UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

RADSS V02: A RADIOLARIAN CLASSIFIER USING
CONVOLUTIONAL NEURAL NETWORK

A special problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Micah P. Quisote
May 2018

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser | No

Available only to those bound by confidentiality agreement | No

ACCEPTANCE SHEET

The Special Problem entitled “RaDSS V02: A Radiolarian Classifier Us-
ing Convolutional Neural Network” prepared and submitted by Micah P. Quisote in
partial fulfillment of the requirements for the degree of Bachelor of Science in Com-
puter Science has been examined and is recommended for acceptance.

Geoffrey A. Solano, Ph.D. (cand.)
Adviser

EXAMINERS:
Approved Disapproved

Gregorio B. Baes, Ph.D. (cand.)
Avegail D. Carpio, M.Sc.

Richard Bryann L. Chua, Ph.D. (cand.)
Perlita E. Gasmen, M.Sc. (cand.)
Marvin John C. Ignacio, M.Sc. (cand.)
Vincent Peter C. Magboo, M.D., M.Sc.
Ma. Sheila A. Magboo, M.Sc.

NGt W

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Ma. Sheila A. Magboo, M.Sc. Marcelina B. Lirazan, Ph.D.
Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Leonardo R. Estacio Jr., Ph.D.
Dean
College of Arts and Sciences

Abstract

Radiolarian assemblages have played a significant role as a biostratigraphic and pale-
oenvironmental tool used in age-dating, correlation, and studying deep-sea sedimen-
tary rocks that lacks calcareous fossils. The species rapid classification would allow
micropaleontologists to proceed further into studying the structure and way of liv-
ing of these Radiolarians. RaDSS V02 is a deep learning based system that could
help researchers in classifying Radiolarian species’ microfossil images through image
processing and convolutional neural network.

Keywords: Radiolarian, Deep Learning, Convolutional neural networks, Image Recognition,

Image processing

Contents

Acceptance Sheet

Abstract
I. Introduction
A. Background of the Study . . .
B. Statement of the Problem . . .
C. Objectives of the Study
D. Significance of the Project . .
E. Scope and Limitations
F. Assumptions
II. Review of Related Literature
ITI. Theoretical Framework
A. Radiolarian
B. Machine Learning
C. Deep Learning
D. Convolutional Neural Network
D..1 Backpropagation
IV. Design and Implementation
A. System Design
A..1 RaDSS Training Module .
A..2 RaDSS Classifier App . .
B. System Architecture
C. Technical Architecture
V. Results

il

ii

(O

12
12
15
15
16
19

21
21
21
26
29
30

31

VI.

VII.

VIII.

IX.

XI.

A. RaDSS Training Module

B.

Classifier Application

Discussion

A. Dataset

Conclusion

Recommendation

Bibliography

Appendix

Al
B.

Forms

Source Code

Acknowledgement

v

44
44

46

47

48

51
51
o1

75

I. Introduction

A. Background of the Study

Radiolarians have long been known for its beauty due to its numerous characteristics.
But other than its aesthetic structure, the organism is also very useful and can be
used as bio-stratigraphic and paleoenvironmental tool. They are zooplanktons that
drift around the oceans and sinks to the bottom of the ocean floor after their death.
Because of various reasons such as their existence over 500 million years ago, diver-
sity and abundance, their siliceous skeletons are important on the study of developing

history of the life on Earth based on their fossil records. [!]

However, despite of large body of research surrounding the Radiolaria species, the
classification of the said organism has proven to be very difficult. Existing traditional
methods of identifying radiolarians are based largely on the study of skeletons, ob-

servation and cross-referencing with known species. [2]

The use of technology in classifying Radiolaria has not yet given that much at-
tention by some specialists and the concerns of the taxonomical, morphological and
paleontological systematics mostly involve creation of information technologies like
databases rather than the pursuit of knowledge like classification, species discovery

and data creation.

Problems with automatic biological classifications has been explained by some
taxonomists, and Ebach et al. believes that we must first resolve certain matters like
issues on taxonomy of species before coming up with this kind of technology. Also,
there exists some misconception on the combination of technology and taxonomy with

the latter being threatened with slow-death. Bik, H.M. states that ”taxonomy should

be revamped and reborn for the modern age.” [3]

Therefore, time consuming conventional methods of biological classification that
involves the use of taxonomic keys, consulting reference books, catalogs, collecting,
observing, comparing species etc. must improve with automated classification that
could make the identification process more rapid to help the micropaleontologist’s

work done easier.

Machine learning has long been part of image processing and classification sys-
tems, and now have made its way through taxonomy. Some researchers focused on the
classification of plankton images and the The National Data Science Bowl 2015 com-
petition winner used Deep Neural Network in classifying greyscale images of plankton
into one of the 121 classes which achieved a 98% accuracy rate. [1] Research on zoo-
planktons have also been developed and Dai et al. created ZooplanktoNet, a deep
convolutional Network that classified zooplanktons which achieved an accuracy of

93.7%. [7]

Automatic classification system for the Radiolarian species have emerged for the
past years. Previous work of Apostol, et al. named RaDSS materialized the Radiolar-
ian classification using Support Vector Machine (SVM) and classified the Radiolarian
species into four classes. [6]. SVM is a type of the traditional machine learning where
manual feature extraction approach is used, most of the time through an external
feature extractor. Apostol et al. used Imagel, a Java-based image processing and
analysis tool to do this. However, manual feature extraction involves algorithms that
detects only specific features and may leave behind other useful information that are

not covered by these algorithms.

Fimbres-Castro et al. used translation, rotation and scale invariant method to
identify the species. [7] Keceley et al. combined hand-crafted and deep features in

classifying the organism. [¢]

With the advancement of deep learning and its consistent championship on the
ImageNet Large Scale Visual Recognition Competition (ILSVRC), the approach has
been a trigger behind numerous technologies and innovations. Deep learning is a
type of machine learning where manual feature extraction is replaced with layers of
algorithms to detect different features. Presently, there are different deep learning
architectures that are widely used in different applications, and some of them are
Alexnet and Caffenet. AlexNet is one of the pioneers in the ILSVRC to use deep
neural networks, while Caffenet is a variation of AlexNet that was created by Caffe
developers. Caffe is an open source deep learning framework which is written in C++,
with a Python interface. It is easier to understand, implement and switching between

CPU and GPU is simply set by a flag.

By using a deep convolutional neural network, RaDSS V02 will become one of
these technologies that aims to classify the Radiolarian species from an image. During
classification, the micropaleontologist may set a certain threshold value to determine

the minimum probability to achieve to classify the radiolarians microfossil image.

B. Statement of the Problem

(Classification of the Radiolarian microfossil is normally done by traditional meth-
ods of ocular inspection and comparison with published images of radiolarians by
micropaleontologists, which is subjective in nature and time consuming. The first
version of RaDSS used machine learning employing manual feature extraction which

may not contain all the features, subjective since the user selects these from a list,

and may skip useful information.

C. Objectives of the Study

The purpose of this study is to develop a tool that automatically classifies micropho-

tographs of radiolarian species name. Specifically, it has the following objectives:

1. The main user is the micropaleontologist that can use the radiolarian classifier

model from the developed training module and can:

(a)

(e)

Input a radiolarian microfossil image file or directory that contains these
images for classification item Apply preprocessing techniques to the radi-

olarian microfossil image
i. Resize and stretch the images
ii. Resize and pad around to maintain aspect ratio

Set a threshold value that the classification should reach to assign the
image into a class. If the maximum probability is less than the threshold

value, classify the Radiolarian microfossil image as unknown.

View the classification results and the probabilities obtained in the result

tab

Download the result file containing the classification of the image, the
probabilities of the classificarion and details of the classifier model used

via a PDF

View tutorial/help manual on how to use the radiolarian classifier

2. The Al Expert can use the training module with the following features:

(a)

Input either of the following:

i. A microfossil image file of a radiolarian species and set its classification

D.

ii. An directory containing the radiolarian species’ microfossil image and
an excel file that maps the filenames in this directory to Radiolarian
classes or labels

(b) Set the radiolarian species classification of the chosen microfossil image
(¢) Apply preprocessing techniques to the radiolarian microfossil image

i. Resize and stretch the images

ii. Resize and pad around to maintain aspect ratio
(d) Choose which CNN architecture to train - whether Alexnet or Caffenet
(e) Input the CNN hyperparameters

i. Input the learning rate - the rate of the neural network on learning

ii. Input the number of iterations - the maximum number the images will

pass through the network

iii. Input the number of batch size - the number of images to train every

iteration

iv. Input the number of stepsize - the number of iteration to make to drop

the learning rate
(f) Build the CNN Model

i. Train and build the model using Caffe

ii. Cross validate model to get accuracy

Significance of the Project

Radiolarian assemblages can be very useful biostratigraphic and paleoenvironmental

tool in dating geological structures. Since classification is difficult in nature, using an

automated classifier will greatly help the micropaleontologist in deciding the species

class and will help improve this species taxonomy. Deep learning will be useful in

analyzing radiolarians complex structure and classify the species using this analysis.

Scope and Limitations

. Species that can be classified by the tool is limited to classes that have at least

20 instances

. The accuracy of the model is dependent on the number of data that are used

on training.

. Only radiolarian microfossil jpeg images and corresponding excel label files are

accepted as input
. The CNN architectures available for training and classification are fixed.

. Learning rate, number of iterations, batch size, stepsize are fixed once trained

and being used already by the micropaleontologist.

. Output file generated by the system is available in PDF format

Assumptions

. The system is used by the researcher focusing on Radiolarian species

. The system serves only as a guide to the researcher. The final classification of

the species will be identified by the micropaleontologist.

. Input excel files for the training contain the labels of the species image. These

files are assumed to be correct and nonempty.

II. Review of Related Literature

Microfossils are perhaps the most important group of fossils because they are ex-
tremely useful in age-dating, correlation, paleoenvironmental reconstruction espe-
cially in the fields of oil industry, mining, engineering and billions of dollars have

been made based on microfossil studies. [9]

Vides, an expert system combining artificial intelligence and visual approach is
created by Swaby in identifying microfossils. It is in response to the problem of time
consuming identification of the microfossil on the deposits of the traditional manual
methods. Swaby implemented Lisp and IntelliCorps knowledge engineering environ-
ment (KEE) which helped the development of the user interface considerably. A
knowledge base builder created a code, data structure, graphical windows complete
with image and description to use as reference in identifying the input images. Clas-
sification is based on the presence or the absence of certain forms and structure of

the species. [10]

ONeill et al. created a system called GeoDAISY which is a modification of the
system DAISY (Digital Automated Identification System) to automatically identify
microfossils within a commercial stratigraphy environment. Some functionalities were
added like a caching mechanism based on Linux memory mapping, pattern correla-
tion and image rotation and scaling. It combined plastic self-organizing map neural
network technology and deep learning technique that was able to teach itself partially

and achieved 66.67% accuracy. [11]

Wong et al. used a dynamic hierarchical learning algorithm that implements both
supervised and unsupervised dynamic learning to accelerate microfossil identification.

Digital representations of the specimens are used to form clusters using Agglomerative

Hierarchical Clustering (AHC). Propagation and prioritization was then implemented
for the microfossil identification and achieved comparable rates to the best benchmark

results obtained using K-NN method. [12]

Deep learning algorithms have dominated the image recognition and classification
world. With its rapid development and wide popularity, researchers have implemented

the technique on various competitions and tasks to solve real world problems.

Tindall et al. used a convolutional neural network for plankton identification and
trained the data on a VGG16 architecture. Planktons are important to marine ecosys-
tem because of their role in the food web. Feeding data on a pre-trained architecture
is commonly known as transfer learning. The VGG16 is a 16-layer architecture that
consists of convolutional and max pooling layers is pre-trained using the ImageNet
dataset. In the paper, they fine-tuned the last layer to learn features of the plankton

dataset and achieved 85% accuracy. [13]

Jindal et al. also used CNN as a generic feature extractor with a random-forest
classifier on top of the hierarchy. It classified the plankton into 121 types presented
by Kaggle and Booz Allen Hamilton. They used various preprocessing and data
augmentation techniques before using the input images for training using minibatch
stochastic gradient descent with Nesterov momentum that achieved a logarithmic loss

of 0.75 which is on the top 10%. [11]

A CNN similar to the VGG architecture was used by Kuang. She implemented
the algorithm together with data augmentation, dropout regularization, leaky and
parametric ReLu activations and various model assembly methods to achieve classifi-

cation task. Among the different architectures, the 6 conv + 3 Fully connected layers

performs the best on the test set with 0.77 log loss. [17]

The National Data Science Bowl Competition winner also used CNN to classify
planktons and coded the program using Python with NumPy and Theano libraries.
They performed rescaling and global zero mean unit variance to pre-process the im-
ages then augmented the data based on various parameters like rotation, translation,
flipping, shearing and stretching. To avoid overfitting, implementation of judicious
techniques such as dropout, weight decay, data augmentation, pre-training, pseudo
labelling and parameter sharing was necessary. Their convnet architectures consist
of lots of conv layers with 3x3 filters and overlapping pooling with window size 3
and stride 2. Leaky RelLu was also implemented instead of only RelLu to introduce
nonlinearity to the data. One example of their architecture is composed of 13 layers
with parameters (10 conv and 3 fully connected) and 4 pooling layers. Trained using
stochastic gradient descent that took 24-28 hours, the best model achieved an accu-

racy of 82% on the validation set, and a top-5 accuracy of over 98%. [/]

Dai et al., inspired by the AlexNet and VGGNet architectures created Zooplank-
toNet, a deep convolutional network to classify zooplanktons automatically and ef-
fectively. It aims to capture more general and representative features than previous
predefined feature extraction algorithms. Their dataset consists of zooplankton im-
ages that involves 13 classes. Rescaling and subtracting the mean value over the
training set were done to pre-process the images and data augmentation techniques
like rotation, translation, shearing and flipping were also implemented. With a total

of 6 conv layers and 3 fully connected layers, the system achieved a 93.7% accuracy [5]

Foraminifera, a species that is also useful in age-dating, was classified using a

knowledge based system by Liu et al. To extract descriptive parameters from the

given set of images, they used computer vision techniques and the results were then
compared against a knowledge based system to infer its class. The knowledge based

system consists of descriptions to be used in a rule based classification approach. [10]

Pedraza et al. created an automated classification scheme for diatoms - microfos-
sils that are also studied as paleoenvironmental markers. They were classified into 80
types using a CNN model created after fine tuning a pre-trained AlexNet architec-

ture. It achieved a 99% accuracy. [17]

Some of the implementations of the papers above include various architectures
that have been developed by researchers in the deep learning community. The follow-
ing architectures won the ILSVRC competition starting from 2012, fueled the deep
learning movement and have been the foundation of computer scientists in building
their own deep model. One architecture that is very popular and the one that started
it all is the AlexNet architecture. This deep convolutional neural network needed to
classify the 1.2 million images from the ImageNet dataset into 1000 different classes.
The network is composed of 5 convolutional layers, some of which are followed by
max-pooling layers and dropout layers, and three fully connected layers. Rel.u was
used to introduce nonlinearity to the data and data augmentation techniques that
consisted of image translations, horizontal reflections, and patch extractions. Trained
using batch stochastic gradient descent, the model achieved a 15.4% error rate, a first

on the ILSVRC competition. [15]

Zeiler and Fergus created ZFNet which is a fine tuning of the AlexNet. This ar-
chitecture achieved an 11.2% error rate and instead of using an 11x11 sized filters
in the first layer, they used a filter size of 7x7. The model used ReLUs for their

activation functions, cross-entropy loss for the error function, and was trained using

10

batch stochastic gradient descent.[19]

VGGNet, a 19-layered CNN architecture created by Karen Simonyan and Andrew
Zisserman introduced the use of 3x3 filters together with 2x2 max pooling layers.

They used ReLu layers after each convolutional layer and trained the model with

batch gradient descent. VGGNet achieved a 7.3% error rate. [20]

Szegedy et al. introduced the use of Inception modules in its architecture GoogleNet
in which some layers perform in parallel rather than the traditional sequential struc-
ture. This 22-layered architecture did not use fully connected layers but used average

pool instead and achieved a 6.7% error rate. [21]

Microsoft created its own neural network named ResNet which is a very deep,
152-layered architecture that achieved a 3.6% error rate. They introduced residual
blocks, wherein the input is fed on a conv-relu-conv series to obtain a residual map-
ping which is easier to optimize than the original mapping. This architecture brought

about the birth of very deep models and won the 2015 ILSVRC competition. [22]

The previous version of RaDSS that was created by Apostol et al. used Support
Vector Machine and principal component analysis to classify the radiolarian species.
It is written in Java and extracted the features of the input images using ImagelJ
and JFeatureLib libraries. It was divided into 2 major functionalities, the training
module and the classifier app. The former is to be used by the training administrator
who will input some SVM parameters to train the model while the latter will take an

input to be classified into 4 classes of the species. [(]

11

III. Theoretical Framework

A. Radiolarian

Radiolarians are planktonic protists that are among the few groups with comprehen-
sive fossil records available for study. Formally, they belong to the Phyllum Protista,
Subphylum Sarcodina, Class Actinopoda, Subclass Radiolaria. [23] They are charac-
terized by their geometric and symmetric structure and live mainly in surface waters
with the earliest forms existed during the Cambrian age. Most are somewhat spheri-
cal, but a wide variety of shapes exist including cone-like and tetrahedral structures

that ranges anywhere from 30 microns to 2 mm in diameter. [2]

Figure 1. The radiolarian species

This unusual and often strikingly beautiful characteristic of these organisms is
their primary morphological characteristic, providing both a basis for their classifica-

tion and an insight into their ecology. [2]

Radiolarians transition corresponds to three transitions in the geologic time scale

namely the Permo-Triassic, Cretaceous-Tertiary and Paleogene-Neogene. They are

12

used in age-dating and the biostratigraphic correlation of oceanic sediments, partic-

ularly where calcareous microfossils have been dissolved. [2]

They have been studied extensively by paleontologists because of their well-established
presence in the fossil record and unique structure. The current methods for classifi-
cation are based largely on the study of skeletons from the orders Spumellaria and

Nassellaria using features of both the preservable skeleton and the soft parts.

The classification of Radiolaria recognizes two major groups: 1) the Polycystines,
with solid skeletal elements of simple opaline silica, and 2) the Phaeodarians, with
hollow skeletal elements of a complex siliceous composition that results in rapid dis-

solution in sea water and consequent rare preservation in sediments.

Polycystines structure and Phaeodarians structure

The Phaeodarians also possess a unique anatomical feature, a mass of tiny pig-
mented particles called the phaeodium. The polycystines, which are the radiolari-
ans best known to geologists, are subdivided into two major groups: the basically
spherical-shelled Spumellaria, and the basically conical-shelled Nassellaria. A few
polycystine groups lack a skeleton altogether. Some major groups of extinct radiolar-

ians differ substantially from both Spumellaria and Nassellaria, and may be ranked

13

at the same taxonomic level as those groups.

Spumellarians come in various shapes ranging from spherical to ellipsoidal to dis-
coidal. These are the ones typically with radial symmetry. It is common for the
Spumellarians to have several concentric shells connected by radial bars. The colonial
radiolarians are spumellarians, some with spherical shells and others whose skeletons

are instead an association of loose rods, and yet others without skeletons.

Radial bar

Pore

Cortical sphere

Spumellarian structure

Nassellarian shapes derive from geometrically simple spicules (resembling saw
horses, ”D”-shaped rings, and the like) to which are added (from taxa to taxa) lat-
ticed cover to form a chamber, then additional chambers expanding axially into the

conical forms typical of the group. [24]

14

‘7 Apical homn

Ceniral capsule (red)

Thorax

Nassellarian structure

B. Machine Learning

Over time, various researchers have devoted their time and effort in solving real world
problems through machine learning. Machine learning is a branch of artificial intelli-
gence that lets the computers learn solving tasks rather than programming them on
how to decide on these problems. In order to do this, we take some data, train the
model using this data and use its output in predicting relationship or classification

based on the given data.

C. Deep Learning

Deep learning or hierarchical learning is a machine learning algorithm that aims to
learn data representation or features of the given data as opposed to the previous
machine learning algorithms where features are extracted manually. It is composed
of layers, commonly stacked together and uses the output of the previous layer as an

input to the next layer.

15

Traditional
Input > ;:t?etnztr:r > Features [—> ML »| Output
Algorithm

Traditional Machine Learning Flow

Y

Input Deep Learning Algorithm > Output

Deep Learning Flow

Figure 2. Traditional Machine Learning vs Deep Learning

D. Convolutional Neural Network

Convolutional neural network is the most common deep learning network design for
processing data that has known, grid-like topology. [25] It is composed of layers

stacked together to extract useful information from the data.

~

ettt || 1%@5

Fully. O

connected

Input image Convalution Maxpeoling

(Feature maps) laver

Figure 3. Basic CNN architeure
A typical CNN architecture that makes use of the position of some features in
the data to make useful output. The stacking of these layers may vary depending
on what order of these layers classifies your data accurately, but the most common
stacking includes repeated convolution-activation-pooling layers together, with the

fully connected layer as the final layer.

The unique component of CNNs are the convolutional layers. It is composed of

16

convolution an operation on an array of input multiplied to an array of parameters

called filter or kernel K resulting in a mapping called feature map. [25]

DEFl 0.11 Q11

o1 011 m 0.11 &1l 0

URLE 011 001 033 [EvEE -0.11

0.11 031 -]Ilm I_!I] 0

UBEN 055 | 033 RLEEREELEE

Figure 4. Convolutional layer with 3x3 filter
Above is a convolution operation on an input image represented by pixel values
that produced an output array that contains a mapping of a filter to the input.
This feature map consists information about the data and will be used as an input
to the next layer and so on. High values in the feature map tells us that in this
specific position, a diagonal line of that orientation exists. This mapping is only for
one feature and in reality, there are other features like edges, lines, curves, patterns,

blotches etc. that may be extracted from the data.

Figure 5. Convolutional layer with three 3x3 filter

17

The figure above shows three features, two diagonals with different orientation
and one x-like feature. All of these are stacked together to form a convolutional layer.
After the convolutional layer, an activation function is used to introduce nonlinearity

to the data.

Another component of a convolutional neural network is the pooling layer.

maximum

0.11 1K1 m 55 [\

l!]l 'l1'|||1l 011 L1l

011 -0.11 iy O 31

UELE 011 01 03 pEEN 011 0.1

011 -"l]m 0 I. 11
0.11 .

|
HOH

gon |

Figure 6. Pooling layer

Pooling methods are performed in the network to reduce the dimensionality of the
feature maps thus, lessening computation cost. Pooling helps to make the represen-
tation become approximately invariant to small translations of the input, meaning, if
we translate the input by a small amount, it doesnt change the values of most of the
pooled outputs. [25] It is also used to avoid overfitting, a scenario where the model
gets high accuracy in the training set while having a low accuracy in the validation
and test sets. Once we know that a specific feature is in the original input volume,
i.e. high activation value, its exact location is not as important as its relative location

to the other features. [20]

18

1 [
0.55 1

5 5 w & w

z] z B £ z 2 £ |:> 1 S
8 = S g 8 S £ 3

3 o g 2 g 0.55 | 0.55

0.55 [N
(A .55

Figure 7. Sample feature map after a series of layers

The figure shows a feature map that have undergone a series of conv-activation-

pooling layers reduced into a small dimensional array.

The final layer of a CNN architecture is the fully connected layer which each value
votes for a classification. Fully connected layers are usually placed at the end of the
network where in every neuron from the previous layer is connected to every neuron
in the current layer. This layer will produce an n-dimensional vector where n is the
number of classes your model wish to predict. Each number in this n-dimensional

vector represents a probability of a certain class. [20]

.92

1|-1 E
1

1
1
1

Conv

Activation
Conv
Activation
Pooling
Conv
Activation
Pooling
Fully Connected
Ve

.51

Figure 7. A CNN architecture classifying an input into two classes

D..1 Backpropagation

Convolution and pooling layers act as feature extractors from the input image while
fully connected layer acts as a classifier. [27] However, these layers are just the com-

ponents of the model and its capability to classify will be decided through an iterative

training.

19

Basically, we train our model using the backpropagation algorithm forward pass,
loss function, backward pass, and weight update. [27] During the forward pass, the
input is fed into the network and outputs a classification. At first iteration, the model
will probably classify the image wrongly and the error could be computed using a

loss function.

We wanted to have low loss for our model to perform accurately, and to do this, we
wanted to know which parameters/weights contributed to that loss through backward
pass. We compute the gradient a multi-variable generalization of the derivative, of
the error with respect to all weights in the network. After knowing the gradient, we

update weights and parameters to minimize the output error.

The process of forward pass, loss function, backward pass, and parameter update
is just one training iteration. This process will be repeated for a fixed number of
iterations for each set of training images called a batch. Once you finish the parameter
update on the last training example, the network should be trained well enough so that
the weights of the layers are tuned correctly to create a high classification accuracy.
Hyperparameters like the number of iterations, number of epochs, batch size and

learning rate will be set before the training process.

20

IV. Design and Implementation

A. System Design

The system will be implemented using Python. It takes microfossil images of the
radiolarian species as input then apply little preprocessing techniques to normalize
the data. The pre-processed data is then be fed into the CNN model which will
extract the features itself and determine the species classification. The convolutional
neural network outputs the predicted species name. The generated outputs can be
downloaded at the end by the user in PDF format.

It is divided into 2 major functionalities: the training module and the classifier app.
The former builds the Radiolarian classifier model with the specified hyperparameters

while the classification of the radiolarian species is done by the classifier app.

A..1 RaDSS Training Module

Radiolarian mlcrpfossn image files and ;
label in excel file
Training

Al Expert Module

[— Classifier model

Figure 8. Context Diagram of RaDSS Training Module

The AI Expert builds the classifier model through the training module. A direc-
tory and an excel file containing the mapping of the filenames in this directory and
their corresponding labels are taken as an input. Furthermore, the user can add ad-
ditional image to the training and set its clasification once added. The user proceeds
to fill up the hyperparameters asked by the application for training. A CNN-based

Radiolarian classifier model is generated based on the given Radiolarian images and

21

specified hyperparameters through training. He is given an option to export this

classifier model to the classifier application.

Training Module

Upload a set of Radiolarian
microfossil images and labels
in excel file

Add additional image to
upload and set its
classification

w7 Apply preprocessing to the
images

nput training hyperparameters
Al Expert

Train the CNN Model

Save classifier model

View tutorial about the
training module

Figure 9. Use Case Diagram of RaDSS Training Module

The functionalities that the AI Expert can be used are illustrated in the above
use case diagram. The Al Expert can upload image files together with corresponding
label file as an input for the training. These images is divided into the training and

validation set during training. The former is used to train the model while the latter

22

is used to test the model to obtain accuracy. The user can also edit the classification
of the images, input training hyperparameters to train the model including the archi-

tecture to use, and finally save the model generated.

(1 A
Load input File path ©
(set of Radiolarian microfossil I = View Help/Tutorials
images + excel file) nput file—3
®)

n Rads(2n)1icrofossil |__species Al .caﬁemodel{ Save the classifier model]
) g class Expert
image to the training set
training parameters
(©)
Input training —training parameters
hyperparameters - 4)
classifier model Build CNN classifier model

Figure 10. Top-level DFD of RaDSS Training Module

The top-level data flow diagram of the training app is shown above. The Al Ex-
pert first uploads a directory and an excel file containing the image names with labels
or simply just a microfossil image file of the radiolarian species. The user has the

option to change the classification of the images.

(2.1) (2.2)
Choose specific Input chosen image
image from the set species’ classification

Figure 11. Sub-explosion of process 2 - add species image to training set

Once the training set is completely labeled, the user sets the values of the CNN
layers specification and the training hyperparameters to build the model. The Al
expert can has the option to export the CNN-based Radiolarian classifier model to
the classifier app if this model has a better accuracy. Detailed process regarding the

model creation is illustrated below.

23

Lt o , (4.1) Pre-processed (4.2)
el Ss Pre-processing data Train model

Figure 12. Sub-explosion of process 4 - build CNN classifier model

There are two phases in building the classifier model - the preprocessing and the
creation of layers. In the pre-processing phase, there are two techniques involved:
resize only and resize and pad. Resize only just resizes the image into 256x256 size
while the resize and pad pads around the image before resiizing to maintain aspect

ratio.

.

4.1.1)

training set Resize only

4.1.2)
g Resize and Pad
training set

\A4

Figure 13. Sub-explosion of process 4.1 - pre-processing

Once the image is pre-processed, we can now train and build the model based on

these images.

24

s ™y
{ pre-processed data (5.1) (5.2) (5.3) (5.4) J

training hyperparameters Forward pass Loss function Backward pass weight update

\ S

A 4
= et %

(5.5)
Cross-validate —accuracy—»
the model

Figure 14. Sub-explosion of process 5 - Train the Model

The training process is comprised of the forward pass, loss function, backward
pass and weight update that run until a fixed number of iteration is reached. It en-
sures that the loss function is low enough to provide an accurate classification. After

training, it is then cross-validated using the validation set to know its accuracy.
The outcome of the whole training app is the Radiolarian classifier model. If the
Al expert is satisfied with the built model, he has the option to export this classifier

model to the classifier application.

The system provides documentation to teach the user on how to use the training

module.

25

Select image files to
be added to the
training set J

I

No

- Set training
>
L hyperparameters

Y

—

L Train model

Finished using
the app?

A

Yes

L Save model

Figure 15. Activity Diagram of Training Administrator, RaDSS v02

A..2 RaDSS Classifier App

Radiolarian microfossil Image file
— Classification threshold —>

Micropaleontologist

Classifier App
Species' classification
[Qutput file

Tutorial

Figure 16. Context diagram of RaDSS Classifier App

The classifier app is a desktop application that can be run offline wherein the
micropaleontologist uploads a Radiolarian microfossil image to predict its possible
classification. The user can also adjust the classification threshold that is used for

the classification process. The use case diagram is illustrated in the image below.

26

Classifier App

Input Radiolarian image or
images

Apply preprocessing on the
uploaded images

Select specific image

Specify threshold

Micropaleontologist lassify Radiolarian species

and view results

xport classification output
toa

0
o
m

Figure 17. Use case diagram of RaDSS Classifier App

As shown in the use case diagram, the functionalities that the micropaleontologists
can use are: upload image files as input, adjust the classification threshold, classify
he unknown species using the classifier model trained on the training module, then

download the results. He can also read a tutorial on how to use the application.

(1)) ‘ N
Load Radiolarian J input file > 6)
icrofossil i fil
microlossy image e View Help/Tutorial
file path Y,
h 4
e N
Appl 2 i h (5)
pply preprocessing to the : -
Radiolarian microfossil Micropaleontologist —pdf file Save classification
images result to a PDF
(3)) @
Specify classification [€«———threshold Cf?;gf:ﬁf\'{?&?"
threshold y CNN classification result P

results

Figure 18. Top-level DFD of RaDSS Classifier App

The figure above shows the top-level data flow diagram of the system. The mi-

27

cropaleontologist inputs an unknown Radiolarian microfossil image to be classified to
one of the classes provided by the system. The image is then pre-processed then fed
into the Radiolarian classifier model for classification. Further details can be seen in

the following diagram.

L. - (3.1) Pre-processed (3.2) specified
ey Pre-processing data CNN classification classification

Figure 19. Sub-explosion of process 3 - classify species

Pre-processing will undergo the same methods employed in the training set in
Figure 14. After the image is pre-processed, it is fed into the Radiolarian classifier

model for classification.

(3.2.3)
Lpre-processed (3.2.1) CNN modet (3.2.2) classification Compare species’ g
data Load CNN model MOder™™| predict classification probabilities probabilities in classification
threshold

Figure 20. Sub-explosion of process 3.2 - CNN classification

The Radiolarian classifier model trained in the training module that is loaded into
the classifier app to predict the classification of the unknown species. Result of the
classification includes the possible name with its corresponding probability and then
compared to the threshold value. The unknown species is classified as the class with
the highest probability greater than the defined threshold. The species is classified

as UNKNOWN: If all of the probabilities are less than the threshold.

After generating all the results, the user can then save it in a PDF file including

28

the image, the classification, the probability, and the details of the classifier model use.

An option to adjust the classification threshold is also available for the micropa-

leontologist and is used to determine the predicted class of the unknown species.

Finally, the user can view tutorials and read the documentation on how to use the
system. Screenshots and help instructions is provided together with the summary of

commands, panes and operations offered by the application.

Select image file to
be classified J

T

No

Upload classifier

L model

A 4

Finished using
the app?

Feed to the model for
classification

Yes

A 4

Export outputs

Figure 21. Activity Diagram of Micropaleontologist , RaDSS v(2

B. System Architecture

The proposed system is implemented using Python. It is the language that is most
widely by data scientists in the deep learning field. Python, together with the Caffe

framework is used to train the model.

Calffe is a deep learning framework made with expression, speed, and modularity

29

in mind. It is developed by Berkeley AI Research (BAIR) and by community con-
tributors. It supports CNN and other deep learning network designs. The models are
defined by configuration without hard-coding and training can switch between CPU

and GPU by setting a single flag. [28]

C. Technical Architecture

1. Windows 7 or Higher;

2. 2 Ghz CPU

3. RAM: 8 GB or higher

4. Graphical Processing Unit (GPU), preferably NVIDIA

5. 2 Gigabytes disk space

30

V. Results

The Radiolarian Decision Support System v02 is a standalone desktop application
created using python. It is divided into two parts, the Training Module and the
Classifier Application that can be used by the Al expert and the microplacontologist

respectively.

J

RADIOLARIAN DECISION SUPPORT SYSTEM 2.0
University of&s Phiﬁppi;nes Manila
w.-;) G D6 o . ‘-')7 .«

Figure 20. RaDSS v02 Main Window

31

A. RaDSS Training Module

File Settings Help

Files for training:

RaDSS V02 Training Module

File Count: 0

T

Remove Selected |i Select Unlabeled [4]

R

Mo Image Selected

Class Count: 0 w
5
Preprocess (®) Resize Only () Resize and Pad } K
-
Hyperparameters

fye -
Learning Rate [0.001] |
Step 100 e 3 po
BatchSize [100 | |/ ctassificatio
Iteration s |
Architecture (@ Caffelet () Alexhet |

‘ 0% Train

Figure 21. RaDSS v02 Training Module Startup

To start, the training administrator or the Al expert can add images or an image to
the training application. Adding images requires an additional excel file that contains

the mapping of the filenames and their corresponding labels. When adding an only

image the class label will be specified at the bottom of the preview image.

File | Settings Help
Add Image Ctrl+A
Add Images Ctrl+Shift+A
Export labels to Excel Ctrl+E
Export classes to Excel

Backto Home

Figure 22. RaDSS v02 Training Module File Options

32

= Dialog ?

RaDSS V02 Add Training Images

Images Label File

* Label file is assumed to have no header

OK Cancel

Figure 23. RaDSS v02 Training Module Adding Images

You can see the status of the upoad on the staus bar below and the progress bar

beneath the Train button.

Models Caffenet] Mlextet -

Processing image C:/Thesis/CODES/DatasetCopied/TrainVal\002-plate-19_21,jpg

When the images are finally added, it will be listed on the left panel. Cliicking an
image will display a preview and its corresponding classification based on the uploaded
excel file on the right. He can edit the classification of the selected image but it will
not edit the excel file that was uploaded. He can export these updated labels to an

excel file by clicking on the ”File” menu and choose ”Export labels to Excel.”

33

Files for training:

:C:/Thesis/CODES/DatasetCopied/TrainValP\000-plato-08.jpg S
C:/Thesis/CODES/DatasetCopied/TrainValP\000-plato-08.jpg
C:/Thesis/CODES/DatasetCopied/TrainValP\000-plato-10.jpg
C:/Thesis/CODES/DatasetCopied/TrainValP\000-plato-11.jpg
C:/Thesis/CODES/DatasetCopied/TrainValP\000-plato-12,jpg
C:/Thesis/CODES/DatasetCopied/TrainValP\000-plato-19.jpg
C:/Thesis/CODES/DatasetCopied/TrainValP\000-plato-20.jpg
C:/Thesis/CODES/DatasetCopied/TrainValP\000-plato-21.jpg
C:/Thesis/CODES/DatasetCopied/TrainValP\000-plato-22.jpg
C:/Thesis/CODES/DatasetCopied/TrainValP\000-plato-533.jpg
C:/Thesis/ CODES/DatasetCopied/TrainValP\000-plato-34.jpg v

File Count: 309 Remave Selected

Class Count: 13 Classification: Pseudostylosphaera compacta

Figure 25. RaDSS v02 Training Module Image List on the right; image preview and classification on the left

Class Count is the total number of classes on the list. You can view these classes
and corresponding counts by clicking Help then Show Classes on the menu bar. The
user can export the Radiolarian classes and their corresponding class count into an

excel file by clicking ”"File” menu and select ” Export classes to Excel”

34

& Dialog ?
Radiolarian Classes
Class Names Class Count
1 éhrchaeudict_n,n:umitra [26
2 Cenosphaera sp. 25
3 Cryptamphorella sp. 25
4 Eptingiurmn manfredi 20
& Parahsuum sp. 23
& Pseudostylosphaera compacta 26
7 Pseudostylosphaera japonica 26
8 Pseudostylosphaera sp. 25
5 Sethocapsa sp. 20
10 Triassocampe coronata 19
11 Trassocampe dewever 21
12 Triassocampe sp. 25
13 Tricolocapsa plicarum 26

Figure 27. RaDSS v02 Training Module Class Count Summary

The preprocess option is also available. The user gets to choose whether the images

are going to be resized only or be pad around to maintain aspect ratio, before training.

Preprocess (") Resize Only (® Resize and Pad

Figure 28. RaDSS v02 Training Module Preprocessing

35

To train a Radiolarian classifier model, the training administrator will input the
hyperparameters.
Hyperparameters

Learning Rate |0.001

Step 100

Batch Size 100

Iteration 5

Architecture (@ caffeNet () Alexnet

Figure 29. RaDSS v02 Training Module Hyperparameters

The hyperparameters are the most important part of the module. These are the
specifications to be used during training. Learning Rate: The default is set to 0.001
and it should be small as possible. This will set how fast or slow the network will
learn. Too high learning rate may result to overfitting while too low value may result
to an underfit.

Step: Step or stepsize drops the learning rate every step iterations. Meaning, the
learning rate will drop on the specified step iteration.

Batch Size: Batch size is the number of images that will be used to train the network
per iteration. It is usually a divisible of the total number of training images.
Iteration: Iteration is the total number of passes the images to the network.
Models: Models are the currently available architectures or neural nets that will be
trained using the training images. These architectures have once been the state-of-

the-art on the image classification fields.

The training is displayed on an external command prompt that can be viewed
an monitor by the Al expert. The trained model will be saved on the models path

that can be edited in the configuration. It is saved in a .caffemodel format and

36

automatically be made available on the classifier application.

After training, the resulting plot and the training accuracy is displayed. This
accuracy is computed based on the model’s performance on the validation set. The
AT expert has the option to export this caffemodel to the classifier application if it

has better performance than that on the classifier application.

Test accuracy vs. lters

Test accuracy
o = o o o =]
rJ %] Lo Ln =] -]
1 i 1 1 i i

=
=
1

caffenet_20180523_0735_log

0.0 1

T T T T T T
0 200 400 600 800 1000 1200
Iters

Figure 30. RaDSS v02 Training Module Plot of Training

More information about the different modules and how to use the application can
be found in the User’s Manual and can be viewed by clicking ”Help/Tutorials” under

"Help” menu.

37

o RaDSS V02 Help Tutorial ?

RaDSS v02 HELP

RaDS5 w2

4 Training Module Classification Specifications
TM Menubar The models that were trained on the training module will be automatically
Adding Images loaded to the dassifier application. The user gets to choose which
Premrocess trained model to use for the dassification. The user may also able to

B manually add medels to the model's path.

Hyperparameters

4 Classifier Application The threshold value is the minimum probability that the dassification
A Menubar should reach for an image to be dassified to a dass. If the highest

probability did not reach the threshold value, then the dass of the image

Preprocess will be zet to unknown, This value can be set by the user as well,

[Classifier Specifications

| The checked items are the only images that will be dassified aftre dicking
the "Classify Selected” Button. This is to ensure that the previously
dassified will not be reclassified (with the same output) to reduce
execution time and redundancy. The user can export dasification
summary and details by dicking "File" menu and then "Export result to
FDF",

Figure 31. RaDSS v02 Training Module Tutorials

The Radiolarian classifier models created in this module plays a significant role in
the classifier application. It will be used to predict the possible classification of the

unknown Radiolarian species.

38

B. Classifier Application

= RaDSS V02 Classifier Application = (=
File Help

RaDSS V02 Classifier Application

Files for testing: — Image | Class

Classification:

Class Name Probability

1 Archaeodictyomitra sp.

2 Cenosphaera sp.

3 Cryptamphorella sp.

4 Eptingium manfredi

5 Parahsuum sp.

Remove Selected Check/Uncheck Selected Select/Deselect Al
6 Pseudostylosphaera compacta
Preprocess (®) Resize Only () Resize and Pad g 7 Pseudostylosphaera japonica
8 Pseudostylosphaera sp.
Threshold: an

9 Sethocapsa sp.

Figure 32. RaDSS v02 Classifier Application Startup

To start using the application, the micropaleontologist can either input a directory

of images or an image for classification. Only jpeg images are accepted by the system.

| File | Help
Add Image Ctri+A
! Add Images Ctrl+5Shift+A
Export result to PDF Ctrl+E
Back to Home

Figure 33. RaDSS v02 Classifier Application File Options

After choosing a directory, the image files will be loaded to the list on the left,
showing the file count on the upper right of the list. The user can also view the image
preview on the right tabbed pane. The 1st tab contains image, while the 2nd tab

provides the summary of the classification, i.e. the class name and the probabilities

39

obtained per class after classification. The 2nd tab values are empty while Classify

Selected button have never been clicked.

& R DS ViR (e ettt = =

File Help

RaDSS V02 Classifier Application

Files for testing: — = Image | Class

[[] C:/Thesis/CODES/DatasetCopied/TestP\013-plate-01_15,jpg -
[[] C:/Thesis/CODES/DatasetCopied/TestP\013-plate-01_19,jpg

[] C:/Thesis/CODES/DatasetCopied/TestP'015-plate-02_09.jpg

[] C:/Thesis/CODES/DatasetCopied/TestP\016-plate-03_16.jpg

[[] C:/Thesis/CODES/DatasetCopied/TestPplates-01_01,jpg

[[] C:/Thesis/CODES/DatasetCopied,/ TestPplates-01_07 jpg

[[] C:/Thesis/CODES/DatasetCopied/TestPplates-01_19,jpg
C:/Thesis/CODES/DatasetCopied/TestP\plates-08_02.jpg
C:/Thesis/CODES/DatasetCopied/TestP\plates-19_03.jpg
C:/Thesis/CODES/DatasetCopied/TestP\plates-23_08.jpg

[] C:/Thesis/CODES/DatasetCopied,/ TestP\plates-23 09.jpg ~

Ol

Remove Selected Chedk/Uncheck Selected Select/Deselect Al |

Preprocess (®) Resize Only () Resize and Pad

Threshold: an

Classify Selected ‘

Figure 34. RaDSS v02 Classifier Application Uploaded Images

40

Image Class

Classification: pNgne

Class Name Probability

1 Archaeodictyomitra sp.

2 Cenosphaera sp.

3 Cryptamphorella sp.

4 Eptingium manfredi

5 Parahsuum sp.

& Pseudostylosphaera compacta

7 Pseudostylosphaera jJaponica

8 Pseudostylosphaera sp.

g Sethocapsa sp.

Figure 35. RaDSS v02 Classifier Application Class Tab

Remove selected button will remove the selected files on the list. Select/Deselect
All button will select or deselect all images in the list. The Check/Uncheck Selected
will check or uncheck all of the selected images. The checked items are the only

images that will be classified aftre clicking the Classify Selected Button.

41

Files for testing: Count: 196

[] C:/Thesis/CODES/DatasetCopied/Test\000-plato-23.jpg A~
[| C:/Thesis/CODES/DatasetCopied/Test\001-plate-02_01.jpg

[] C:/Thesis/CODES/DatasetCopied/Test\001-plate-02_05.jpg

[] C:/Thesis/CODES/DatasetCopied/Test\001-plate-02_14.jpg

[] C:/Thesis/CODES/DatasetCopied/Test\001-plate-05_18,jpg

[] C/Thesis/CODES/DatasetCopied/Test\001-plate-07 0ljpg
(] C/Thesis/CODES/DatasetCopied/Test\001-plate-07 02jpg .
[] C:/Thesis/CODES/DatasetCopied/Test\001-plate-09_07.jpg

[] C:/Thesis/CODES/DatasetCopied/Test\001-plate-09_10.,jpg

[| C:/Thesis/CODES/DatasetCopied/Test\001-plate-10_01.jpg

[] C:/Thesis/CODES/DatasetCopied/Test\001-plate-10_07.jpg v

Remove Selected Check/Uncheck Selected Select/Deselect All

Figure 36. RaDSS v02 Classifier Application List of Images and Options

Just like the training images, the images that are needed to be classified will
also undergo some preprocessing for the classification to be more accurate. The user
gets to choose whether the images are going to be resized only or be pad around to
maintain aspect ratio.

The best model that was trained on the training module will be automatically
loaded to the classifier application and this is what the application will use to classify
the images. The threshold value is the minimum probability that the classification
should reach for an image to be classified to a class. If the highest probability did not
reach the threshold value, then the class of the image will be set to unknown. This

value can be set by the user as well.

Threshold: an

Figure 37. RaDSS v02 Classifier Application Classification Specifications

The checked items are the only images that will be classified aftre clicking the

(Classify Selected Button. This is to ensure that the previously classified images will

42

not be reclassified (with the same output) to reduce execution time and redundancy.
After the classification is finished, the class tab beside the preview will be updated

with the class name and the corresponding probability on the classes.

Files for testing: e o Image | Class
[€:/Thesis/CODES/DatasetCopied/TestP\013-plate-01_15,jpg ~ =
[] C:/Thesis/CODES/DatasetCopied/TestP\013-plate-01_19,jpg Classification: Cenosphaera sp.
[[] C/Thesis/CODES/DatasetCopied/TestP\015-plate-02_09.jpg R =
[] Ci/Thesis/CODES/DatasetCopied/TestP\016-plate-03_16,jpg e Name | Probability =1
[] C:/Thesis/CODES/DatasetCopied,/ TestP\plates-01_01,jpg 1 iCenosphaera sp. 01450045
[[] C:/Thesis/CODES/DatasetCopied/TestP\plates-01_07.jpg . 4
[] C:/Thesis/CODES/DatasetCopied/TestP\plates-01_19,jpg 2 Archaecdictyemitra sp. 8.9974375e-05
[[] C/Thesis/CODES/DatasetCopied/TestP\plates-02_02.jpg
C:/Thesis/CODES/DatasetCopied/ TestP\plates-19_03,jpg 3 Pseudostylosphaera japonica | 7.9321524e-05
[[] C:/Thesis/CODES/DatasetCopied/ TestP\plates-23_08.jpg 4 Sethocapsasp. 3.5710618
[] C:/Thesis/CODES/DatasetCopied/TestP\plates-23_08.jpg v
Remove Selected Check/Uncheck Selected Select/Deselect All Parahsuum <p. 2D
b 13 & Triassocampe coronata 14355685
Preprocess (®) Resize Orly (") Resize and Pad 7 Eptingium manfredi 0.8057599
3 Triassocampe sp. 0.034845054
Threshold: an
9 Cryptamphorella sp. 0.02331865
-

Figure 38. RaDSS v02 Classifier Application Classification Results

The user can export clasification summary and details by clicking File menu and
then Export result to PDF

More information about the different modules and how to use the application can
be found in the User’s Manual and can be viewed by clicking ”Help /Tutorials” under

"Help” menu as well.

43

VI. Discussion

A. Dataset

The dataset comprises a total of 3,820 microfossil images of various Radiolarian
species and were used to test the application. These images were provided by Pro-
fessor Edanjarlo Marquez which are in the form of digital and printed (which were
scanned).

Preprocessing The only preprocessing performed on the data is rescaling and can
be done using the python’s OpenCV library.

Classes Since the Radiolarian classes present on the dataset have unequal number
of instances with the minimum of 4 and a maximum of 47, we have to reduce the
classes so to have a minimum of 20 intances per class. The table below shows thirteen
classes that is supported by the application and their correspoding class count used

for training.

CLASS NO. OF INSTANCES | TRAIN TEST
Triassocampe coronata 20 13 1
Archaeodictyomitra sp. 29 26 2

Cenosphaera sp. 29 25 1
Cryptamphorella sp. 30 25 1
Eptingium manfredi 21 20 1

Parahsuum sp. 47 25 4
Pseudostylosphaera compacta 33 26 4
Pseudostylosphaera japonica 37 26 2
Pseudostylosphaera sp. 44 25 4
Sethocapsa sp. 21 20 1
Triassocampe deweveri 22 21 1
Triassocampe sp. 37 25 3
Tricolocapsa plicarum 29 26 2
TOTAL 399 309 27

Figure 39. RaDSS v02 Dataset List

The validation set will be used for cross-validation during training to test if the

model performs well and obtains a high accuracy. Caffe automatically do this by just

44

specifying the validation set.
In order to obtain the best accuracy, we have to tweak the hyperparameters of

the network: adjusting the learning rate, batch size, step and number of iteration.

LEARNING RATE BATCH SIZE STEP ITERATION MODEL Ave Acc
0.001 20 250 1200 caffenet 69%
0.001 23 250 1100 caffenet 67%
0.001 25 200 1000 caffenet 69%
0.001 25 250 1200 caffenet 71%
0.001 25 250 1000 alexnet 70%
0.005 23 250 1500 alexnet 70%
0.001 25 300 1000 alexnet 69%

Figure 40. RaDSS v02 Various accuracy with different values of hyperparameter

Since the accuracy varies because of random sampling, these accuracies were ob-

tained through averaging 10 training runs on the same values of hyperparameters.

10x simuation same param

Ave Acc 1 2 3 4 5 6 7 8 9 10
69% 0.73 0.73 0.71 0.66 0.63 0.76 0.69 0.67 0.69 0.67
67% 0.69 0.71 0.67 0.59 0.69 0.67 0.64 0.67 0.72 0.69
59% 0.73 0.63 0.63 0.72 0.69 0.73 0.7 0.63 0.69 0.74
71% 0.73 0.71 0.69 0.7 0.75 0.69 0.73 0.71 0.71 0.72
70% 0.6938 0.7422 0.6938 0.709 0.6932 0.7418 0.6938 0.6934 0.6938 0.6772
70% 0.7098 0.6776 0.726 0.7262 0.6774 0.7096 0.7096 0.6774 0.6456 0.7576
59% 0.6616 0.6932 0.6938 0.6932 0.6938 0.6776 0.6932 0.6616 0.6938 0.6932

Figure 41. RaDSS v02 Average accuracies with same values of hyperparameter

45

VII. Conclusion

RaDSS v02 is an application that will help the micropaleontologist in classifying
Radiolarian species. It is made possible by Deep Learning algorithms, in this case,
the convolutional neural network. With miniman preprocessing, it is able to analize
raw Radiolarian microfossil image and tweaking the hyperparameters might improve
the accuracy. The result containing the information about the classification can be

exported through a PDF.

46

VIII. Recommendation

RaDSS v02’s accuracy will greatly increase if there are more data and instances per

class. The more data in a convolutional neural network, the more learning it will get.

Also, some heavy architectures like googleNet or ResNet might perform better
than the ones availbale in RaDSS v02. Augmentation will also help increase the
number of data and will ensure that the model performs well even with the different

orientation of an image.

47

IX. Bibliography

1]

[9]

“Radiolaria — new world encyclopedia,” New World Encyclopedia, 2015. n.p.
Web. 04 January 2018.

M. Asaravala, H. Lam, S. Litty, J. Phillips, and T.-T. Wu, “Introduction to the

radiolaria,” 2000. n.p. Web. 04 January 2018.

H. M. Bik, “Lets rise up to unite taxonomy and technology,” PLOS Biology,
vol. 15, pp. 1-4, 08 2017.

A. van den Oord, I. Korshunova, J. Burms, J. Degrave, L. Pigou, P. Buteneers,
and S. Dieleman, “Classifying plankton with deep neural networks,” March 2015.
n.p. Web. 04 January 2018.

J. Dai, R. Wang, H. Zheng, G. Ji, and X. Qiao, “Zooplanktonet: Deep convo-
lutional network for zooplankton classification,” in OCEANS 2016 - Shanghai,

pp. 1-6, April 2016.

L. A. Apostol, E. Marquez, P. Gasmen, and G. Solano, “Radss: A radiolarian
classifier using support vector machines,” 2016 7th International Conference on

Information, Intelligence, Systems € Applications (IISA), pp. 1-6, 2016.

C. Fimbres-Castro, J. Alvarez-Borrego, 1. Vazquez-Martinez, T. L. Espinoza-
Carreon, A. E. Ulloa-Perez, and M. A. Bueno-Ibarra, “Nonlinear correlation by
using invariant identity vectors signatures to identify plankton,” Gayana (Con-

cepcion), vol. 77, pp. 105 — 124, 00 2013.

A. S. Kegeli, A. Kaya, and S. U. Kegeli, “Classification of radiolarian images
with hand-crafted and deep features,” Computers and Geosciences, vol. 109,

pp. 67-74, Dec. 2017.

J. H. Lipps, “Microfossils,” n.p. n.d. Web. 04 January 2018.

48

[10]

[11]

[12]

[15]

[16]

[17]

[18]

P. A. Swaby, “Vides: an expert system for visually identifying microfossils,”

IEEE Ezxpert, vol. 7, pp. 3642, April 1992.

M. A. O’Neill and M. Denos, “Automating biostratigraphy in oil and gas explo-
ration: Introducing geodaisy,” Journal of Petroleum Science and Engineering,

vol. 149, no. Supplement C, pp. 851 — 859, 2017.

D. J. Cindy M. Wong, “Dynamic hierarchical algorithm for accelerated micro-
fossil identification,” Proceedings SPIE Image Processing: Machine Vision Ap-
plications VIII, vol. 9405, pp. 1 — 15, 2015.

L. Tindall, C. Luong, and A. Saad, “Plankton classification using vggl6 net-
work,” 2015.

P. Jindal and R. Mundra, “Plankton classification using hybrid convolutional

network-random forests architectures,”
Y. Kuang, “Deep neural network for deep sea plankton classification,” 2015.

S. Liu, M. Thonnat, and M. Berthod, “Automatic classification of planktonic
foraminifera by a knowledge-based system,” in Proceedings of the Tenth Confer-

ence on Artificial Intelligence for Applications, pp. 358-364, Mar 1994.

A. Pedraza, G. Bueno, O. Deniz, G. Cristbal, S. Blanco, and M. Borrego-Ramos,
“Automated diatom classification (part b): A deep learning approach,” Applied
Sciences, vol. 7, no. 5, 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, NIPS'12,

(USA), pp. 1097-1105, Curran Associates Inc., 2012.

49

[19]

[20]

[21]

[22]

23]
[24]

[25]

[26]

[27]

28]

M. D. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Net-

works, pp. 818-833. Cham: Springer International Publishing, 2014.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” CoRR, vol. abs/1409.1556, 2014.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 2818-2826, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 7T70-778, 2016.
“Radiolaria,” Miracle, 2002. n.p. Web. 04 January 2018.
“What are radiolarians,” n.p. n.d. Web. 04 January 2018.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

A. Deshpande, “A beginner’s guide to understanding convolutional neural net-

work,” n.p. n.d. Web. 04 January 2018.

U. Karn, “An intuitive explanation of convolutional neural networks,” August

2016. n.p. Web. 04 January 2018.

“Caffe,” n.p. n.d. Web. 04 January 2018.

50

http://www.deeplearningbook.org

X. Appendix

A. Forms

B. Source Code

import settings

import sys

import os

import cv2

import numpy as np

import glob

import random

import caffe

import time

import subprocess

import datetime

import plot_learning_curve as plc
from PyQt5.uic import loadUi

from PyQt5 import QtGui, QtCore
from readFiles import FileReader
from PyQt5.QtCore import pyqtSlot
from PyQt5.QtWidgets import =
from PyQt5.QtGui import x*

from collections import Counter
from augmentor import augment
from PIL import Image

from create_lmdb import CreateLMDB
from functools import partial
from preprocess import Preprocesslmage as pr
from create_html import createHTML

class MainApp (QMainWindow) :
def __init__(self):
super (MainApp, self). __init__ ()
self.show_home ()

def show_home(self):
loadUi(settings.ui_path + ’mainApp.ui’, self)
self .setWindowTitle (” RaDSS V02”)
self .setWindowlIcon (QtGui. QIcon(settings.icon_path))

—— code below connects action to the buttons/menu/etc
self .trainBtn.clicked.connect(self.show_training_app)
self.classBtn.clicked.connect(self.show_test_app)

self.actionLoad_Manual.triggered.connect(self.loadManual)

def clearLayout (layout):
while layout.count ():
child = layout.takeAt (0)
if child.widget () is not None:
child . widget (). deleteLater ()
elif child.layout() is not None:
clearLayout (child.layout ())
def show_training_app(self):

loadUi(settings .ui_-path + ’trainApp.ui’, self)
self .setWindowTitle (?”RaDSS V02 Training Module”)
self .setWindowlIcon (QtGui. QIcon(settings.icon_path))

INSTANCE VARIABLES
self.label_map = []
self.classes = []

self.classCount = []

self.architecture = ”caffenet?”

self .currentltem = None

—— code below connects action to the buttons/menu/etc

self . trainButton.clicked .connect(self.train_data_method)
#self . trainButton.clicked.connect(self.train_data_temp)

self .removeButton.clicked .connect(self.remove_selected)

self .selUnlabeled.clicked.connect(self.select_all_unlabeled)

#don’t remove menu actions! for example

self .actionAdd_-Images.triggered.connect(self.add-images)

self .actionAdd-Image.triggered.connect(self.add-image)

self . actionEdit_Configuration.triggered.connect(self.edit_configuration)
self.actionExport_labels. triggered.connect(self.export_labels)
self.actionBack_to_Home. triggered .connect(self.show_home)

51

self.actionShow_classes.triggered.connect(self.showClasses)
self .actionLoad_Manual.triggered.connect(self.loadManual)

self.list_training_-images.itemClicked.connect(self.image_clicked_preview)
self.image_classification.returnPressed.connect(self.classification_changed)

validators

self.batch_size.setValidator (QIntValidator ())
self.iter_no.setValidator (QIntValidator ())
self . train_step.setValidator (QIntValidator ())

set initial fields
self.filecnt .setText (70”)
self.clscnt.setText (707)

def show_test_app(self):
loadUi(settings .ui_-path + ’testApp.ui’, self)
self .setWindowTitle (”RaDSS V02 Classifier Application”)
self .setWindowlIcon (QtGui.QIcon(settings.icon_path))

Instance Variables

self.classes = np.load(settings.data_path + ”classDict.npy”)
self.currentlItem = None

self.predictions = []

one dimensional array that corresponds to the indices of list_testing_images
self .probab = []
self.thresh = 90.

—— code below connects action to the buttons/menu/etc

self.classifyButton.clicked.connect(self.test_data_method)
self.selectAllBtn.clicked.connect(self.select-all)
self.chkSelectedBtn.clicked.connect(self.check_selected)
self .btnRemove. clicked .connect(self.test_-remove_selected)

#don’t remove menu actions! for example
self.actionAdd_Images_Test.triggered.connect(self.test_add_images)
self.actionAdd_-Image_Test.triggered.connect(self.test_add_image)
self.actionExport_to_.PDF . triggered.connect(self.exportToPDF)
self.actionBack_-to_Home . triggered .connect(self.show_home)
self.actionLoad_-Manual. triggered .connect(self.loadManual)

self.list_testing_images.itemClicked.connect(self.test_image_clicked_preview)
self .threshold.returnPressed.connect(self.threshold_changed)

populate table with the classes

for row, cls in enumerate(self.classes):
self.tableWidget.insertRow (row)
self . tableWidget.setltem (row , 0, QTableWidgetltem (cls))

print (” Model to use: ”, settings.classifier_model)

T 7T 7T T T 7

al T 11 FAAT 11 T 11 T

77
i FHH A7 A FHA A T T A T
TRAIN MODULE METHODS ##44# HHHHHH HHHHHH HHHHHH 7
creates an absolute_filename—label array self.train and self.val
@QpyqtSlot ()
def train_data_method (self):

print (” Train”)

if self.validate_inputs () == False:
return
self.completed = 0

default is caffenet; check if alexNet is chosenn
if self.alexNet.isChecked ():
self.architecture = ”alexnet”

save class dictionary
self.count_classes ()
np.save(settings.data_path + “classDict.npy”, self.classes)

edit prototxt files based on hyperparameters set by user
self.update_progress_bar (” Creating solver pototxts...” , 1)
self.edit_prototxts ()

shuffle the list (this is 2 dimensional so use np)
checked and working

#print (xself.label_map, sep=’\n’)

np.random.shuffle (self.label_map)

working
divide train and val randomly
self .update_progress_bar (” Dividing train and val set...” , 2)
self .train =
self.val = []
for i in range(len(self.label_-map)):
temp = self.label_map[i]][:] # [:] is necessary to pass by value!!

52

temp[l] = self.get_image_-num-_label (temp|[1])
put all that is divisible by five to the val set, this will comprise 20% of the data
if(i %5 = 0):
self.val.append (temp)
else:
self.train.append (temp)
mappings
array: image[0] with label: label [0]

self.train_data = []
self . train_label = []
self.val_data = []

self.val_label = []

»

self .update_progress_bar (” Converting Images to Array...” , 2)

Working!: Convert and Augment
convert each TRAIN filenames to nparray and augment
for imahe in self.train:

—— optional methods but will resort to just resize for now
— these can be applied to val as well

#img = pr.transform_img (imahe)

#img = pr.resizeAndPad (img)

#cv2.imshow (” imahe”, img)

automatic type is uint8 <—— imgaug requirement

img = cv2.imread (imahe[0], cv2.IMREAD_COLOR)

if self.resizeRadio.isChecked ():
img = cv2.resize (img, (settings.IMAGEHEIGHT, settings.IMAGEWIDTH))
#cv2.imshow (” imahe”, img)
else:
img = pr.resizeAndPad (img)
#cv2.imshow (” imahe”, img)

self . train_data.append(img)

augment image and append augmented images on train_data
#self.train_data.extend (augment(img, 10))

append the original ’s image label and 10 augmented of the same label
#self.train_label.extend ([imahe[1]] = 11)

self.train_label.append(imahe[1]) # remove when augment is on

convert each VAL filenames to nparray and augment
for imahe in self.val:
img = cv2.imread (imahe[0], cv2.IMREAD_COLOR)

if self.resizeRadio.isChecked ():

img = cv2.resize (img, (settings.IMAGEHEIGHT, settings.IMAGEWIDTH))
else:

img = pr.resizeAndPad (img)

self.val_data.append(img)

augment image and append augmented images on val_-data
#self.val_data.extend (augment(img, 10))

append the original ’s image label and 10 augmented of the same label
#self.val_label.extend ([imahe [1]] x 11)
self.val_label.append(imahe[1]) # remove when augment is on

create_lmdb
self.update_progress_bar (” Create LMDB Files...” , 5)
Imdb = CreateLMDB(self.train_data, self.train_label, self.val_data, self.val_label)

image_mean
remove last slashes on paths
make_imagenet_mean.sh Imdb_path image_-mean_path caffe_tools_path

syntax: ./compute_image_mean path/to/train_lmdb path/to/images_mean.binaryproto
self .update_progress_bar (” Create Image Mean File...” , 1)
os.system (settings.tools_path 4+ ”"compute_image_-mean ” 4+ settings.database_path +

?train_-lmdb 7 4+ settings.data_path 4+ ”"images_mean.binaryproto”)
self .update_progress_bar (” Training Network...” , 10)
train

syntax: ./caffe train —solver path/to/solver.prototxt 2>&1 | tee /path/to/logs/
now = datetime.datetime.now ().strftime (" %YVnlod _YHYZM)

self.logfile = settings.data_path + “logs/”+ self.architecture + ”_” + str(now) + ”_log.log”
self.plotFile = settings.data_path 4+ ”"plots/”"+ self.architecture + ”_” + str(now) + ” _plot”
os.system(settings.tools_path 4+ ”caffe train —solver 7 4+ settings.models_path +

self.architecture 4+ ”/solver.prototxt 2>&1 | tee ” + self.logfile)

self.update_progress_bar (” Training Finished! Caffe Models saved at ” +
settings . models_path + self.caffemodel_-name, 79)

self.display_training_results ()

s

edit the chosen architecture’s prototxt based on user hyperparameter and some settings

def edit-prototxts(self):

hyperparameters

bs = (int)(self.batch_size.text ())

Ir = (float)(self.learning_rate.text())
stepsize = (int)(self.train_step.text())
max_iter = (int)(self.iter_no.text())

53

#solver-mode: CPU = 0, GPU != 0
mode = 0

reader = FileReader (”dummyfile”)

print (" Edit Train Prototxt of ”, self.architecture)
reader.edit_train_prototxt(self.architecture, bs, len(self.classes))

print (” Create Solver Prototxt of ”, self.architecture)

retrieve the filename of the saved model

self.caffemodel_name = reader.solver(self.architecture, Ir, stepsize, max_iter, mode)
self.caffemodel_name = self.caffemodel_-name + ”iter_” 4+ str(max_iter) + ”.caffemodel”
print (” Edit Deploy Prototxt of ”, self.architecture)

reader .deploy (self.architecture, len(self.classes))

def validate_inputs(self):
don’t continue if there is no data
if len(self.label_-map) == 0:
self .statusBar ().showMessage (”No Data Found. Please Add Images!”)
return False

if ((float)(self.learning_rate.text()) >= 1):
self.statusBar ().showMessage(” Please input valid learning rate.”)
return False
except: # string
self.statusBar ().showMessage (” Please input valid learning rate.”)
return False

check if all are labeled
Ist = —1
for i in range(len(self.label_-map)):
if (self.label_map[i][1] == None):
self.statusBar ().showMessage(” Please put labels on all images!”)
return False

return True

def display_training_results(self):
print (" Display Results”)
plot curves argument: log_path , output_path, plot_path
self.accuracy = plc.plot_curves(self.logfile, settings.data_path + “logs/”, self.plotFile)

self.trainResultsDiag = QDialog ()
self.trainResultsDiag.setWindowlIcon (QtGui.QIcon(settings.icon_path))
loadUi(settings .ui-path + ’plotGui.ui’, self.trainResultsDiag)
self.trainResultsDiag.setWindowModality (QtCore.Qt. ApplicationModal)
self . trainResultsDiag .show ()

self . trainResultsDiag.exportClassifierModel.clicked.connect (
self.export_caffemodel_to_classifier_app)

display plot

pixmap = QtGui.QPixmap(self.plotFile)

pixmap = pixmap.scaled(self.trainResultsDiag.plotPreview.width(),

self . trainResultsDiag.plotPreview.height (), QtCore.Qt.KeepAspectRatio)
self .trainResultsDiag.plotPreview .setPixmap (pixmap)

display accuracy
self.trainResultsDiag.accuracy.setText(str(self.accuracy))

display caffemodel trained and saved
self.trainResultsDiag.caffemodel.setText(str(self.caffemodel_-name))

def export_caffemodel_to_classifier_app(self):
print (" Export model to Classifier Application.”)
settings.classifier_model = self.caffemodel_-name
self . trainResultsDiag.close ()
self .statusBar ().showMessage(settings . models_path + self.caffemodel_-name +
” was exported to the Classifier Application”)

GUI Methods like classification changed, and image clicked

def classification_changed (self):
print (” Class changed”)
idx = self.list_training_images.currentRow ()
self.statusBar ().showMessage(” Classification Changed for ” +
self.list_training_-images.item (idx).text ())
self.label_map [idx][1] = self.image_classification.text ()
self.image_classification.clearFocus ()

def image_clicked_preview (self, item):
self.image_classification.setEnabled (True)

if (self.currentltem == item)
item.setSelected (False)
self.currentltem = None

self .imagePreview.setText (?"No Image Selected”)
self.image_classification .setEnabled (False)
return

preview

pixmap = QtGui.QPixmap(str (item.text ()))
pixmap = pixmap.scaled(self.imagePreview.width(),

o4

QtCore.Qt. KeepAspectRatio)

self .imagePreview. height (),

self.imagePreview.setPixmap (pixmap)

set label on click

idx = self.list_training_images.currentRow ()

item = self.label_-map [idx][1]

if (item == None):
self .image_classification.setPlaceholderText (” None”)
self.image_classification.setText (")

else:

self.image_classification.setText (item)

the only one with that

class!

self.list_training_images.takeltem (self.list_training_images.row(it))

self.currentltem = item
def update_progress_bar(self , msg, num):
self .statusBar ().showMessage (msg)
self.completed += num
self . progressBar.setValue(self.completed)
def remove_selected (self):
for it in self.list_training_images.selectedItems ():
del self.label_map[self.list_training_images.row(it)]
remove class pa if that item is
self . update_gui_fields ()
working
def select_all_unlabeled (self):

self.list_training_-images.clearSelection ()

Ist = —1
for i in range(len(self.label_-map)):
if (self.label_map[i][1] == None):
self.list_training_-images .item(i).
Ist = i
if(lst == —1):
self.statusBar ().showMessage (”No more unlabeled
else:

self.list_training_images.setCurrentRow (lst)

used by add_-images, add_-image and remove_selected
def update_gui_fields (self):

self.filecnt

.setText(str(self.list_training_

images

self.clscnt.setText(str(self.count_classes ()))

def export_labels(self):
if self.list_training_images.count() == 0
self.statusBar ().showMessage (” No
return
reader = FileReader (” dummyfile”)
fileName = reader.export_-to_excel(self, sel
if fileName:
self.statusBar ().showMessage (” Saved file
def export_classes(self):
reader = FileReader (" dummyfile”)
fileName = reader.export_to_excel (self,
if fileName:
self.statusBar ().showMessage(” Saved file
def showClasses(self):

print (” Show Classes?”)

self.showClassesDiag = QDialog()

f.label_map)

to

self.classCount)

to

self.showClassesDiag.setWindowlcon (QtGui.QIcon(settings .

loadUi(settings .ui_path + ’classDict.ui’,

setSelected (True)

images!”)

.count ()))

labels to export!”)

”? 4+ fileName)

” 4+ fileName)

icon_path))
self.showClassesDiag)

self .showClassesDiag.setWindowModality (QtCore.Qt. ApplicationModal)

self .showClassesDiag .show ()

row = 0
for cls in self.classCount:

self.showClassesDiag.classTable
self.showClassesDiag.classTable.
self.showClassesDiag.classTable.

row+=1

HHHHHHH#H settings method
def edit_configuration (self):
self .setting QDialog ()

self.setting .setWindowlIcon (QtGui.QIcon(settings.

loadUi(settings .ui_path + ’trainSettings.

ui’

.insertRow (row)
setltem (row ,
setltem (row ,

0,
1,

QTableWidgetItem (cls [0]))
QTableWidgetItem (str (cls [1])))

icon_path))
, self.setting)

self.setting .setWindowModality (QtCore.Qt. ApplicationModal)

self.setting .show ()

put based on settings file

self .setting.databaseFolder.

self .setting.dataFolder.setText(settings.
self .setting . modelsFolder.setText(settings
self.setting .browsedbFolder.clicked

self .setting.databaseFolder))
self.setting.browsedataFolder. clicked
self.setting.dataFolder))

55

setText(settings .database_path)
data_path)
.models_path)

.connect(partial (self.select_directory ,

.connect(partial (self.select_directory ,

self.setting.browsemodelsFolder. clicked

.connect(partial (self.select_-directory ,
self .setting . modelsFolder))

self .setting .btnOk. clicked .connect(self.settings_okay_clicked)

@pyqtSlot ()
def settings_okay_clicked (self):

settings .database_path = self.settings.databaseFolder.text ()
settings .data_path = self.settings.dataFolder.text ()
settings . models_path = self.settings.modelsFolder.text ()

self .setting.close ()
HHHHHHHAAAA —end settings method

def select_-directory (self, lineEdit):

file = str (QFileDialog.getExistingDirectory (self , ”Select Directory”))
if file:

lineEdit .setText (file)

checkings

@pyqtSlot ()
def select_file(self):

options = QFileDialog.Options()

options |= QFileDialog.DontUseNativeDialog

file , - = QFileDialog.getOpenFileName(self ,”Open File”, 77,

?Excel Files (*.xls *.xlsx) ;; CSV Files (x.csv)”, options=options)
if file:

print (" Add Images File”)
self.addImagesDialog. trainFile.setText(file)
checkings

—— DATA PROCESSING methods

count classes , count models to use
preprocessing to use
#
d

working !
ef count_classes(self):
if self.list_training_images.count() == 0:
return O

reset!

self.classes =
self.classCount = []

arr = np.array (self.label_map)
count = Counter(arr[:,1])

Accessing each element:
for k,v in count.items ():
if (k != None):
self.classes .append (k)
self .classCount.append ([k, v])
#or count [’ itemname ’]
self.classes = sorted(self.classes)
self.classCount = sorted(self.classCount)

return len(self.classes)

—— general methods

get image label from the text file given by the user
used by add_-images_to_training
def get_image_label(self, imgpath, file):

for i in range(len(file)):
if (file [0][i] in imgpath):
return file [1][1]
return None

returns the number representation of a label in
def get_-image_num_label(self, strlabel):
return self.classes.index(strlabel)

string

def check_file_duplicates (self):
pass

IRTRTRTNTNT) TRTTNTRTRININ) L TRTINTRTRINIeT)

—— add images methods

QDialog things

the real method is when OK is

def add-images(self):
self.addImagesDialog = QDialog()
self.addImagesDialog.setWindowlIcon (QtGui.QIcon(settings.icon_path))
loadUi(settings.ui-path + ’trainAddImages.ui’, self.addlmagesDialog)
self.addImagesDialog.setWindowModality (QtCore.Qt. ApplicationModal)
self.addImagesDialog.show ()

clicked —> add_.images_to_training ()

self.addImagesDialog.trainFolder.setText
partial (method, argv)

56

self.addImagesDialog. browseTrainDir.clicked .connect(partial (self.select_-directory ,
self.addImagesDialog.trainFolder))

self.addImagesDialog. browseFile.clicked .connect(self.select_file)
self.addImagesDialog.btnOk. clicked .connect(self.add_images_to_training)
self.addImagesDialog.btnCancel. clicked .connect(self.cancel_clicked)

@QpyqtSlot ()

def cancel_clicked (self):
just close and do nothing
self.addImagesDialog. close ()

#

self.label_map changed

@pyqtSlot ()

def add-images_to_training(self):
add checkings if all are directories before closing
self.addImagesDialog. close ()
print (" Add Images Closed!”)

reader = FileReader(self.addImagesDialog.trainFile.text ())

#based on labels file but this is tuple with labels
addfileLabels = reader.get_data_and_labels ()
addfileNames = glob.glob(self.addImagesDialog.trainFolder.text () + 7 /*%/%x.jpg”, recursive=True)

self.completed = 0
factor = 100/len (addfileNames)
self.statusBar ().showMessage(” Processing images...”)
append on gui those that are in dir and subdir
for file in addfileNames:
self .update_progress_bar (” Processing image ” + file , factor)
item = QListWidgetltem (file)
self . list_training-images .addItem (item)
label = self.get_-image_label(file , addfileLabels)

append on my DATA
self.label_map.append ([file , label])

self .progressBar.setValue (100)

self.statusBar ().showMessage(” Processing images finished!!!”)
self . update_gui_fields ()

self.progressBar.setValue (0)

—— add image method

self.label_map append with None
def add-image(self):

options = QFileDialog.Options ()

options |= QFileDialog.DontUseNativeDialog

file , - = QFileDialog.getOpenFileName(self, ”"Open File”, 77,
”Image Files (*.jpg)”, options=options)

if file:

print (" Add Images”)
checkings pa

append on gui
item = QListWidgetItem (file)

self.list_training_images.addltem (item)
self .label_map.append ([file , None])

self . update_gui_fields ()

m m m m m

#4444 CLASSIFIER APP

7 i i 7 7 A 7 A 7 A 7 7 i
GUI METHOD
def test_image_clicked_preview (self, item):
reset table values with class names: alphabetical and no values yet
self.tableWidget.setSortingEnabled (0)
for i in range(len(self.classes)):
self.tableWidget.setItem (i , 0, QTableWidgetItem (””))
self.tableWidget.setltem (i , 1, QTableWidgetltem (””))

for i in range(len(self.classes)):
self.tableWidget.setltem (i , 0, QTableWidgetltem (self.classes[i]))

if (self.currentltem == item):
item.setSelected (False)
self.currentltem = None

self .imagePreview.setText ("No Image Selected”)
self.classification .setText (” None”)
return

preview
pixmap = QtGui.QPixmap(str (item.text ()))

57

pixmap = pixmap.scaled(self.imagePreview.width(), self.imagePreview.height(),
QtCore.Qt. KeepAspectRatio)

self .imagePreview .setPixmap (pixmap)

set current item for select/deselect
self.currentltem = item

Set classification
cls = self.probab[self.list_testing_images.currentRow ()]
if ((cls == 0).sum() != len(self.classes)):
if cls[cls.argmax ()] >= self.thresh: # only classify if >= threshold
self.classification.setText(str(self.classes[cls.argmax()]))
else:
self.classification .setText (”UNKNOWN”)
for i, prob in enumerate(cls):
self.tableWidget.setltem (i , 1, QTableWidgetltem (str (prob)))
else:
self.classification .setText (” None”)

self.tableWidget.setSortingEnabled (1)

def threshold_changed (self):
self.thresh = (float)(self.threshold.text())
self.statusBar ().showMessage(” Threshold Changed!”)
self.threshold.clearFocus ()

#select /deselect all
@pyqtSlot ()
def select_all(self):
#if (list_-testing_images.selectedltems () > 0)
check = QtCore.Qt.Checked
if (self.list_testing_-images .item (0).checkState() == QtCore.Qt.Checked):
check = QtCore.Qt.Unchecked
for i in range(self.list_testing-images.count()):
self.list_testing_images.item(i).setCheckState (check)

Q@pyqtSlot ()
def check_selected (self):
for item in self.list_testing_-images.selectedItems ():
if (item.checkState () == QtCore.Qt.Unchecked):
item.setCheckState (QtCore.Qt.Checked)
else:
item.setCheckState (QtCore.Qt. Unchecked)

def test_remove_selected (self):
for it in self.list_testing_-images.selectedltems ():
del self.probab[self.list_testing_images.row(it)]
self.list_testing_-images.takeltem (self.list_testing_-images.row(it))

def exportToPDF (self):

if (len(self.wdclass) == 0):
self.statusBar ().showMessage(”No Classified Images yet! Export Failed.”)
return

html = createHTML (settings.data_-path + "myPage.html”, self.classes)

html.createHeader (settings.classifier_model , self.threshold.text ())
for idx, prb in enumerate(self.probab):

if ((prb == 0).sum() != len(self.classes)):
html.createlmg (self.list_testing_images.item(idx).text (), prb,
self.classes [prb.argmax ()], ”luh”)

html.createEnd ()
fileName = html.save_pdf(self)

self .statusBar ().showMessage (” Export Finished! Result saved in ” + fileName)

m m , L i m m ,

TEST METHOD

@pyqtSlot ()

def test_data_method(self):
print (” Test”)
reset the list to test and the list of indices to test, respectively
self.test = []

self.wdclass = []

self.statusBar ().showMessage(” Testing ...”)
no need to create Ilmdb because test directory 1is enough

for i in range(self.list_testing_images.count()):

item = self.list_testing_-images.item (i)
if (item.checkState () == QtCore.Qt.Checked):
img = cv2.imread (item.text (), cv2.IMREAD_COLOR)
if self.resizeRadio.isChecked (): #resizeOnly
img = cv2.resize (img, (settings.IMAGEHEIGHT, settings.IMAGEWIDTH))
#cv2.imshow (” imahe”, img)
else: #resize and pad
img = pr.resizeAndPad (img)
#cv2.imshow (” imahe”, img)

58

self.test.append(img)
self.wdclass.append (i) # appends the index to the list with classes

if (len(self.test) == 0):
print ("No Test Images Found!”)
self.statusBar ().showMessage(”No Test Images Selected!”)
return

convert images to .npy for input in classify.py
np.save(settings.data_path 4+ ”test_input.npy”, self.test)

convert train binaryproto to npy for caffe mean—file of classify ,py
blob = caffe.proto.caffe_pb2.BlobProto()

data = open(settings.data_path + ”images_mean.binaryproto” , ’rb’).read()
blob .ParseFromString (data)

arr = np.array(caffe.io.blobproto_to_array (blob))

out = arr [0]

np.save(settings.data_path 4+ ”images_mean.npy” , out)

classify
mod = settings.classifier_model.split(”_7)[0]

self.classify_method (settings.data_path + ”"test_input.npy”, settings.data_path +
”test_output.npy”, settings.models_path 4+ mod + ”/deploy.prototxt”, settings.models_path +
settings.classifier_model , settings.data_path 4+ ”images_mean.npy”, False)
self.storeProbabsAfterTest ()
self.statusBar ().showMessage(” Classification Finished!”)

def classify_method (self, input_file, output_-file, model_def, pretrained-model, mean_file ,

gpu=True, center_only=False, images_.dim = ’256,256’, input_-scale=None, raw.scale=255.0,
channel_swap="2,1,0", ext=’jpg’):

image_-dims = [int(s) for s in images_dim.split (’,’)]
mean, channel_swap = None, None
if mean_file:
mean = np.load(mean_file)
if channel_swap:
channel_swap = [int(s) for s in args.channel_swap.split (’,’)]
if gpu:

caffe.set_-mode_gpu ()
print ("GPU mode”)

else:
caffe.set_mode_cpu ()
print (”CPU mode”)
classifier = caffe.Classifier (model_def, pretrained_-model,
image_dims=image_-dims , mean=mean,
input-scale=input_scale, raw_scale=raw._scale, channel_swap=channel_swap)

Load numpy array (.npy), directory glob (*.jpg), or image file.
input_file = os.path.expanduser(input_file)
if input_file.endswith(’npy’):

print (” Loading file: %s” % input_file)

inputs = np.load(input_file)
elif os.path.isdir(input_file):

print (” Loading folder: %s” % input_file)

inputs =[caffe.io.load_image (im_f)

for im_f in glob.glob(input_file 4+ ’/%.’ 4+ ext)]

else:

print (” Loading file: %s” % input_file)

inputs = [caffe.io.load_image(input_file)]

print (” Classifying %d inputs.” % len(inputs))

Classify .

start = time.time ()

self . predictions = classifier.predict(inputs, not center_only)
print (?”Done in %.2f s.” % (time.time() — start))

Save

print (” Saving results into %s” % output_file)
np.save(output_file, self.predictions)

def storeProbabsAfterTest(self):
for indx, item in enumerate(self.wdclass):

self .probab[item] = self.predictions [indx]
self .probab[item][:] = [(x%100.) for x in self.probab[item]]
—— add images method

#

self.probab changed

def test_add_-images(self):
file = str (QFileDialog.getExistingDirectory (self, ”Select Directory”))
if file:

59

self .statusBar ().showMessage (” Processing

append on
for file in
item

item .
item .

self
self

self.filecnt .setText

images ...”)
gui those that are in files and subdir
glob.iglob (file + ”/*x%/*jpg”, recursive=True):
= QListWidgetItem (file)
setFlags (item. flags () |
setCheckState (QtCore.Qt. Unchecked)
.list_testing_images.addItem (item)
.probab.append(np.array ([0]*len(self.classes)))

(str(self.list_testing_images.count ()
!

)
)

QtCore.Qt.ItemIsUserCheckable)

self.statusBar ().showMessage (” Processing images finished
" ST o ST o i
—— add image method
#
self.probab changed
def test_add_-image(self):
options = QFileDialog.Options ()
options |= QFileDialog.DontUseNativeDialog
file , - = QFileDialog.getOpenFileName(self, ”"Open File”, 77,
”Image Files (*.jpg *.png)”, options=options)
if file:

print (” Add Image”)

append on gui

item
item .
item .
self .
self .

self.filecnt .

= QListWidgetltem (file)
setFlags (item . flags () |
setCheckState (QtCore.Qt. Unchecked)
list_testing_images .addItem (item)
probab.append(np.array ([0]*len(self.classes)))

setText (str(self.list_testing_images.count()))

— USED BY BOTH TRAIN AND TEST APP —

7 7
def loadManual(self):

7

print (” Load Help”)

self

loadUi(settin

self.helpManual.
self.helpManual.
self .helpManual.
self.helpManual.

self.helpManual.

.statusBar ().showMessage (” Loading Help...”)
self .helpManual

= QDialog ()
ui_path 4+ ’helpManual.ui’, self.helpManual)
setWindowTitle (”RaDSS V02 Help Tutorial”)

setWindowlIcon (QtGui. QlIcon(settings .

gs .

show ()

self .statusBar ().showMessage (””)

def loadManualltem (self , item):

file = open(settings.help_path 4 item.text(0) + ”.txt”, "r”
file_.contents = file.read ()
self .helpManual. preview.setText (str(file_contents))
file .close ()

#main

app = QApplication(sys.argv)

main = MainApp ()

main .show ()

sys.exit (app.exec-())

import os

import glob

import random

import numpy as np

import cv2

import caffe

from caffe.proto import caffe_pb2

import lmdb

import settings

#Size of images

IMAGE_.WIDTH = settings .IMAGE_-WIDTH

IMAGE_HEIGHT = settings .IMAGE_HEIGHT

class CreateLMDB(object):

def __init__(self, train, trLabel, val, valLabel):
self.train = train
self .trLabel = trLabel
self.val = val
self.valLabel = valLabel
self .create_array_datum ()
self.create_train_lmdb ()
self.create_val_-lmdb ()

60

3

QtCore.Qt.ItemIsUserCheckable)

icon_path))
setWindowModality (QtCore.Qt. ApplicationModal)

treeWidget.itemClicked .connect(self.loadManualltem)

encoding="utf8”)

import time

def make_datum(self , img,

return caffe_pb2.Datum/(
channels=3,
width=IMAGE_WIDTH,
height=IMAGE_HEIGHT,
label=label ,
data=np.rollaxis (img,

label):

def create_train_lmdb (self):
print (’Creating train_-lmdb)

accepts

random. shuffle (self.trDatum)
ings.database_path + ”train_lmdb”

train_.lmdb = sett

remove if there

2).tostring ())

are existing directories

if os.path.isdir(settings.database_path + ”train_lmdb”):
os.system (” rmdir /s /q ” + settings.database_path + ”train_lmdb”)
print (” Existing TRAIN LMDB files were deleted.”)

in_.db = lmdb.open(train_lmdb ,
with in_db.begin(write=True)

for in_idx ,

map_size=int (1el2))
as in_txn:

datum in enumerate(self.trDatum):

in_txn.put(’{:0>5d}’.format(in_idx).encode (), datum. SerializeToString())

in_db.close ()

print (’\nDone creating train_lmdb ’)

def create_val_-lmdb (self):

accepts

an n x 2 array of mapping:

filename—label

print (’\nCreating validation_lmdb)

random. shuffle (self.valDatum)
val_-lmdb = settings.database_-path + ”val_-lmdb”

remove if there

in_.db = Imdb.open(val_-lmdb ,

are existing directories

if os.path.isdir(settings.database_path 4+ ”val_.lmdb”):
os.system (” rmdir /s /q 7 + settings.database_path + “val_.lmdb”)
print (” Existing VAL LMDB files were deleted.”)

map-size=int (lel2))

with in_db.begin(write=True) as in_txn:
for in_idx , datum
in_txn.put(’{:0>5d}’.format(in_idx).encode (), datum.SerializeToString())

in_db.close ()

in

enumerate(self.valDatum):

print (’\nDone creating val_-lmdb)

a numpy array of

def create_array_-datum (self):

import sys

from
from
from
from
from
from
from

class

PyQts

PyQt5.
PyQt5.
PyQt5.
PyQt5.
PyQt5.
PyQt5.

self .trDatum = []
self .valDatum = |

]

images and corresponding labels

for index, img in enumerate(self.train):
datum = self.make_datum(img, self.trLabel[index])
self .trDatum.append (datum)

for index, img in enumerate(self.val):
datum = self.make_datum (img, self.valLabel[index])
self .valDatum .append (datum)

import =
QtWidgets import
QtWebKit import x*

QtWe

bKitWidgets import

QtCore import QUrl
ntSupport import QPrintDialog, QPrinter
import QTextDocument

QtPri
QtGui

createHTML (object):

def

def createHeader (self ,

--in

*

it__(self, filename,
self.filename = filename
self.classes = classes

model, tho

with open(self.filename,
myFile. write(’<html>")
myFile. write(’<body>"’)
myFile. write(’<h2>")
myFile. write (’RaDSSv02 Classifier Application Results)

myFile. write(’</h2>")

1d):
W)

classes):

as myFile:

myFile. write(’<h4>Model Used: > 4 model + </h4>"’)
myFile. write(’<h4>Threshold: ’ 4 thold + '</h4>")

myFile. write(’
")

myFile. write(’<table

def createlmg(self, img,

probab ,

cls ,

style="width:100%” ><tr ><th>Image</th><th>Details </th></tr >’)

details):

61

with open(self.filename, ’a’) as myFile:
myFile. write("<tr >"’)
myFile. write(’<td><img src="’ 4 img +
" height="256" width="256" /> </td>’)
myFile. write (’<td><p>Name: ’ + img + ’
’)
myFile. write(’Class: ’ + cls + ’
’)
myFile. write(’Probabilities:")
myFile. write(’"’)
for idx, clsname in enumerate(self.classes):

myFile. write(’<1i >’ 4+ clsname + > : ’ 4 str(probab[idx]) + '</1i >’)

myFile. write (’</p></tr >’)
def createEnd(self):
with open(self.filename, ’a’) as myPFile:
myFile. write(’</table >’)
myFile. write(’</body >")
myFile. write (’</html>")

def convertToPDF (self, outFile):
doc = QTextDocument ()
location = self.filename
html = open(location).read ()
doc.setHtml (html)

printer = QPrinter ()

printer .setOutputFileName (outFile)

printer .setOutputFormat (QPrinter.PdfFormat)
printer.setPageSize (QPrinter.A4);

printer .setPageMargins (3,3,3,3, QPrinter.Millimeter);
doc.print_(printer)

def save_pdf(self, widg):

options QFileDialog.Options ()

options |= QFileDialog.DontUseNativeDialog

fileName , - = QFileDialog.getSaveFileName (widg,

”Export to PDF”,”” ”PDF Files (x.pdf)”, options=options)

if fileName:
self .convertToPDF (fileName)
return fileName

Written by https://github.com/aleju/imgaug

from PIL import Image

import imgaug as ia

from imgaug import augmenters as iaa
import numpy as np

import cv2

import settings

import glob

import random

random example images
images = np.random.randint (0, 255, (16, 128, 128, 3), dtype=np.uint8)

Sometimes (0.5, ...) applies the given augmenter in 50% of all cases,
e.g. Sometimes (0.5, GaussianBlur (0.3)) would blur roughly every second image.
sometimes = lambda aug: iaa.Sometimes (0.5, aug)

Define our sequence of augmentation steps that will be applied to every image
All augmenters with per_channel=0.5 will sample one value _per image_

in 50% of all cases. In all other cases they will sample new values

per channel.

seq = iaa.Sequential(

apply the following augmenters to most images
iaa. Fliplr (0.5), # horizontally flip 50% of all images
iaa.Flipud (0.2), # vertically flip 20% of all images
crop images by —5% to 10% of their height/width
sometimes (iaa .CropAndPad (
percent=(—-0.05, 0.1),
pad_-mode=ia .ALL,
pad_cval=(0, 255)
)
sometimes (iaa . Affine (
scale={"x": (0.8, 1.2), "y”: (0.8, 1.2)},
scale images to 80—120% of their size, individually per axis
translate_percent={"x": (—-0.2, 0.2), ”y”: (—0.2, 0.2)},
translate by —20 to +20 percent (per axis)
rotate=(—45, 45), # rotate by —45 to +45 degrees
shear=(—16, 16), # shear by —16 to +16 degrees
order=[0, 1], # use nearest neighbour or bilinear interpolation (fast)
cval=(0, 255), # if mode is constant, use a cval between 0 and 255
mode=ia . ALL
use any of scikit—image’s warping modes (see 2nd image from the top
))
execute 0 to 5 of the following (less important) augmenters per image
don’t execute all of them, as that would often be way too strong
iaa.SomeOf((0, 5),
[
sometimes (iaa.Superpixels(p-replace=(0, 1.0), n_segments=(20, 200))),
convert images into their superpixel representation
iaa .OneOf ([

62

for

examples)

iaa.GaussianBlur ((0, 3.0)),
blur images with a sigma between 0 and 3.0

blur image using local means with kernel sizes between 2 and 7

blur image using local medians with kernel sizes between 2 and 7
1
iaa.Sharpen(alpha=(0, 1.0), lightness=(0.75, 1.5)), # sharpen images
iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)), # emboss images
search either for all edges or for directed edges,
blend the result with the original image using a blobby mask
iaa.SimplexNoiseAlpha (iaa.OneOf ([
iaa.EdgeDetect (alpha=(0.5, 1.0)),
iaa.DirectedEdgeDetect (alpha=(0.5, 1.0), direction=(0.0, 1.0)),
1)
iaa.AdditiveGaussianNoise (loc=0, scale=(0.0, 0.05%255), per_channel=0.5),
add gaussian noise to images
iaa.OneOf ([
iaa.Dropout ((0.01, 0.1), per_channel=0.5), # randomly remove up to 10% of the pixels
iaa.CoarseDropout ((0.03, 0.15), size_percent=(0.02, 0.05), per_channel=0.2),
1),
iaa.Invert (0.05, per_channel=True), # invert color channels
iaa.Add((—10, 10), per_channel=0.5),
change brightness of images (by —10 to 10 of original value)
iaa.AddToHueAndSaturation((—20, 20)), # change hue and saturation
either change the brightness of the whole image (sometimes
per channel) or change the brightness of subareas
iaa .OneOf ([
iaa.Multiply ((0.5, 1.5), per_channel=0.5),
iaa.FrequencyNoiseAlpha (
exponent=(—4, 0),
first=iaa.Multiply ((0.5, 1.5), per_channel=True),
second=iaa . ContrastNormalization ((0.5, 2.0))

)
I

iaa.ContrastNormalization ((0.5, 2.0), per_channel=0.5), # improve or worsen the contrast
iaa.Grayscale (alpha=(0.0, 1.0)),
sometimes (iaa.ElasticTransformation (alpha=(0.5, 3.5), sigma=0.25)),
move pixels locally around (with random strengths)
sometimes (iaa.PiecewiseAffine (scale=(0.01, 0.05))),
sometimes move parts of the image around
sometimes (iaa.PerspectiveTransform (scale=(0.01, 0.1)))
1,
random_order=True
)
!,

random_order=True

accepts an image array and returns a k number of augmented images
def augment(img, k):
images_aug = []
since seq is random, we can perform same sequence different order k times
for i in range(k):
images_aug.append(seq.augment_image (img))

return images_aug
from shutil import copy2, move

from readFiles import FileReader
import glob

dst = ”C:\ Thesis \CODES\ DatasetCopied\TrainValP”
src = 7C:\ Thesis \CODES\DatasetCombined”
lab = 7C:/ Thesis /CODES/00DatasetLabelsss/TrainValP . xlsx”

#based on labels file but this is tuple with labels
reader = FileReader (lab)

file = reader.get_data_and_-labels ()

imageFiles = glob.glob(src + ”/*.jpg”)

for i in range(len(file)):
halu = 0
for imgpath in imageFiles:
if (file [0][i] in imgpath):
copy2(imgpath, dst)
halu =1
if (halu == 0):
print (file [0][i])

print (? COPIED!”)

import caffe

import lmdb

import numpy as np

import matplotlib.pyplot as plt
from caffe.proto import caffe_pb2
Wei Yang 2015—08—-19

Source

Read LevelDB/LMDB

#
http://research.beenfrog.com/code/2015/03/28/read—leveldb—Imdb—for—caffe —with—python.html

63

BB ERR R

Plot image

http://www. pyimagesearch.com/2014/11/03/display —matplotlib—rgb—image/

Creating LMDB in python

http://deepdish.io/2015/04/28/creating —lmdb—in—python/

def checkdb(lmdb_file):

Imdb_env = Imdb.open(lmdb_file)
Imdb_txn = Ilmdb_env.begin ()
Imdb_cursor = Imdb_txn.cursor ()
datum = caffe_pb2.Datum/()

i =0
for key, value in Imdb_cursor:

datum . ParseFromString (value)

label = datum.label

data = caffe.io.datum_to_array (datum)

im = data.astype(np.uint8)

im = np.transpose(im, (2, 1, 0)) # original (dim,
print (i, 7 label ”, label)

i4=1

plt .imshow (im)
plt .show ()

Imdb_file = ”C:/ Thesis /CODES/RaDSSv02/database/train_lmdb”
checkdb (Ilmdb_file)

Imdb_file = ”C:/ Thesis /CODES/RaDSSv02/database/val_-lmdb”
checkdb (Ilmdb_file)

#!/usr/bin/env python
import datetime
import os

import sys

def

extract-datetime_from_line (line , year)
Expected format: 10210 13:39:22.381027 25210 solver.cpp:204]
line = line.strip ().split ()

month = int (line [0][1:3])
day = int(line [0][3:])

timestamp = line [1]

pos = timestamp.rfind (’.")

ts = [int(x) for x in timestamp [:pos].split (’:’)]

hour = ts [0]

minute = ts[1]

second = ts [2]

microsecond = int (timestamp [pos + 1:])

dt = datetime.datetime (year, month, day, hour, minute, second,

return dt

get_log_created_year (input_file):

?7” Get year from log file system timestamp
250

log_created_time = os.path.getctime(input_file)
log_created_year = datetime.datetime.fromtimestamp(log_created
return log_created_year

get_start_time (line_iterable , year):

??”Find start time from group of lines
999

col, row)

Iteration 100,

microsecond)

_time).year

start_datetime = None
for line in line_-iterable:
line = line.strip ()
if line.find (’Solving’) != —1:
start-datetime = extract_-datetime_from_line (line, year)
break

return start_datetime

extract_seconds(input_file, output_file):
with open(input_file, ’r’) as f:

lines = f.readlines ()
log_created_year = get_log_created_year (input_file)
start_datetime = get_start_time(lines, log_created_year)
assert start_-datetime, ’'Start time not found’
last_dt = start_datetime
out = open(output_file, ’w’)
for line in lines:

line = line.strip ()

if line.find (’Iteration’) != —1:

dt extract-datetime_from_line (line , log_-created_year)

if it’s another year

64

Ir

0.00992565

if dt.month < last_dt.month:
log_created_year 4= 1

dt = extract_datetime_from_line (line, log_-created_year)
last_dt = dt
elapsed_seconds = (dt — start_-datetime).total_seconds ()

out.write("%f\n’ % elapsed_seconds)
out.close ()

if __name__. == ’__main__
if len(sys.argv) <
print (’Usage: ./extract_seconds input_file output_file)
exit (1)
extract_seconds (sys.argv[l], sys.argv[2])

#!/usr/bin/env python
» 0

Parse training log

Evolved from parse-log.sh
» 5

import os

import re

import extract_seconds

import argparse

import csv

from collections import OrderedDict

def parse_log(path_to_log):
77” Parse log file
Returns (train_dict_list , test_dict_list)

train_dict_list and test_dict_list are lists of dicts that define the table

rows

regex-iteration = re.compile(’Iteration (\d+)’)

regex_train_output = re.compile(’Train net output #(\d+): (\S+) = ([\.\deE+—-]+)")
regex_test_output = re.compile(’Test net output #(\d+): (\S+) = ([\.\deE+—-]+)")

)
regex_learning_rate = re.compile(’lr = ([—+]?[0—-9]%\.?7[0—-9]+([eE]?[—+4]7[0—-9]4+)7)")

Pick out lines of interest

iteration = —1

learning_rate = float (’NaN’)

train_dict_list = []

test_dict_list = []

train_.row = None

test_row = None

logfile_year = extract_seconds.get_log_created_year(path_to_log)

with open(path_to_log) as f:
start_-time = extract_seconds.get_start_time (f, logfile_year)
last_-time = start_time

for line in f:

iteration_.match = regex_iteration.search(line)
if iteration_match:

iteration = float (iteration_match.group(1l))
if iteration == —1:

Only start parsing for other stuff if we’ve found the first
iteration
continue

try:
time = extract_seconds.extract_.datetime_from_line (line,
logfile_year)
except ValueError:
Skip lines with bad formatting, for example when resuming solver
continue

if it’s another year
if time.month < last_time .month:
logfile_year += 1

time = extract_seconds.extract_datetime_from_line(line, logfile_year)
last_time = time
seconds = (time — start_time).total_seconds ()
learning_rate_match = regex_learning._rate.search(line)
if learning_-rate_match:

learning_rate = float (learning_rate_match.group (1))
train_-dict-list , train.row = parse_line_for_net_output (

regex_train_output , train_.row , train_dict_list ,

line , iteration , seconds, learning_rate
test_dict_-list , test_-row = parse_line_for_net_output(

regex-test_output , test_-row , test_-dict-list ,

65

line , iteration , seconds, learning-rate

)

fix_initial_nan_learning._rate(train_dict_list)
fix_initial_nan_learning_rate(test_dict_list)

return train_dict_list , test_dict_list

parse_line_for_net_output (regex_-obj, row, row_dict_list ,
line, iteration , seconds, learning_-rate):
??” Parse a single line for training or test output
Returns a a tuple with (row_dict_list , row)
row: may be either a new row or an augmented version of the current row
row-dict-list: may be either the current row_dict-list or an augmented
version of the current row_dict_list
» 50
output_-match = regex_obj.search(line)
if output_match:
if not row or row[’Numlters’] != iteration:
Push the last row and start a new one
if row:
If we’re on a new iteration , push the last row
This will probably only happen for the first row; otherwise
the full row checking logic below will push and clear full
rows
row_dict_list .append(row)
row = OrderedDict ([
(’Numlters’, iteration),
(’Seconds’, seconds),
(’LearningRate’ learning_rate)
D)
output_num is not used; may be used in the future
output_num = output_match.group (1)
output_name = output_-match.group(2)
output_val = output_-match.group(3)
row [output_name] = float (output_val)
if row and len(row._dict_list) >= 1 and len(row) == len(row_dict_list [0]):
The row is full, based on the fact that it has the same number of
columns as the first row; append it to the list
row_dict_-list .append (row)
row = None
return row_dict_-list , row
fix_initial_nan_learning_rate(dict_list):

?”” Correct initial value of learning rate

Learning rate is normally not printed until after the initial test and
training step, which means the initial testing and training rows have
LearningRate = NaN. Fix this by copying over the LearningRate from the

second row, if it exists.
» 90

if len(dict_list) > 1:
dict_list [0][’ LearningRate’] = dict_list [1][LearningRate ’]

save_csv_files (logfile_path , output_dir, train_dict_list
delimiter=",", verbose=False):

?7”Save CSV files to output-dir

, test_dict_list ,

If the input log file is, e.g., caffe .INFO, the names will be
caffe .INFO. train and caffe .INFO. test

EXTE

log_basename = os.path.basename(logfile_path)

train_filename = os.path.join (output_dir, log_basename + ’.train ’)
write_csv (train_filename , train_dict_list , delimiter , verbose)
test_filename = os.path.join (output_dir, log_basename + ’.test ')
write_csv (test_filename , test_dict_-list , delimiter, verbose)

write_csv (output_filename , dict_list
?7” Write a CSV file

EXTE

, delimiter , verbose=False):

if not dict_list:
if verbose:
print (’Not writing %s; no lines to write’ % output_filename)

return
dialect = csv.excel
dialect .delimiter = delimiter

66

with open(output-filename, ’w’) as
dict_writer = csv.DictWriter (f,

dialect=dialect)

dict_writer

dict_writer
if verbose:

print (> Wrote %s’

.writeheader ()

def parse_args ():

if

P

description = (’Parse a Caffe

train_dict-list , test_-dict-list =
save_csv_files (args.logfile_path ,
test_dict_list ,

Title :plot-learning-curve .py
Description : This script generates
Author : Adil Moujahid

Date Created 120160619

Date Modified 120160619

version :0.1

usage

python_version

PR

.writerows (dict_list)

% output_filename)

training
’containing training and testing

log

s

parser =

parser .add-argument (’logfile_path ’,
help="Path to

parser .add-argument (’output-dir ’,
help='Directory

parser .add_argument(’——verbose ’,
action="store_true ’
help="Print some extra

parser.add_argument('——delimiter 7,
default=",",
help=(’Column delimiter

’(default:

args = parser.parse_args ()

return args

-name.. == ’__main__"’

args = parse_args ()

parse_log (args
args.output_dir ,

delimiter=args.

learning

into two CSV files ’
information)

argparse . ArgumentParser (description=description)

log file)

info (e.g., output

»

in output files

\'%(default)s\’)’))

.logfile_path)

delimiter ,

curves for caffe

:python plot_learning_curve.py model_l_train.log

./ caffe_model_1_learning_curve.png

:2.7.11

import os

import sys

import subprocess
import pandas as pd
import parse-log
import settings
import matplotlib

#matplotlib.use(Agg’)
import matplotlib.pylab as plt

plt.

def plot_curves(log_-path,

style.use(’ggplot)

output_path ,

RN

Parse file

PR

log

s.system (" python parse_log.py

#Read training and test logs
train_-log_-path = log-path +
test-log-path = log_-path +

using parse_log.py

+ log-path + 7

’.train’
’.test’
train_log = pd.read_csv(train_log_path ,

test_-log = pd.read_csv(test_log-path ,

P

plot_path):

header =[0])

header =[0])

train_dict_list
verbose=args

fieldnames=dict_list [0]. keys (),

in which to place output CSV files ’)

filenames)’)

,
.verbose)

models

”? 4+ output_path)

Making learning curve

fig , axl = plt.subplots ()

#Plotting training and test losses

train_loss , = axl.plot(train_log[’Numlters’], train_log[’loss],
test_loss , = axl.plot(test_log[’Numlters’], test_log[’loss '],

axl.set_ylim (ymin=0, ymax=1)
axl.set_xlabel (’Iterations ’,
axl.set_ylabel (’Loss’,
axl.tick_params(labelsize=12)
#Plotting test accuracy

ax2 = axl.twinx ()

test_accuracy , = ax2.plot(test_-log [’ Numlters’],

linewidth=2, color=’blue’)

fontsize=12)
fontsize=12)

67

linewidth=2,

test_-log [’ accuracy '],

color=’red’,
color=’green ’)

alpha=.5)

ax2.set_ylim (ymin=0, ymax=1)
ax2.set_ylabel (’Accuracy’, fontsize=12)
ax2.tick_params(labelsize=12)

#Adding legend

plt.legend ([train_loss , test_loss , test_accuracy], [’ Training Loss’,
>Test Loss’, ’Test Accuracy’], bbox_to_anchor=(1, 0.2))
plt.title (' Training Curve’, fontsize=15)

#Saving learning curve
plt.savefig(plot_path)

PR

Deleting training and test logs

s

command = ’'bash —c ”rm ’ + train_log_path + ”\””

process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)
process . wait ()

command = ’'bash —c ”rm ’ + test_-log_-path + 7\””
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)
process . wait ()

DI

Get the last accuracy obtained by the model
print (test_log[’accuracy ’]. iloc[—1])
return test_log|[’accuracy ’].iloc[—1]

import inspect

import os

import random

import sys

import matplotlib.cm as cmx
import matplotlib.colors as colors
import matplotlib.pyplot as plt
import matplotlib.legend as lgd
import matplotlib.markers as mks

def get_log-parsing_script ():
dirname = os.path.dirname (os.path.abspath(inspect. getfile (
inspect.currentframe ())))
return dirname + ’/parse_log.sh’
def get_log_file_suffix ():
return ’.log’

def get_chart_type_description_separator ():

return ’ vs. ’

def is_x_axis_field (field):
x_axis_fields = [’Iters’, ’Seconds’]
return field in x_axis_fields

def create_field_index ():

train_key = ’Train’

test_-key = ’Test’

field-index = {train_key:{’Iters ’:0, ’Seconds’:1, train_key + ’ loss ':2,
train_key + ’ learning rate ’:3},

test_key:{ Iters :0, ’Seconds’:1, test_key + ’ accuracy ’:2,

test_key + ' loss :3}}

fields = set ()

for data_file_type in field_index.keys():

fields = fields.union(set(field_-index[data_file_type].keys()))

fields = list (fields)
fields .sort ()
return field_index , fields

def get_supported_chart_types ():
field_.index , fields = create_field_index ()
num_fields = len(fields)
supported_chart_types = []
for i in range(num-_fields):
if not is_x_-axis_field (fields[i]):
for j in range(num-_fields):

if i != j and is_x-axis_field (fields[j]):
supported_chart_types.append ("% s%s%s’ % (
fields[i], get_chart_type_description_separator (),

fields [j]))
return supported_chart_types

def get_chart_type_description (chart_type):
supported_chart_types = get_supported_chart_types ()
chart_type_description = supported_chart_types|[chart_type]
return chart_type_description

def get_data_file_type(chart_type):
description = get_chart_type_-description (chart_type)
data_file_type = description.split ()[0]
return data_file_type

def get_-data_file(chart_type, path_to_log):
return (os.path.basename(path_to_log) + ’. +

68

get_-data_file_type (chart_type).lower ())

get_field_descriptions (chart_type):

description = get_chart_type_description (chart_type).split(
get_chart_type_description_separator ())

y-axis_field = description [0]

x_axis_field = description [1]

return x_axis_field , y_-axis_field

get_field_indices (x_axis_field , y_axis_field):

data_file_type = get_data_file_-type (chart_type)
fields = create_field_index ()[0][data_file_type]
return fields [x_-axis_field], fields[y-axis_field]

load_data(data_file , field-idx0 , field_-idx1):

data = [[], []]
with open(data_file, ’r’) as f:
for line in f:
line = line.strip ()
if line [0] != ’"#:

print (field_idx0)

print (field_idx1)

fields = line.split ()

data [0].append(float (fields [field_idx0].strip ()))

data [1].append(float (fields [field_idx1].strip()))
return data

random_marker ():

markers = mks. MarkerStyle. markers
num = len (markers.keys())
idx = random.randint (0, num — 1)

return list (markers.keys ())[idx]

get_data_-label(path_to_log):

label = path_to_-log[path_-to_-log.rfind(’/’)+1 : path_to_-log.rfind(
get_log_file_suffix ())]

return label

get_legend_loc (chart_type):

x_axis, y-axis = get_field_descriptions (chart_type)

loc = ’lower right’

if y_axis.find (’accuracy’) != —1:
pass

if y-axis.find(’loss’) != —1 or y-axis.find(’learning rate’) != —1:
loc = ’upper right’

return loc

plot_chart (chart_type, path_to_png, path_to_log_list):

for path_to_-log in path_to_-log-_-list:
os.system ("%s %s’ % (get-log_parsing_script (), path_to_log))
data_file = get_data_file (chart_-type, path_to_log)
x-axis_field , y-axis_-field = get_field_descriptions (chart_-type)
x, v = get_-field_indices (x-axis_field , y-axis_field)
data = load_data(data_file, x, y)
TODO: more systematic color cycle for lines
color = [random.random (), random.random (), random.random ()]
label = get_data_label(path_to_log)
linewidth = 0.75
If there too many datapoints, do not use marker.

use_marker = False
use_marker = True
if not use_marker:
plt.plot(data[0], data[l], label = label, color = color,
linewidth = linewidth)
else:
marker = random_marker ()
plt.plot(data[0], data[l], label = label, color = color,
marker = marker, linewidth = linewidth)
legend_-loc = get_legend_-loc(chart_type)
plt.legend (loc = legend_-loc, ncol = 1) # ajust ncol to fit the space

plt.title (get_chart_type_description(chart_type))
plt.xlabel (x_axis_field)

plt.ylabel (y_axis_field)

plt.savefig(path_to_png)

plt .show ()

print_help ():
print (””” This script mainly serves as the basis of your customizations.
Customization is a must.
You can copy, paste, edit them in whatever way you want.
Be warned that the fields in the training log may change in the future.
You had better check the data files and change the mapping from field name to
field index in create_field_index before designing your own plots.
Usage:
./ plot_training_-log.py chart_type[0—%s] /where/to/save.png /path/to/first.log
Notes:
1. Supporting multiple logs.
2. Log file name must end with the lower—cased "%s”.
Supported chart types:””” % (len(get_supported_chart_types()) — 1, get_log_file_suffix ()))
supported_chart_types = get_supported_chart_types ()
num = len (supported_chart_types)
for i in range(num):

69

print (’ %d: %s’ % (i, supported_chart_types[i]))
sys.exit ()

def is_valid_chart_type(chart_type):
return chart_type >= 0 and chart_type < len(get_supported_chart_types())

if __name_. == ’__main__"’
if len(sys.argv) < 4:
print_help ()
else:
chart_type = int(sys.argv|[1l])
if not is_valid_chart_type(chart_type):
print ("%s is not a valid chart type.’ % chart_type)
print_help ()
path_to_png = sys.argv[2]
if not path_to_png.endswith(’.png’):
print (’Path must ends with png’ % path_to_png)
sys.exit ()
path_to_logs = sys.argv|[3:]
for path_to_log in path_to_logs:
if not os.path.exists(path_to_log):
print (’Path does not exist: %s’ % path_to_log)
sys.exit ()
if not path_to_log.endswith(get_log_file_suffix ()):
print (’Log file must end in %s.’ % get_log_file_suffix ())
print_help ()
plot_chart accpets multiple path_to_logs
plot_chart (chart_type, path_to_png, path_to_logs)

import cv2
import settings
import numpy as np

class PreprocessImage(object):
def __init__(self):
pass

def transform_img(img, img_-width=settings .IMAGEWIDTH, img_-height=settings .IMAGEHEIGHT):

#Histogram Equalization

img[:, :, 0] = cv2.equalizeHist (img[:, :, 0])
img[:, :, 1] = cv2.equalizeHist (img[:, :, 1])
img[:, :, 2] = cv2.equalizeHist (img[:, :, 2])

mneed not to do this because caffe accepts BGR
#img = cv2.cvtColor (image, cv2.COLORBGR2RGB)

#Image Resizing
img = cv2.resize (img, (img-width, img_height), interpolation = cv2.INTER_CUBIC)

return img

resize and pad an image and keep aspect ratio

def resizeAndPad (img, size = (settings.IMAGEWIDTH, settings .IMAGEHEIGHT), padColor=0):
h, w = img.shape [:2]
sh, sw = size

interpolation method

if h > sh or w > sw: # shrinking image
interp = cv2.INTER_AREA

else: # stretching image
interp = cv2.INTER_.CUBIC

aspect ratio of image
aspect = w/h # if on Python 2, you might need to cast as a float: float(w)/h

compute scaling and pad sizing
if aspect > 1: # horizontal image
new_.w = sw
new_h = np.round(new_w/aspect).astype(int)
pad_-vert = (sh—new_h)/2
pad_-top, pad-bot = np.floor(pad_-vert).astype(int), np.ceil(pad_-vert).astype(int)
pad-left , pad-right = 0, 0
elif aspect < 1: # vertical image

new_h = sh
new_w = np.round(new_hxaspect).astype(int)
pad_horz = (sw—new_w)/2

pad_left , pad_right = np.floor (pad_horz).astype(int), np.ceil(pad_horz).astype(int)
pad_top, pad_bot = 0, 0
else: # square image
new_h, new_w = sh, sw
pad_left , pad_right, pad_-top, pad_-bot = 0, 0, 0, O

set pad color
if len(img.shape) is 3 and not isinstance(padColor, (list , tuple, np.ndarray)):
color image but only one color provided

padColor = [padColor]=*3

scale and pad

scaled_-img = cv2.resize (img, (new_w, new_h), interpolation=interp)
scaled_-img = cv2.copyMakeBorder(scaled_img , pad-top, pad-bot, pad-left, pad-right,

70

import
import
import
import
import
import

borderType=cv2.BORDER-CONSTANT, va

return scaled_img

pandas
re
settings
datetime

google.protobuf.text_format as txtf

numpy as np

from caffe.proto import caffe_pb2
from pandas import ExcelWriter
from pandas import ExcelFile
from PyQt5.QtWidgets import =

class

FileReader (object):

def __init__(self, filename):
self.filename = filename
self .data = []

only excel files (.xls) are

if bool(re.search(’.xls’,

self . open_excel_file ()

def open_excel_file(self):
print (”Open Excel File”)

lue=padColor)

accpeted
self . filename)):

self.data = pandas.read_excel(self.filename , header=None)

def get_data_and_labels(self):
will have to edit this

to be a

synatx will be self.data.values.
self.data.values is a numpy array

return self.data

def get_image_label(self, image_filename):

for data in self.data:

list

tolist ()

if (data[0] == image_filename): # if matched

return data[1]

return None

def export_to_excel(self, widg, data):

arr = np.array (data)
df = pandas.DataFrame ({’ Absolute Paths’: arr[:,0],
>Labels ’: arr[:,1]})
options = QFileDialog.Options()
options |= QFileDialog.DontUseNativeDialog
fileName , - = QFileDialog.getSaveFileName (widg, ”Save Excel File” ,””,

?Excel Files (*.xls *.xlsx)”,

if fileName:

options=options)

writer = ExcelWriter (fileName)
df.to_excel (writer ,” Sheetl’ ,index=False, header=False)

writer.save ()
return fileName

def edit_-train_prototxt(self, modelname,

bs, output):

net = caffe_pb2.NetParameter ()
filename = settings.models_path 4+ modelname + ”/train_val.prototxt”
fn = filename

with open(fn) as f:
s = f.read ()
txtf.Merge(s, net

layerNames = [l.name for

idx = layerNames.index (’data’)

first data layer
1 = net.layer [idx]

)
1

in net.layer]

transform_param . mean_file =

1.
l.transform_param.crop-size =
1.
1.

data_param . batch_size =

second data layer
= mnet.layer [idx+1]

bs

transform_param . mean_file =
transform_param.crop_size =

.data_param. batch_size
edit number of classes

= net.layer [idx]

settings.data_path + ”images_mean
settings .IMAGE_WIDTH
data_param.source = settings.database_path + ”train_lmdb”

settings .data_path 4+ ”images_mean
settings .IMAGE_WIDTH
data_param.source = settings.database_path + ”val_lmdb”

settings.val_bs

based on the data
x = layerNames.index (’fc8)

#
1
1.
1.
1.
edit pa ba to of deafult to the model na?
#1
#
i
1
1.

inner_product_param .num_output =

write it on the same file

outFn = filename

print (’writing >, outFn)

with open(outFn, ’w’) as
f.write(str(net))

f:

71

output

.binaryproto”

.binaryproto”

def solver (self, modelname, base_lr, stepsize, max_iter, mode):

s = caffe_pb2.SolverParameter ()

Specify locations of the train and (maybe) test networks.

s.net = settings.models_path 4+ modelname + ”/train_val.prototxt”
s.test_interval = 1000 # Test after every 1000 training iterations.
s.test_iter .append (100) # Test on 100 batches each time we test.

The number of iterations over which to average the gradient.

Effectively boosts the training batch size by the given factor, without
affecting memory utilization .

#s.iter_size = 1

s. max_iter = max_iter # of times to update the net (training iterations)
Solve using the stochastic gradient descent (SGD) algorithm.

Other choices include ’Adam’ and ’'RMSProp’.

#s .type = ’SGD’

Set the initial learning rate for SGD.
s.base_lr = base_lr

Set ‘lr_policy ¢ to define how the learning rate changes during training.
Here, we ’step’ the learning rate by multiplying it by a factor ‘gamma‘
every ‘stepsize ¢ iterations.

s.lr_policy = ’step’

s.gamma = 0.1

s.stepsize = stepsize

Set other SGD hyperparameters. Setting a non—zero ‘momentum‘ takes a

weighted average of the current gradient and previous gradients to make
learning more stable. L2 weight decay regularizes learning, to help prevent
the model from overfitting.

s . momentum = 0.9

s.weight_decay = 5e—4

Display the current training loss and accuracy every 1000 iterations.
s.display = 1000

Snapshots are files used to store networks we’ve trained. Here, we’ll
snapshot every 10K iterations —— ten times during training.

s.snapshot = 10000

now = datetime.datetime.now (). strftime (" %YVanod -YHZM”)

s.snapshot_prefix = settings.models_path + modelname + ”_7 4+ str(now) + 7.7
Train on the GPU. Using the CPU to train large networks is very slow.
s.solver_mode = caffe_pb2.SolverParameter .GPU
if mode == O0:

s.solver_mode = caffe_pb2.SolverParameter .CPU
outFn = settings.models_path + modelname + ”/solver.prototxt”

print (’Writing >, outFn)
with open(outFn, ’'w’) as f:
f.write(str(s))

return caffemodel name thru snapshot name
return modelname + ”_” 4 str(now) + 7.7

edits:
input_param .shape, num_output
def deploy(self, modelname, output):

net = caffe_pb2.NetParameter ()
filename = settings.models_path 4+ modelname + ”/deploy.prototxt”
fn = filename

with open(fn) as f:
s = f.read ()
txtf.Merge(s, net)

layerNames = [l.name for | in net.layer]
idx = layerNames.index (’fc8)

edit number of classes based on the data
1 = net.layer [idx]
l.inner_product_param .num_output = output

edit dimensionsx

idx = layerNames.index (’data’)
1 = net.layer [idx]

remove existing shape

x = l.input_param .shape.pop()

add the specifics based on settings

x = l.input_param.shape.add()

assigns the values in settings

test batch size, channels, width, height

x.dim [:] = [settings.test_bs, 3, settings.IMAGEWIDTH, settings.IMAGE_HEIGHT)]
write it on the same file

72

outFn = filename

print (’writing >, outFn)

with open(outFn, ’'w’) as f:
f.write(str(net))

def write_to_text(self, 1lst ,outFile):
with open(outFile, ’w’) as f:
for data in Ist:

f.write(data[0] + 7 7 4+ data[1l])

settings.py
Setting Global Variables

#declarations caffe paths
global caffe_tools
global caffe_scripts

declarations myapp
global ui-path

global train_path
global train_-path_file
global test_-path
global models_path
global database_path
global data_path
global tools_path
global help_path

this is where to save the output files
.caffemodels

test_output.npy for predictions

exported PDF

global save_files_path

#

global IMAGE-WIDTH
global IMAGE_HEIGHT
global icon_path
global val_bs

global test_bs

model globals
global caffenet
global alexnet
global vggnet

Classifier Model
global classifier_model

initialize paths
make sure that / is wused

caffe_tools = ”C:/ Thesis/caffe/build/tools/Release”
caffe_scripts = 7C:/ Thesis /CODES/RaDSSv02/scripts /”
ui_-path = ”C:/ Thesis /CODES/RaDSSv02/ui/”
models_path = ”C:/ Thesis /CODES/RaDSSv02/models/”
data_path = ”C:/ Thesis /CODES/RaDSSv02/data/”
tools_path = 7C:/ Thesis/caffe/build/tools/Release/”
help_path = ”C:/Thesis /CODES/RaDSSv02/help /”

invalid switch error will have to use \
database_path = 7C:\ Thesis \CODES\RaDSSv02\database\\”

initialize image variables

IMAGE_-WIDTH = 256

IMAGE_HEIGHT = 256

icon_path = ”C:/Thesis /CODES/RaDSSv02/images/icon3.jpg”

initialize batch sizes for wval and test
val_bs = 100
test_bs = 10

#to be set by user
train_path = "7
train_path_file =
test_path = 7”7
save_files_path =

PR

»n

will COMMENT if config show

train_path = ”C:/ Thesis /CODES/RaDSSv02/input/train/”
train_path_file = ”C:/ Thesis /CODES/RaDSSv02/input/train—label.
test_path = 7”C:/Thesis /CODES/RaDSSv02/input/test /”
save_files_path = data_path

model’s values
[1r , gamma, mom]

caffenet values

73

x1s

caffenet = [0.01, 0.1, 0.9]

alexnet values
alexnet = [0.01, 0.1, 0.9]

vggnet values
vggnet = [0.0005, 0.001, 0.9]
set classifier_-model by the training administrator

can be found in the models_path
classifier_model 7caffenet_20180523_.071601_iter_-1000.caffemodel”

#classifier_model ”n

74

XI. Acknowledgement

All glory and honor is to the Lord. T could never have survived this University if it
weren’t for His everlasting and unconditional love, and provisions of blessings. He was
also the one who sent me great people to help me in this journey. I would like to thank
my family, especially my mother for her support, and my sisters for their motivations.
To Professor Marquez, who allowed me to use his collection of Radiolarians to increase
my database, thank you sir. And to my adviser, Professor Solano, you are a blessing

to me, po. Thank you for understanding and for your eternal support.

5

	Acceptance Sheet
	Abstract
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Theoretical Framework
	Radiolarian
	Machine Learning
	Deep Learning
	Convolutional Neural Network
	Backpropagation

	Design and Implementation
	System Design
	RaDSS Training Module
	RaDSS Classifier App

	System Architecture
	Technical Architecture

	Results
	RaDSS Training Module
	Classifier Application

	Discussion
	Dataset

	Conclusion
	Recommendation
	Bibliography
	Appendix
	Forms
	Source Code

	Acknowledgement

