’csrf’]

361
362 eval_keys_file = open(

363 (os.path.join(os.path.dirname(__file__), "serialized_evaluation_keys.ekl")),

364 "rb"

365)

366 inputs_file = open(

367 (os.path.join(os.path.dirname(__file__), "encrypted_input.txt")),

368 "rb"

369)

370 request_data = dict(csrfmiddlewaretoken=csrftoken)

371 request_files = dict(inputs=inputs_file , keys_file=eval_keys_file)

372
373 self.writeOutput("Sending encrypted data and evaluation keys to server ...")

374 self.writeOutput("Waiting for server ’s response ...")

375
376 # Sending the files (encrypted input and eval key) to "localhost :8000/{ function_name }" (server ’s FHE

inference function)

377 request_output = client.post(f"{app_url }/ start_classification", data = request_data , files=request_files ,

headers=dict(Referer=app_url))

378
379 if request_output.ok:

380 self.writeOutput(f"Response Code: {request_output.status_code }. FHE Classification DONE!")

381
382 # Save FHE inference result into a .zip file

383 with open(os.path.join(os.path.dirname(__file__), "predictions/enc_predictions.zip"), "wb") as z:

384 z.write(request_output.content)

385
386 return os.path.join(os.path.dirname(__file__), "predictions/enc_predictions.zip")

387
388
389 ### Decryption of FHE inference result received by the client from the server

390 def decryptPrediction(self):

391
392 # Expects the input filepath (self.decrypt_name_var) to be a .zip file , and raises an error if not

393 try:

394 filename = self.decryption_var.get()

395
396 if not filename.endswith(".zip"):

397 raise Exception("Invalid file type: Only .zip files are supported.")

398
399 decrypted_predictions = []

90

400
401 # Setting classes dictionary to be used for final output translation since the model used label

encoding in training

402 try:

403 classes_dict = self.classes_labels

404 except:

405 classes_dict = {0: ’ependymoma ’, 1: ’glioblastoma ’, 2: ’medulloblastoma ’, 3: ’normal ’, 4: ’

pilocytic_astrocytoma ’}

406
407
408 pred_folder = os.path.join(os.path.dirname(__file__), "predictions")

409 zip_name = filename

410
411 with zipfile.ZipFile(zip_name , "r") as zObject:

412 zObject.extractall(path=pred_folder)

413
414 enc_file_list = [filename for filename in os.listdir(pred_folder) if filename.endswith(".enc")]

415
416 for filename in enc_file_list:

417 with open(os.path.join(pred_folder , filename), "rb") as f:

418 decrypted_prediction = self.fhe_model_client.deserialize_decrypt_dequantize(f.read())[0]

419 decrypted_predictions.append(decrypted_prediction)

420
421 decrypted_predictions_classes = numpy.array(decrypted_predictions).argmax(axis =1)

422 final_output = [classes_dict[output] for output in decrypted_predictions_classes]

423
424 for i in range(len(final_output)):

425 self.data_dictionary[i][’result ’] = final_output[i]

426
427 decrypted_pred = [dictionary for dictionary in self.data_dictionary.values ()]

428 print(decrypted_pred)

429
430 final_str = "The classification of your sample is: " + final_output [0]. upper()

431 self.writeOutput(final_str)

432
433 # Save decrypted FHE inference result into a .csv file

434 self.savePrediction(decrypted_pred)

435
436 except Exception as e:

437 self.writeOutput(f"Error: {str(e)}")

438
439
440 ### Save final result into a .csv file

441 def savePrediction(self , dictionary):

442 final_pred = pandas.DataFrame.from_dict(dictionary)

443
444 now = datetime.now()

445 date = now.strftime("%Y_%d_%m")

446
447 fname = "predictions/" + date + "_final_prediction_output.csv"

448
449 final_pred.to_csv ((os.path.join(os.path.dirname(__file__), fname)),

450 index=False , header=True)

451
452 self.writeOutput("Your final prediction output has been saved! Check the predictions folder to view it.")

453
454
455 ### Download required client files from the project ’s GitHub Repository.

456 ### By default , targets the project ’s GitHub repository for downloading the files , but can be set to localhost

:8000 to download from the local deployment server.

457 def getClientFiles ():

458 files = [

459 r"https :// github.com/gcrosario/concreteML -FHE -Tumor -Classification/raw/master/FHE -Compiled -Model/client.

zip",

460 r"https :// raw.githubusercontent.com/gcrosario/concreteML -FHE -Tumor -Classification/master/FHE -Compiled -

Model/features_and_classes.txt",

461]

462 for file in files:

463 print(file.split("/")[-1]. replace("%20", " "))

464 if file.split("/")[-1]. replace("%20", " ") not in os.listdir(os.path.dirname(__file__)):

465 download(file , os.path.dirname(__file__))

466
467 def download(url , dest_folder):

468 if not os.path.exists(dest_folder):

469 os.makedirs(dest_folder)

470
471 filename = url.split(’/’)[-1]. replace(" ", "_")

472 file_path = os.path.join(dest_folder , filename)

473
474 r = requests.get(url , stream=True)

475
476 if r.ok:

477 print("saving to", os.path.abspath(file_path))

478 with open(file_path , ’wb’) as f:

479 for chunk in r.iter_content(chunk_size =1024 * 8):

480 if chunk:

481 f.write(chunk)

482 f.flush()

483 os.fsync(f.fileno ())

484 else: # HTTP status code 4XX/5XX

485 print("Download failed: status code {}\n{}".format(r.status_code , r.text))

486

91

487 if __name__ == "__main__":

488
489 print("Downloading required client files Client app will open once downloads are finished.")

490 # Download required client files upon launching of the client GUI app

491 getClientFiles ()

492 print("Required client files saved! Launching the app... \n")

493
494 app = ClientGUI ()

495 app.run()

Listing 8: Client GUI app (client-app.py).

92

XI. Acknowledgment

First, I would like to praise and thank God, for granting me His guidance and blessing

in this chapter of my life.

I would also like to express my deepest gratitude to everyone who extended support

and assistance throughout my SP and college journey. This project would not have

been possible without the following people:

My adviser, Sir Richard Bryann Chua, for giving me the opportunity to work on

this study and to be a part of the Security and Cryptography research group. Thank

you for continuously guiding me throughout the whole SP process. I’m very grateful

for the frequent consultations as they helped me understand the topic more and make

regular progress with my SP. Your feedback greatly impacted the output as it allowed

me to see points for revision and improvement.

My fellow member of the Homomorphic Encryption subgroup, Johann Benjamin

Vivas, for collaborating with me and exchanging ideas in implementing our projects

and in writing our documentations.

My family for always believing in me. Thank you Nanay and Tatay for providing

my needs and for your support. I would also like to thank my siblings for encouraging

me as I faced this challenge. Your belief in me has given me strength to overcome my

fears during this process.

My best friend, Sophia Veronique, for being with me in this journey. Thank

you for lending your ears whenever I need someone to listen to my stories, be it of

success or of failure, as I worked in this project. I’m also thankful for your words of

encouragement that gave me emotional support during my lowest moments.

My blockmates and friends, for supporting and inspiring me. Thank you for

helping me succeed in this journey by sharing your time and knowledge. Thank you

also for giving me comfort with your words and our memories.

Lastly, NCT Dream, for giving me motivation and strength through their music.

93

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Theoretical Framework
	Homomorphic Encryption
	Fully Homomorphic Encryption
	Workflow of ConcreteML
	Machine Learning Models in ConcreteML
	Logistic Regression
	Special Features of Genomic Data

	Design and Implementation
	Dataset Description
	Preprocessing Techniques
	Machine Learning Model
	Performance Metrics
	ML Model Training Workflow
	Input File Structure
	Use Case
	Threat Model
	System Architecture
	Technical Architecture

	Results
	Performance of the Machine Learning Models
	Test Machine Specifications
	Model Accuracy and F1 Score

	Client-Server System
	Client-Side
	Server-Side

	Discussions
	ConcreteML Performance
	Running Time Analysis
	Error Analysis
	Ciphertext Size and Key Size
	Additional Investigation on Error Analysis

	System Assessment

	Conclusions
	Recommendations
	Bibliography
	Appendix
	Source Code

	Acknowledgment

