UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

AAGFA: AuTOMATED ANFIS AND GA-BASED
FOREX AGENT

A special problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Ariel Kenneth Ampol
June 2015

Permission is given for the following people to have access to this SP:

Available to the general public No

Available only after consultation with author/SP adviser | Yes

Available only to those bound by confidentiality agreement | No

ACCEPTANCE SHEET

The Special Problem entitled “AAGFA: Automated ANFIS and GA-
Based Forex Agent” prepared and submitted by Ariel Kenneth Ampol in partial
fulfillment of the requirements for the degree of Bachelor of Science in Computer
Science has been examined and is recommended for acceptance.

Perlita E. Gasmen, M.Sc. (candidate)

Adviser
EXAMINERS:
Approved Disapproved
1. Gregorio B. Baes, Ph.D. (candidate)
2. Avegail D. Carpio, M.Sc.
3. Richard Bryann L. Chua, M.Sc.
4. Ma. Sheila A. Magboo, M.Sc.
5. Vincent Peter C. Magboo, M.D.; M.Sc.
6. Bernie B. Terrado, M.Sc. (candidate)

Accepted and approved as partial fulfillment of the requirements for the
degree of Bachelor of Science in Computer Science.

Ma. Sheila A. Magboo, M.Sc. Marcelina B. Lirazan, Ph.D.
Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Alex C. Gonzaga, Ph.D., Dr.Eng.
Dean
College of Arts and Sciences

Abstract

With Forex as the largest and most liquid financial market, the practice of algo-
rithmic trading has become of interest in the market, as well as in research. This
study explores the use of the Adaptive Neuro-Fuzzy Inference System as a pre-
dictor, combined with the Non-Dominated Sorting Genetic Algorithm II for trade
timing to create a smart autonomous Forex trading agent that produces sizable
profits. Upon performing a backtest, the agent was shown to be able to garner
approximately $80 in profit in a span of two months and nearly $500 in profit
for a one-year period. Empirical evidence is also provided that the trading agent
running live is able to open trades which profitably closed.

Keywords: ForEx, foreign exchange, exchange rates, algorithmic trading, ANFIS, neuro-

fuzzy, genetic algorithm, NSGA-II

Contents

[Acceptance Sheet|

[Abstract]

[List of Figures|

[List of Tables|

I._ Introduction

[A. Background of the Study|

[C. Objectives of the Study|

[D. Significance of the Project|

[E. Scope and Limitations|

[F. Assumptions|

[A. Foreign Exchange Market|.

[B. Algorithmic Trading|.

([C. Fuzzy Set Theory|

(C..1 Fuzzy Sets|

(C..2 Fuzzy Set Operations|.

[D. Fuzzy Inference Systems|

[E. Sugeno Fuzzy Interencel oL

[F. Adaptive Neuro-Fuzzy Interence System|.

.1 Architecturel

(F..2 Initial Fuzzy Modell

[F..3 Hybrid Learning Rulef

|G. Genetic Algorithm|.00,

il

(G..1 Genetic Algorithm Operators|

[H. Genetic Programmingl.

[[. Multi-objective Optimization|

[J. Non-Dominated Sorting Genetic Algorithm [I|

(IV. Design and Implementation|

IX. Recommendations|

[X. Bibliographyl

(XI. Appendix|

(XII. Acknowledgement|

v

33
33
34
34
35

37
37
38

39

42

46

47

48

54
o4

88

List of Figures

(1 Fully-automated trading agent|. 14
[2 Physical meaning of parameters in a generalized bell function|. . . . 16
[3 Fuzzy interence system| 19
{4 Two-input, single-output, first-order TSK fuzzy inference model| . . 20
b ANFIS Architecturel oo 22
(6 Cycle of reproduction ina GA| 26
[7 One-point CroSsoVer| v v v v e 26
(8 Two-point crossover|. 27
[9 [llustration of the dominated, non-dominated, and the Pareto op- |
timal solutions in the decision space|. 29

(10 NSGA-II procedure] 31
(11~ The population is sorted into non-dominating fronts| 31
(12 Illustration of the crowding distance]. 32
(13 Design of the agent| 33
(14 Use-case Diagram|. 34
(15 Context Diagram| 34
(16 High-Level Flowchart| 35
(17 'Trading Loop Flowchart| 36
(18 Setup Wizard 39
(19 Typical view of the agent with trades open| 40
20 Modity or Close Order Dialog| 40
21 Pop-up Dialog Alerts for trades detected and executed on either |
| Oanda or Simulated brokerl. 00000 41
22 Two actual trades placed displaying corresponding notifications| 41
23 Edit Account Details Dialog while main program is running] 42
24 Actual email alerts sent by the program| 42
[25 Backtesting Close Price and Equity Curve Plot - Two Months| . . . 44
26 Backtesting Close Price and Equity Curve Plot - One Year| 44

vi

List of Tables

(1 Data Set Segmentation| .

[2 Agent Profit Comparison|

[3 AAGFA ANFI5 Root Mean Squared Error|

vil

I. Introduction

A. Background of the Study

The Foreign exchange market is the largest and most liquid financial market. [I} 2]
A Forex transaction consists of a simultaneous buying of a certain amount of one
currency in exchange for another. At the core of ForEx trading are exchange rates
and timing. Profiting from Forex trading, then, relies on exploiting the movement
and volatility of exchange prices to work in favor of the trader.

Exchange rates are affected by many factors. Thus, exchange rate prediction is
traditionally done manually by fundamental analysis - taking into account various
economic and financial indicators. A viable alternative for short-term predictions
is technical analysis [3] which uses technical (numerical) indicators. These tech-
nical indicators are applied to price and volume data to indicate market direction
and volatility, mostly in the short-term. [4]

These short-term strategies are especially applicable to Forex trading, in that
most Forex trading is done intraday, in granularity of hours or minutes. Some
career traders, investment banks, and hedge funds even trade in the order of
seconds or even sub-second. This practice is called High Frequency Trading. [5]

However, investing in Forex is also attractive to amateur investors because of
the low capital barrier, high liquidity and leverage. It is possible to open a Forex
brokerage account for as little as $100. High liquidity means that the security, in
this case currency, can be readily sold at cost. Meanwhile, leverage refers to the
means of multiplying profits and losses, usually in the form of borrowed capital.
U.S. regulations allow brokers to lend at a 50:1 ratio, meaning an account with
$1000 deposit can trade up to $50,000. However, most international brokers can
allow leverage of up to 400:1. [6]

One of the reputable online Forex vendors is Oanda (http://oanda.com), cho-
sen for use in this study because of its well-documented, complete RESTful Web

API (Representational State Transfer), reputation as a reliable broker, custom

trade sizing, and low spreads or commissions. Additionally, their REST HTTP
AP is freely available for use even for Demo account users, making it suitable for
research and testing environments.

In fact, algorithmic trading—the trading of securities based on the buy/sell
decision of computer algorithms—has become an established discipline and career
which traders undertake. Programs which implement algorithmic trading strate-
gies automatically or semi-automatically are called smart or autonomous trading
agents. Entire books such as [7, [8, @] have been written on the subject and nu-
merous websites provide information on how to do algorithmic investing. Bell
and Gana [10] point out how the financial community has taken notice the effects
of algorithmic trading on the market. This is also practically evidenced by the
wealth of online discussion regarding trading of securities using automated Expert
Advisors on trading platforms such as MetaTrader (http://www.metaquotes.net).

An online service called Quantopian (https://www.quantopian.com) provides
an integrated environment which allows a user to deploy algorithmic investment
strategies in the cloud and link their programs to their online brokerage accounts.
Algorithmic trading packages—such as Zipline (http://www.zipline.io) and PyAl-
goTrade (http://gbeced.github.io/pyalgotrade/)—also exist for programming lan-
guages like Python and MATLAB.

Found in literature are smart agents or autonomous agents which are programs
that can decide for and perform trades on behalf of the user algorithmically. Bar-
bosa [11] presented an autonomous Forex trading agent which traded the US-
D/JPY pair in a 6-hour timeframe. Their agent features three modules named
Intuition, A Posteriori Knowledge, and A Priori Knowledge. The agent resulted
turned out with 54.41% accuracy and a profit of 60% over 14 months.

Another smart agent, utilizing the Adaptive Neuro-Fuzzy Inference System
(ANFIS) and Genetic Algorithm, was proposed by Alrefaie et. al [6] in 2013. It
utilizes the ANFIS as a prediction tool, in combination with the Non-Dominated

Sorting Genetic Algorithm II to determine trade timing and decisions. Running

over a 30-minute timeframe, Alrefaie’s agent achieved an accuracy of 82.12% vs.

Barbosa’s 54.41%, and a profit of approximately 120% over one year of trading.

B. Statement of the Problem

Algorithmic trading strategies would have to have two basic abilities in order to
make profit. First, it must be able to predict future rates. Second, it must be able
to provide actionable insight into that prediction—that is, determine whether or
not to place a trade and what kind of trade to perform.

Predicting Forex rates is no trivial task. It is modeled as a chaotic and non-
linear time series. Several computational intelligence techniques such as artificial
neural networks, support vector machines, and the ANFIS have been used to
predict market trends.

Meanwhile, Genetic Algorithms are also a popular class of algorithms found
in the literature used as part of an algorithmic trading strategy. These GA’s find
their use in determining proper trade timing and decision-making.

The next logical step would be to combine an accurate trend prediction tool
with a powerful decision-making module to create an automated algorithmic trad-
ing strategy. In addition to this, an interface must also be created for the user to
hook up the strategy with his/her trading account and to monitor the transactions
being performed.

Such a program will have real financial ramifications for the user. The goal,
then, is to design a smart trading agent that is based on solid theory and would,

under normal circumstances, almost guarantee a profit.

C. Objectives of the Study

The desired output software of this study is unique in that the program is au-
tonomous. That is, it is expected to work with little to no user intervention.
However, to initialize the system and manually, routinely regulate its transactions,

the user would have access to a few features. An ”alert-only” mode—wherein the

system only alerts the user and does not place orders automatically—shall also be
made available, should the user desire to perform trades himself. The functional-

ities of the smart agent are also listed.

1. Allows the user to

(a) Input his/her online trading account information
(b) Stop or start the agent from performing trades
(c¢) View transaction logs

(d) View open positions and current status

(e) Manually override transactions

(f) Perform backtesting and paper trading on the agent
2. The autonomous agent shall be able to

(a) Connect to (a) broker/s using its/their HT'TP Web API
(b) Retrieve real-time prices and fluctuations of the currencies of interest

(c) Predict future rates with reasonable correctness and determine the best

decision to make at that time
(d) Place a trade or open a position on the market through the broker API

(e) Send the user an email alert when a profitable trading opportunity is

detected and when a trade order is executed.

Additionally, this study will demonstrate the performance of the system if
it were deployed live by backtesting on actual historical data and evaluating its

prediction accuracy and financial performance.

D. Significance of the Project

As much as there are ripe opportunities to make profit in the Forex market,

there is no one easy technique to capitalize on the market. Trading, whether

using fundamental or technical analysis, can be daunting for a first-time trader.
Moreover, there is always substantial risk to speculative investment, such as that
in Forex.

This autonomous agent will allow a user to participate in algorithmic trading
without generating his/her own strategy by simply relying on the prediction tools
built into the agent. The ”intelligence” built into the trading agent is also founded
on sound theory and should provide reliable results under normal circumstances.

Moreover, an automated system, such as the one this study has produced,
benefits both amateur and experienced traders alike by allowing them to perform
trades hands-free, if they choose to do so. The agent is fully mechanized and does

not require any user intervention.

E. Scope and Limitations

As pointed out by Gradojevic [12], technical trading, which this study relies on,
ignores fundamental economic information such as the macroeconomic, political
and social variables. The system is, therefore, limited in power to predict during
periods of sharp change in these fundamental variables.

Yao et. al [I] also state that prediction with technical indicators work best
in the short-term. This study is, therefore, focused on short-term prediction (30-
minute timeframes).

This automated trader is primarily built to interface with the Web API of
Oanda. While practically extensible to work with other brokers offering a similar
HTTP API, this agent can currently only perform actual trades for clients trading
with Oanda.

In this light, a simulated broker was also made as part of this project. The
simulated broker implements an essential subset of the features of a true broker—
it simulates placing, closing, and updating orders. It also provides rates sourced
from an external provider to simulate the price provided by a true broker. This was

created due to the limitations of finding other brokers which have a freely available

HTTP API like Oanda. In creating a simulated broker with a generalized Web
API, we can demonstrate that the program is able to connect to any broker with
a Web API simply by modifying the required wrapper functions.

Since an option is provided to change the instrument to trade even after setup,
retraining the predictors will be needed. It is assumed and expected that the
user will provide the appropriate data set to train the predictors to work for that
instrument.

Finally, the agent does not take into account margin/balance requirements
which can be broker and account-specific. The agent will perform trades as long

as it detects opportunities to trade and the broker accepts the order placed.

F. Assumptions

1. Although it is clear the Forex rates behave chaotically, it is still assumed
that the market is fairly behaved and is not moving erratically as a result of
factors external to regular market volatility such as drastic economic changes,
market-making events, and force majeure which the agent does not take into

account.

2. The user will be able to source historical data for himself from a data provider
of choice, under assumption that such sources are freely available online or

from their brokers.

3. Actual trade execution is done within the broker’s servers/platforms, as is

the standard execution practice.

4. While the agent may continue running any time, any day, it is programmed
to restrict trades during off-market hours (Friday, 5 pm EST until Sunday 5
pm EST). The user is expected to be sufficiently informed that opening and

closing trades at such times is not allowed by most brokers.

5. Finally, it is left to the user to decide and enable/disable hedging—the set-

ting that allows or disallows Buy and Sell positions to exist simultaneously.

By default, Oanda accounts do not support hedging. This means that an
order followed by an opposite order effectively closes out the former. For
example, when there is still an open buy order, and an opportunity to sell
was detected and acted upon, the subsequent sell order effectively closes out
the buy order. This may or may not be beneficial in that the former order
has still not reached the target profit or stop loss, while the latter order
will not have any chance to reach its calculated target profit. Having no
hedging support could be contrary to the intention of the agent, but it could
also work for the user, if the prediction was anomalous. Again, control for
hedging is left to the user — and it can only be controlled with the broker’s

settings and not from within the program.

II. Review of Related Literature

With ForEx being the largest financial market, there is extensive research interest
in modeling and predicting Foreign Exchange Rates. [2]

Several computational intelligence approaches and tools to predict ForEx rates—
such as Neural Networks and Neuro-Fuzzy Systems—are present in literature.
The same is also true for the Stock Market, which is another popular and well-
established financial market.

Neural Networks are recognized for their ability to approximate non-linear
systems, an example of which is the time series of a currency pair exchange rate.
[2] Wu and Lu [I3] report several Neural Networks applied to forecasting of stocks,
another financial instrument. Meanwhile, Khoonmirzaie et. al [I4] utilized a
three-layer perceptron neural network to predict the US Dollar-Franc currency
pair, achieving a Mean Square Error (MSE) of 2.15 x 106.

Yu et. al [15] explore the question of whether or not Forex rates are predictable
by surveying 45 articles proposing Forex prediction using ANN, concluding that
ANN’s can generally predict Forex with positive results.

Baasher and Fakhr [16] present machine learning techniques applied to creating
a Forex rate uptrend/downtrend classifier. These are the the Radial Basis Function
Network (RBFN), Multi-layer Perceptron (MLP), and Support Vector Machine
(SVM). The SVM and MLP models each performed best two times out of their
four experiments.

Neuro-Fuzzy Systems (NFS) or Fuzzy neural networks are hybrid systems com-
bining artificial neural networks and fuzzy systems. Given numerical data, an FNN
will generalize from the training data, tune parameters and create linguistic rules
describing the problem space. An extensive discussion of Neural Fuzzy Systems is
done by Siddique and Adeli in [I7].

[1] proposed by Yao, Pasquier and Quek features the use of moving averages,
a type of technical indicator, and their novel Portfolio Trade Timing Optimiza-

tion algorithm for optimizing the BUY and SELL schedule. The prediction tool

employed is the Fuzzy CMAC-Yager, a Fuzzy Neural Network.

Gharleghi [2], meanwhile, presented a cointegration-based neuro-fuzzy system
for predicting exchange rates of currency pairs in the ASEAN region using macroe-
conomic variables. Their neural-fuzzy system consistently outperforms a plain
vector error correction model in in-sample and out-of-sample forecasting Root
Mean-Square Error (RMSE) and Mean Absolute Error (MAE).

Fuzzy inference systems (FIS) are built upon Fuzzy Set Theory and Fuzzy
Logic. Fuzzy logic was first proposed by Zadeh [18] to allow for the modeling of
uncertainty and imprecision in human reasoning by characterizing nonprobabilistic
uncertainties through ”fuzzy sets.” Fuzzy logic allows computational systems to
handle the ambiguity involved in real-world problems. [19]

The classic and most popular example of an NFS/FIS is the Adaptive-Network-
Based Fuzzy Inference System or ANFIS [20] which has found wide applicability
in areas such as modeling of non-linear systems, chaotic dynamics, and control,
among others. Astelakis modelled the EUR/USD currency pair using ANFIS for
daily exchange rate prediction, achieving 63% accuracy.

Aside from Forex, ANFIS is also used for stock market prediction as evidenced
by Wei et. al [19] formulating a hybrid ANFIS based on n-period moving av-
erage to predict the Taiwan Stock Exchange Capitalization Weighted Stock In-
dex (TAIEX). Tan]21] also harnessed ANFIS—in conjunction with Reinforcement
Learning—for stock trading, resulting in profits that beat the market by 50 per-
centage points.

While ANFIS can predict future rates, another method is needed to determine
trade timing and decision-making. In an article on Algorithmic Trading, Nuti lists
quadratic programming, particle swarm optimization, and genetic algorithm as
algorithms ”to identify profit-making opportunities.” [22] Genetic algorithms (GA)
are a class of search methods used in optimization inspired by the biological process
of natural selection and genetics. Trade signal generation and trade execution can

be seen as an optimization problem with multiobjective constraints[22], hence the

aptness of GA in forex trading.

Dempster[23] empirically determined that Genetic Programming outperforms
Markov Chain Linear Programming Approximation, Simple Heuristics, and Rein-
forcement Learning for intraday Forex trading.

Hirabayashi’s study[24] focused on improving and finding best trade timing
for short-interval trading using Genetic Algortihm. In both leveraged and non-
leveraged experiments, their GA-based proposed strategy outperformed the neural-
based strategy. Meanwhile, Papadamou’s GATradeTool[25] optimizes trading rule
parameter sets using GA. The tool outperforms commonly used, non-adaptive,
software tools with regards to return stability and time savings.

Kuo et. al [26] proposed a stock decision support system composed of a Genetic
Algorithm based Fuzzy Neural Network (GFNN) which evaluates the qualitative
indicators integrated with an ANN which processes the technical (numerical) in-
dexes.

The specific GA this study shall utilize is the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II)[27]—an elitist, multi-objective evolutionary algorithm
proposed by Kalyanmoy Deb as an improvement over the original NSGA. Zitzler
et. al present a comparison of MOEAs in [2§]. In ranking the MOEAs based on
distance to the Pareto-optimal front, NSGA came in second only to the Strength-
Pareto Evolutionary Algorithm.

For further reading, Rifki and Ono [29] discuss and explore 14 GA approaches
to portfolio optimization, detailing their usage contexts and experimental results.

In the literature, ANFIS and Genetic Algorithms are found to be used in
tandem for financial trading agents. Such is the case in [30] where technical
indicators are used as inputs for the ANFIS to predict the TAIEX, and parameters
are further optimized using genetic algorithm. The ANFIS-GA model was shown
to be superior to three previous agents in terms of RMSE.

The ANFIS-GA synergy doesn’t exclusively find applicability in financial uses,

but also in engineering. In a paper by Ghose et. al [31], a GA-optimized Non-

10

Linear Multiple Regression (NLMR) and ANFIS are used to predict runoff result-
ing from the precipitation on river catchments.

Also found in literature are smart agents or autonomous agents which are pro-
grams that can decide for and perform trades on behalf of the user algorithmically.
Barbosa [I1] presented an autonomous Forex trading agent which traded the US-
D/JPY pair in a 6-hour timeframe. Their agent features three modules named
Intuition, A Posteriori Knowledge, and A Priori Knowledge. The agent resulted
turned out with 54.41% accuracy and a profit of 60% over 14 months.

Another smart agent was proposed by Alrefaie et. al [6] in 2013, another
ANFIS-GA synergism. It utilizes the ANFIS as a prediction tool, in combination
with the Non-Dominated Sorting Genetic Algorithm II to determine trade timing
and decisions. Alrefaie’s agent achieved an accuracy of 82.12% vs. Barbosa’s
54.41%, and a profit of approximately 120% over one year of trading.

The discipline and study of algorithmic strategies in trading securities can be
put under the umbrella of algorithmic trading. The practice of algorithmic or
computational trading is so widespread that in 2004, 50.6% of the trading done
on the New York Stock Exchange Big Board is done by programs [§]. Bell [10]
points out that algorithmic trading has caused increased market volatility and
that algorithmic trading is now a ”competitive necessity” for traders.

In summary, various computational intelligence approaches to predicting finan-
cial data, such as foreign exchange rates, are found in literature. ANFIS has been
a popular, reliable choice for predicting financial time-series data like Forex, while
genetic algorithm and genetic programming are useful in identifying proper trade
timing and decision-making. Together, GA and ANFIS create robust systems

which can produce trading strategies that lead to profit.

11

III. Theoretical Framework

A. Foreign Exchange Market

The foreign exchange market is a worldwide, decentralized, over-the-counter fi-
nancial market wherein counterparites facilitate the trading of currencies [9]. It
is composed of several electronic communication networks (ECN’s) that mediate
between banks, institutions, and speculators. The market is decentralized as trans-
actions do not go through common exchanges such as stock markets. The market
is open without interruption from Sunday 5 pm until Friday 5 pm, New York
Time, at which point brokers generally halt trading and prices remain stationary.

Currencies are quoted against another currency, showing the value of the cur-

rency against another. As such, currency pairs are quoted like so:
USD/PHP = 44.8000

This simply means that 1 US Dollar trades for 44.8000 Philippine Pesos. The
currency to the left of the slash is called the base currency, while the one to the
right is the quote currency. Forex rate quotes often use the US Dollar as the base
currency. However, for pairs involving the British Pound, New Zealand Dollar,
and Australian Dollar, the said currencies are used as the base currency.

Forex quotes may express either the bid price or the ask price. The bid price
refers to the price at which the market will buy the security. Intuitively, the ask
price is the rate at which the market will sell the base currency. Consider the

following quote:
USD/PHP = 44.8000/500 Bid = 44.8000 Ask = 44.8500

If we are entering a short position on (that is, selling) the US Dollar, we will
receive 44.80 pesos for every dollar. Conversely, if we are going into a long position
on (that is, buying), a dollar can be purchased at 44.85 pesos.

Another concept relevant to trading is the "pip.” A pip is a standardized unit

and is the smallest amount by which a currency quote can change, which is usually

12

$0.0001 for U.S.-dollar related currency pairs, which is more commonly referred
to as 1/100th of 1%, or one basis point. The spread is the difference between the
bid and ask price of a currency pair, usually expressed in pips. Returning to the
previous example, the spread of the USD/PHP pair would be 500 pips.

A forex transaction, called an order, is initiated or opened by placing a move
to buy or sell the security at the current market price called the execution price.
In the opportune time, the trader or agent will decide to close the trade which
triggers the security to be either bought or sold back to the market. The intuition
behind making profit from price movements is to ”Buy Low, Sell High.” Hence,
when we anticipate the price to rise, a Buy order is opened, and is closed once the
price has risen to a desired level. Conversely, when the price is forecast to go low,
an order to Sell can be made at the current price. This virtually means that the
trader "owes” the broker a certain number of units of the security. Once the price
dips to a desired level, the trader closes the position by buying the security at the
low price, thus covering the ”borrowed” units from the broker. Profit is made this
way because the trader sold at a high price, and bought back at a low price. This
practice is called short selling.

The target profit at which the broker automatically closes the order is called
the take profit. The intent of the take profit is to specify the point at which the
price is satisfactory enough to cash in. Meanwhile, an order parameter called the
stop loss is the price at which the order is automatically closed when the price
moves contrary to the prediction. The stop loss limits the amount of loss the
account can take before bailing out. Both the take profit and stop loss can be

specified upon opening the trade, or modified while the order is still open.

B. Algorithmic Trading

Algorithmic trading pertains to the automated trading of financial securities, such
as currencies, using computer programs designed to respond to real-time market

data with the goal of executing trades to maximize profits [I0]. These programs

13

are called trading robots, automatic traders, autonomous agents, or smart agents
in literature. In essence, these agents take the place of a human trader/speculator
by processing data such as prevailing market rates and news [7], making a buy
or sell decision, and placing a trade on behalf of the portfolio owner. By solely
relying on data, the process eliminates emotional bias that humans may have. [§]

Profit in algorithmic trading, as well as human speculative trading, is founded
on statistical arbitrage. This refers to exploiting pricing inefficiencies in the mar-
ket, capitalizing on the price differences of an asset over time. As a trading strat-
egy, statistical arbitrage utilizes data mining, artificial intelligence and statistical

methods. [32]

Real-time data feed

Desktop Program

API to Broker

Brokerage Account

Figure 1: Fully-automated trading agent

Figure (1] illustrates the generalized flow of information of a fully-automated
trading agent and the components thereof.

The development of one’s own algorithmic trading agent would involve the
following process: First, the trader must identify a trading strategy which he shall
implement in the agent. This strategy would be responsible for identifying trends
in the data and profit opportunities to exploit. Once it has been implemented, the
trader would then backtest the strategy against historical prices and/or perform
paper trading in order to determine the efficacy of the strategy and the correctness

of the implementation. Once the trader has tweaked the agent and the strategy,

14

and is satisfied with its performance, the agent will then be hooked up to the

desired broker via its API and perform live trading.

C. Fuzzy Set Theory

Fuzzy Set Theory and Fuzzy Logic allow for the modeling of uncertainty and
imprecision in human reasoning by characterizing nonprobabilistic uncertainties
through ”fuzzy sets.” This has found applicability in automatic control, customer
electronics, signal processing, time-series prediction, information retrieval, com-

puter vision, data classification, and decision-making, among others.

C..1 Fuzzy Sets

A fuzzy set or fuzzy class is defined as a set with unsharp boundaries in which
the transition from ”belonging to the set” to "not belonging to the set” is gradual
rather than abrupt. [33] This is in contrast to traditional crisp sets wherein there

is an absolute boundary for set membership. Let A be a fuzzy set defined by

A = {(z, pa(z))|z € X} (1)

where X is a collection of objects called the universe of discourse, or simply
universe, and z is a generic element in X. pa(x) is called the membership function
(MF) or characteristic function. The MF specifies the degree of ”belongingness” of
an element x by assigning a value from 0 to 1, with 0 indicating non-membership
and 1 absolute membership.

It can be said that a fuzzy set is an extension of the classic set. When p4(x)
has a range [0, 1], the set is fuzzy. If the range is restricted to {0, 1}, the set is

Crisp.

15

A fuzzy set may also be defined in the following manner:

Z pa(x)/z; if X is discrete
A Jmex (2)
/,uA(m)/a:i if X is continuous
X
It should be noted that the summation and integral operations do not mean
summing, but rather union of the (u4(z),x;) pairs and that the / does not imply
division, but is simply a marker.
An example of a continuous membership function is the Generalized Bell MF,
which is the preferred MF for use in the Adaptive Neuro-Fuzzy Inference System
to be discussed later. It has four parameters {a,b,c,d}. The function is defined

as:

bell(z;a,b,¢) = ————; (3)

and illustrated in Figure 2] The parameters ¢ and a can be adjusted to get the
desired center and width, respectively. Meanwhile, b controls the slope at the

crossover points.

Figure 2: Physical meaning of parameters in a generalized bell function

As with human classification, determining the degree of an object belonging to
a certain class or character is subjective. Thus, the choice of membership function

is subjective as well. Its subjective and non-random nature is what distinguishes

16

fuzzy set theory from probability theory which is an objective study of randomness.
A fuzzy singleton A is a fuzzy set containing only a single value from the

universe of discourse whose membership value is one. Formally,

A = {(z0, (o)) palwo) = 1}. (4)

A fuzzy set is said to be empty if and only if the value of the membership
function is zero across all elements of X.

Two fuzzy sets, A and B, are equal if and only if pa(x) = pp(z) for all x in
X. This is denoted by A = B.

C..2 Fuzzy Set Operations

The following are the operations defined over fuzzy sets in the seminal paper on
fuzzy sets by Zadeh [18].
Union. The union (disjunction) of two fuzzy sets A and B is a fuzzy set C.

This is denoted by C'= AU B. The membership function of C' is defined by:

po(r) = max|pa(x), pp(e)] = pa(z) V pp(r),r € X (5)

Also pointed out by Zadeh [I8] is a more intuitive definition of union—the
smallest fuzzy set containing both A and B.

Intersection. The intersection (conjunction) of two fuzzy sets A and B is a
fuzzy set C'. This is denoted by C' = AN B. The membership function of C' is
defined by:

po(r) = minfpa(z), pp()] = pa(@) A pp(r),z € X (6)

On the same token as union, the intersection is the largest fuzzy set which
is contained in both A and B. The intersection corresponds to the Fuzzy AND

operation (also called the T-norm) which can be defined in other ways besides the

17

min, such as the product T-norm (7'(a,b) = pa X up).
Complement. The complement (negation) of a fuzzy set A, denoted by A, —A
or NOT A is defined as

pa(z) =1— pa(z) (7)

D. Fuzzy Inference Systems

Fuzzy inference systems (FIS) allow for the mapping of input variables to output
variables with the use of fuzzy logic. In contrast to Boolean/classical inference,
FIS utilizes fuzzy membership functions and fuzzy relations to evaluate a set of
input. A fuzzy inference system is built upon a rule base of fuzzy ”IF-THEN”
rules. These rules map to a fuzzy relation against which input are evaluated. Here

is an example of a set of fuzzy rules:

Rule 1: IF service is excellent AND food is good THEN tip is generous

Rule 2: IF service is bad AND food is bad THEN tip is cheap

The general inference process of an FIS, illustrated in Figure (3 can be con-

densed into the following steps:

Fuzzification Crisp inputs for each variable are evaluated for their fuzzy mem-

berships.

Aggregation of Antecedents The membership values of the antecedents of each
rule is aggregated using T-norm (min or product) for conjunction, and max
(or equivalent) for disjunction. This determines the degree of fulfillment of

the rule.

Implication In this stage, the consequent or output of each rule is evaluated

given the aggregation of its antecedents from the former step.

Aggregation of Consequents The consequent for each rule is then aggregated

to obtain the total resultant fuzzy output. This is usually done using the

18

max operation.

Defuzzification To obtain a crisp output from the resulting fuzzy set, a defuzzi-

fication technique is applied. The most common method is the Center of

Gravity (COG) or Centroid method.

knowledge base

output
B

>
s

input
P database rule base

“J | fuzzification ‘ 1 Hefuzzification
i'| interface = — interface

(crisp) / (crisp) { 4

’ ® decision-making unit

(fuzzy) (fuzzy)

Figure 3: Fuzzy inference system

E. Sugeno Fuzzy Inference

The Sugeno Fuzzy Inference Model was proposed by Takagi & Sugeno in 1985, and
Sugeno & Kang in 1988, thus it is also called T'SK Inference. The goal in mind
was to develop a fuzzy modeling approach for input-output data sets. [I7] Sugeno
Inference is analogous to the earlier described FIS (of type Mamdani), with the
main difference being that in TSK the consequent is a crisp function; hence, there
is no output membership function and defuzzification need not be performed.

A Sugeno fuzzy model can be generally described as a collection of rules of the

form

k:1If 2 is AF and y is B;C then ¥ = f(z,y) (8)

where = and y are the crisp inputs, z is the output, A; and B; are the fuzzy
membership functions in the antecedent, z = f(x,y) is a crisp output in the
consequent, k = 1,2,...,. R, i = 1,2,...N, 7 = 1,2,.... M. N and M are the
number of membership functions for and y, respectively, and R is the number

of rules.

19

Without loss of generality, let us consider a two-input, one-output Sugeno fuzzy
model as illustrated in Figure . Here, each input x and y has two MFs {A4;, Ay}
and {Bj, By}, respectively, while z; and 2z are the consequent functions. It’s two

rules are:

rl: IF x is A; AND y is By THEN 2z, = a1z + biy + ¢4

r2: IF x is Ay AND y is By THEN 25 = asx + by + ¢

Generally, z = f(x,y) can be any polynomial in x and y which sufficiently
describes the system to be modelled. However, in application with the ANFIS
this is usually a linear combination of the inputs plus a constant term, i.e. a
first-order polynomial. Thus, a TSK system with such output functions is called

a first-order Sugeno fuzzy model.

min or product

i =ax+by+e

Weighted average

Aggregation

! 1
| '
I 1
' |
' Wzt wyz, |
V2 T

I
i i

wy +w,
Figure 4: Two-input, single-output, first-order TSK fuzzy inference model

Figure (a) illustrates the fuzzification of the crisp inputs z; and y;. Each
output z; of each rule is weighted by the firing strength wy. The firing strength—

for example, with ANDed rules—is calculated using a T-norm operator, either the

20

minimum or product rule as
W = min(MAi’ /‘LBj) Or Wy = fta; X Up;- (9)

Given that the parameters {ay, bx, cx} are known, the consequent z;, for each
rule can be computed, as shown in Figure [4(b). The final output is then computed
using a weighted average of the crisp consequent outputs z;. This substitutes for
the costly center of gravity defuzzification of the Mamdani FIS. With weights

computed as per Eq. [0 the final output is obtained as

R
Z Wiz4
_ =1

z =

L (10)

As for our two-input example case, it is as mirrored in Figure [4c)

. W12 + WaZo
w1y + Wa

F. Adaptive Neuro-Fuzzy Inference System

The Adaptive Neuro-Fuzzy Inference System or ANFIS was first proposed by Jang
[20] in 1993 and was originally called the Adaptive-Network-based Fuzzy Inference
System. This is accounted for by the fact that ANFIS has the architecture of an
adaptive network and is functionally equivalent to a fuzzy inference system. Often,
an ANFIS corrsponds to a Sugeno FIS. This adaptive capability makes ANFIS
useful in non-linear system modeling, learning, and fuzzy control problems. [17]
In his seminal work, Jang used the Stone-Weierstrass Theorem to prove that the
ANFIS is fundamentally equal to a fuzzy inference system which has unlimited

power to approximate non-linear systems.

21

F..1 Architecture

The architecture of a two-input (z; and x3), single-output ANFIS with four rules
which corresponds to a first-order Sugeno system is illustrated in Figure fl The

layers of this adaptive network shall be discussed in this section.

Figure 5: ANFIS Architecture

Layer 1: Every node in this layer is an adaptive node which computes for the
membership value of the input against its corresponding MF. Usually, these MFs
are chosen to bell-shaped. For example, with our two-input example which has

two rules such that

1 1
,UAj(QZ'l) = - 2ba KB, (xQ) =
|4 [

11)
T (
|| T

A

j OB,

J

with {my,,04,,b4,} and {mp,,0,,bp,;}, j = 1,2, as the parameter sets. These
are, then, called the premise parameters.
Layer 2: Every node in this layer is a fixed node corresponding to the rules r;,

1 =1,...,4. Each node computes for the firing strength of the rule

w; = ,uAj(xl) T UB; <x2)7 j - 17 2. (12)

Layer 3: Every node in this layer is a fixed node labeled N;, i = 1,...,4. Each

22

node computes for the normalized firing strength of the corresponding rule r; as

ci=1,..,4. (13)

Layer 4: Every node in this layer is an adaptive node which computes for the

weighted value of the consequent part of each rule as
u_)z'fi :U_)i<ai$1+bil’z+ci>, 1= 1,...,4. (14)

The parameter set in this layer is {a;, b;, ¢;}, © =1, ..., 4 and are collectively called
the consequent parameters.
Layer 5: The single node in this layer is a fixed node which sums all the fired

rule values to compute the overall output.

Yiwifi
Y = sz fi = sz Li=1,2,...,4 (15)

F..2 Initial Fuzzy Model

To be able to model a system using ANFIS, an initial fuzzy model must first be
derived. [34] This will determine the number of rules for each input and, thus,
also the structure. The two popular data clustering techniques to obtain an initial

model are:

1. Subtractive clustering: a fast, one-pass algorithm for estimating the num-
ber of clusters and cluster centers in a dataset. It works by assuming that
each data point is a potential cluster center and calculates the probability

that it is so.

2. Fuzzy C-Means: a data clustering technique wherein each data point be-
longs to a cluster or partition to some degree. It is closely related to the

k-means algorithm.

23

F..3 Hybrid Learning Rule

ANFIS features a hybrid learning rule which can be decomposed into two learning
schemes: learning the antecedent MFs and parameters, and learning the con-
sequent parameters. With the antecedent parameters fixed, the output can be

expressed as a linear combination of the consequent parameters

Y = w(azy + bry + ¢) = (wxy)a + (wx2)b + we (16)

Consider a training data set V. Equation [16|can be expressed in vector-matrix

form as

AP =Y (17)

where P is the unknown parameter vector and A is the coefficient matrix. As it
is usually the case that the number of training pairs in N is greater than |p|, no
unique solution exists for Eq. [I7] And so, a more sensible approach would be to
perform a least-squares estimation (LSE) of the parameter vector p and minimize
the squared error ||AP — Y||%. The most popular formula for this estimate is the

pseudo-inverse of A:

P=(ATA)ATY (18)

where (AT A)71AT is the pseudo-inverse of A if AT A is non-singular.

Generally, the structure of the network is assumed fixed and parameters are
tuned using a hybrid learning rule. In the forward pass, node outputs are computed
and propagated to layer four and the consequent parameters are determined using
the least-squares estimate. In the backward pass, the error rates (the derivative of
the error with respect to each node output) are backpropagated towards the input
end where the antecedent parameters are updated by a gradient descent method

while the consequents remain fixed.

24

G. Genetic Algorithm

Genetic algorithms (GA) are a class of search methods used in optimization in-
spired by the biological process of natural selection and genetics. The basic idea
is to evolve an initial population of solutions towards a desired optimization goal.
This would entail evaluating members of the population against a certain objec-
tive function which we want to maximize or minimize. This function determines
the ” fitness” /goodness/optimality of the solution at every iteration. Intuitively,
we would want to keep the most fit individuals and propagate their features to
the offspring generation while discarding the least desirable ones. Over time, the
population should ideally converge to the desired solution.

Each solution in the population is called a chromosome. Classically, the so-
lutions are encoded as strings, most often binary strings, though other represen-
tations (real numbers, lists, data structures) also exist. For example, each bit in
a binary string may encode a characteristic or feature of the candidate solution.
Each position or set of positions in the chromosome that encodes a feature is called
a locus and the possible values at each locus is called an allele.

A genetic algorithm begins with an initial population, often randomly gener-
ated. This set of solutions shall then pass through the various GA Operators to
produce the succeeding generation. The goal of selection operators is to choose
the most desirable solutions to participate in reproduction. The crossover and
mutation are the modification operators, they mix and change the features of the
selected individuals to be carried over to the offspring. Figure [f illustrates the

cycle of reproduction in a genetic algorithm with the use of GA operators. [17]

G..1 Genetic Algorithm Operators

Selection This is founded on the principle of natural selection that the fittest
individuals are favored in reproduction. Using a selection operator, parents
are chosen to participate in the reproduction of the offspring generation.

This can be done randomly (random selection) or in proportion to their

25

. children .
reproduction 3 modification

. modified
parents “1 children

ﬂlation P evaluation

evaluated children
deleted

members

(discard)

Figure 6: Cycle of reproduction in a GA

6

fitness (proportional selection). Tournament selection or rank-based selection
may also be used. Another selection technique is elitism wherein a certain
set of individuals from the current population will survive without mutation
to the next. This is often used to fully preserve the fittest individual and its

features.

Crossover Also called recombination, crossover takes two parents to produce
one or two offspring. In a biological sense, crossover refers to the blending
of genetic information from the parents. For strings, this can be achieved
by splicing the string in one or two crossover points and transplanting the
segments between the offspring(s). Figures (7| and |§] illustrate this. Other
crossover operators such as arithmetic crossover (performing XOR or av-
erage) over the parents also exist. The GA may also employ a crossover
probability ¢, which would determine whether or not recombination will be

performed at that instance.

Parent A Offspring
x 2>
[—— | I]
Parent B

Figure 7: One-point crossover

Mutation This simply refers to changing a feature in the selected parent. For

26

Parent A

Offspring

->

) T

Parent B

Figure 8: Two-point crossover

a binary string, this is easily achieved by flipping a certain bit to change
the feature it encodes. For integer-coded strings, a random changing of the
integer may be performed. Scramble mutation refers to switching the places
of the values across the chromosome’s loci. As with crossover, a mutation

probability parameter m, may be elected.

H. Genetic Programming

The objective of genetic programming (GP) is to use induction in order to de-
vise a computer program that performs a desired function (e.g. approximate a
function based on input-output pairs). This involves using evolutionary operators
on candidate programs with a tree structure to improve the adaptive fit between
the population of candidate programs and an objective function. Evaluation may
involves execution of the program in order that its output may be evaluated.

The leaves of the tree, called terminals, represent the input variables or con-
stants. These are passed along to the inner nodes which perform operations or
functions on the inputs and passed further up the tree to undergo more node
operations to produce the program’s final result.

Appropriate evolution operators exist for the tree structures used in GP. Mu-
tation may involve changing the terminals to other valid inputs and replacing the
node operations with other operators. Meanwhile, crossover would involve switch-
ing subtrees at a certain branch, effectively exchanging the subprograms of the

parents.

27

I. Multi-objective Optimization

Most real-world problems have several conflicting objectives which we aim to op-
timize. Thus, the need for multi-objective optimization (MOO) arises. A multi-
objective optimization problem is concerned with finding a vector of decision vari-
ables which satisfies constraints and optimizes a vector function whose elements
represent the objective functions. That is, we are searching for a solution with
acceptable values across all objectives.

A multi-objective optimization problem can be mathematically stated as:

Minimize or maximize subject to

(
fm(x)7 m - 1727 7M
gj(r) >0, J=12..,J

{ (19)
hk(l‘) = 0, k= 1, 2, ,K

o <z <2, i=1,2,.,N

where f,,(x) are the objective functions, g; are the inequality constraints, hy are

U)

the equality constraints, and xEL) and xf are the variable bounds. The solution

vector z is composed of n decision variables. That is x = (z1,2s,...,2,)7. A

feasible solution satisfies all (J + K') plus the 2N variable bounds. These variable
(L)

i

U)

bounds restrict z; from z; to x; ', thus defining the decision space. A solution
x corresponds to a point in the decision space. Meanwhile, the set of all feasible
solutions consist the feasible region or search space.

An important concept from MOO which is relevant to the Non-Dominated
Sorting Genetic Algorithm II to be discussed later is Pareto optimality. This
concept is built upon the idea of non-dominated solutions.

Consider two solutions A and B. If A is better than B in Objective 1, but B
is better than A in Objective 2, we cannot say for sure which is ”better” when
both objectives are equally important. A and B are then called non-dominated

solutions. When a solution, say C, clearly trumps another, say F, in all objectives,

28

then we say that C' dominates E.
Definition ITI..1. A solution z(is said to dominate z® if:

1. 2 is no worse than z® in all objectives, i.e.

fi(xW) £f;(2@) for all j =1,2,..., M AND

2. M is strictly better than z(®) in at least one objective, i.e.

fi(zM) < £;(2?) for at least one j € {1,2,..., M}

When we draw a curve through all of the non-dominated solutions in the
decision space, this is called a Pareto-optimal front (illustrated in Figure @ and

the solutions lying therein are called Pareto-optimal solutions.

A
~ o Non-dominated solutions
0 ¥ Dominated solutions
L1
g ! AV Vv
17 3y D o
‘\ 5 v 6 v V
G
1 3 v
@)
1 Y 4 v C
1\ Q\ 3VB -‘Fﬁlreto optimal set
"Q ‘
N 2V
1 SO E
1@
1

>
Objective 1

Figure 9: Illustration of the dominated, non-dominated, and the Pareto optimal
solutions in the decision space

Clearly, the search space in the context of multiple objectives can be divided
into two non-overlapping regions: the optimal and non-optimal sets. In the ab-
sence of higher-level information, all objectives are equally important. And so,
the goals of multi-objective optimization are to find a set of solutions as close to

the Pareto front as possible and to find such a set as diverse as possible. [35]

29

J. Non-Dominated Sorting Genetic Algorithm II

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is a popular non-
domination based genetic algorithm for multi-objective optimization. It is an im-
provement over the Non-Dominated Sorting Genetic Algorithm (NSGA) by intro-
ducing a more efficient sorting procedure, and elitism and eliminating the a priori
need to set a share parameter. The algorithm features the fast-non-dominated-sort
procedure with O(M N?) computational complexity where M is the number of ob-
jectives and N is the population size. Diversity of solutions is preserved through
the crowded tournament selection. [27]

The steps involved in the NSGA-II algorithm are outlined as follows: [36]

1. Begin with a randomly generated parent population P, and create an off-
spring generation (); using binary tournament selection, recombination, and
mutation operators.

2. Combine @); and P, to create a population of size 2N which shall be called
R;.

3. Perform the fast-non-dominated-sort procedure over R; to order the in-
dividuals into non-dominating fronts.

4. Form the next parent generation P,,; by performing crowded tournament
selection on the population and taking the top N individuals.

5. Generate the next offspring generation)y, from P, using selection, crossover
and mutation.

6. Repeat steps 2-5 until termination criteria are satisfied.

By combining the parent and offspring populations, we allow individuals from
the previous generation to participate in the next iteration without mutation, thus
introducing elitism.

The first procedure on which NSGA-II is mainly built is the fast-non-dominated-sort.
Its main goal is to stratify the population into non-dominating fronts, where each

front is dominated by the preceding fronts, as illustrated in Figure 11} Each indi-

30

Non-dominated Crowding
sorting distance

sorting
Pt
Q i
t -*—Re(;ected
1
Figure 10: NSGA-II procedure
A
N Y A
8 1+, sy 8¢ WV
S| 1 ‘
Vo oL g
\‘ ‘.\. 6 V.\ V V\
.‘\) 7 Front 4
\\\ .\V\ 7 " Front 3
3 Vo
AR Front 2
el 4V Front 1

>
Objective 1

Figure 11: The population is sorted into non-dominating fronts

vidual then receives a rank based on which front it belongs to, with 1 being the
completely non-dominating front.

In line with the goal of multi-objective optimization to maintain a good spread
of solutions, NSGA-IT makes use of a crowded tournament approach. This crowded
tournament has two components. First is density estimation. Within each front,
the crowding distance—an estimate of the perimeter of the cuboid formed by

the nearest neighbors—of each individual is calculated. This is the average side

31

e
o

Q

Figure 12: Ilustration of the crowding distance

length of the cuboid, as shown in Figure |12 The procedure which performs
density estimation, called crowding-distance-assignment, has O(M N log N)
complexity.

The second component of the crowded tournament selection approach is the
crowded tournament operator (<,) which guides the algorithm into maintaining
a uniformly-spread Pareto-optimal front. Assume that every individual ¢ has the
two following attributes defined: 1) nondomination rank (i,qnx) and 2) crowding

distance (idistance) .

Definition III..2. <, is a partial order defined as

l ‘<n] lf Z.rzznk < jrank or ((Z.rzznk - jrank) and (idistcmce > jdistance))'

Simply put, a solution with higher nondomination rank is preferred. And when
two solutions have the same rank, the one with greater distance, that is the one
in a less crowded region, is selected.

Deb [27] presents the worst-case complexities of the basic operations as follows:

1. nondominating sort is O(M(2N)?)
2. crowding distance assignment is O(M (2N)log(2N))
3. sorting on <, is O(2N log(2N)).

The overall complexity, then, is O(M N?) which is subject to the nondominated

sorting procedure of the algorithm.

32

IV. Design and Implementation

The agent communicates with the broker’s server via its HTTP REST API.
Through the API, the agent can retrieve real-time price fluctuations and place
orders with the broker. These prices are then pre-processed into mathematical
functions or technical indicators which the ANFIS and Decision Making Module
may call for. After this, the pre-processed data are passed on to the ANFIS for
prediction. Next, the Decision Making Module decides whether to Buy, Sell, or
Hold using historical and real-time. Finally, if an order must be placed, the agent
packages an appropriate request to the broker server, thus effectively placing the
order. The take-profit is set as the highest point of the Predicted High data points
for BUY orders, while the lowest point of the Predicted Low data points is taken
for SELL orders. The converse reasoning is used for setting the stop-loss.

While this agent is currently tailored to view account status and perform actual
trades over the Oanda API, the system also has concurrent functionality to place
orders and retrieve previously sent orders to a simulated broker which offers a
similar Web API, also made by the developer. This establishes the extensibility
of the program to work with any HTTP API similar to that provided by Oanda

and our simulated broker, with a minimally reasonable amount of effort.

()

Future Data Point
Prediction
(ANFIS)

Data retrieval and
processing

Brokerage Account

Broker API

Trade Decision-Making
(NSGA-II)

Trade Request Packaging

—

Figure 13: Design of the agent

A. Use-Case Diagram

The AAGFA has only one user, the trader, which can perform the following func-

tions: input his/her broker account details, start or stop the agent, view the agent’s

33

current status and previous logs, and manually override orders. When overriding,

the user can modify the order placed by himself or by the agent itself.

Autonomous ANFIS and GA-Based Forex Agent

Input Online
Broker Information

Start or stop agent
from trading

Modify Order

**extel
/
Manuglly ,
Override
Orders N
**extends*
\
Trader/User \

Remove Order

View Agent's
Status, Open
Orders, and Log

Figure 14: Use-case Diagram

B. Context Diagram

The automomous agent has only one user which is the trader.

Autonomous ANFIS and
GA-Based Forex Agent

T

User/Trader

Figure 15: Context Diagram

C. Flowchart

When the user opens the AAGFA program, he/she may input new brokerage

account details or replace the details if there is an existing configuration. If it is

34

a new configurations, the user must provide the historical data for the training.
Users of a currently trading agent may also re-train the ANFIS as desired. Once
training is done, the agent runs by itself indefinitely and independently. The only
actions the user may perform, aside from passively viewing the status, are 1)
override order; and 2) stop the agent from running. The former does not disrupt

the agent from continuously running, while the latter terminates the program.

START

New or Current Account
Details?

NO |
CURRENT
+

Override Order
Or
Terminate

TRADING LOOP —NEW—»knput Broker Account DetailsJ

V

Load Historical

YES—)
Data

— Re-train Predictors?

OVERRIDE ORDER TERMINATE

f
{

Y
Override Order } KA Train using Historical Data 1

Figure 16: High-Level Flowchart

D. Parameters and Input Pre-processing

Some parameters for training and optimizing the trader were adapted from Al-
refaie et. al [6], such as the number of inputs and number of data points to predict
for the ANFIS, number of generations for the GA, and the trading timeframe.
However, some other parameters had to be empirically or arbitrarily selected for

this program, as the information was not available in the basis paper.

35

START
Trading Loop

Broker(s)

Retrieve latest

data ticks

Predict next 6
data points via
ANFIS

Pause trading
loop until next
30-minute mark

Log transaction

Place order
and/or

Send Email
Alert

Compute
required

technical
indicators

BUY/SELL
Or
HOLD?

Determine
broker with

better offer
(as needed)

HOLD

Figure 17: Trading Loop Flowchart

As Al-refaie observed, Mean Squared Error for training was minimized when
the input was passed through a smoothing filter, as this reduces noise in the input.
They utilized an exponential moving average (EMA) to smooth the data. However,
no specified EMA lookback period was specified, thus leading to the decision of
using the default time period of the EMA function of TA-Lib which is 30.

Initial test runs of the ANFIS prediction sometimes produced anomalous re-
sults. The root of this was traced back to the EMA smoothing utilized. Ini-
tially, the output for the ANFIS was also taken from the smoothed series. The
pre-processing function was modified to pair the smoothed inputs with the raw

output. This caused the output predictions to behave more as expected.

36

V. Architecture

A. System Architecture

The agent is a desktop application built on the Qt Framework in Python 2.7.9
via PyQt4. The ANFIS training and prediction is delegated to MATLAB which
is called inside the program using the official MATLAB Engine for Python. [37]
The Genetic Programming framework is provided by the Distributed Evolutionary
Algorithms in Python (DEAP) Library. [3§]

Python was chosen for its clear, expressive syntax, powerful built-in data struc-
tures, support for both object-oriented and functional paradigms, and the wealth
of libraries available. One such library on which the system heavily relies on is
the Scipy package, which includes Numpy, Matplotlib, and Pandas. [39] Most of
the heavy-lifting for data pre-processing and storage in-memory was provided by
Numpy[40], with its highly flexible ndarray class. The central plot, as well as the
price and equity curve seen produced by the backtesting module, is drawn using
Matplotlib. [41] Meanwhile, the backend for the backtesting feature is mostly
powered by the Python Data Analysis Library or pandas, for short. [42] Pandas
provides a DataFrame class which supports vectorized operations. This is what
allows the backtesting over several thousand data points to be completed in just
seconds. Technical indicators were mostly easily computed through the use of the
Python wrapper for TA-Lib (http://mrjbq7.github.io/ta-lib). TA-Lib is a com-
prehensive technical analysis library written in C and exposed to Python using
the similarly named Python package.

All data requests to the Oanda Web API and the simulated broker APT is
packaged using the requests package readily found in the Python Package Index
(PyPI, http://pypi.python.org/). Responses are decoded using Python’s built-in
json module. However, for Oanda requests, these functions are already wrapped
using the oandapy package provided by Oanda itself.

The simulated broker is a PHP web service providing a REST-like API. It

37

receives POST requests in a manner similar to Oanda’s API and also sends back
JSON responses. The simulated broker provides simulated prices obtained real-
time from http://jsonrates.com/. It stores the orders it receives from the client

into a single MySQL table.

B. Technical Architecture

The agent is a desktop application running on Python 2.7. The agent inter-
faces with the mathematical software MATLAB to utilize its Neuro-Fuzzy Design
Toolkit for the ANFIS; version 2014b or up is required, as these are the versions
containing the MATLAB Engine for Python. This system was developed and
tested on Windows 8.1, but should also be functional on a Linux/Unix system
provided that all other dependencies are met. Because of the persistent com-
munication with the broker and data sources, a high-speed, low-latency, reliable
internet connection is highly desirable.

Minimum System Requirements:

1. A mid-range CPU released since 2010 (Intel Core2 Duo)
2. 2.00 GB of RAM

3. Windows 7

4. Python 2.7

5. MATLAB R2014b

6. Persistent, stable internet connection

38

VI. Results

In this section we run over the functionalities of the program and show that they
fulfill the objectives.

First, shown in Figure [18|is the Setup Wizard. This allows the user to input
the trading account information, instrument to trade, training and testng data

sets, and the mode to run on once the program launches.

X x
Welcome to AAGFA! Account Details
This wizard will help you set up the account details and input the historical data files needed Please enter your account details below:
for the Autonomous ANFIS and GA-based Forex Agent to begin trading.
OANDA Account ID: || |
Reminder: Before you continue with this wizard, please ensure that the system requirements OANDA API Token: | |
have been met and that any dependencies have been installed. For further information,
please refer to the attached README. bt Trading Environment: | Practice -
Instrument to Trade: ‘C‘id('{iet List™ after providing if "
[Get List |
Your Email address: | |
Next

Historical Data Files Training

Please provide the CSV files for the historical prices below: The program is currently processing the training data.
Throughout the training, you will see several MATLAB progress dialogs pop up.
This typically takes up to 4-6 hours, Please see progress below,

Training Data Set | | | choose file |

0%

Testing Data Set | H Choose file ‘

Training commendng...
Please ensure that these files contain atleast a column with header "High™ Pre-processing files...
and another with header "Low” for the system to be able to process these.

Pressing Next will begin training

(€) AAGFA - Setup Wizard ()

Training Congratulations!
The program is currently processing the training data.

The h; finished tr; the historical data .We b s ed
| Throughout the training, you will see several MATLAB progress dialogs pop up. ' Program fias now fin 2nng using e historica cata glven. e have a0 sav

This typically takes up to 4-6 hours. Please see pragress below. ::ub;:mrgalr&gand we'll be using this for trading.Please dick Finish to activate the
H= - o e

a o Start automated trader immediately?

g Computing clusters. Please wait... Do you want ta run on auto mode?

o (Unchedking this will allow the agent to run on email alert-only mode

instead of automatically placing trades for you.)

Low (t+5) training....

v

Figure 18: Setup Wizard

Next, Figure [19| shows the program with two trades still open. The Open Po-

sitions tab show the open orders with their pertinent information. Double clicking

39

on any open order brings up the Modify/Close dialog box as seen in Figure
where the user can either modify Take Profit and Stop Loss or immediately close

the order.

2 AvoromousANASandGABasedForecAgent -oEW

File Account Agent Help

200+ BEAY

Account Status &
| Account ID: 8506674
Account Name: Deme
Balance: 10000

Unrealized PAL: 106
Realized P&L: O

Margin Used: 113.032
Margin Available: 9885.908
Open Trades: 2

Open Orders: 0

Margin Rate: 0.05

Base Currency: USD

#—_High actual
+—+ High predictions
— Lowa

— Low predictions

Trades a8
Open Positions | Transaction History.

Order D Units Side Market Time Price TakeProfit StopLoss ~
11980112189 1000 sell EUR.USD 2015-06-1018:30:07 113013 112557 113679 L
2 990089638 1000 sell EUR USD 2015-06-1013:00:08 112983 112586 1.13604 v

[

Figure 19: Typical view of the agent with trades open

il Autonomous ANFIS and GA-Based Forex Agent - a
File Account Agent Help
Account Status]
ﬁ 00+ E. o Account ID: 8707562
Account Name: AAGFA
Balance: 99979074

Unrealized P&L: -0.19

Realized P&L: -2.09
*— High actual

. . . . : : : : e Margin Used: 56.213
\ : : : : : : . . gh predictions Margin Available: 99415044

o |#= Lowactual
] — Low predictions Open Trades: 1
'_/] Open Orders: 0
5 Margin Rate: 0.05

MODIFY/CLOSE ORDER Base Currency: USD

SELL 1000 units EUR_USD at 112426

-~/ \\ Last Quote: 1.12445
X % \]
// @® Modify) Close
‘{| Orderm: 991800972 ———
] JEREDCS =
f Date and Time: 2015-06-12 08:25:10
Tkeproft 12410
Trades)
Open Positions
Oderd
BWTMZ 1000 sell EUR_USD 2015-06-12 06:25:10 112426 0]

Figure 20: Modify or Close Order Dialog

Figure[21]demonstrates a pop-up dialog for when an order is placed. It displays
the date and time, the take profit and stop loss chosen, the better broker chosen

to trade with, and whether it is a Buy or a Sell trade. A similar dialog will appear

40

on alert-only mode, minus the execution price. Similarly, Figure 22| show two alert

dialogs superimposed on the main program window.

Trade has been placed

Type: Buy
Execution Price: 1.1243
Take Profit: 1.1246
Stop Loss: 1.124

Date/Time: June 11 2015 at 23:57

Broker: Oanda

Trade Alert - AAGFA

Trade Alert - AAGFA

Trade has been placed
Type: Sell
Execution Price: 1,124
Take Profit: 1.1229
Stop Loss: 1.1251
Date/Time: June 11 2013 at 23:59

Broker: Pseudo

Figure 21: Pop-up Dialog Alerts for trades detected and executed on either Oanda
or Simulated broker

11360

Autonomous ANFIS and GA-Based Forex Agent

Actual and predicted ticks as of 16:00

11340} ... [

11320

S

#— High actual
+—+ High predictions
*— Low actual

Low predictions

Actount Status

o

Account ID: 8306674
Account Name: Demo
Balance: 10000.7145
Unrealized P&L: 0
Realized P&L: 0.74
Margin Used: 0
Margin Available: 10000.7145
Open Trades: 0

Open Orders: 0
Margin Rate; 0.05
Base Currency: USD

Trade Alert - AAGFA x| Trade Alert - AAGFA
X
§ Trade has been placed ‘0‘ Trade has been placed
Y 11300 Type: Buy - Type: Buy
£ Execution Price: 1.13164 Execution Price: 1.1313
Take Profit: 1.13605 Take Profit: 113533
Stop Loss: 112333 Stop Loss: 1.12493
1.1280 X
Date/Time: June 11 2015 at 14:30 Date/Time: June 112015 at 12:30
—]
11260} F L
1124“0“0“0“0“0“‘0“‘0“0“0“0“0“0“0““°.°.°°°°°°°
o 00 0% o0 o0 _d® L% o o0 O P @ O o0 P e® 00 00 o0 P Lof 0 o
P T PTG G @ P @ 8 G @ T 0T T AT T AN BTG AT AT 0

Time

Trades

Open Positions | Transaction History

OrderID Units Side Market Time Price TekeProfit Stop Loss

Figure 22: Two actual trades placed displaying corresponding notifications

We also give the user the ability to switch accounts, change alert email address,
or the instrument to trade with. In this line, an edit account details dialog is

provided, as shown on Figure

Lastly, Figure 24]is an actual alert email sent to the email address on file.

41

x| Autonomous ANFIS and GA-Based Forex Agent - g
File Account Agent Help

‘Account Status a2

200+ BEV ‘Account ID: 8596674

Account Name: Demo

Balance: 100007145

Unrealized P&L: 0

Realized P&L: 0.74

— High actual Margin Used: 0

| Hhen predictions Margin Available: 10000.7145
#— Low actual

| Lowpredictions Open Tradles: 0

H Open Orders: 0

Margin Rate: 0.05
Base Currency: USD

Please enter your new account details below:
OANDA AccountD: ||

OANDA AP Token: |

Trading Envirorment; | Practice ol

Instrument toTrade: | Click "Get Instrument List” after providing credentials ~ |

[Get Instrument List]

Your Email sddress: | |

oK Cancel

Trades &
Open Pasitions | Transaction History.
OrderID Units Side Market Time Price Take Profit Stop Loss

Figure 23: Edit Account Details Dialog while main program is running

é“ Inbox - piovertwo @outlook.c...

& Get Messages ~ # Write B Chat & AddressBook | W Tag ~ | @ Quick Filter | | Search.. <Ctri+K> Pl =
g 9
|| Printing K | & & ® @& | Filter these messages... <Ctri+5Shift+K> P |
201014297...pm.edu.ph
‘E; P t & & Subject ®° From © Date -~ B
() Inbox AAGFA - Trade Alert « asampoll @up.edu.ph .« 6/10/20157:02PM A
b T"“h_ AAGFA - Trade Alert - asampoll @up.edu.ph . 6/10/20157:08 PM
4k fGmait | i+ AAGFA - Trade Alert « asampoll@up.edu.ph ¢ 1230PM
Drafts
E < AAGFA - Trade Alert @ asampoll @up.edu.ph « 2:30PM
Sent Mail
CiEms < AAGFA - Trade Alert o asampoll @up.edu.ph . 3:00PM
L&) Al Mail v
‘ Spam (1) From asampoll @up.edu.phf} 4 Reply = Forward & Archive 0 Junk @ Delete
12 Trash Subject AAGFA - Trade Alert 12:30 PM
||y Important To Me <piovertwo@outlook.com> 17 Other Actions ~
|| Starred "
|, Follow up Trade has been placed
b Mise Type: Buy
||\ Priority Execution Price: 1.1313
||} Stat 130 Take Profit: 1.13533
454 pi @outlook.com S5top Loss: 1.12483
(] Inbox (2) Date/Time: June 11 2015 at 12:38
'] Drafts e o
"m ayieampol@gmail.com is up to date Send Later [IDLE] Unread: 2 Total: 1393 B

Figure 24: Actual email alerts sent by the program
VII. Discussions

The paper by Al-Refaie et. al. [6] which was the basis of this study traded
the EUR/USD pair. As such, this program was also executed on the EUR/USD
pair. The program allows the user to work on any currency pair that their broker

allows—in confidence that the algorithm could be extended to any Forex pair—but

42

it must be noted that the research and testing was done over EUR/USD.

The agent currently running and being live-tested was trained using a two-year
data set from April 2013 to 2015, following the pattern on Al-Refaie et. al. [6] The
reference testing set used to tune the decision making module is the two-month

data set immediately following the training set.

Training Data Set April 2013 - April 2015

Testing Data Set April 2015 - May 2015
Backtesting Test Set 1 | April 2015 - May 2015
Backtesting Test Set 2 | January - December 2014

Table 1: Data Set Segmentation

The profits calculated if the agent were run over a historical two-month and
one-year period are approximately $80 and $500, respectively, as seen on the actual
graph produced by the backtesting module of the program below. These profit
amounts were seen to be independent of the initial deposit as long as it is greater
than $1,000, as the program trades 1,000 units at every execution. Although Al-
refaie had an initial balance of $1,000, while these backtests assumed $10,000, they
can still be comparable if we were to assume 10:1 leverage—that is, the available
trading amount is $10,000 for a $1,000 deposit. Compared in the table below are

the average percent profits per month.

Agent Gross Profit Time Period Average Profit per Month
Al-Refaie $1,102 January 2011 - July 2012 $16.22
AAGFA (1) $80 April 2015 - May 2015 $40
AAGFA (2) $500 January 2014 - December 2014 $41.67

Table 2: Agent Profit Comparison

Although the AAGFA backtesting results appear more profitable at first glance,
it must be noted that 1) the backtesting module did not incorporate any commis-
sions or spreads which almost certainly will impact the gross profit, and 2) these
were tested during different periods, thus it may or may not be the case that the
period backtested for AAGFA was simply more ripe with trading opportunities.

Besides backtesting simulations, the agent has also demonstrated that it can

open positions which result in profit. Seen in Figures [27] and [28| are actual trans-

43

11500 T T T T T T T

1.1400}

[
[
oW
S o
s 3

Price of Instrument

1.1100}

11000 H H H H H H H
\e} V) V) \e} V) V) el
I\ o> o> o> o N o>
o7 o7 ®7 % o o1 N
Wl Wl Wl Wl Wl Wl

Date_Time

$10080

$10070 -

) $10060 -

g $10050 -

.2 $10040-

£ 510030

2 s10020f

$10010 - :
$10000 c" c" c" L)‘

" 28> N ® EiN {ﬂa\ 18

@ W W

Date_Time

g
o o »?

Figure 25: Backtesting Close Price and Equity Curve Plot - Two Months

1.4000

1.3500

1.3000F

f Instrument

ice o

1.2500}

Pri

12000 i ; ; ; ; ; ; ;
m n. N 3 & & » 3 3 3)
\,79\ A I *10\’ “10\’ “\1‘3\’ g@x ‘Q@ c@“x \,1“\‘ i
<@ W I W W A\ P 2 of WO o

Date_Time

$10500
$10400 -
$10300 -

$10200

Portfolio value

$10100 -

$10000 . .
3 !
N 318

[y) N 5 N
i e A S e
e e® o< W\ o

LY LY 1Y Y
2 A 2% o
< o' 9 oo W

Date_Time

Figure 26: Backtesting Close Price and Equity Curve Plot - One Year

action history logs that show the closing of a trade placed by the broker, resulting

in profit.

Trades

Open Positions Transaction History

Transaction ID Type Units Instrument Side Time Price Profit/Loss

1 991054823 TAKE_PROFIT_FILLED 1000 EUR_USD buy 2015-06-11 15:535:13 1.12604 3.72

Figure 27: Profitable Trade as seen in AAGFA

Besides profit, it would also be prudent to look at and consider the accuracy
of the predictor. Presented below is the graph of the Mean Squared Error from

Al-refaie’s paper and a table of the MSE’s of the ANFIS of AAGFA.

44

(W OANDM fxTrade Practice’

Connection Account Tools Resources Window Help

Positions (0) Exposure (0) Activity (11) MNews
TICKET TYPE MARKET UNITS FRICE
991054823 Interest Payment EURMSD 1 -0.0006

991054823 Take Profit EURMISD 1,000 1.12604 3.7200

’ Trades (0) Orders (0)
{ PROFIT (USD)
Mew Trade

Figure 28: Profitable Trade as seen in Oanda fxTrade

0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

i |

t+1 t+2 t+3 t+4 t+5 t+6
B MSE of high price FISs MSE of low price FISs

Figure 29: MSE of Al-Refaie’s ANFIS Models

Time High Low

(t+1) | 0.0001085 | 0.0001083
(t+2) | 0.0002186 | 0.0002185
(t+3) | 0.0003477 | 0.0003484
(t +4) | 0.0004908 | 0.0004922
(t +5) | 0.0006445 | 0.0006468
(t +6) | 0.0008058 | 0.0001085

Table 3: AAGFA ANFIS Root Mean Squared Error

While the resulting RMSE’s were comparable to Al-refaie’s, initial test runs of

the ANFIS prediction sometimes produced anomalous results visually. The root
of this was traced back to the EMA smoothing utilized. Initially, the output for
the ANFIS was also taken from the smoothed series. The pre-processing function
was modified to pair the smoothed inputs with the raw output. This caused the

output predictions to behave more as expected, and MSE was even lowered.

45

VIII. Conclusions

This study looked into creating an automated trader that is based upon predic-
tion provided by the Adaptive Neuro-Fuzzy Inference System and trade timing
by the Non-Dominated Sorting Genetic Algorithm. It was realized as a desktop
application written using Python with the PyQt4 framework, connected to MAT-
LAB using the MATLAB Engine for Python. The smart agent can connect to
the user’s Oanda brokerage account using it’s REST Web API to retrieve prices,
account status, and place orders. The same feature was also demonstrated to work
with a simulated broker with a generic HTTP API similar to Oanda.

Based on backtesting results and empirical evidence from live trading, the
AAGFA’s strategy is able to produce profits when trading fully automatically. Its
prediction accuracy is also at par with the original implementation by Al-Refaie
et. al. In addition to this, the agent provides capabilities for user intervention
by allowing editing and closing of open positions, and going on alert-only mode,
which only notifies the user, but does not perform trades.

Being compatible with a demo Oanda account, the AAGFA can be evaluated
by any user to paper trade on their demo account so that they may see its ability
when running live and decide for themselves to hook it up to an actual trading
account. This will allow them to come to the same conclusion as this study: that
the Autonomous ANFIS and GA-based Forex Agent is a reliable automated trader

that produces profit.

46

IX. Recommendations

While this agent is currently tailored to view account status and perform actual
trades over the Oanda API, the system also has concurrent functionality to place
orders and retrieve previously sent orders to a simulated broker which offers a
similar Web API, also made by the developer. This establishes the extensibility
of the program to work with any HTTP API similar to that provided by Oanda
and our simulated broker, with a minimally reasonable amount of effort. For
developers wanting to work on this point, it may be a worthwhile undertaking
to support brokers with FIX (Financial Information Exchange) API’s, or to work
on building wrappers to expose MetaTrader functions to Python and port the
AAGFA accordingly.

As Al-refaie observed, Mean Squared Error for training was minimized when
the input was passed through a smoothing filter, as this reduces noise in the input.
They utilized an exponential moving average (EMA) to smooth the data. However,
no specified EMA lookback period was specified, thus leading to the decision of
using the default time period of the EMA function of TA-Lib which is 30. This
may be a point of further optimization in the future.

Since the trader can only function as long as it’s open as a desktop program
and is connected to the Internet, another possible avenue for improvement would
be to extract just the trading loop’s functionality and have it run as a daemon
on a remote server. This way, a user may choose to rent a VPS or other remote
computing platform like Amazon Web Services which offers almost 100% uptime
to ensure that the agent captures all potential trades.

Finally, for the convenience of the user who would want to work with multiple
instruments, an option to initially train over several currencies may be developed.
This will allow the user to switch instruments while the program is running without

having to interrupt trading just to re-train the predictors.

47

X.

1]

Bibliography

S. Yao, M. Pasquier, and C. Quek, “A foreign exchange portfolio management
mechanism based on fuzzy neural networks,” in Evolutionary Computation,

2007. CEC 2007. IEEE Congress on, 09 2007, pp. 2576-2583.

B. Gharleghi, A. H. Shaari, and N. Shafighi, “Predicting exchange rates
using a novel ”cointegration based neuro-fuzzy system”.,” International
Economics, vol. 137, no. 0, pp. 88 — 103, 2014. [Online]. Available:

http:/ /www.sciencedirect.com /science/article/pii/S2110701713000528

J. Murphy, Technical Analysis of the Financial Markets: A Comprehensive
Guide to Trading Methods and Applications, ser. New York Institute of
Finance Series. New York Institute of Finance, 1999. [Online]. Available:

https://books.google.co.in/books?id=bzhXEqdr_IcC

Technical indicator. [Online]. Available: http://www.investopedia.com/

terms/t/technicalindicator.asp

M. Chlistalla, “High-frequency trading: Better than its reputa-
tion?” Deutsche Bank Research, Mar. 2011. [Online]. Avail-
able: http://www.dbresearch.com/PROD/DBR_INTERNET_DE-PROD/
PRODO0000000000270960.pdf

M. Alrefaie, A.-A. Hamouda, and R. Ramadan, “A smart agent to trade and
predict foreign exchange market,” in Computational Intelligence for Engi-

neering Solutions (CIES), 2013 IEEE Symposium on, 04 2013, pp. 141-148.

E. Chan, Quantitative Trading: How to Build Your Own Algorithmic
Trading Business, ser. Wiley Trading. Wiley, 2009. [Online]. Available:
http://books.google.com.ph /books?id=NZIVOM>5IjedC

K. Kim and J. Kaljuvee, Electronic and Algorithmic Trading Technology,

ser. Complete Technology Guides for Financial Services. Boston: Academic

48

http://www.sciencedirect.com/science/article/pii/S2110701713000528
https://books.google.co.in/books?id=5zhXEqdr_IcC
http://www.investopedia.com/terms/t/technicalindicator.asp
http://www.investopedia.com/terms/t/technicalindicator.asp
http://www.dbresearch.com/PROD/DBR_INTERNET_DE-PROD/PROD0000000000270960.pdf
http://www.dbresearch.com/PROD/DBR_INTERNET_DE-PROD/PROD0000000000270960.pdf
http://books.google.com.ph/books?id=NZlV0M5Ije4C

[10]

[11]

[12]

[13]

[15]

Press, 2007. [Online]. Available: |http://www.sciencedirect.com/science/

article/pii/B9780123724915500033

C. Garner, Currency Trading in the Forer and Futures Markets. FT
Press, 2012. [Online]. Available: http://books.google.com.ph/books?id=
LkEf6cVMbKcC

D. Bell and L. Gana, “Algorithmic trading systems: A multifaceted view
of adoption,” in System Science (HICSS), 2012 45th Hawaii International
Conference on, 01 2012, pp. 3090-3099.

R. Barbosa and O. Belo, “Autonomous forex trading agents,” in Advances
in Data Mining. Medical Applications, E-Commerce, Marketing, and
Theoretical Aspects, ser. Lecture Notes in Computer Science, P. Perner, Ed.
Springer Berlin Heidelberg, 2008, vol. 5077, pp. 389-403. [Online|. Available:
http://dx.doi.org/10.1007/978-3-540-70720-2_30

N. Gradojevic and R. Gencay, “Fuzzy logic, trading uncertainty and
technical trading,” Journal of Banking € Finance, vol. 37, no. 2, pp.
578 — 586, 2013. [Online]. Available: http://www.sciencedirect.com /science/
article/pii/S0378426612002889

J-Y. Wu and C. jie Lu, “Computational intelligence approaches for stock
price forecasting,” in Computer, Consumer and Control (IS3C), 2012 Inter-

national Symposium on, 06 2012, pp. 52-55.

D. Khoonmirzaie, S. Rasouli, and E. Farrokhi, “Designing perceptron three-
layered neural network for predicting dollar-franc currency pair in interna-

tional exchange market,” Journal of mathematics and computer science, 2010.

W. H. L. Yu, S. Wang and K. K. Lai, “Are foreign exchange
rates predictable? a literature review from artificial neural networks

perspective,” in Foreign-Exchange-Rate Forecasting With Artificial Neural

49

http://www.sciencedirect.com/science/article/pii/B9780123724915500033
http://www.sciencedirect.com/science/article/pii/B9780123724915500033
http://books.google.com.ph/books?id=LkEf6cVMbKcC
http://books.google.com.ph/books?id=LkEf6cVMbKcC
http://dx.doi.org/10.1007/978-3-540-70720-2_30
http://www.sciencedirect.com/science/article/pii/S0378426612002889
http://www.sciencedirect.com/science/article/pii/S0378426612002889

[17]

[18]

[20]

[22]

Networks. Springer US, 2007, vol. 107, pp. 3-23. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-71720-3_1

A. A. Baasher and M. W. Fakhr, “Forex trend classification using machine
learning techniques,” in Proceedings of the 11th WSFEAS International
Conference on Applied Computer Science, ser. ACS’11. World Scientific
and Engineering Academy and Society (WSEAS), 2011, pp. 41-47. [Online].
Available: http://dl.acm.org/citation.cfm?id=2051254.2051263

N. Siddique and H. Adeli, Fuzzy Systems and Applications. John
Wiley & Sons Ltd, 2013, pp. 65-101. [Online]. Available: http:
//dx.doi.org/10.1002/9781118534823.ch3

L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338 — 353,
1965. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
5001999586590241X

L.-Y. Wei, C.-H. Cheng, and H.-H. Wu, “A hybrid ANFIS based on
n-period moving average model to forecast TAIEX stock,” Applied Soft
Computing, vol. 19, mno. 0, pp. 86 — 92, 2014. [Online]. Available:

http:/ /www.sciencedirect.com /science/article/pii/S1568494614000416

J.-S. Jang, “Anfis: adaptive-network-based fuzzy inference system,” Systems,
Man and Cybernetics, IEEE Transactions on, vol. 23, no. 3, pp. 665685, May
1993.

Z. Tan, C. Quek, and P. Y. Cheng, “Stock trading with cycles: A financial
application of {ANFIS} and reinforcement learning,” Expert Systems with
Applications, vol. 38, no. 5, pp. 4741 — 4755, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S095741741000905X

G. Nuti, M. Mirghaemi, P. Treleaven, and C. Yingsaeree, “Algorithmic trad-

ing,” Computer, vol. 44, no. 11, pp. 61-69, 11 2011.

20

http://dx.doi.org/10.1007/978-0-387-71720-3_1
http://dl.acm.org/citation.cfm?id=2051254.2051263
http://dx.doi.org/10.1002/9781118534823.ch3
http://dx.doi.org/10.1002/9781118534823.ch3
http://www.sciencedirect.com/science/article/pii/S001999586590241X
http://www.sciencedirect.com/science/article/pii/S001999586590241X
http://www.sciencedirect.com/science/article/pii/S1568494614000416
http://www.sciencedirect.com/science/article/pii/S095741741000905X

[23]

[24]

[25]

[20]

[27]

M. A. H. Dempster, T. Payne, Y. Romahi, and G. W. P. Thompson, “Com-
putational learning techniques for intraday fx trading using popular technical
indicators,” Neural Networks, IEEE Transactions on, vol. 12, no. 4, pp. 744—
754, 07 2001.

A. Hirabayashi, C. Aranha, and H. Iba, “Optimization of the trading
rule in foreign exchange using genetic algorithm,” in Proceedings of
the 11th Annual Conference on Genetic and FEvolutionary Computation,
ser. GECCO ’09. ACM, 2009, pp. 1529-1536. [Online]. Available:
http://doi.acm.org/10.1145/1569901.1570106

S. Papadamou and G. Stephanides, “Improving technical trading systems
by using a new matlab-based genetic algorithm procedure,” Mathematical
and Computer Modelling, vol. 46, no. 12, pp. 189 — 197, 2007, proceedings
of the International Conference on Computational Methods in Sciences
and Engineering 2004. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0895717707000386

R. Kuwo, C. Chen, and Y. Hwang, “An intelligent stock trading
decision support system through integration of genetic algorithm based
fuzzy neural network and artificial neural network,” Fuzzy Sets and
Systems, vol. 118, mno. 1, pp. 21 — 45, 2001. [Online]. Available:

http://www.sciencedirect.com /science/article/pii/S0165011498003996

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiob-
jective genetic algorithm: Nsga-ii,” Fvolutionary Computation, IEEE Trans-

actions on, vol. 6, no. 2, pp. 182-197, Apr. 2002.

E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary
algorithms: Empirical results,” Fwvol. Comput., vol. 8, no. 2, pp. 173-195,
Jun. 2000. [Online|. Available: http://dx.doi.org/10.1162/106365600568202

51

http://doi.acm.org/10.1145/1569901.1570106
http://www.sciencedirect.com/science/article/pii/S0895717707000386
http://www.sciencedirect.com/science/article/pii/S0895717707000386
http://www.sciencedirect.com/science/article/pii/S0165011498003996
http://dx.doi.org/10.1162/106365600568202

[29]

[33]

[34]

[36]

[37]

O. Rifki and H. Ono, “A survey of computational approaches to portfolio
optimization by genetic algorithms,” O. Rifki and H. Ono, Eds. Society for
Computational Economics, 2012-06, Conference Paper. [Online]. Available:

http://id.nii.ac.jp/0001/00021853

L.-Y. Wei, “A hybrid model based on {ANFIS} and adaptive expectation
genetic algorithm to forecast {TAIEX},” Economic Modelling, vol. 33, no. 0,
pp. 893 — 899, 2013. [Online]. Available: |http://www.sciencedirect.com/

science/article/pii/S0264999313002253

D. Ghose, S. Panda, and P. Swain, “Prediction and optimization
of runoff via {ANFIS} and {GA},” Alezandria FEngineering Journal,
vol. 52, mo. 2, pp. 209 — 220, 2013. [Online]. Available: http:
/ /www.sciencedirect.com/science/article/pii/S1110016813000082

(2014, Oct.) Statistical arbitrage - definition and other information. [Online].

Available: http://www.hedgefund-index.com/d_statarb.asp

S. C. Lee and E. T. Lee, “Fuzzy neural networks,” Mathematical Biosciences,

vol. 23, 1975.

M. Buragohain, “Adaptive network based fuzzy inference system (anfis) as
a tool for system identification with special emphasis on training data mini-

mization,” July.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, ser.
Wiley Interscience Series in Systems and Optimization. Wiley, 2001. [Online].
Available: http://books.google.com.ph/books?id=0STn4GSy2uQC

A. Godinez, L. Espinosa, and E. Montes, “An experimental comparison of

J

multiobjective algorithms: Nsga-ii and omopso,” in Electronics, Robotics and

Automotive Mechanics Conference (CERMA), 2010, 08 2010, pp. 28-33.

Matlab engine for python. [Online|. Available: http://www.mathworks.com/

help/matlab/matlab-engine-for-python.html

52

http://id.nii.ac.jp/0001/00021853
http://www.sciencedirect.com/science/article/pii/S0264999313002253
http://www.sciencedirect.com/science/article/pii/S0264999313002253
http://www.sciencedirect.com/science/article/pii/S1110016813000082
http://www.sciencedirect.com/science/article/pii/S1110016813000082
http://www.hedgefund-index.com/d_statarb.asp
http://books.google.com.ph/books?id=OSTn4GSy2uQC
http://www.mathworks.com/help/matlab/matlab-engine-for-python.html
http://www.mathworks.com/help/matlab/matlab-engine-for-python.html

[38]

[39]

[41]

[42]

F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,
“DEAP: Evolutionary algorithms made easy,” Journal of Machine Learning

Research, vol. 13, pp. 2171-2175, jul 2012.

E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001—, [Online; accessed 2015-06-11]. [Online]. Available:

http://www.scipy.org/

S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A
structure for efficient numerical computation,” Computing in Science €
Engineering, vol. 13, no. 2, pp. 22-30, 2011. [Online]. Available: http:
/ /scitation.aip.org/content /aip/journal /cise/13/2/10.1109/MCSE.2011.37

J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing
in Science & FEngineering, vol. 9, mno. 3, pp. 90-95, 2007. [Online].
Available: http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/
MCSE.2007.55

W. McKinney, “Data structures for statistical computing in python,” in Pro-
ceedings of the 9th Python in Science Conference, S. van der Walt and J. Mill-

man, Eds., 2010, pp. 51 — 56.

53

http://www.scipy.org/
http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2011.37
http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2011.37
http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.55
http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.55

XI. Appendix

A. Source Code

R

Created on May 20, 2015

Main UI Window

@author: ArielKenneth

N

from __future__ import unicode_literals

import platform

import sys

import time

import datetime

from PyQt4.QtCore import (PYQT_-VERSION_STR, QSettings, QT_-VERSION_STR, QVariant, Qt, QDir)

from PyQt4.QtGui import (QAction, QApplication, QDockWidget, QDialog, QFrame, QlIcon,

QLabel, QListWidget, QMainWindow, QMessageBox, QTableWidget,

QErrorMessage, QTabWidget, QFileDialog, QWidget, QVBoxLayout)

from matplotlib.backends.backend_qtdagg
from matplotlib.backends.backend_qt5
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from matplotlib import dates

import matplotlib.ticker as mtick

import FigureCanvasQTAgg as
import NavigationToolbar2QT as

FigureCanvas
NavigationToolbar

from aagfa import account_setup-wizard, trading-loop ,
modify_dialog , oanda_-funcs, edit-details ,
email_alert , backtest_-diag , strategy,

from aagfa import config

import oandapy

from matplotlib.dates

gui_update_thread ,\
retrain_dialog , training_dialog ,\
pseudo_-broker

import DateFormatter

class Window (QMainWindow) :
def __init__(self, parent=None):

super (Window, self). __init__(parent)

self.setObjectName (” MainWindow”)

self.create_widgets ()

self.create_actions ()

self.load_settings ()

self .setWindowTitle(config._program_name)

!11Only for testing purposes
self .settings.setValue(”app/firstRun”, True)
self .run_gui-update_loop ()
self . run_trading_loop ()
self.display_oanda = True
self.tradeDetectedNotif (”Buy”, 1.1234, 1.0123)

create_widgets (self):
self.create_central_plot ()

#create status dock

accountStatsWidget = QDockWidget(” Account Status”, self)

accountStatsWidget.setFeatures (QDockWidget. DockWidgetFloatable |
QDockWidget . DockWidgetMovable)

accountStatsWidget.setObjectName (” StatusWidget”)

accountStatsWidget.setAllowedAreas (Qt.LeftDockWidgetArea |

Qt.RightDockWidgetArea)

self .listAccountWidget = QListWidget ()

self .listAccountWidget.setSelectionMode (QListWidget. NoSelection)

accountStatsWidget.setWidget (self.listAccountWidget) #CHANGE THIS TO SOMETHING APPROPRIATE

self.addDockWidget (Qt. RightDockWidgetArea, accountStatsWidget)

#create open positions dock

positionsWidget = QDockWidget(” Trades”, self)

positionsWidget .setFeatures (QDockWidget. DockWidgetFloatable |
QDockWidget . DockWidgetMovable)

positionsWidget .setObjectName (” PositionsWidget”)

positionsWidget .setAllowedAreas (Qt. BottomDockWidgetArea)

tabs = QTabWidget ()

self .openPositionsTable = QTableWidget ()

self.transHistoryTable

positionsWidget .setWidget (tabs)

self .addDockWidget (Qt. BottomDockWidgetArea, positionsWidget)

open_pos_labels = [” Order ID”, ”Units”, ”Side”, ”Market”, ”"Time”, ”Price”, ”"Take Profit”, ”Stop Loss”]
self .openPositionsTable.setColumnCount(len(open_pos_labels))

self .openPositionsTable.setHorizontalHeaderLabels(open_pos_labels)

self .openPositionsTable.setEditTriggers (QTableWidget. NoEditTriggers)
self.openPositionsTable.setSelectionBehavior (QTableWidget.SelectRows)

trans_history_labels = [” Transaction ID”, ”Type”, ”Units”, ”Instrument”,” Side” ,” Time”, ”Price”, ”Profit

= QTableWidget ()
tabs.addTab(self.openPositionsTable ,
tabs.addTab(self.transHistoryTable,

”Open Positions”)
”Transaction History”)

o4

self .transHistoryTable.setColumnCount(len(trans_history_-labels))

self .transHistoryTable.setHorizontalHeaderLabels(trans_history_labels)
self.transHistoryTable.setEditTriggers (QTableWidget. NoEditTriggers)
self .transHistoryTable.setSelectionMode (QTableWidget. NoSelection)

#create status bar

self.sizeLabel = QLabel ()
self.sizeLabel.setFrameStyle (QFrame. StyledPanel | QFrame. Sunken)
status = self.statusBar ()

status.setSizeGripEnabled (False)

status.addPermanentWidget (self.sizeLabel)

#create error message
self .errorMessageDialog = QErrorMessage ()
self .errorMessageDialog.setWindowTitle(config._program_name_short + ” — Error”)

create_central_plot(self):
)

Idea obtained from http://matplotlib.org/examples/user_interfaces/embedding_in_qt4.html

P

plot_widget = QWidget ()
plot_widget .setObjectName (” centralPlot”)

a figure instance to plot on

self.figure = plt.figure ()

this is the Canvas Widget that displays the ‘figure ¢

it takes the ‘figure ‘ instance as a parameter to __init.__
self.canvas = FigureCanvas(self.figure)

this is the Navigation widget
it takes the Canvas widget and a parent
self .toolbar = NavigationToolbar(self.canvas, self)

set the layout

layout = QVBoxLayout(self)

layout .setObjectName (” thisone”)
layout .addWidget (self.toolbar)
layout .addWidget (self.canvas)
plot_widget .setLayout (layout)

self .setCentralWidget (plot_widget)

create_actions (self):
#ADD SLOTS in the future as necessary

newAccountAction = self.createAction("&Start Setup Wizard”,
shortcut="Ctrl4N”, tip="Enter New Account Details”, slot=self.rerun_wizard)
closeAction = self.createAction(?&Close”,
shortcut="Alt+F4” , tip="Close agent and stop execution”, slot=self.close)
editAccountAction = self.createAction("&Edit Account Details”,
shortcut="Ctrl4+E”, tip="Edit trading account credentials”, slot=self.edit_-details)
toggleViewAction = self.createAction (”S&witch Oanda/Pseudo”,
shortcut="Ctrl4W”, tip="Toggle account status view to the other account”, slot=self.switch_oand
backtestAction = self.createAction(” Perform a &Backtest”,
shortcut="Ctrl4+B”, tip="Perform a backtest based on provided data set/time period”, slot=self.b
toggleAction = self.createAction(” Toggle Auto Mode On/Off”,
shortcut="Ctrl4+A”, tip="Auto mode allows the agent to perform trades automatically; otherwise,
slot=self.toggle_auto)
retrainAction = self.createAction("&Re—train Predictors”,
shortcut="Ctrl4+R”, tip="Feed new data into ANFIS”, slot=self.retrain)
start Action = self.createAction("&Start Agent”,
shortcut="Ctrl4S”, tip="Activate automated trader”, slot=self.start_-trading)
stopAction = self.createAction (”S&top Agent”,
shortcut="Ctrl4+T”, tip="Halt trader from processing orders”, slot=self.stop_-trading)
about_action = self.createAction(”&About”, slot=self.helpAbout, tip="About This Program”)

fileMenu = self.menuBar().addMenu(”&File”)
accountMenu = self.menuBar ().addMenu(”& Account”)
agentMenu = self.menuBar ().addMenu(”& Agent”)
helpMenu = self.menuBar ().addMenu(”&Help”)

self.addActions (fileMenu, (newAccountAction,closeAction))

self.addActions (accountMenu, (editAccountAction,h backtestAction, toggleViewAction))
self.addActions (agentMenu, (retrainAction, startAction, stopAction, toggleAction))
self.addActions (helpMenu, (about_action ,))

load_settings (self):
self.settings = QSettings ()
self .restoreGeometry (
self .settings.value (” MainWindow/Geometry”).toByteArray ())
self . restoreState(self.settings.value(”MainWindow/State”).toByteArray ())

self.api_-token = str(self.settings.value(”app/api-token”).toString())

self.account_id = str(self.settings.value(”app/account_id”).toString ())

self .instrument = str(self.settings.value(”app/instrument”).toString ())

self .environment = str(self.settings.value(”app/environment”).toString())

self . testing_path = str(self.settings.value(” data/testing_-path”).toString())

self .auto_mode = self.settings.value(” app/automode”).toBool ()

self.email = str(self.settings.value(”app/email”).toString())

print ”Email loaded:”, str(self.settings.value(”app/email”).toString())

try :
high_hist = [x.toFloat ()[0] for x in self.settings.value(”data/highHist”).toList ()]
high_pred = [x.toFloat ()[0] for x in self.settings.value(”data/highPred”).toList ()]
low_hist = [x.toFloat ()[0] for x in self.settings.value(”data/lowHist”).toList ()]
low_pred = [x.toFloat ()[0] for x in self.settings.value(”data/lowPred”).toList ()]

self . firstPlot (high_hist , high_pred, low_hist, low_pred)
except Exception:
self . firstPlot ([], [], [], [])

95

def

createAction(self , text, slot=None, shortcut=None, icon=None,
tip=None, checkable=False):
action = QAction(text, self)
if icon is not None:
action.setIcon (QIcon(”:/{0}.png”.format (icon)))
if shortcut is not None:
action.setShortcut (shortcut)
if tip is not None:
action.setToolTip (tip)
action.setStatusTip (tip)
if slot is not None:
action.triggered.connect(slot)
if checkable:
action.setCheckable (True)
return action

setup-trading_signals (self):

#for info messages to display in status bar or something

self .trading_loop.trading_info_signal.connect(self.updateStatus)

#for error messages to display in status bar or something
self.trading_loop.trading_error_signal.connect(self.showErrorDialog)

for urgent trade placement notification
self.trading_loop.trade_placed_signal.connect(self.tradePlacedNotif)

for new ticks — args are 1) high hist 2) high pred 3) low hist 4) low pred
self.trading_-loop.new_ticks_signal.connect(self.plotNewValues)

run_trading_loop (self):

if self.settings.value(”app/firstRun”, defaultValue=True).toBool():
self . firstRun ()
else:
self .running = self.settings.value(”app/trade_loop_-running”).toBool()
self .auto_mode = self.settings.value(”app/automode”).toBool()
self .trading_-loop = trading_-loop.TradingLoop(self.running, self.auto_-mode)

self .setup_trading_signals ()

TODO Turn this on when needed
self.trading_loop.start ()

self . updateStatus(” Trading loop started”)

run_gui_update_loop (self):
self.gui_update_loop = gui_-update_thread.GuiUpdateThread (
self.openPositionsTable, self.transHistoryTable, self.listAccountWidget)
self.setup_-gui-signals ()
self.gui_update_loop.start ()

setup-gui-signals (self):
self .openPositionsTable.cellDoubleClicked.connect(self.modify_trade)
self.gui_update_loop.status_bar_update.connect(self.updateStatus)

closeEvent (self , event):
if self.okToContinue ():
self .settings.setValue (” MainWindow/Geometry”, QVariant (
self .saveGeometry ()))
self.settings.setValue (”MainWindow/State”, QVariant (
self.saveState ()))

self .settings.setValue(”app/trade_loop_running”, QVariant(
self.running))
self.settings.setValue(” app/automode”, QVariant (

self.auto_mode))
event .accept ()
else:
event .ignore ()

okToContinue(self):

reply = QMessageBox.question (self , 'Message’,
” Are you sure you want to quit?”, QMessageBox.Yes |
QMessageBox .No, QMessageBox.No)

return reply == QMessageBox. Yes

addActions(self , target, actions):
for action in actions:
if action is None:
target .addSeparator ()
else:
target.addAction(action)

updateStatus(self , message):
self.statusBar ().showMessage (message, 5000)

showErrorDialog(self , message):
self .errorMessageDialog.showMessage (message -+
?
Date/Time: {0}”.format(time.strftime(”%B %d %Y at YH:%M”)))

tradePlacedNotif (self , side, execution_price, take_profit, stop-loss, broker_chosen):
time_now = time.strftime("%B %d %Y at Y%H:%M”)
message= ’'’’Trade has been placed\n

Type: {0} \n Execution Price: {3} \n Take Profit: {1} \n Stop Loss: {2}

\n Date/Time: {4}

\n Broker: {5}’’’ ’.format(side, take_profit, stop-loss, execution_price, time_now, broker_chosen)
email_alert.send_email_alert(self.email, message)
QMessageBox . information (self , ”"Trade Alert — {0}”.format(config._program_name_short), message)
tradeDetectedNotif(self , side, take_profit, stop_loss):

time_.now = time.strftime("%B %d %Y at YH:%M”)
message = ’’’Trade has been detected\n
Type: {0} \n Take Profit: {1} \n Stop Loss: {2}

56

RiE

I3k

\n Date/Time

: {3}’ .format (side ,

switch_oanda(self):
self.gui_update_loop.account_display_changed .emit ()
if self.display_oanda:

self .

self.display_oanda = False
else:

self

self.display_oanda = True

assert self.displ

plotNewValues(self ,

time labels

hist_time_values
pred_time_values
hist_time_values
pred_time_values

create an axis
ax =

discards
ax.cla ()

print
try:
formatter =
ax.xaxis .
ax.xaxis.
ax.yaxis.

ax.yaxis.

plot data

ax.plot (hist_time_values, high_hist ,
ax.hold (True)
ax.plot(pred_time_values, high_pred,
ax.plot(hist_time_values , low_hist ,
ax.plot(pred_-time_values , low_pred,
ax.grid ()

plt.setp(ax.get_xticklabels (),

#set labels
ax.axes .
ax.axes .
ax.axes .
fontP =

fontP .set_siz

self.figure.

'DEBUG: max of each

ay-oanda ==

high_hist ,

= [datetime.datetime.now() + datetime.timedelta(minutes
= [datetime.datetime.now() + datetime.timedelta(minutes

”Trade Alert —

updateStatus (”Now displaying Simulated Broker

high_pred ,

take_profit ,
email_alert.send_email_alert(self.email,
QMessageBox . information (self ,

stop-loss , time_now)

message)

account data”)

.updateStatus ("Now displaying Oanda account data”)

self.gui_update_loop .display_-oanda

low_hist , low_pred):

= dates.date2num (hist_time_values)
= dates.date2num (pred_time_values)

the old graph

set-xlabel (’Time’)
set-ylabel (’Price)
set_-title (’Actual and predicted ticks
FontProperties ()

e (’small)

add_subplot (111)

series

from plotting:’,

DateFormatter (’%H:%M’)
set_major_formatter (formatter)
set_major_locator (dates.
set-major_formatter (mtick.FormatStrFormatter ('%.4f "))
loc = mtick.MultipleLocator (base=0.001) # this
set_major_locator (loc)

rotation =30,

max(high_hist),

HourLocator ())

locator puts ticks

gx—)
b —)
Cra—)
y+-=7)

as

{0}”.format (config._program_name_short),

max (high_pred),

at

of {0}’.format (time.

= 30 * x) for x
= 30 * x) for x

in
in

regular

horizontalalignment="right ’)

strftime (" %H:%M”)))

ax.legend ([’ High actual’, ’High predictions’, ’'Low actual’, ’'Low predictions’], ”best”,

refresh canvas

self.canvas.draw ()

self .updateStatus (”New values plotted”)
except Exception as e:

ax.axes.set_title ('"No values yet’)

print str(e)
#for future reference
self .settings.setValue(”data/highHist”, QVariant.fromList(high_hist))
self .settings.setValue(”data/highPred”, QVariant.fromList(high_pred))
self .settings .setValue(”data/lowHist”, QVariant.fromList (low_hist))
self .settings.setValue(”data/lowPred”, QVariant.fromList (low_pred))
firstPlot (self, high_hist, high_pred, low_hist, low_pred):
random data
hist_time_values = range(l—config. _historical_ticks ,1)
pred_time_values = range(1,7)
create an axis
ax = self.figure.add_subplot(111)
discards the old graph
ax.cla ()
try:

if high_hist:

ax.yaxis.set_major_formatter (mtick.FormatStrFormatter (’%.4f "))
loc = mtick.MultipleLocator(base=0.001) # this locator puts ticks at regular

ax.yaxi

plot data
ax.
ax.
ax.
ax.

hold (True)
plot (pred.-

ax.plot (pred_
ax.grid ()
#set labels

plot (hist_time_values

plot (hist_time_values ,

s.set-major_locator (loc)

time_values ,

time_values ,

, high_hist ,

high_pred ,
low_hist ,
low_pred ,

gx—)
bt o)
Crae)
y+-)

o7

max (low_

intervals

prop =

message)

range(l—con
range (1,7)]

hist), max(

font]

intervals

ax.axes.set_xlabel (’Time’)
ax.axes.set_ylabel (’Price’)
ax.axes.set_title (’Values from last retrieval ”)

fontP = FontProperties ()
fontP .set_size (’small’)
ax.legend ([’High actual’, ’High predictions’, ’Low actual’, ’Low predictions’], ”"best”, prop

except Exception:
ax.axes.set_title ("No values yet’)

refresh canvas
self.canvas.draw()
self . updateStatus (”New values plotted”)

#for future reference

self .settings.setValue(”data/highHist”, QVariant.fromList(high_hist))
self .settings.setValue(”data/highPred”, QVariant.fromList(high_pred))
self .settings.setValue(”data/lowHist”, QVariant.fromList (low_hist))
self .settings .setValue(” data/lowPred”, QVariant.fromList (low_pred))

start_trading (self):
self .running = True
self.trading_loop.trading_loop_-state_changed.emit(True)

stop-trading (self):
self . running = False

self.trading_loop.trading_-loop_-state_changed .emit(False)

modify_trade(self , row, col):

trade_id = self.openPositionsTable.item (row, 0).text ()

units = self.openPositionsTable.item (row, 1).text ()

side = self.openPositionsTable.item (row, 2).text ()

instrument = self.openPositionsTable.item (row, 3).text ()

exec_time = self.openPositionsTable.item (row, 4).text ()

exec_price = self.openPositionsTable.item(row, 5).text ()

take_profit = self.openPositionsTable.item (row, 6).text ()

stop-loss = self.openPositionsTable.item (row, 7).text ()

mod_dialog = ModDialog(trade_-id , units, side, instrument, exec_time, exec_price,
take_profit , stop_-loss, self.account_-id, self.api_-token, self.environment)

if mod_dialog.exec_():

tp, sl, action_type = mod_dialog.get_tp_sl_type(self.display_oanda)
try:
oanda = oanda_funcs.create_instance(self.api_-token, self.environment)
if action_type == ’modify’ and self.display_oanda:
oanda_funcs.modify_trade (oanda, self.account_id, trade_id, tp, sl)
elif action_-type == ’close’ and self.display_-oanda:
oanda.close_trade (self.account_id, trade_id)
elif action_-type == ’modify’ and not self.display_-oanda:
pseudo_broker.modify_order (order_id=int (trade_-id), tp=tp, sl=sl)
else:
print pseudo_broker.close_order (order_-id=int(trade-id))
QMessageBox . information (self , config._program_name_short, ”Modify/Close trade successful.

except UnboundLocalError:
self.showErrorDialog (” Modify /Close cannot be made. Check your connection.”)
except oandapy.OandaError as oe:
self .showErrorDialog(” Server returned error for modify/close trade requests.\n”
?Error: {0}”.format (oe))
except pseudo_broker.BrokerError:
self .showErrorDialog (” Broker returned error for modify/close trade requests.”)

#44+ ACTION FUNCTIONS #44

def

helpAbout(self):
QMessageBox . about (self , "About ” 4+ config._program_name_short ,
777 {5} v {0}
<p>Copyright © 2015 Ariel Kenneth Ampol
All rights reserved.
<p>An Implementation of

A smart agent to trade and predict foreign exchange market
by Alrefaie et. al

<p>Python {1} — Qt {2} — PyQt {3} on {4}”””.format(
config._version, platform.python_version(),
QT_.VERSION_STR, PYQT.VERSION_STR,

platform .system (), config._program_name))

firstRun (self):

wizard = account_setup-wizard.SetupWizard ()

wizard . exec_ ()

start_.now = wizard.start_checkbox_value

auto_.mode = wizard.automode

self .settings.setValue(”app/firstRun”, False)

self . trading_-loop = trading_loop.TradingLoop(start_-now , auto_mode)
print ”Start now?”, start_-now

rerun-wizard (self):

reply = QMessageBox. question(self , ’Message’,
”Are you sure you want to re—run the wizard? ”
”This will halt the agent from working with the current account.”, QMessageBox.Yes |

QMessageBox .No, QMessageBox.No)

if reply == QMessageBox. Yes:
self.stop_-trading ()
try:
wizard = account_setup_-wizard.SetupWizard ()
wizard . exec_ ()
self .running = wizard.start_checkbox_value
auto_.mode = wizard.automode

self.load_settings ()

98

= fontl

”, but

self .settings.setValue(”app/firstRun”, False)

self .trading_loop = trading_loop.TradingLoop(self.running, auto_mode)
self.gui_update_loop.account_info_changed .emit ()
print ”Start now?”, self.running

except Exception as e:
self .showErrorDialog(” Error encountered after re—running wizard.\n”
»Error: {0}”.format (e))

def edit_details(self):
self.stop_-trading ()
edit_diag = EditDialog()
try:
if edit_-diag.exec_-():
QMessageBox . information (self , config._program_name_short, ”Account info updated.”, buttons=QMe:s
self . trading_loop.account_info_changed .emit ()
self.gui_update_loop.account_info_changed .emit ()
#reload settings

self.api-token = str(self.settings.value(”app/api-token”).toString())
self.account_id = str(self.settings.value(”app/account_id”).toString ())
self .instrument = str(self.settings.value(”app/instrument”).toString ())
self.environment = str(self.settings.value(”app/environment”).toString())
self.email = str(self.settings.value(”app/email”).toString())

except Exception as e:
self .showErrorDialog (” Could not update account details.\n”
»Error: {0}”.format (e))
self.start_trading ()

def retrain(self):
self.stop-trading ()
retrain_diag = RetrainDialog()
try:
retrain_diag.exec_()
except Exception as e:
self .showErrorDialog(” Could not update account details.\n”
?»Error: {0}”.format(e))
self .start_trading ()

def toggle_auto(self):
self.trading_loop.toggle_auto ()

self.auto.mode = self.trading_-loop.auto_mode

def backtest(self):
dialog = BacktestDiag(self.instrument, self.testing_path)

if dialog.exec_():

filename = str(dialog.ui.file_text.text())

initial_amount = float (dialog.ui.amount_text.text ())

bars, signals, returns = strategy.backtest(self.instrument, filename, initial_amount)
main = strategy .Window(bars, signals, returns)
main.setWindowTitle(config._program_name + ’> — Backtesting Results’)

time.sleep (2)
main.showMaximized ()

class BacktestDiag(QDialog):
def __init__(self, instrument, default_test_path):
QDialog. -_init__(self)

Set up the user interface from Designer.

self .ui = backtest_diag.Ui_Dialog()

self . ui.setupUi(self)

self .setWindowTitle(config._program_name_short + ” — Backtesting”)
self . ui.file_text.setText(default_test_path)

self.instrument = instrument
self . ui.choose_button.clicked.connect(self.showDialog)

def showDialog(self):
dialog = QFileDialog(self)
fname = dialog.getOpenFileName(self, ’Open file ’, QDir.homePath())
self . ui.file_text.setText (fname)

class ModDialog(QDialog):
def __init__(self, order_id, units, side, instrument, exec_time,
exec_price, take_profit, stop-loss, account_-id, api-token, environment):
QDialog. __init__(self)

Set up the user interface from Designer.

self . ui = modify_dialog.Ui_Dialog ()

self.ui.setupUi(self)

self .setWindowTitle(config._program_name_short + 7 — Modify/Close Order”)

self.take_profit = take_profit
self.stop-loss = stop-loss

Connect up the buttons.
self . ui.buttonBox.accepted.connect(self.accept)
self . ui.buttonBox.rejected .connect(self.reject)

#Modifications
header = "<p align=\"center\”>{0} {1} units {2} at {3}</p>7.format (
str.upper(str(side)), units, instrument, exec_price)

self.ui.main_info.setText (header)
self.ui.order_id_value.setText(order_id)
self.ui.time_value.setText (exec_-time)
self.ui.tp_-lineedit.setText(take_profit)

self . ui.sl_lineedit.setText(stop_-loss)
quote_type = (’ask’ if side == ’sell’ else ’bid’)

39

oanda = oanda_funcs.create_instance (api-token, environment)

latest_price = oanda_funcs.latest_price (oanda, str(instrument), quote_type)
print ”Fetch price params:”, str(instrument), quote_type
latest_price_line = "<p align=\"center\”>Last Quote: {0}</p>”.format(latest_price)

self.ui.last_quote.setText(latest_price_line)

def get_tp_sl_type(self, oanda_mode):
tp = float(self.ui.tp_lineedit.text ())
sl = float (self.ui.sl_lineedit.text ())
if oanda_mode:
tp = tp if tp <> float (self.take_profit) else None

sl = sl if sl <> float(self.stop_-loss) else None
action_type = 7close” if self.ui.close_pos_button.isChecked() else ”modify”
return tp, sl, action_type

class EditDialog(QDialog):
def __init__(self, parent=None):
QDialog. __init__(self)

Set up the user interface from Designer.

self . ui = edit_details.Ui_Dialog ()

self . ui.setupUi(self)

self.setWindowTitle(config._program_name_short + ” — Edit Account Details”)
self.ui.get_list_button.clicked.connect(self.get_instruments)

def accept(self):
configs = QSettings ()

api-token = self.ui.api-token_text.text ()

account_id = self.ui.account_id-text.text ()

instrument = self.ui.instrumen_combobox.currentText ()

environment = str(self.ui.environment_-comboBox.currentText ()).lower ()
email = self.ui.email_text.text ()

configs.setValue(”app/api-token”, api_-token)
configs.setValue(”app/account_id”, account_id)

configs.setValue(” app/instrument”, instrument)

configs.setValue(” app/environment”, environment)
configs.setValue(”app/email”, email)

super (EditDialog , self).accept ()

def get_instruments(self):

try:
api-token = str(self.ui.api-token_text.text ())
account_id = str(self.ui.account_id_text.text())
environment = str(self.ui.environment_-comboBox.currentText ()).lower ()
oanda = oanda_funcs.create_instance (api-token , environment)
available_instruments = oanda_-funcs.just_-the_instruments (oanda, account_-id)

self . ui.instrumen_combobox. clear ()
for instrument in available_instruments:
self . ui.instrumen_combobox.addItem (instrument)
except oandapy.OandaError as error:

QMessageBox . critical (self , "Error’,’ Account ID or API token not accepted:

pass

class RetrainDialog (QDialog):
def __init__(self, parent=None):
QDialog. __init__(self)

Set up the user interface from Designer.

self . ui = retrain_dialog.Ui_Dialog ()

self . ui.setupUi(self)

self .setWindowTitle(config._program_name_short + ” — Retrain Predictors”)

> 4+ str(error))

self . ui.training_file_.chooser_button.clicked.connect(lambda: self.showDialog(self.ui.training_-data_path
self . ui.testing_-file_.chooser_button.clicked.connect(lambda: self.showDialog(self.ui.testing_-data_path))

self . ui.begin_training_-button.clicked.connect(self.accept)

def accept(self):
super (RetrainDialog, self).accept()

training_path = str(self.ui.training_data_path.text ())
testing_path = str(self.ui.testing_-data_path.text())
training_diag = training_-dialog.TrainingDialog(training_path , testing_path)

training_diag.exec_()

def showDialog(self, line_edit_-to_change):
dialog = QFileDialog(self)
fname = dialog.getOpenFileName(self , ’Open file ’, QDir.homePath())
line_edit_-to_change .setText (fname)

if __name_.. == ’__main__":

app = QApplication(sys.argv)
app.setOrganizationName (config._organization)
app.setApplicationName (config._program_name)

main = Window ()
main.showMaximized ()

sys.exit (app.exec_())

P

Created on May 27, 2015
@author: ArielKenneth
s

import sys

60

import StringIO

import t

ime

import datetime

from PyQt4 import QtCore, QtGui

import oandapy

import talib

import numpy as np

import pandas as pd

import config

import matlab_funcs

from aagfa.oanda_-funcs import latest_price

from aagfa

LONG = 1
SHORT =
HOLD = 0

class

us

import oanda_funcs,

—1

TradingLoop (QtCore.QThread):

e this signal to flip trading

pseudo_broker

loop Start/Stop coming from GUI

trading_loop_state_changed = QtCore.pyqtSignal(bool)

us

acco

#for

e this as signal to
unt_info_changed

informational

refresh account
QtCore. pyqtSignal ()
messages to display

info when user changes it

in status bar or something

trading_-info_signal = QtCore.pyqtSignal(str)

#for

trading_error_signal

fo

trade_-placed_signal

fo
fo

trade_-detected_signal = QtCore.pyqtSignal(str,

fo

new

def

Re
def

_ticks_signal

error messages to display in

r urgent trade
r "alert —only” mode

r new ticks

— args are

__init__(self,
super (TradingLoop ,

start_now ,
self). __init

self . running = start_now
self.auto_mode = auto_mode
self.establish_signals_and_slots
self.fetch_settings ()

status
QtCore. pyqtSignal (str)
r urgent trade placement notification
QtCore.pyqtSignal (str ,
detection notification

QtCore. pyqtSignal (list ,

auto_mode=True,
__-(parent)

bar or something

— args: side, price, T/P,
float , float, float , st
— args: side, T/P, S/L
float , float)
1) high hist 2) high pred 3) low hist 4)
list , list , list)

parent=None):

O

establish_signals_and_slots (self):

self.trading_-loop_-state_changed.

connect (self.change_state)

self.account_info_changed .connect(self.fetch_settings)

fetch_settings (self):
settings = QtCore. QSettings ()

self.api-token = str(settings
self .account_-id = str(settings
self .instrument = str(settings
self .environment = str(settings
self.auto_mode = settings.

change_state (self ,
55

running):

.value (”app/api-token”).toString ())
.value (”app/account-id”).toString (
.value (”app/instrument”).toString (
.value (7 app/environment”). toStrin
value (” app/automode”). toBool ()

Start or stop the trading loop according to bool running
s
print ”"change_state called”, running
if running:
if running == self.running:
self .trading_info_signal.emit(” Agent already running!”)
else:
self .running = True
self .trading_-info_signal.emit(” Agent has been started”)
else:
if running == self.running:
self . trading_info_signal.emit(” Agent already stopped!”)
else:
self .running = False

self.trading_info_signal
toggle_auto (self):
s

Switch between auto mode on/off

R

if self.auto_mode:

self .auto_mode = False

self .trading_info_signal.emit(” Auto mode
else:

self .auto.mode = True

self .trading_-info_signal.emit(” Auto mode
commended by https://joplaete
__del__(self):
print ’Destructor called’

self . wait ()

run(self):

Main trading loop time control
B
if self.running:
self .trading_info_signal.emit(” Trading
else:

self .trading_info_signal.emit(” Trading

.wordpress

.emit (” Agent has been halted”)

set to OFF”)

set to ON”)

loop has started”)

loop is

61

S/L, chosenbroker
)

low pred

))

))

g())

currently halted”)

.com/2010/07/21/threading —with—pyqt4/

RiRi3

RiRiE

self .oanda = oandapy.API(self.environment, self.api-token)
self .load_ MATLAB ()

self.outstanding_-long = None

self.outstanding_short = None

#To prevent re—looping within the minute

just_looped = False
while True:
if self.running and time.strftime("%M’) in (708", ”30”) and not just_looped:

self .trading_info_signal.emit(” Trading processing commenced”)
self . main_loop ()
time.sleep (60) # to prevent re—looping within the minute
just_-looped = True

else:
time.sleep (2)
just_-looped = False

return

load_-MATLAB (self):

self . trading_info_signal.emit ("MATLAB engine being loaded”)
self.eng = matlab_funcs.init_-matlab ()
self.trading_info_signal.emit ("MATLAB engine has been loaded”)

main_loop (self):

RN

Main trading loop time control
s

high_predictions , low_predictions = [], []

Retrieve past 41 points
self .trading_-info_signal.emit(” Fetching latest ticks from server”)
try:
rates = self.oanda.get_history (
instrument=self.instrument, granularity=config._granularity ,
count=config. _historical_ticks+4config._ema_window —1, candleFormat="midpoint”)
except UnboundLocalError:
self .trading_error_signal.emit(” Trading info could not be retrieved. Check your connection.”)
print ”Couldn’t retrieve data at ”, datetime.datetime.now().time ()
return
except oandapy.OandaError as oe:
self.trading_error_signal.emit(” Error received from server while fetching price.\n”
”Error: {0}”.format (oe))

high_ticks = [x[’highMid’] for x in rates[’candles ']]

low_ticks = [x[’lowMid’] for x in rates[’candles ’]]

close_ticks = [x[’closeMid ’] for x in rates[’candles ’]]
print ’DEBUG: high_ticks:’, high_ticks

Predict next 6 points
self . trading-info_signal.emit(” Smoothing data”)

ema_high = talib .EMA(np.array (high_ticks), config._ema_window)[config._ema_window —1:].tolist ()
ema_low = talib .EMA(np.array (low_ticks), config._ema_window)|[config._ema_window —1:].tolist ()
assert len(ema_high) == config._historical_ticks

self.trading_info_signal.emit(” Predicting next points”)
out = StringlO.StringlO ()

err = StringlO.StringlIO ()
for i in range(l, config._horizon + 1):
high_predictions.append (
matlab_funcs.anfis_predict (self.eng, ema_high, ’high_{0}.fis ’.format (i), stdout=out, stderr=err
low_predictions .append (
matlab_funcs.anfis_predict (self.eng, ema_low, ’low_{0}.fis '.format (i), stdout=out, stderr=err))

if err.len > O:
self .trading_error_signal.emit(err.getvalue())

Send signal for plotting
self .new_ticks_signal.emit(
high_ticks [config._ema_window —1:], high_predictions , low_ticks[config._ema_-window —1:], low_predicti

##+# Compute technical indicators
self .trading_info_signal.emit(” Computing technical indicators”)

close_5_ema = pd.ewma(pd. Series(close_ticks), span=5)

close_12_ema = pd.ewma(pd. Series(close_ticks), span=12)
close_5_ema = talib.EMA(np.asarray(close_ticks), timeperiod=5)
close_12_ema = talib .EMA(np.asarray(close_ticks), timeperiod=12)

close_rsi = talib.RSI(np.asarray(close_ticks), timeperiod=8)

#Get RSI slope

xaxis = np.arange(0,config._trend_line_count)

linear_fit = np.polyfit(xaxis, close_rsi[—5:], 1)

slope = linear_fit [0]

Check for crossovers
self .trading_-info_signal.emit(” Identifying trading opportunities”)
peak = max(high_predictions)

trough = max(low_predictions)
if (close_5_ema.iloc[—1] >= close_12_ema.iloc[—1]) and (close_5_ema.iloc[—2] <= close_12_ema.iloc[—2]):
self .outstanding_-long = [LONG, peak , trough]
print ’'DEBUG pred_-high, pred_low: ’, high_predictions, low_predictions
elif (close_5_ema.iloc[—1] <= close_12_ema.iloc[—1]) and (close_5_ema.iloc[—2] >= close_12_ema.iloc[—2]
self.outstanding_short = [SHORT, trough , peak]
print ’DEBUG pred_high, pred_low: ’, high_predictions, low_predictions

##4 DUMMY EMIT /ERROR
self.trade_placed_signal.emit(’Buy’, 1.2345, 1.5432, 1.0000)
self.trading_error_signal.emit(”Dummy: Received unexpected response from server. ”
”Please check fxTrade for any changes that may have occurred.”)

62

IF I

##+# For now, let’s just log the positions
##+# Study these positions against real
print datetime.datetime.now (). time(),
self.trade_placed_signal.emit(”Dummy”, 1.4321,
Place order if necessary/timely — i.e. RSI is
if self.outstanding_-long and (close_rsi[—1] > 50
if self.place_order(self.outstanding_long):
self.outstanding_-long = None
self.outstanding_short and (close_rsi[—1] <
if self.place_order(self.outstanding_short):
self.outstanding_short = None

elif

data tomorrow
self.outstanding_long ,

self.outstanding_short ,
1.2345)

slope
1.0000,

above/below 50 and
and slope > 0):

rising /falling accordingly

50 and slope < 0):

def place_order(self, position):
)
Place an order
position — (side, T/P, S/L)
)
order_side = ’buy’ if position [0] == LONG else ’sell’
quote_type = ’ask’ if position [0] == LONG else ’bid’
oanda_current = oanda_funcs.latest_price(self.oanda, self.instrument, quote_type)

pseudo_current = pseudo_broker.get_current_price

(inst=self.instrument)

print ”Current ticks: (Oanda, Dummy)”, oanda_current, pseudo_current
tp = position[l]+ config._pip-adjustment if position [0] == LONG else position[l]—config._pip-adjustment
tp = float ("%.5f” % tp)
sl = position[2] —(config._pip-adjustment*1.5) if position[0] == LONG else position [2]+(config._pip-adjus
sl = float ("%.5f” % sl)
print ”Place order: (position, TP, SL)”, position[0], tp, sl, datetime.datetime.now()
if not self.auto_mode:
self . trade_placed_signal.emit(order_side.capitalize (), tp, sl)

return

#4#+ FOR TESTING PURPOSES DO BOTH (for
pseudo_-success = pseudo-broker.
acc_id=self.account_id ,

live ,
place_order (
side=order_side ,

inst=self

uncomment block below)

.instrument , units=config._order_units , tp=tp,

print ”Pseudo success?”, pseudo_success
return self.oanda_order (order_side , tp, sl)
Determine where to place order
if position[0] == LONG:
if oanda_current < pseudo_current:
return self.oanda_order(order_side, tp, sl)
else:
exec_price = pseudo_broker.place_order (
self.account_id, order_side, self.instrument, config._order_units, tp, sl)
if exec_price:
self . trade_placed_signal.emit(order_side.capitalize (), exec_price, tp, sl, ”Pseudo”)
else:
self .trading_error_signal.emit(” Pseudo broker trade place failed”)
else:
if oanda_-current > pseudo_current:
return self.oanda_order(order_side , tp, sl)
else:
exec_price = pseudo_broker.place_order (
self.account_id, order_side, self.instrument, config._order_units, tp, sl)
if exec_price:
self.trade_placed_signal.emit(order_side.capitalize (), exec_price, tp, sl, ”Pseudo”)
else:
self.trading_error_signal.emit(” Pseudo broker trade place failed”)

def oanda_order (self ,
try:

order_side , tp, sl):

response =
side=order_side , type=’'market’,

price = response [’ price ’]

self . trade_placed_-signal.emit(order_side.

takeProf

except oandapy.OandaError as oe:
try to remedy via manual edit
try :
#stop loss is the problem

if oe.get_code() == 33 and order_side ==
position = (order_side , tp,
response =
elif oe.get_code() == 33 and order_side
position = (order_side, tp,
response =

self .oanda.create_order (self.account_id,

capitalize (),

instrument=self
stopLoss=sl)

.instrument , units=config._order

it=tp,
sl , 7Oanda”)

price, tp,

SHORT:

sl4+config._pip-adjustment)
self.oanda_order (position)

== LONG:
sl—config._pip-adjustment)
self.oanda_order (position)

take profit is the problem

elif oe.get_code() == 34 and order_side == SHORT:
position = (order_side , tp—config._pip-adjustment , sl)
response = self.oanda_order(position)

elif oe.get_code() == 34 and order_side == LONG:
position = (order_side , tp+config._pip-adjustment, sl)

response =
else:

self . trading_-error_signal.emit(” Trade detected

”\nError:
return False

except oandapy.OandaError as oe2:

self .trading_error_signal.emit(” Trade detected
.format (oe2))

?\nError: {0}”
return False

except KeyError:

self.trading_error_signal.emit(” Received unexpected
”Please check fxTrade for

return False

return True

63

self.oanda_order (position)

could not be placed. Error encountered.”
{0}”.format (oe))
could not be placed. Error encountered.”

response from server. 7

any changes that may have occurred.”)

def pseudo_order(self):
pass

def main ():
app = QtGui.QApplication(sys.argv)
app.setOrganizationName (config . _organization)
app.setApplicationName (config._program_name)
sample = TradingLoop (True)
sample.start ()

sys.exit (app.exec_())
if __name.. == ’__main__":
main ()

% ANFIS Training Script
function trainError = anfis_init_train (dataFilename, fisFilename)
% Build initial FIS and train as ANFIS data from filename
% Uses current working directory for reading and writing
% That means, this should be in the matlab script/data folder

% dataFilename — filename of CSV training set

% fisFilename — whole filename of FIS to be saved

% trainError — returns False in case of failure, otherwise the training error vector as
try

% Set current directory to script’s location
cd(fileparts (mfilename (’fullpath ")));
trnData = csvread (dataFilename);

% Build initial FIS structure using Subtractive Clustering
X = trnData (:,l:end —1);

Y = trnData (:,end);

radii = 0.5; %What could be optimal?

in_fis = genfis2 (X,Y,radii);

% Run training

% dispOpt = zeros (1,4); %don’t display anything on the command window
dispOpt = [1 1 1 1];
trnOpt = [NaN NaN NaN NaN NaN];
% try 15
[out_fis ,trainError] = anfis(trnData,in_fis ,trnOpt,dispOpt)
% Save FIS to file
writefis (out_fis , fisFilename);

catch ME
trainError = false

end

%%% Additional notes: Based on profiler , takes approx 22 mins each on full training set

%%% Works good on GUI using absolute and relative paths for filename
%%% Now also verified to be working in matlab_template.py

function result = fis_predict (inputData, fisFilename)
% Wraps the evalfis function for calling from Python
% inputData — data for evaluation as array/matrix
% fisFilename — whole filename of FIS to be saved
% result returned as is from evalfis ()

fismat = readfis (fisFilename);
result = evalfis (inputData, fismat);
%%% Additional notes: Based on some random manual checking, accurate within 1-7 pips

%%% Works good on GUI using absolute paths for filename

P

Account setup wizard to call on first run or when user wants to
s

import time
import StringlO

from PyQt4 import QtCore, QtGui
from oandapy import OandaError
from PyQt4.Qt import QDir, QSettings

import matlab_funcs
import oanda_funcs
import preprocess

import config

try :
_fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
def _fromUtf8(s):
return s

try :
_encoding = QtGui.QApplication.UnicodeUTF8
def _translate(context, text, disambig):
return QtGui.QApplication.translate (context, text, disambig, _encoding)
except AttributeError:
def _translate(context, text, disambig):
return QtGui.QApplication.translate (context, text, disambig)

64

class SetupWizard (QtGui.QWizard):
def __init__(self, parent=None):
super (SetupWizard, self).__init__(parent)

self.addPage(IntroPage ())
self.account_details_page = AccountDetailsPage ()
self.addPage(self.account_details_page)
self.addPage(HistoricalDataPage ())
self.addPage(TrainingPage ())

#TODO!

#self.addPage(BacktestingPage ())
self.addPage(ConclusionPage ())

self .setWindowTitle ("AAGFA — Setup Wizard”)

def accept(self):
print ”I’m in accept!”

api-token = str(self.field (” api-token”).toString())

account_id = str(self.field (” account_id”).toString())
training_path = str(self.field (”training_data”).toString())
testing_path = str(self.field (”testing_data”).toString())

email = str(self.field (”email”).toString ())

instrument , environment = self.account_details_page.get_selected ()
print ”"From setup: check vars”

print instrument , environment, api-token, account_id, testing_-path, training_path , email
self .start_checkbox_value = self.field (”start_checkbox”).toBool()
self .automode = self.field (” automode_checkbox”).toBool ()

print ”Automode?”, self.automode

print ”Checkbox value from setup”, self.start_checkbox_value

configs = QSettings ()

configs.setValue(”app/api-token”, api-token)
configs.setValue(”app/account_id”, account-id)
configs.setValue(” app/instrument”, instrument)
configs.setValue(” app/environment”, environment)
configs.setValue (”app/email”, email)

print configs.value(”app/email”).toString ()

configs.setValue(” app/automode”, self.automode)

print ”Automode saved?”, configs.value(” app/automode”).toBool()
configs.setValue(”data/training_path”, training_path)
configs.setValue(”data/testing_path”, testing_-path)

super (SetupWizard, self).accept ()

class IntroPage (QtGui.QWizardPage):
def __init__(self, parent=None):
super (IntroPage, self). __init__(parent)

self .setTitle (” Welcome to AAGFA!”)

label = QtGui.QLabel(” This wizard will help you set up the account details ”
”and input the historical data files needed for the ”
” Autonomous ANFIS and GA—based Forex Agent to begin trading.”
?\n\n\nReminder: Before you continue with this wizard, ”
”please ensure that the system requirements have been met
”and that any dependencies have been installed. ”
"For further information, please refer to the attached README. txt”)
label .setWordWrap (True)

»

layout = QtGui.QVBoxLayout ()
layout .addWidget (label)
self.setLayout (layout)

class AccountDetailsPage (QtGui. QWizardPage):
def __init_-_(self, parent=None):
super (AccountDetailsPage, self). __init__(parent)

self .setObjectName (” AccountDetailsPage”)
self .setTitle (” Account Details”)
self.setSubTitle (” Please enter your account details below:”)

self.verticalLayout = QtGui.QVBoxLayout ()
self.verticalLayout.setObjectName (_fromUtf8(” verticalLayout”))
self.gridLayout = QtGui.QGridLayout ()
self.gridLayout.setObjectName (_fromUtf8 (” gridLayout”))
self.api_-token_text = QtGui.QLineEdit ()
self.api_-token_text.setObjectName (_fromUtf8(” api_-token_text”))
self.gridLayout.addWidget (self.api_-token_text, 1, 1, 1, 1)
self.label_4 = QtGui.QLabel()

self.label_4 .setMinimumSize (QtCore. QSize (111, 0))

self . label_4 .setObjectName(_fromUtf8 (” label_47))
self.gridLayout.addWidget(self.label_4, 3, 0, 1, 1)
self.label_-2 = QtGui.QLabel()

self.label_2.setMaximumSize (QtCore. QSize (101, 16777215))

self . label_2.setObjectName(_fromUtf8 (¥ label_27))
self.gridLayout.addWidget(self.label_2, 0, 0, 1, 1)
self.account_id_text = QtGui.QLineEdit ()
self.account_id_text.setObjectName (_-fromUtf8(” account_id_text”))
self.gridLayout.addWidget(self.account_id_text, 0, 1, 1, 1)
self.label_3 = QtGui.QLabel()

self.label_3 .setObjectName(_fromUtf8 (” label_37))
self.gridLayout.addWidget(self.label_3, 1, 0, 1, 1)

self .instrument_combobox = QtGui.QComboBox ()

self .instrument_combobox.setObjectName (_fromUtf8 (” instrument_combobox”))
self.instrument_combobox.addItem (_-fromUtf8 (””))
self.gridLayout.addWidget (self.instrument_combobox, 3, 1, 1, 1)

65

self.label_5 = QtGui.QLabel()

self . label_5.setObjectName (_fromUtf8 (7 label_57))

self .gridLayout.addWidget(self.label_5, 2, 0, 1, 1)
self.environment_comboBox = QtGui.QComboBox ()
self.environment_comboBox.setObjectName (_-fromUtf8 (" environment_comboBox”))
self.environment_comboBox.addItem (_-fromUtf8(””))

self .environment_comboBox.addItem (_fromUtf8 (””))
self.gridLayout.addWidget(self.environment_.comboBox, 2, 1, 1, 1)
self.get_list_button = QtGui.QPushButton ()
self.get_list_button .setObjectName (_-fromUtf8(” get_list_button”))
self.get_list_button.clicked.connect(self.get_instruments)
self.gridLayout.addWidget (self.get_list_button , 4, 1, 1, 1)
self .verticalLayout.addLayout(self.gridLayout)

self.label_4 .setBuddy(self.instrument_combobox)

self.label_2 .setBuddy(self.account_id_text)

self.label_3 .setBuddy(self.api_-token_text)
self.label_5.setBuddy(self.environment_comboBox)
self.email_-label = QtGui.QLabel(” Your Email address:”)

self . email_text = QtGui.QLineEdit ()

self . email_label.setBuddy(self.email_text)
self.gridLayout.addWidget(self.email_label, 5, 0, 1, 1)
self.gridLayout.addWidget(self.email_text, 5, 1, 1, 1)

#Validators

int_valid = QtGui.QIntValidator ()

regexp = QtCore.QRegExp (’'["Q]+Q[" Q]+ \.[@]+ ")
email_valid = QtGui.QRegExpValidator(regexp)
self . account_id_text.setValidator (int_valid)
self.email_text.setValidator (email_valid)

self .setLayout(self.verticalLayout)
self .retranslateUi ()

#register fields

self . registerField (” account-id=*”, self.account_-id_text)

self . registerField (” api_-tokenx*”, self.api_-token_text)

self . registerField (” instrument=”, self.instrument_combobox)
self . registerField (” environment”, self.environment_.comboBox)
self . registerField (” email*”, self.email_text)

#set tab order

self .setTabOrder(self.account_id_text , self.api_token_text)

self .setTabOrder(self.api_-token_text , self.environment_.comboBox)
self.setTabOrder(self.environment_.comboBox, self.instrument_combobox)

#Validators

int_valid = QtGui.QIntValidator ()

regexp = QtCore.QRegExp (’'["Q]+Q[" Q]+ \.[@]+ ")
email_valid = QtGui.QRegExpValidator(regexp)
self . account_id_text.setValidator (int_valid)
self.email_text.setValidator (email_valid)

def retranslateUi(self):

self.label_4.setText(_-translate (” AccountDetailsPage”, ”Instrument to Trade:”, None))
self.label_2.setText(_-translate (” AccountDetailsPage”, "OANDA Account ID:”, None))

self.label_3 .setText(_-translate (” AccountDetailsPage”, "OANDA API Token:” , None))
self.instrument_combobox.setItemText (0, _translate(” AccountDetailsPage”, ” Click \”Get Instrument List\”
self.label_5.setText(_-translate (” AccountDetailsPage”, ”Trading Environment:”, None))

self .environment_comboBox.setIltemText (0, _translate(” AccountDetailsPage”, ”Practice”, None))
self.environment_comboBox.setltemText (1, _translate(” AccountDetailsPage”, "Live”, None))
self.get_list_button.setText(-translate (” AccountDetailsPage”, "Get Instrument List”, None))

def get_instruments(self):

try:
api-token = str(self.api-token_text.text())
account_id = str(self.account_id_text.text ())
environment = str(self.environment_.comboBox.currentText ()).lower ()
oanda = oanda_funcs.create_instance (api-token , environment)
available_instruments = oanda_-funcs.just_-the_instruments (oanda, account_-id)

self .instrument_combobox. clear ()
for instrument in available_instruments:
self .instrument_combobox.addItem (instrument)
except OandaError as error:
QtGui. QMessageBox.about (self , "Error’,’ Account ID or API token not accepted: ’ + str(error))
pass

def get_selected (self):
e

Returns a tuple of currentText of instrument and environment (in lowercase), in this order
s

inst = str(self.instrument_combobox.currentText ())
env = str(self.environment_.comboBox.currentText ()).lower ()
return inst, env

class HistoricalDataPage (QtGui. QWizardPage):
def __init_-_(self, parent=None):
super (HistoricalDataPage , self). __init__(parent)

self .setTitle(” Historical Data Files”)
self.setSubTitle (” Please provide the CSV files for the historical prices below:\n”)
self.setObjectName (” HistoricalDataPage”)

self.verticalLayout = QtGui.QVBoxLayout ()
self.verticalLayout.setObjectName (_fromUtf8(” verticalLayout”))
self.gridLayout = QtGui.QGridLayout ()
self.gridLayout.setObjectName (_fromUtf8 (” gridLayout”))
self.label_2 = QtGui.QLabel()

self.label_2 .setMaximumSize (QtCore.QSize (101, 16777215))
self.label_2 .setObjectName(_fromUtf8 (7 label_27))

66

self .gridLayout.addWidget(self.label_-2, 0, 0, 1, 1)

self .training_data_path = QtGui.QLineEdit ()

self .training_data_path.setObjectName(_fromUtf8(” training_data_path”))
self.gridLayout.addWidget(self.training_data_path, 0, 1, 1, 1)
self.training_file_chooser_button = QtGui.QPushButton ()
self.training_file_.chooser_button.setObjectName (_fromUtf8(” training_file_.chooser_button”))
self.gridLayout.addWidget(self.training_file_.chooser_button, 0, 2, 1, 1)
self.label_3 = QtGui.QLabel()

self.label_3 .setObjectName (_-fromUtf8(” label_37))
self.gridLayout.addWidget(self.label_3, 1, 0, 1, 1)

self . testing_data_path = QtGui.QLineEdit ()

self . testing_data_path.setObjectName (_fromUtf8(” testing_data_path”))
self.gridLayout.addWidget (self.testing_data_path, 1, 1, 1, 1)

self . testing_file_chooser_button = QtGui.QPushButton ()

self . testing_file_chooser_button .setObjectName (_fromUtf8 (” testing_-file_chooser_button”))
self .gridLayout.addWidget(self.testing_file_.chooser_button, 1, 2, 1, 1)
self .verticalLayout.addLayout(self.gridLayout)

self.label-1 = QtGui.QLabel()
self.verticalLayout.addWidget(self.label_1)

self.label = QtGui.QLabel()
self.label.setMaximumSize (QtCore. QSize (16777215, 41))
self.label.setObjectName (_fromUtf8(” label”))
self.verticalLayout.addWidget(self.label)

self .setLayout(self.verticalLayout)
self .retranslateUi ()

retranslateUi(self):
self.label.setText(_-translate (” HistoricalDataPage”, ”Pressing Next will begin training”, None))
self.label_1.setText(-translate (” HistoricalDataPage”,

>’’’ Please ensure that these files contain at least a column with header

’>’and another with header ”"Low” for the system to be able to process

None))
self.label_2.setText(-translate (” HistoricalDataPage”, ”Training Data Set”, None))
self . training_file_chooser_button.setText(_-translate (” HistoricalDataPage”, ”Choose file”, None))
self .label_3.setText(_-translate (” HistoricalDataPage”, ”Testing Data Set”, Nomne))
self . testing_file_chooser_button.setText(_translate (” HistoricalDataPage”, ”Choose file”, None))

initializePage (self):

#register fields

self . registerField (” training_datax”, self.training_-data_path)
self.registerField (" testing_data=x”, self.testing_data_path)

self . training_file_chooser_button.clicked.connect(lambda: self.showDialog(self.training_data_path))
self . testing_file_chooser_button.clicked.connect(lambda: self.showDialog(self.testing_data_path))

showDialog(self , line_edit_-to_change):

dialog = QtGui. QFileDialog(self)

fname = dialog.getOpenFileName(self , ’Open file ’, QDir.homePath())
line_edit-to_change .setText (fname)

#set fname as sender’s box

class TrainingPage (QtGui. QWizardPage):

def

__init__(self, parent=None):
super (TrainingPage, self). __init__(parent)

self.setTitle (” Training”)

self.setSubTitle (” The program is currently processing the training data.
”\nThroughout the training , you will see several MATLAB progress dialogs pop up.”
”\nThis typically takes up to 4—6 hours. Please see progress below.”)

»

self.verticalLayout = QtGui.QVBoxLayout ()

self .progressBar = QtGui. QProgressBar ()
self.verticalLayout.addWidget(self.progressBar)
self . textBrowser = QtGui.QTextBrowser ()
self.verticalLayout.addWidget(self.textBrowser)

self .setLayout(self.verticalLayout)

self.pbar_value = 0
self.finished = False

initializePage (self):
training_path = str(self.field (”training_data”).toString ())
testing_path = str(self.field (”testing_data”).toString())

print training_path , testing_path

self . training_thread = TrainingThread(training_path , testing_path)
self.training_-thread .updated.connect(self.update_progress)

self . training_thread.errorEncountered.connect(self.notify_error)
self . training_thread.finished.connect(self.activateNext)

self . training_-thread.start ()

isComplete (self , xargs, sxkwargs):
return self.finished

cleanupPage (self , xargs, sxkwargs):
QtGui. QWizardPage.cleanupPage (self , xargs, sxkwargs)
self.training_thread.exit(—1)

update_progress (self, text, progress_int):

self.pbar_value += progress_int

self.progressBar.setValue(self.pbar_value % 100.0 / 13.0)

self .textBrowser.insertHtml("<p style="color:black”>{0}</p>’.format(text))

self .textBrowser.verticalScrollBar ().setValue (
self.textBrowser.verticalScrollBar ().maximum/())

67

def notify_error (self, text):
TODO something special here
self.textBrowser.insertHtml(’<p style="color:red”>{0}</p>’.format (text))
self . training_thread.exit(—1)

def activateNext (self):
self.finished = True
self.completeChanged . emit ()

class ConclusionPage (QtGui.QWizardPage):
def __init__(self, parent=None):
super (ConclusionPage , self). __init__(parent)

self .setTitle(” Congratulations!”)

self .setSubTitle (” The program has now finished training using the historical data given.
”We have also saved your account info and we’ll be using this for trading.”
”Please click Finish to activate the automated trader.”)

»

self .bottomLabel = QtGui.QLabel ()
self .bottomLabel .setWordWrap (True)

agreeBox = QtGui.QCheckBox(self.tr(” Start automated trader immediately?”))
agreeBox .setChecked (True)
autoModeBox = QtGui.QCheckBox(self.tr (?”Do you want to run on auto mode?”
”\n(Unchecking this will allow the agent to run on email alert—only mode \ninstead of automatically
autoModeBox.setChecked (True)

vbox = QtGui.QVBoxLayout ()

vbox .addWidget (self.bottomLabel)
vbox .addWidget (agreeBox)

vbox .addWidget (autoModeBox)

self .setLayout (vbox)

self . registerField (" start_checkbox”, agreeBox)
self . registerField (” automode_checkbox”, autoModeBox)

class TrainingThread (QtCore.QThread):

These signal sends a message, and 1 for progress messages
14 progress ticks will be sent in total

1 for preporcessing, 1 for MATLAB init , 12 for all FIS
updated = QtCore.pyqtSignal(str, float)

errorEncountered = QtCore.pyqgtSignal(str)

def __init__(self, training_path , testing_path , parent=None):

super (TrainingThread , self). __init__(parent)
self.training_-file = training_-path
self.testing_file = testing_-path

Recommended by https://joplaete.wordpress.com/2010/07/21/threading—with—pyqt4/
def __del__(self):

print ”Thread terminated”

self . wait ()

def run(self):
self .updated.emit(” Training commencing...
”, 0)
start_time = time.time/()

try:
self .updated.emit(” Pre—processing files...
7, 0)
preprocess .preprocess_.OHLC_training(self.training_file)
preprocess.preprocess_ OHLC_testing(self.testing_file)
self .updated.emit(” Training and testing files have been pre—processed
", 0.5)

self .updated.emit ("MATLAB Engine is being initialized...
7, 0)
eng = matlab_funcs.init-matlab ()
self .updated.emit ("MATLAB Engine has been initialized!
”, 0.5)
except Exception, e:
self .errorEncountered.emit(str(e) +
?
Please return to the previous page and check your input.
7)
return

for i in range(config._horizon):
out = StringlO.StringlO ()
err = StringlO.StringlO ()
self.updated.emit(’

High (t+{0}) training...
’.format(i+4+1), 0)
eng.anfis_init_train (’training_high_{0}.csv’.format(i+1), ’high_{0}.fis ’. format(i+1),
stdout=out, stderr=err)
if err.len > O:
self.errorEncountered.emit(err.getvalue())
self.exit(—1)
self.updated.emit(’<PRE STYLE="font—family: Helvetica”>'+out.getvalue()+”</PRE>", 1)

out = StringlO.StringlO ()
err = StringlO.StringlO ()
self.updated.emit(’

Low (t+{0}) training...
’.format(i+1), 0)
eng.anfis_init_train (’training_low_{0}.csv’.format(i+1), ’low_{0}.fis ’. format(i+1),
stdout=out, stderr=err)
if err.len > O0:
self .errorEncountered.emit(err.getvalue())
self.exit(—1)
self .updated.emit(’<PRE STYLE="font—family: Helvetica”>’+out.getvalue()+”</PRE>", 1)

for - in xrange(12):
self .updated.emit (” Emit dummy
", 1)

3

self .updated.emit(”
Finished after %s seconds” % (time.time() — start_time), 0)

68

)

if __name_.. == ’__main__ " :

import sys

app = QtGui. QApplication(sys.argv)
app.setOrganizationName (config. _organization)
app.setApplicationName (config._program_name)
wizard = SetupWizard ()

wizard .show ()

sys.exit (app.exec_())

R

Research Backtesting Environments in Python with pandas
From https://www.quantstart.com/articles /Research—Backtesting—Environments—in—Python—with—pandas
@author: Michael Halls—Moore

)

from abc import ABCMeta, abstractmethod

class Strategy (object):
””” Strategy is an abstract base class providing an interface for
all subsequent (inherited) trading strategies.

The goal of a (derived) Strategy object is to output a list of signals,
which has the form of a time series indexed pandas DataFrame.

In this instance only a single symbol/instrument is supported.”””
_-metaclass__. = ABCMeta

@abstractmethod

def generate_signals(self):
77”7 An implementation is required to return the DataFrame of symbols
containing the signals to go long, short or hold (1, —1 or 0).”””
raise NotImplementedError (” Should implement generate_signals ()!”)

class Portfolio(object):
”””An abstract base class representing a portfolio of
positions (including both instruments and cash), determined
on the basis of a set of signals provided by a Strategy.”””

_-metaclass__ = ABCMeta

@abstractmethod
def generate_positions(self):
77”7 Provides the logic to determine how the portfolio
positions are allocated on the basis of forecasting
signals and available cash.”””
raise NotImplementedError(” Should implement generate_positions ()!”)

@abstractmethod
def backtest_portfolio(self):
?”” Provides the logic to generate the trading orders
and subsequent equity curve (i.e. growth of total equity),
as a sum of holdings and cash, and the bar—period returns
associated with this curve based on the ’positions’ DataFrame.

Produces a portfolio object that can be examined by

other classes/functions.”””

raise NotImplementedError(” Should implement backtest_portfolio ()!”)
—*— coding: utf—8 —x—
Form implementation generated from reading ui file ’backtest_diag.ui’

#
Created: Thu Jun 11 16:42:39 2015
by: PyQt4 UI code generator 4.11.3

#
WARNING! All changes made in this file will be lost!
from PyQt4 import QtCore, QtGui

try:
fromUtf8 = QtCore.QString . fromUtf8
except AttributeError:
def _fromUtf8(s):
return s

_encoding = QtGui.QApplication.UnicodeUTF8
def _translate(context, text, disambig):

return QtGui.QApplication.translate (context, text, disambig, _encoding)
except AttributeError:
def _translate(context, text, disambig):
return QtGui. QApplication.translate (context , text, disambig)

class Ui_Dialog(object):

def setupUi(self, Dialog):
Dialog.setObjectName (_-fromUtf8 (” Dialog”))
Dialog.resize (372, 150)
self.verticalLayout = QtGui.QVBoxLayout(Dialog)
self . verticalLayout.setObjectName (_-fromUtf8(” verticalLayout”))
self.label = QtGui.QLabel(Dialog)
self . label.setObjectName (-fromUtf8 (” label”))
self.verticalLayout.addWidget(self.label)
self . horizontalLayout = QtGui.QHBoxLayout ()
self . horizontalLayout.setObjectName (-fromUtf8 (” horizontalLayout”))
self.file_text = QtGui.QLineEdit(Dialog)

69

self.file_text .setObjectName (-fromUtf8(” file_text”))

self . horizontalLayout.addWidget(self. file_text)

self.choose_button = QtGui.QPushButton(Dialog)
self.choose_button.setObjectName (_fromUtf8(” choose_button”))
self.horizontalLayout.addWidget(self.choose_button)
self.verticalLayout.addLayout(self.horizontalLayout)

self . horizontalLayout-2 = QtGui.QHBoxLayout ()
self.horizontalLayout_-2.setObjectName (_fromUtf8 (” horizontalLayout_-27"))
self.label_2 = QtGui.QLabel(Dialog)

self.label_2 .setObjectName(_fromUtf8 (7 label_27))
self.horizontalLayout_2.addWidget(self.label_2)

self .amount_text = QtGui.QLineEdit(Dialog)

self .amount_text.setObjectName (-fromUtf8(” amount_text”))

self . horizontalLayout_-2.addWidget(self.amount_text)

self .verticalLayout.addLayout(self.horizontalLayout-2)

self .buttonBox = QtGui.QDialogButtonBox (Dialog)

self .buttonBox.setOrientation (QtCore.Qt. Horizontal)

self .buttonBox.setStandardButtons (QtGui.QDialogButtonBox. Cancel | QtGui. QDialogButtonBox .Ok)
self .buttonBox.setObjectName (_fromUtf8 (” buttonBox”))
self.verticalLayout.addWidget(self.buttonBox)

#Validators
double_valid = QtGui.QDoubleValidator ()
self.amount_text.setValidator(double_valid)

self .retranslateUi(Dialog)

QtCore.QObject.connect (self.buttonBox, QtCore.SIGNAL(_fromUtf8(” accepted()”)), Dialog.accept)
QtCore.QObject.connect (self.buttonBox, QtCore.SIGNAL(_fromUtf8(” rejected ()”)), Dialog.reject)
QtCore.QMetaObject.connectSlotsByName (Dialog)

»

def retranslateUi(self, Dialog):

Dialog .setWindowTitle(_-translate (” Dialog”, ”Dialog”, None))

self .label.setText(-translate (” Dialog”, "<html><head/><body><p> Backte
self .choose_button.setText(_-translate (” Dialog”, ”Choose file”, None))
self.label_2.setText(-translate (” Dialog”, ”Initial Amount:”, None))

P

Created on May 23, 2015

@author: ArielKenneth

P

-horizon = 6

-granularity = 'M30’

-matlab_dir = ”"matlab”

_training_prefix = ’training’

_testing_prefix = ’testing’

_program_name = ’Autonomous ANFIS and GA—Based Forex Agent’
_program_name_short = 'AAGFA’

-organization = ’'University of the Philippines Manila’
-version = 71.0.0”

-order_units = 1000

-gui-refresh_time = 6

-historical_ticks = 41

ema-window = 30

—ema_window = 15

-pip-adjustment = 0.004

-trade_-decay = 2

-trend_line_count = 5

_from_email = ’asampoll@up.edu.ph’

_email_pass = ’MatrixTrace’

_smtp_server = ’smtp.gmail.com’

-smtp_port = 465
_pseudobroker_server= "http://127.0.0.1/ broker/”

—x— coding: utf-—8 —x—

3 5

Form implementation generated from reading ui file account_details_first_dialog .ui

#
Created: Mon Jun 01 16:48:29 2015
by: PyQt4 UI code generator 4.11.3

#
WARNING! All changes made in this file will be lost!
from PyQt4 import QtCore, QtGui

try:
fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
def _fromUtf8(s):
return s

try:
_encoding = QtGui.QApplication.UnicodeUTF8
def _translate(context, text, disambig):
return QtGui. QApplication.translate (context , text, disambig, _encoding)

except AttributeError:
def _translate(context, text, disambig):
return QtGui. QApplication.translate (context , text, disambig)

class Ui_Dialog(object):

def setupUi(self, Dialog):
Dialog .setObjectName (-fromUtf8 (” Dialog”))
Dialog.resize (416, 250)
self.verticalLayout = QtGui.QVBoxLayout(Dialog)
self . verticalLayout.setObjectName (_-fromUtf8(” verticalLayout”))
self .label = QtGui.QLabel(Dialog)
self .label.setMaximumSize (QtCore. QSize (16777215, 41))
self .label.setObjectName (_fromUtf8 (” label”))

70

self.verticalLayout.addWidget(self.label)
self.gridLayout = QtGui.QGridLayout ()
self.gridLayout.setObjectName (_-fromUtf8 (” gridLayout”))

self.api_-token_text = QtGui.QLineEdit(Dialog)
self.api_-token_text.setObjectName(_fromUtf8(” api_token_text”))
self.gridLayout.addWidget(self.api_-token_text, 1, 1, 1, 1)

self.label_4 = QtGui.QLabel(Dialog)

self.label_4 .setMinimumSize (QtCore. QSize (111, 0))

self.label_4 .setObjectName (_-fromUtf8(” label_47))
self.gridLayout.addWidget(self.label_4, 3, 0, 1, 1)

self.label_2 = QtGui.QLabel(Dialog)

self.label_2.setMaximumSize (QtCore.QSize (101, 16777215))

self.label_2 .setObjectName(_fromUtf8 (7 label_27))

self .gridLayout.addWidget(self.label_2, 0, 0, 1, 1)

self . account_id_text = QtGui.QLineEdit(Dialog)

self.account_id_text.setObjectName (_-fromUtf8 (” account_-id_text”))

self .gridLayout.addWidget(self.account_id_-text, 0, 1, 1, 1)

self.label_-3 = QtGui.QLabel(Dialog)

self . label_3 .setObjectName (_fromUtf8 (7 label_37))
self.gridLayout.addWidget(self.label_3, 1, 0, 1, 1)

self .instrumen_combobox = QtGui.QComboBox(Dialog)

self .instrumen_combobox.setObjectName (_-fromUtf8 (” instrumen_combobox”))

self .instrumen_combobox.addItem (_-fromUtf8(””))
self.gridLayout.addWidget(self.instrumen_combobox, 3, 1, 1, 1)

self.label_5 = QtGui.QLabel(Dialog)

self.label_5.setObjectName (_-fromUtf8(” label_57))
self.gridLayout.addWidget(self.label_5, 2, 0, 1, 1)

self.environment_comboBox = QtGui.QComboBox(Dialog)

self .environment_comboBox.setObjectName (_fromUtf8 (” environment_comboBox”))

self .environment_comboBox.addItem (_-fromUtf8(””))

self .environment_comboBox.addItem (_-fromUtf8 (””))

self .gridLayout.addWidget (self.environment_.comboBox, 2, 1, 1, 1)

self . get_list_button = QtGui.QPushButton(Dialog)

self . get_list_button .setObjectName (_-fromUtf8(” get_list_button”))

self .gridLayout.addWidget(self.get_list_button , 4, 1, 1, 1)
self.verticalLayout.addLayout(self.gridLayout)

self .buttonBox = QtGui.QDialogButtonBox (Dialog)

self .buttonBox.setOrientation (QtCore.Qt.Horizontal)

self .buttonBox.setStandardButtons (QtGui.QDialogButtonBox. Cancel | QtGui. QDialogButtonBox .Ok)
self .buttonBox.setObjectName (_fromUtf8 (” buttonBox”))
self.verticalLayout.addWidget(self.buttonBox)

self.label_4 .setBuddy(self.instrumen_combobox)

self.label_2 .setBuddy(self.account_id_text)

self.label_3 .setBuddy(self.api_-token_text)
self.label_5.setBuddy(self.environment_comboBox)

self.email_label = QtGui.QLabel(” Your Email address:”)

self.email_text = QtGui.QLineEdit ()

self . email_label.setBuddy(self.email_text)
self.gridLayout.addWidget(self.email_label, 5
self.gridLayout.addWidget(self.email_text, 5,

#Validators

int-valid = QtGui.QIntValidator ()

regexp = QtCore.QRegExp (’["Q]+Q[@]+ \.[@]+ ")
email_valid = QtGui.QRegExpValidator(regexp)
self.account_id_text.setValidator(int_valid)
self.email_text.setValidator(email_valid)

self .retranslateUi(Dialog)

QtCore. QObject.connect (self.buttonBox, QtCore.SIGNAL(_fromUtf8(” accepted ()”)), Dialog.accept)
QtCore. QObject.connect (self.buttonBox, QtCore.SIGNAL(_fromUtf8(”rejected ()”)), Dialog.reject)
QtCore.QMetaObject.connectSlotsByName (Dialog)

Dialog .setTabOrder(self.account_id_text , self.api_-token_text)

Dialog .setTabOrder(self.api_-token_text , self.environment_comboBox)

Dialog .setTabOrder(self.environment_comboBox, self.instrumen_combobox)

Dialog .setTabOrder(self.instrumen_combobox, self.get_list_button)

Dialog .setTabOrder(self.get_list_button , self.buttonBox)

»

def retranslateUi(self, Dialog):

Dialog.setWindowTitle(-translate (” Dialog”, ”Dialog”, None))

self .label.setText(_translate (” Dialog”, "<html><head/><body><p>Edit A
self.label_4.setText(_-translate (” Dialog”, ”Instrument to Trade:”, None))

self.label_2.setText(-translate (” Dialog”, "OANDA Account ID:”, None))

self.label_3 .setText(-translate (” Dialog”, "OANDA API Token:” , None))

self .instrumen_combobox.setltemText (0, _translate(” Dialog”, ” Click \”Get Instrument List\” after provid
self.label_5.setText(_-translate (” Dialog”, ”Trading Environment:”, None))
self.environment_comboBox.setltemText (0, _translate (” Dialog”, ”"Practice”, None))
self.environment_comboBox.setltemText (1, _translate(” Dialog”, ”"Live”, None))
self.get_list_button.setText(-translate (” Dialog”, ”Get Instrument List”, None))

—x— coding: utf—-8 —x—

5

Form implementation generated from reading ui file ’edit_diag.ui

#

Created: Tue Jun 09 18:22:21 2015

by: PyQt4 UI code generator 4.11.3
#

WARNING! All changes made in this file will be lost!

s
Created on Jun 6, 2015

Convenience methods for sending an email from within the program

As per http://www.nixtutor.com/linux/send—mail—through—gmail—with—python/
@author: ArielKenneth

P

#! /usr/bin/python

71

import smtplib

from aagfa import config

def

def

if

RN

send_email_alert (recepient , message):
fromaddr = config._from_email

toaddrs = recepient

msg = ”\r\n”.join ([

"From: {0}”.format(config._from_email),
"To: {0}”.format(recepient),
”Subject: {0} — Trade Alert”.format(config._program_name_short),
o
s
message

D

Credentials (if needed)
username = config._from_email
password = config._email_pass

The actual mail send

server = smtplib .SMTP(’smtp.gmail.com:587 ")
server .ehlo ()

server.starttls ()

server.login (username , password)

server .sendmail (fromaddr, toaddrs, msg)
server.quit ()

main ():

send_email_alert (’ayieampol@gmail.com’, ”Testing!”)
--name__. == ’__main__":

main ()

Created on May 29, 2015

@author: ArielKenneth

R

import sys

import StringlO

import time

from dateutil import tz

from datetime import datetime

from PyQt4 import QtCore, QtGui
import oandapy

import config
from aagfa import pseudo_broker

LONG = 1
SHORT —1
HOLD = 0

class GuiUpdateThread (QtCore.QThread):

use this signal to inform of change in positions
positions_changed = QtCore.pyqtSignal ()

use this signal to inform of changes in account status
account_info_changed = QtCore.pyqtSignal ()

use this signal to inform of changes in which account to display
account_display_changed = QtCore.pyqtSignal ()

use this signal for updates to status bar

status_bar_update = QtCore.pyqtSignal(str)

#Arranged to correspond with columns of actual GUI table

history_keys = [’id’, ’type’, ’units’, ’instrument’, ’side’, ’time’, ’price’, ’pl’, ’accountBalance ’]
open_keys = [’id’, ’units’, ’side’ ’instrument ', ’time’, ’price’, ’takeProfit’, ’stopLoss’]
account_stats_key = [” accountld”, ”accountName”, ”balance”, ”"unrealizedPl”, "realizedP1”,
"marginUsed”, "marginAvail”, "openTrades”, "openOrders”, "marginRate”, "accountCurrenc:
account_stats_labels = [” Account ID”, ”Account Name”, ”Balance”, ”Unrealized P&L ”, ”Realized P&L”,
”Margin Used”, ”Margin Available”, "Open Trades”, ”"Open Orders”, ”Margin Rate”, ” Ba
pseudo_open_keys = [” Order_ID” ,” Units”,” Side” ,” Instrument” ,” Order_Time” ,” Price” ,” Take_Profit”,” Stop_-Loss”]

def __init__(
self , open_positions_table, trans_history_table , account_stats_widget , parent=None):

super (GuiUpdateThread, self). __init__(parent)

self.open_positions_table = open_positions_table
self.trans_history_-table = trans_history-table
self.account_stats_widget = account_stats_widget

self.establish_signals_and_slots ()
self.fetch_settings ()

self.from_zone = tz.tzutc ()
self.to_zone = tz.tzlocal ()
self.display_oanda = True

def establish_signals_and_slots(self):
self.account_info_changed .connect(self.fetch_settings)
self.account_display_changed.connect(self.change_display_account)

def fetch_settings(self):
settings = QtCore. QSettings ()

self . api-token = str(settings.value(”app/api-token”).toString())
self.account_-id = str(settings.value(”app/account_-id”).toString ())
self .instrument = str(settings.value(”app/instrument”).toString ())

72

self .environment = str(settings.value(” app/environment”).toString ())

def change_display_account(self):
self.display_oanda = not self.display_oanda
self . trans_history_table.setRowCount (0)

Recommended by https://joplaete.wordpress.com/2010/07/21/threading—with—pyqt4/
def __del__(self):

print ’Destructor called’

self . wait ()

def run(self):

Main loop time control
s
self .oanda = oandapy.API(self.environment, self.api_-token)
while True:
self . main_loop ()
time.sleep (config._gui_refresh_time)

def main_loop(self):

DI

Main trading loop time control
s
try:
self.update_account_info ()
self . update_positions ()
except Exception as e:
self.status_bar_update.emit(” Cannot update data. Check your connection.”)
print str(e)

def update_account_info(self):
if self.display-oanda:
account-info = self.oanda.get_account(account_-id=self.account_-id)
self.account_stats_widget.clear ()
for i in range(len(self.account_stats_key)):
self.account_stats_widget .addItem (
7{0}: {1}”.format(self.account_stats_labels[i], account_info.get(self.account_stats_key[i])
else:
account_info = pseudo_broker.get_status(acc_id=self.account_id)
self.account_stats_widget.clear ()
self.account_stats_widget.addItem (” Account ID: {0}”.format(account_info[’Account_.ID]))
self.account_stats_widget.addItem (” Number of Orders: {0}”.format(account_info[’num_orders’]))

def update_positions(self):
if self.display_-oanda:
self .oanda_update_positions ()
else:
self . pseudo_update_positions ()

def oanda_update_positions(self):
History first

transactions = self.oanda.get_transaction_history (self.account_id)
transactions = transactions.get(’transactions ’)
self.trans_history_table.setRowCount(len(transactions))
row = 0
for transaction in transactions:
col =0
for key in self.history_keys:
if key == ’time ’:
utc_string = str(transaction.get(key))
utc = datetime.strptime (utc_string , *%Y—%m—AdT%H: %M:%S.%fZ)
utc = utc.replace(tzinfo=self.from_zone)
local = datetime.strftime (utc.astimezone(self.to_zone), *%Y-%m%d YH:%M:%S ")

newitem = QtGui.QTableWidgetltem (str (local))
else:

newitem = QtGui.QTableWidgetltem (str (transaction.get(key)))
self . trans_history_table.setltem (row, col, newitem)

col +=1
row += 1
Open positions here
open_pos = self.oanda.get_trades(self.account_id)
open_pos = open_pos.get(’trades’)
self.open_positions_table.setRowCount(len (open_pos))
row = 0
for position in open_pos:
col =0
for key in self.open_keys:
if key == ’time ’:
utc_string = str(position.get(key))
utc = datetime.strptime (utc_string , *%Y—%a—%dTV%H: %M:%S.%f7Z)
utc = utc.replace(tzinfo=self.from_zone)

local = datetime.strftime (utc.astimezone(self.to_zone), *%Y—%m—%d YH:%M:%S ")
newitem = QtGui.QTableWidgetltem (str (local))
else:
newitem = QtGui.QTableWidgetltem (str (position.get(key)))
self .open_positions_table.setltem (row, col, newitem)
col 4= 1
row —+= 1

def pseudo_update_positions(self):
Open positions here

open_pos = pseudo_broker.get_orders(acc_-id=self.account_id)
self .open_positions_table.setRowCount(len (open_pos))
row = 0
for position in open_pos:
col =0

73

for key in self.pseudo-open_keys:
newitem = QtGui.QTableWidgetltem (str (position.get(key)))
self .open_positions_table.setltem (row, col, newitem)
col 4= 1

row += 1

def main ():
app = QtGui. QApplication (sys.argv)
app.setOrganizationName (config. _organization)
app.setApplicationName (config._program_name)
sample = GuiUpdateThread ()
sample.start ()

sys.exit (app.exec-())
if __name_.. == ’__main__ " :
main ()

P

Template for calling a MATLAB .m function from Python via the
MATLAB Engine for Python
Current contents: Idea for how the training may go after preprocessing

1! MUST be in the same package(/directory) as intended matlab folder

Il created by preprocess.py prior to calling this module’s functions

Created on May 23, 2015

@author: ArielKenneth
v

import time

import os

import matlab.engine
from aagfa import config

def init-matlab ():

P

Get an engine instance and set working dir to the proper matlab file folder
s

#Start engine!

eng = matlab.engine.start_matlab ()

#set cd to matlab folder under .py file ’s current dir
eng.cd(os.path.join (os.getcwd (), config._matlab_dir))
return eng

def train_anfis(eng):
#HMDEA FOR GUI!!
#In the future, receive a QTextBrowser argument
#Perform code stuff and update it as needed
for i in range(config._horizon):

print ’\n\nHigh (t+4+{0}) training ...’ . format(i+1)

start_time = time.time ()

eng.anfis_init_train (’training_high_{0}.csv’.format(i+1), ’high_{0}.fis ’. format(i+1))
print("——— %s seconds ———" % (time.time () — start_-time))

print ’\n\nLow (t+{0}) training...’ ’.format(i+1)

start_time = time.time ()

#Perhaps update QTextBrowser here with MATLAB response

eng.anfis_init_train (’training_-low_{0}.csv’.format(i+1), ’low_{0}.fis . format(i+1))
#Perhaps update QTextBrowser here with MATLAB response

print ("TOTAL: —— %s seconds ———" % (time.time () — start_time))

def anfis_predict (eng, input-data, fis_filename , *xkwargs):
B

eng — MATLAB engine object
input — basic list (not NumPy!) of N previous data points to use for prediction

fis_filename — filename of appropriate saved FIS file , with or without .fis
s s

return eng.fis_predict (matlab.double(input_-data), fis_filename , xxkwargs)

def main ():

print ’Initializing engine...’
eng = init-matlab ()

print ’Init done!’
train_anfis (eng)

#Test run!

input_data = [1.3347,1.3361,1.3359,1.3327,1.3324,1.3306,1.3299,1.3284,1.3292,1.3293,1.3293,1.3296,1.3302,1.:
for i in range(config._horizon):

print ’Predicting {0} .format (i+1)

print anfis_predict(eng, input_-data, ’high_{0}.fis ’. format(i+1))

eng. quit ()

if __name_-. = ’'__main__":

main ()

—*— coding: utf—8 —x—
s

Form implementation generated from reading ui file ’'modify_dialog.ui

#
Created: Sun May 31 02:14:27 2015
by: PyQt4 UI code generator 4.11.3

#
WARNING! All changes made in this file will be lost!
from PyQt4 import QtCore, QtGui

try :

74

fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
def _fromUtf8(s):
return s

try:
_encoding = QtGui.QApplication.UnicodeUTF8
def _translate(context, text, disambig):
return QtGui. QApplication.translate (context , text, disambig, _encoding)
except AttributeError:
def _translate(context, text, disambig):
return QtGui.QApplication.translate (context, text, disambig)

class Ui_Dialog(object):
def setupUi(self, Dialog):

Dialog .setObjectName (-fromUtf8 (” Dialog”))
Dialog.resize (250, 300)
self.gridLayout = QtGui.QGridLayout(Dialog)
self .gridLayout.setObjectName (_fromUtf8 (” gridLayout”))
self . title = QtGui.QLabel(Dialog)
self.title.setMinimumSize (QtCore. QSize (46, 13))
self.title.setObjectName (_fromUtf8(” title”))
self.gridLayout.addWidget(self.title, 0, 0, 1, 2)
self . main_info = QtGui.QLabel(Dialog)
self . main_info.setObjectName (_fromUtf8 (" main_info”))
self.gridLayout.addWidget(self.main_info, 1, 0, 1, 2)
self.last_quote = QtGui.QLabel(Dialog)
self .last_quote.setObjectName(_fromUtf8 (” last_quote”))
self.gridLayout.addWidget (self.last_quote , 2, 0, 1, 2)
self . horizontalLayout = QtGui.QHBoxLayout ()
self . horizontalLayout.setObjectName (_-fromUtf8 (” horizontalLayout”))
self . modify_button = QtGui.QRadioButton(Dialog)
self . modify_button.setObjectName (_fromUtf8 (” modify_button”))
self . modify_button.setChecked (True)
self . horizontalLayout.addWidget(self.modify_-button)
self.close_pos_button = QtGui.QRadioButton(Dialog)
self.close_pos_button.setObjectName (_fromUtf8 (” close_pos_button”))
self . horizontalLayout.addWidget(self.close_pos_button)
self .gridLayout.addLayout(self.horizontalLayout, 3, 0, 1, 2)
self.order_id_label = QtGui.QLabel(Dialog)
self.order_id_label .setObjectName(_fromUtf8(” order_id_label”))
self.gridLayout.addWidget(self.order_id_label , 4, 0, 1, 1)
self.order_id_-value = QtGui.QLabel(Dialog)
self.order_id_-value .setObjectName (-fromUtf8(” order_id_value”))
self.gridLayout.addWidget (self.order_id_value, 4, 1, 1, 1)
self . time_label = QtGui.QLabel(Dialog)
self . time_label .setObjectName (_fromUtf8 (” time_label”))
self.gridLayout.addWidget(self.time_label, 5, 0, 1, 1)
self . time_value = QtGui.QLabel(Dialog)
self . time_value.setObjectName (_fromUtf8 (” time_value”))
self .gridLayout.addWidget(self.time_value, 5, 1, 1, 1)
self . tp-label = QtGui.QLabel(Dialog)
self . tp-label.setObjectName (-fromUtf8(” tp-label”))
self .gridLayout.addWidget(self.tp_label, 6, 0, 1, 1)
self .tp_lineedit = QtGui.QLineEdit(Dialog)
self.tp_lineedit .setObjectName (_fromUtf8(” tp_lineedit”))
self.tp_lineedit .setMaxLength (7)
self.gridLayout.addWidget(self.tp_lineedit, 6, 1, 1, 1)
self.sl_label = QtGui.QLabel(Dialog)
self.sl_label.setObjectName (_fromUtf8(” sl_label”))
self.gridLayout.addWidget(self.sl_label, 7, 0, 1, 1)
self.sl_lineedit = QtGui.QLineEdit(Dialog)
self.sl_lineedit .setObjectName (_-fromUtf8(” sl_lineedit”))
self.sl_lineedit .setMaxLength (7)
self.gridLayout.addWidget (self.sl_lineedit , 7, 1, 1, 1)
self .buttonBox = QtGui.QDialogButtonBox (Dialog)
self .buttonBox.setOrientation (QtCore.Qt. Horizontal)
self .buttonBox.setStandardButtons (QtGui.QDialogButtonBox. Cancel | QtGui. QDialogButtonBox .Ok)
self .buttonBox.setObjectName (_-fromUtf8 (” buttonBox”))
self.gridLayout.addWidget(self.buttonBox, 8, 0, 1, 2)

#Validators

double_valid = QtGui.QDoubleValidator ()
self.tp_lineedit.setValidator (double_valid)
self.sl_lineedit.setValidator (double_valid)

self .retranslateUi(Dialog)

QtCore. QObject.connect (self.buttonBox, QtCore.SIGNAL(_fromUtf8(” accepted ()”)), Dialog.accept)
QtCore.QObject.connect (self.buttonBox, QtCore.SIGNAL(_fromUtf8(” rejected ()”)), Dialog.reject)
QtCore.QObject.connect (self.close_pos_button , QtCore.SIGNAL(_fromUtf8(” clicked ()”)), self.sl_label.hide
QtCore.QObject.connect (self.close_pos_button , QtCore.SIGNAL(_fromUtf8(” clicked , self.tp_label.hide
QtCore.QObject.connect (self.close_pos_button , QtCore.SIGNAL(_fromUtf8(” clicked , self.sl_lineedit.h
QtCore.QObject.connect (self.close_pos_button, QtCore.SIGNAL(_fromUtf8(” clicke , self.tp_lineedit.h
QtCore.QObject.connect (self.modify_button, QtCore.SIGNAL(_fromUtf8(” clicked ()” s .tp-lineedit .show
QtCore.QObject.connect (self.modify_button, QtCore.SIGNAL(_-fromUtf8(” clicked ()”)), self.sl_label.show)
QtCore.QObject.connect (self.modify_button, QtCore.SIGNAL(_fromUtf8(” clicked ()”)), self.sl_lineedit .show
QtCore.QObject.connect (self.modify_-button, QtCore.SIGNAL(_-fromUtf8(” clicked () , self.tp-label.show)
QtCore.QMetaObject.connectSlotsByName (Dialog)

NN NNy
NN
)

)

-

def retranslateUi(self, Dialog):
Dialog.setWindowTitle(_-translate (” Dialog”, ”Dialog”, None))
self.title.setText(_translate (” Dialog”, "<html><head/><body><p align=\"center\"><span style=\" font—siz
self . main_info.setText(_translate (” Dialog”, "<html><head/><body><p align=\"center\”><span style=\" font:
self.last_quote.setText(_translate (” Dialog”, "<html><head/><body><p align=\"center\”><span style=\” fon
self . modify_button.setText(-translate (” Dialog”, ”Modify”, None))
self.close_pos_button.setText(_-translate (” Dialog”, ”Close”, None))
self.order_id_label.setText(_-translate (” Dialog”, ”Order ID:” , None))
self.order_id_value.setText(_-translate (” Dialog”, ”123456789”, None))
self . time_label .setText(_-translate (” Dialog”, "Date and Time:” , None))

75

self .time_value.setText(-translate (” Dialog”, ”Something something”, None))
self .tp_label.setText(_-translate (” Dialog”, ”Take Profit:”, None))
self.sl_label .setText(_-translate (” Dialog”, ”Stop Loss:”, None))

P

Created on May 26, 2015

@author: ArielKenneth

P

import oandapy

def create_instance (api-token, env="practice”):
return oandapy.API(environment=env, access_token=api_-token)

def just_-the_instruments (oanda, account_id):
>

Return a list of the available instruments for account_-id using oanda instance
s

instruments = oanda.get_instruments (account_-id)
instruments_dict = instruments.get(” instruments”)
return [d[” instrument”] for d in instruments_dict if ”instrument” in d]
def create_order (oanda, units, instrument, side, take_profit, stop_loss, order_type="market”):

P

Wrapper for OANDA’s create order command which checks for trading time first

if within_hours ():
return oanda.create_order (instrument=instrument, units=units, side=side, type=order_type,
takeProfit=take_profit, stopLoss = stop-loss)
else:
raise oandapy.OandaError(’Outside trading hours.’)

def modify_trade (oanda, account_id, trade_id, take_profit=None, stop_-loss=None):
s
Wrapper for OANDA’s modify trade command

P

if take_profit==None and stop-loss <> None:

return oanda.modify_trade(account_id=account-id, trade_-id=trade-id, stopLoss=stop-loss)
if stop-loss==None and take_profit <> None:
return oanda.modify_trade(account_id=account_id, trade_id=trade_id, takeProfit=take_profit)
if both are specified
return oanda.modify_trade(account_id=account_-id, trade_id=trade_id, stopLoss=stop-loss, takeProfit=take_pro
def latest_price (oanda, instrument, quote_type):

RN

Wrapper for OANDA’s get prices command,
but built to accept one instrument and return one price

quote_type — ”bid” or ”ask”

B

try:
response = oanda.get_prices (instruments=instrument)
response = response |’ prices ’]
inst = response [0]

return inst[quote_-type]
except Exception as e:

print str(e)

return ”Cannot be retrieved”

def within_hours ():
import datetime
import pytz
d = datetime.datetime.now(pytz.timezone (’US/Pacific ’))

#Check if Monday to Thursday

if d.isoweekday () in range(l, 5):
return True

If it’s Friday and earlier than 5

if d.isoweekday () == 5 and d.hour < 17:
return True

If it’s Sunday and past 5

if d.isoweekday () == 7 and d.hour >= 17:
return True

return False
def main ():
oanda = create_instance (?47ca8al1e913f1d55eb10b7d76b73612e—bc9b8ce9ca204ad1917elc75f816f4167)
print just_-the_instruments (oanda, ”4310921”)

print within_hours ()
oanda = oandapy.API(access_token=’47ca8a1e913f1d55eb10b7d76b73612e—bc9b8ce9ca204adl1917elc75f816f416)

print latest_price (oanda, 'EUR.USD’, ’bid’)

print latest_price (oanda, ’EUR.USD’, ’ask’)
if __name_-. == ’__main__":

main ()

)

Created on Nov 26, 2014

@author: ariel

s

import os

import numpy as np
import talib

from aagfa import config

76

def strip(smooth_ts, raw_ts, inputs, offset=0):

P

Function to strip cut number of of rows in ts
Ex. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 —> with inputs 4 and offset 0

1, 2,3, 4,5

2,3, 4, 5, 6

3,4, 5, 6, 7

4, 5, 6, 7, 8

5, 6, 7, 8, 9

6, 7, 8, 9, 10

Additionally , with offset 1 for example

1, 2, 3, 4, 6

2,3, 4, 5, 7

3, 4, 5, 6, 8

4, 5,6, 7,9

5, 6, 7, 8, 10

Uses smoothed TS for input values, raw TS for output values
s

assert smooth_ts.size == raw_ts.size

B = np.array ([np.append(smooth_ts[k—inputs:k], raw_ts|[ktoffset]) for k in xrange(inputs,smooth_ts.size—off

return B
def strip_plain(ts, inputs, offset=0):
IR

Function to strip cut number of of rows in ts
BEx. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 —> with inputs 4 and offset 0

= © 030 U

o

5 -
o

with offset 1 for example

<
= © 0o

o

NO U WO N0 O RA W
WO Ul —©0 O Utk

,O‘!»PCONH>@U‘»PCAJ[\3>—‘
(=%

curwnEaouswn
=

B = np.array ([np.append(ts[k—inputs:k], ts|[ktoffset]) for k in xrange(inputs,ts.size—offset)])
return B

def preprocess_.OHLC_training (filename , num_inputs=41, output_file_prefix=config._training_prefix , ema_lookback=
s
Takes a whole OHLC dataset with High and Low headers and applies EMA smoothing
Saves to pwd’s directory specified by config._matlab_dir the pre—processed data with these filenames:
<output-file_prefix >_high_n.csv or <output_file_prefix>_low_n.csv
such that the file represents the dataset with output (t 4+ n)

P

#Read data, Extract High/Low, Smoothen series

data = np.genfromtxt(filename , delimiter="’,’, names=True)
smoothed_high = talib .EMA(data[’High’], ema-_lookback)
smoothed_low = talib .EMA(data[’Low’], ema_lookback)
smoothed_high = smoothed_high[" np.isnan(smoothed_high)]
smoothed_low = smoothed_low [" np.isnan(smoothed_low)]
plain_high = data|[’High][ema_lookback —1:]

plain_low = data[’Low’][ema_lookback —1:]

path = os.path.join (os.getcwd (), config._matlab_dir)
if not os.path.exists(path):

os.makedirs (path)
print path

for i in range(config._horizon):

processed_-high = strip (smoothed_high, plain_high, num_inputs, 1)

out_file = 7{0}-high_{1}.csv”.format(output-file_prefix , i+1)

np.savetxt (os.path.join (path, out_file), processed_high, delimiter=",",fmt="%.5f")
processed_low = strip (smoothed_low, plain_low , num_inputs, i)

out_file = 7{0}_low_{1}.csv”.format(output_file_prefix , i+1)

np.savetxt (os.path. join (path, out_file), processed_low, delimiter=",” ,fmt="%.5f")

print ’Loop %d finished ' % i

def preprocess_.OHLC_testing(filename , num_inputs=41, output_file_prefix=config._testing_prefix , ema_lookback=No
s
Takes a whole OHLC dataset with High and Low headers
Arranges in such a way that only num_inputs columns are made (simulating no output)
Saves to <output_file_prefix>_high.csv and <output_file_prefix >_low.csv

PR

#Read data, Extract High/Low, Smoothen series

data = np.genfromtxt(filename , delimiter=",", names=True)

path = os.path.join (os.getcwd (), config._matlab_dir)
if not os.path.exists (path):
os.makedirs (path)

processed_high = strip_plain(data[’High’], num_inputs—1, 0)

out_file = 7{0}_high.csv”.format(output_file_prefix)

np.savetxt (os.path.join (path, out_file), processed_high, delimiter=",” ,fmt="%.4f")
processed_low = strip_-plain (data|[’Low’], num_inputs—1, 0)

out_file = 7{1}_low.csv”.format(config._matlab_dir, output_-file_prefix)
np.savetxt (os.path.join (path, out_file), processed_-low, delimiter="," ,fmt="%.4f")

def main():
filename = ’C:\ Users\ArielKenneth\Desktop\data\EURUSD30_recent_train.csv’
preprocess_OHLC_training (filename)

77

filename = ’C:\ Users\ArielKenneth\Desktop\data\EURUSD30_recent_test.csv’
preprocess_OHLC_testing (filename)
if __name_._. == ’__main__":
main ()

P

Wrapper for Pseudo Broker web functions

arguments provided as dict to generalize support for any arguments the broker dictates
s

import json
import requests
from aagfa import config

def place_order (xxkwargs):
s
Places orders with configured broker as per required arguments
Returns the execution price on success, and None otherwise
s
request_url = config._pseudobroker_server 4+ ’'place_order .php’
post_response = requests.post(url=request_url, data=kwargs)
if post_response.status_code <> 200:
return None
asdict = json.loads(post_-response.text)
if not asdict[’success ’]:
return None
return asdict [’ price ’]

def get_current_price (**xkwargs):
Gets latest price as provided by pseudo broker
Returns the price itself
>0
request_url = config._pseudobroker_server 4+ ’get_rate.php’
post_response = requests.post(url=request_url, data=kwargs)
if post_response.status_code <> 200:
return None
return float (post_response.text)

def get_orders (xxkwargs):
B
Gets placed orders with configured broker as per required arguments
Returns a list of dicts corresponding to orders on success, and None otherwise
50
request-url = config._pseudobroker_server 4+ ’'get_-orders.php’
post_response = requests.post(url=request_url, data=kwargs)
if post_response.status_code <> 200:
return None
return json.loads(post_response.text)

def get_status(xxkwargs):
v
Gets placed orders with configured broker as per required arguments
Returns a list of dicts corresponding to orders on success, and None otherwise
)
request_url = config._pseudobroker_server 4+ ’'get_status.php’
post_response = requests.post(url=request_url, data=kwargs)
if post_-response.status_code <> 200:
return None
return json.loads(post-response.text)

def close_order (*x*xkwargs):

”Closes” an order — which in the case of the pseudo broker, deletes it
50

request_url = config._pseudobroker_server 4+ ’close_order .php’

post_response = requests.post(url=request_url, data=kwargs)
if post_response.status_code <> 200:

return None
return int (post_-response.text)

def modify_order (xxkwargs):

PR

Modifies an order
s
request_url = config._pseudobroker_server 4+ 'modify_-order.php’
post_response = requests.post(url=request_url, data=kwargs)
if post-response.status_code <> 200:
return None
try :
return int(post_response.text)
except ValueError:
return post_response.text

class BrokerError (Exception):

?”” Generic error class, catches broker errors
» 9
def __init__(self, error_response):
msg = " Pseudo Broker request failed”
super (BrokerError, self).__init__ (msg)
if __name_.. == ’__main__ " :

print place_order (acc-id =8596674, side=’buy’, inst="EUR.USD’, units=1000, tp=1.54321, sl1=1.12345)
print get_orders(acc-id=8596674)
print get_status(acc_id=8596674)

78

print get_current_price (inst="EUR.-USD”)

print close_order (order_id=7)

print modify_order (order_id=10, tp=1.1234, s1=1.678)

—*— coding: utf—8 —x—

Form implementation generated from reading ui file ’account_details_second_dialog.ui’
#

Created: Mon Jun 01 17:51:58 2015

by: PyQt4 UI code generator 4.11.3

WARNING! All changes made in this file will be lost!
from PyQt4 import QtCore, QtGui

try:
fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
def _fromUtf8(s):
return s

try :
-encoding = QtGui.QApplication.UnicodeUTF8
def _translate(context, text, disambig):
return QtGui.QApplication.translate (context, text, disambig, _encoding)
except AttributeError:
def _translate(context, text, disambig):

return QtGui.QApplication.translate (context, text, disambig)

class Ui_Dialog(object):
def setupUi(self, Dialog):

Dialog.setObjectName (-fromUtf8 (” Dialog”))
Dialog.resize (400, 227)
Dialog .setMinimumSize (QtCore. QSize (0, 227))
self.verticalLayout = QtGui.QVBoxLayout(Dialog)
self .verticalLayout.setObjectName (_fromUtf8(” verticalLayout”))
self.label = QtGui.QLabel(Dialog)
self . label.setObjectName (-fromUtf8 (” label”))
self.verticalLayout.addWidget(self.label)
self.gridLayout = QtGui.QGridLayout ()
self .gridLayout.setObjectName (_fromUtf8 (” gridLayout”))
self.label_2 = QtGui.QLabel(Dialog)
self.label_2.setMaximumSize (QtCore. QSize (101, 16777215))
self.label_2.setObjectName(_fromUtf8(” label_27))
self.gridLayout.addWidget(self.label_2, 0, 0, 1, 1)
self.label_3 = QtGui.QLabel(Dialog)
self.label_3 .setObjectName (_-fromUtf8(” label_37))
self.gridLayout.addWidget(self.label_3, 1, 0, 1, 1)
self . testing_file_chooser_button = QtGui.QPushButton(Dialog)
self . testing_file_chooser_button .setObjectName (_fromUtf8(” testing_file_chooser_button”))
self.gridLayout.addWidget(self.testing_file_chooser_button , 1, 2, 1, 1)
self . training_file_chooser_button = QtGui.QPushButton(Dialog)
self . training_file_chooser_button.setObjectName (_-fromUtf8(” training_file_chooser_button”))
self .gridLayout.addWidget(self.training_file_.chooser_button , 0, 2, 1, 1)
self . testing_data_-path = QtGui.QLineEdit(Dialog)
self .testing_data_path.setObjectName (_-fromUtf8(” testing_-data_path”))
self.gridLayout.addWidget(self.testing_-data_path, 1, 1, 1, 1)
self .training_data_path = QtGui.QLineEdit(Dialog)
self .training_data_path.setObjectName(_fromUtf8(” training_data_path”))
self.gridLayout.addWidget(self.training_data_path, 0, 1, 1, 1)
self.verticalLayout.addLayout(self.gridLayout)
self.begin_training_button = QtGui.QPushButton(Dialog)
self . begin_training_button .setMinimumSize (QtCore.QSize(75, 0))
self.begin_training_button .setObjectName (_-fromUtf8(” begin_training_button”))
self.verticalLayout.addWidget(self.begin_training_button)

self .retranslateUi(Dialog)

QtCore.QMetaObject.connectSlotsByName (Dialog)

Dialog .setTabOrder(self.training_data_path , self.testing_data_path)
Dialog.setTabOrder(self.testing_-data_path , self.training_file_chooser_button)

Dialog .setTabOrder(self.training_file_chooser_button , self.testing_file_chooser_button)
Dialog .setTabOrder(self.testing_file_.chooser_button , self.begin_training_button)

def retranslateUi(self, Dialog):

Dialog.setWindowTitle(-translate (” Dialog”, ”Dialog”, None))

self .label.setText(_translate (” Dialog”, "<html><head/><body><p>Re—tra
self.label_2.setText(_-translate (” Dialog”, ”Training Data Set”, None))

self.label_3 .setText(-translate (” Dialog”, ”Testing Data Set”, None))
self.testing_file_.chooser_button.setText(_-translate(” Dialog”, ”Choose file”, None))
self.training_file_.chooser_button.setText(_translate (” Dialog”, ”Choose file”, None))
self.begin_training_button.setText(_-translate (” Dialog”, ”"Begin Training”, None))

P

’

The program’s trading strategy as modeled after the Research Backtesting Platform
as seen on https://www.quantstart.com/articles/Backtesting—a—Moving—Average—Crossover—in—Python—with—pandas

@author: ArielKenneth

RN

import sys

from PyQt4 import QtGui

from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5 import NavigationToolbar2QT as NavigationToolbar
import matplotlib.pyplot as plt

import matplotlib.ticker as mtick

import numpy as np

79

import pandas as pd
import talib

from backtest import Strategy , Portfolio
from aagfa import config

class MovingAverageCrossStrategy (Strategy):

ERIED

Requires:

symbol — A stock symbol on which to form a strategy on.
bars — A DataFrame of bars for the above symbol.
short_window — Lookback period for short moving average.
long-window — Lookback period for long moving average.”””

def __init-_(self, symbol, bars, short-window=100, long_-window =400):
self.symbol = symbol

self.bars bars
self .short_-window = short_window
self.long_window = long_window

def generate_signals(self):
7”7 Returns the DataFrame of symbols containing the signals

to go long, short or hold (1, —1 or 0).77”
signals = pd.DataFrame(index=self.bars.index)
signals[’signal ’] = 0.0

Create the set of short and long simple moving averages over the
respective periods

signals [’short_.mavg’] = pd.ewma(self.bars[’Close’], span=self.short_window, min_periods=1)
signals [’long-mavg’] = pd.ewma(self.bars[’Close’], span=self.long_window, min_periods=1)
signals [’ rsi’] = talib.RSI(self.bars[’Close’]. values, timeperiod=_8)
signals [’ previous_rsi ’] = signals[’rsi ’].shift (1)
signals [’ previous_long ’] = signals[’long-mavg’].shift (1)
signals [’ previous_short ’] = signals [’ short_-mavg ’].shift (1)
minimum_shift = 9 #RSI needs an 8—cell head start
Create a ’signal’ (invested or not invested) when the short moving average crosses the long
moving average, but only for the period greater than the shortest moving average window
buy-signals = np.where(
((signals [’short_.mavg '] [minimum_shift:] > signals[’long.mavg’][minimum_shift:]) &
(signals [’ previous_short '] [minimum_shift :] < signals[’previous_long ’][minimum_shift :
(signals[’rsi][minimum_shift:] >= 50) &
(signals [’ previous_rsi '] [minimum_shift:] < 50)),
1.0, 0.0)
sell_signals = np.where(
((signals [’short_.mavg '] [minimum_shift:] < signals[’long.mavg’][minimum_shift:]) &
(signals[’previous_short][minimum_shift :] > signals[’previous_long ’][minimum_shift :
(signals[’rsi ’] [minimum_shift:] <= 50) &
(signals [’ previous_rsi '] [minimum_shift:] > 50)),
—1.0, 0.0)
signals [’ signal ’] [minimum_shift:] = np.add(buy-signals, sell_signals)

Take the difference of the signals in order to generate actual trading orders
signals [’ positions ’] = signals[’signal ’]
print signals. tail (50)

return signals

class MarketOnOpenPortfolio(Portfolio):
??” Inherits Portfolio to create a system that purchases 100 units of
a particular symbol upon a long/short signal, assuming the market
open price of a bar.

In addition, there are zero transaction costs and cash can be immediately
borrowed for shorting (no margin posting or interest requirements).

Requires:
symbol — A stock symbol which forms the basis of the portfolio.

bars — A DataFrame of bars for a symbol set.
signals — A pandas DataFrame of signals (1, 0, —1) for each symbol.
initial_capital — The amount in cash at the start of the portfolio.”””

def __init__(self, symbol, bars, signals, initial_capital=100000.0):
self.symbol = symbol

self.bars = bars

self.signals = signals

self.initial_capital = float (initial_capital)
self . positions = self.generate_positions ()

def generate_positions(self):
?”” Creates a ’positions’ DataFrame that simply longs or shorts
100 of the particular symbol based on the forecast signals of
{1, 0, —1} from the signals DataFrame.”””
positions = pd.DataFrame(index=self.signals.index). fillna (0.0)
positions [self.symbol] = 1000xself.signals[’signal ’]
return positions

def backtest_portfolio(self):
7”” Constructs a portfolio from the positions DataFrame by
assuming the ability to trade at the precise market open price
of each bar (an unrealistic assumption!).

Calculates the total of cash and the holdings (market price of
each position per bar), in order to generate an equity curve

(’total’) and a set of bar—based returns (’returns ’).

Returns the portfolio object to be used elsewhere.”””

80

Construct the portfolio DataFrame to use the same index

as ’'positions’ and with a set of ’trading orders’ in the
’pos_diff’ object, assuming market open prices.
portfolio = self.positionsxself.bars|[’Open’]

pos-diff = self.positions. diff ()

Create the ’holdings’ and ’cash’ series by running through

the trades and adding/subtracting the relevant quantity from

each column

portfolio [’ holdings ’] = (self.positionsx*self.bars[’Open’]).sum(axis=1)

portfolio[’cash’] = self.initial_capital — (pos_diffxself.bars[’Open’]).sum(axis=1).cumsum ()

Finalise the total and bar—based returns based on the ’cash’
and ’'holdings’ figures for the portfolio

portfolio[’total ’] = portfolio[’cash’] + portfolio [holdings ’]
portfolio[’returns ’] = portfolio[’total ’]. pct_change ()

return portfolio

def backtest (symbol, filename, initial_amount=10000):
Obtain daily bars of AAPL from Yahoo Finance for the period
1st Jan 1990 to 1st Jan 2002 — This is an example from ZipLine
dateparse = lambda x: pd.datetime.strptime(x, ’%Y.%m.%d %H:%M’)
bars = pd.read_csv (filename, parse_dates=[["Date”,” Time”]], date_parser=dateparse, index_col=0)

Create a Moving Average Cross Strategy instance with a short moving

average window of 100 days and a long window of 400 days

mac = MovingAverageCrossStrategy (symbol, bars, short_window=5, long_-window=12)
signals = mac. generate_signals ()

Create a portfolio of AAPL, with $100,000 initial capital

portfolio = MarketOnOpenPortfolio(symbol, bars, signals, initial_amount)
returns = portfolio.backtest_portfolio ()
return bars, signals, returns

class Window (QtGui. QDialog):

def __init__(self, bars, signals, returns, parent=None):
super (Window, self). __init__(parent)
self.figure = plt.figure ()
self.canvas = FigureCanvas(self.figure)
self.bars = bars
self.signals = signals
self.returns = returns
self .toolbar = NavigationToolbar(self.canvas, self)

set the layout

layout = QtGui.QVBoxLayout ()
layout .addWidget (self.toolbar)
layout .addWidget (self.canvas)
self .setLayout (layout)

self.plot ()
def plot(self):

>’’’ plot some random stuff
self.figure.subplots_adjust (hspace=.5)

P

Plot two charts to assess trades and equity curve
axl = self.figure.add-subplot (211, ylabel="Price of Instrument ’.format())
axl.yaxis.set_major_formatter (mtick.FormatStrFormatter (’%.4f "))

Plot the AAPL closing price overlaid with the moving averages

self .bars[’Close ']. plot (ax=ax1l, color="r’, lw=2.)

Plot the "buy” trades against AAPL

axl.plot(self.signals.ix[self.signals.positions == 1.0].index,
self.signals.short_mavg[self.signals.positions == 1.0],
>*?, markersize=10, color="m’)

Plot the ”sell” trades against AAPL

axl.plot(self.signals.ix[self.signals.positions == —1.0].index,
self.signals.short_.mavg|[self.signals.positions == —1.0],
’v’, markersize=10, color="k’)

Plot the equity curve in dollars

ax2 = self.figure.add-subplot (212, ylabel="Portfolio value’)
ax2.yaxis.set_major_formatter (mtick.FormatStrFormatter (’$%.f "))
self . returns[’total ’]. plot (ax=ax2, lw=2.)

#Plot the ”"buy” and ”sell” trades against the equity curve

ax2.plot(self.returns.ix[self.signals.positions == 1.0].index,
self .returns.total [self.signals.positions = 1.0],
>*?, markersize=10, color="m’)

ax2.plot(self.returns.ix[self.signals.positions == —1.0].index,
self .returns.total [self.signals.positions == —1.0],
’v’, markersize=10, color=’k’)

self.canvas.draw()
def main ():
filename = ’C:\ Users\ArielKenneth\Desktop\data\EURUSD30_recent_test.csv’
app = QtGui. QApplication (sys.argv)

bars, signals, returns = backtest (’EUR.USD’, filename)

81

main = Window(bars, signals, returns)
main.setWindowTitle(config._program_name + ’ — Backtesting Results’)
main.showMaximized ()

sys.exit (app.exec_())
if __name_. == ’__main__":
main ()

P

Created on Jun 1, 2015

@author: ArielKenneth

P

import time
import StringlO

from PyQt4 import QtGui, QtCore

import matlab_funcs
import config
import preprocess

class TrainingDialog (QtGui.QDialog):
def __init_-_(self, training_path , testing_path , parent=None):
super (TrainingDialog , self). __init__(parent)

self .setWindowTitle(config._program_name_short + ” — Training”)

self.verticalLayout = QtGui.QVBoxLayout ()

self.label = QtGui.QLabel(” The program is currently processing the training data.
?»\nThroughout the training, you will see several MATLAB progress dialogs pop up.”
?\nThis typically takes up to 4—6 hours. Please see progress below.”)

self.verticalLayout.addWidget(self.label)

self.progressBar = QtGui.QProgressBar ()

self.verticalLayout.addWidget(self.progressBar)

self . textBrowser = QtGui.QTextBrowser ()

self.verticalLayout.addWidget(self.textBrowser)

self.okButton = QtGui.QPushButton(” Finished”)

self .verticalLayout.addWidget(self.okButton)

self .okButton.setDisabled (True)

»

self .setLayout(self.verticalLayout)

self.pbar_value = 0
self.finished = False

self.training_thread = TrainingThread(training_path , testing_path)
self.training_thread.updated.connect(self.update_progress)

self . training_thread.errorEncountered.connect(self.notify_error)
self .training_thread.finished.connect(self.activateOk)

self.training_-thread.start ()

def update_progress(self, text, progress_int):
self.pbar_value += progress_int
self .progressBar.setValue(self.pbar_value x* 100.0 / 13.0)
self.textBrowser.insertHtml('<p style="color:black”>{0}</p>’.format (text))
self .textBrowser.verticalScrollBar ().setValue(
self . textBrowser.verticalScrollBar (). maximum/())

def notify_error (self, text):
TODO something special here
self.textBrowser.insertHtml(’<p style="color:red”>{0}</p>’.format (text))
self . training_thread.exit(—1)

def activateOk(self):
self.okButton.setEnabled (True)

def closeEvent (self , event):
if self.okToContinue ():
self . training_thread.quit ()
event .accept ()
else:
event.ignore ()

def okToContinue(self):
reply = QtGui.QMessageBox.question (self , ’Message’,
”Are you sure you want to quit? This may leave the program in an undesirable state”, QtGui.QMessage:
QtGui. QMessageBox.No, QtGui.QMessageBox.No)

return reply == QtGui.QMessageBox. Yes
class TrainingThread (QtCore.QThread):
These signal sends a message, and 1 for progress messages
14 progress ticks will be sent in total
1 for preporcessing, 1 for MATLAB init , 12 for all FIS
updated = QtCore.pyqtSignal (str, float)
errorEncountered = QtCore.pyqtSignal(str)

def __init__(self, training_path , testing_path , parent=None):

super (TrainingThread , self). __init__(parent)
self.training_-file = training-path
self.testing_file = testing-path

Recommended by https://joplaete.wordpress.com/2010/07/21/threading—with—pyqt4/
def __del__(self):

82

print ”Thread terminated”
self . wait ()

def run(self):
self .updated.emit(” Training commencing...
”", 0)
start_time = time.time/()

try:
self .updated.emit(” Pre—processing files...
7, 0)
preprocess .preprocess_.OHLC_training(self.training_file)
preprocess.preprocess_ OHLC_testing(self.testing_file)

self .updated.emit(” Training and testing files have been pre—processed<br

self .updated.emit ("MATLAB Engine is being initialized...
7, 0)

eng = matlab_funcs.init-matlab ()

self .updated.emit ("MATLAB Engine has been initialized!
”, 0.5)
except Exception, e:

self .errorEncountered.emit(str(e) +

/>,

0.5)

?
Please return to the previous page and check your

return

for i in range(config._horizon):
out = StringlO.StringIO ()
err = StringlO.StringlO ()

self.updated.emit(’

High (t+{0}) training...
’.format(i+4+1), 0)
eng.anfis_init_train (’training_high_{0}.csv’.format(i+1), ’high_{0}.fis ’. format(i+1),

stdout=out, stderr=err)
if err.len > O:
self.errorEncountered.emit(err.getvalue())
self.exit(—1)

self .updated.emit(’<PRE STYLE="font—family: Helvetica”>’+out.getvalue()+”</PRE>",

out = StringlO . StringlO ()
err = StringlO.StringlO ()

self.updated.emit(’

Low (t+{0}) training...
’.format(i+1), 0)

start_time = time.time /()

1)

eng.anfis_init_train (’training_low_{0}.csv’.format(i+1), ’low_{0}.fis ’. format(i+1),

stdout=out, stderr=err)
if err.len > O0:
self.errorEncountered.emit(err.getvalue())
self.exit(—1)

1)

self .updated.emit('<PRE STYLE="font—family: Helvetica”>"4out.getvalue()+”</PRE>",
for _ in xrange(12):
self .updated.emit (” Emit dummy
", 1)
self.updated.emit(”
Finished after %s seconds” % (time.time() — start_time), 0)
<?php
// These variables define the connection information for your MySQL database
// Change as applicable
$username = " aagfa”;
$password = "u9r8swcn2vVQBSjc”;
$host = ”localhost”;
$dbname = " broker”;
// UTF—8 is a character encoding scheme that allows you to conveniently store
// a wide varienty of special characters, like or , in your database.
// By passing the following $options array to the database connection code we
// are telling the MySQL server that we want to communicate with it using UTF-8
// See Wikipedia for more information on UTF-—8:
// http://en.wikipedia.org/wiki/UTF—8
$options = array (PDO:: MYSQLATTRINIT_.COMMAND => ’SET NAMES utf8 ’);
// A try/catch statement is a common method of error handling in object oriented code.
// First , PHP executes the code within the try block. If at any time it encounters an
// error while executing that code, it stops immediately and jumps down to the
// catch block. For more detailed information on exceptions and try/catch blocks:
// http://us2.php.net/manual/en/language.exceptions.php
try
{
// This statement opens a connection to your database using the PDO library
// PDO is designed to provide a flexible interface between PHP and many
// different types of database servers. For more information on PDO:
// http://us2.php.net/manual/en/class .pdo.php
$db = new PDO(” mysql: host={8$host };dbname={8dbname };charset=utf8”, $username, $password,

catch (PDOException $ex)

{
// If an error occurs while opening a connection to your database, it will
// be trapped here. The script will output an error and stop executing.
// Note: On a production website, you should not output $ex—>getMessage ().
// It may provide an attacker with helpful information about your code
// (like your database username and password).
die(” Failed to connect to the database: ” . $ex—>getMessage ());
}
is statement configures o row an exception when it encounters
Thi tat t fi PDO to th ti h it t
// an error. This allows us to use try/catch blocks to trap database errors.

$db—>setAttribute (PDO:: ATTRERRMODE, PDO:: ERRMODE_EXCEPTION) ;

// This statement configures PDO to return database rows from your database using an
// array. This means the array will have string indexes, where the string value

// represents the name of the column in your database.
$db—>setAttribute (PDO:: ATTR.IDEFAULT FETCH.MODE, PDO::FETCH-ASSOC);

// This block of code is used to undo magic quotes. Magic quotes are a terrible
// feature that was removed from PHP as of PHP 5.4. However, older installations

83

input.
7)

$options);

associative

>

// of PHP may still have magic quotes enabled and this code is necessary to
// prevent them from causing problems. For more information on magic quotes:
// http://php.net/manual/en/security . magicquotes.php

if (function_exists (’get_-magic_quotes_gpc’) && get_magic_quotes_gpc ())

{

function undo_magic_quotes_gpc(&$array)
foreach ($array as &$value)
if (is_array ($value))
undo_magic_quotes_gpc($value);
else

$value = stripslashes(8$value);

}

undo_magic_quotes_gpc ($_-POST);
undo_magic_quotes_gpc ($_-GET);
undo_magic_quotes_gpc ($_-COOKIE) ;

}

// This tells the web browser that your content is encoded using UTF-8
// and that it should submit content back to you using UTF-8
header (’Content—Type: text/html; charset=utf —8");

// This initializes a session. Sessions are used to store information about

// a visitor from one web page visit to the next. Unlike a cookie, the information
// stored on the server—side and cannot be modified by the visitor. However,

// mote that in most cases sessions do still use cookies and require the visitor
// to have cookies enabled. For more information about sessions:

// http://us.php.net/manual/en/book.session .php
session_start ();

// Note that it is a good practice to NOT end your PHP files with a closing PHP tag.

// This prevents trailing newlines on the file from being included in your output,
// which can cause problems with redirecting users.

<?php

/%

Our

it
we

”config.inc.php” file connects to database every time we include or require

within a php script. Since we want this script to add a new user to our db,
will be talking with our database, and therefore,

let ’s require the connection to happen:

*/

require (” config.inc.php”);

//if posted data is not empty

if

(empty (3_-POST)) {

//1f the username or password is empty when the user submits

//the form, the page will die.

//Using die isn’t a very good practice, you may want to look into
//displaying an error message within the form instead.

//We could also do front—end form validation from within our Android App,
//but it is good to have a have the back—end code do a double check.

if (empty($-POST[’acc-id ’])) {

// Create some data that will be the JSON response
$response [” success”] = 0;

$response [”" message”] = ”Please Enter an Account ID”;

//die will kill the page and not execute any code below, it will also
//display the parameter... in this case the JSON data our Android
//app will parse

die(json_encode ($response));

}

//if the page hasn’t died, we will check with our database to see if there is
//already a user with the username specificed in the form. ”:user” is just
//a blank variable that we will change before we execute the query. We
//do it this way to increase security, and defend against sql injections
$query = ”"SELECT % FROM Orders WHERE Account-ID :acc-id ORDER BY Order.ID DESC”;
//now lets update what :user should be
$query_params = array (
’tacc.id > => $_POST[’acc_.id ’]
)

5
//Now let ’s make run the query:

try {
// These two statements run the query against your database table.
$stmt = $db—>prepare($query);

$stmt—>execute ($query_params);

}
catch (PDOException $ex) {
// For testing, you could use a die and message.

//die(” Failed to run query: ” . $ex—>getMessage ());

//or just use this use this one to product JSON data:
$response [” success”] = 0;

$response [” message”] = ”Database Errorl. Please Try Again!”;

die (json_encode ($response));

84

$results = $stmt—>fetchAll (PDO:: FETCH-ASSOC);
die (json_encode($results));

} else {
>
<h1>Get Orders for Account ID</h1>
<form action="get_orders.php” method="post”>
Account ID:

<input type="text” name="acc-id” value="" />

<input type="submit” value="Get Orders” />

</form>
<?php
¥
>
<?php
$api-key = ’'jr —67a974b189236a96113aa93979d19939 ’;

if (!empty($-POST)) {
list ($from, $to) = explode(”_.”, $_POST[’inst ’]);

$data = file_get_contents (
http://jsonrates.com/get /7.
"from=".8%from.
&to=".$to.
'&apiKey=".%api_key

)i
// die(8$data);
$json = json_decode ($data);

$rate = (float) $json—>rate;
echo $rate;

}

else {

>

<h1>Get Rates</hl>
<form action="get_rate.php” method="post”>
Instrument:

<input type="text” name="inst” value="" />

<input type="submit” value="Get Exchange Rate” />

</form>
<?php
¥
>
<?php
/%
Our ”config.inc.php” file connects to database every time we include or require
it within a php script. Since we want this script to add a new user to our db,

we will be talking with our database, and therefore,
let ’s require the connection to happen:
*/

require (" config.inc.php”);

//if posted data is not empty
if (!empty($-POST)) {
//1f the username or password is empty when the user submits
//the form, the page will die.
//Using die isn’t a very good practice, you may want to look into
//displaying an error message within the form instead.
//We could also do front—end form validation from within our Android App,
//but it is good to have a have the back—end code do a double check.
if (empty($-POST[acc_-id ’])) {

// Create some data that will be the JSON response

$response [” success”] = 0;

$response [”" message”] = ”Please Enter an Account ID”;

//die will kill the page and not execute any code below, it will also
//display the parameter... in this case the JSON data our Android

//app will parse
die (json_encode ($response));

¥

//if the page hasn’t died, we will check with our database to see if there is
//already a user with the username specificed in the form. 7:user” is just
//a blank variable that we will change before we execute the query. We

//do it this way to increase security , and defend against sql injections
$query = ”SELECT COUNT(%) FROM Orders WHERE Account_ID = :acc_id”;

//now lets update what :user should be

$query_params = array (

’tacc-id ’ => $_POST[’acc_.id ’]

//Now let ’s make run the query:

try {
// These two statements run the query against your database table.
$stmt = $db—>prepare ($query);

$stmt—>execute ($query_params);

85

¥
catch (PDOException $ex) {
// For testing, you could use a die and message.

//die(” Failed to run query: ” . $ex—>getMessage ());
//or just use this use this one to product JSON data:
$response [” success”] = 0;
$response [”" message”] = ”Database Errorl. Please Try Again!”;
die (json_encode ($response));
}
$result = $stmt—>fetch ();
$response [” success”] = 1;
$response [” Account_ID”] = $_POST[’acc_id ’];
$response [" num_orders”] = intval(S$result [’COUNT (%) ’]);
die(json_encode ($response));
} else {
>
<h1>Get Status for Account ID</hl>
<form action="get_status.php” method="post”>
Account ID:

<input type="text” name="acc_-id” value="" />

<input type="submit” value="Get Orders” />
</form>
<?php
¥
>
<?php

require (" config.inc.php”);

//if posted data is not empty
if (!empty($-POST)) {
$query =
"UPDATE orders SET Take_Profit=:tp, Stop-Loss=:sl WHERE Order_-ID=:order-id"”;

//Again, we need to update our tokens with the actual data:
$query_params = array (

’:order_.id > => $_POST|[’order_id ’],

itp’ => $_POST[’tp’],

’:s17 => $_POST[’sl’]

3
time to run our uer
// q

try {
$stmt = $db—>prepare ($query);
$result = $stmt—>execute ($query_params);

¥

catch (PDOException $ex) {
//or just use this use this one:
$response = 1;
echo $response;

¥

$response = 1;

echo json_encode($response);

} else {
>
<h1>Modify Order</h1>
<form action="editprofile.php” method="post”>
Order ID:

<input type="text” name="order_id” value="" />

Take Profit:

<input type="text” name="tp” value="" />

Stop Loss:

<input type="password” name="sl” value="" />

<input type="submit” value="Modify Order” />

</form>
<?php
¥
>
<?php
/%
Our "config.inc.php” file connects to database every time we include or require
it within a php script. Since we want this script to add a new user to our db,

we will be talking with our database, and therefore,
let s require the connection to happen:
*/

require (" config.inc.php”);

//if posted data is not empty
if (!empty($-POST)) {

//get execution price

$api_-key = ’jr —67a974b189236a961132293979d19939 ’;
list ($from, $to) = explode(” ", $_POST[’inst ’']);
$data = file_get_contents (

http://jsonrates .com/get /7 .

86

}

>

}

>

’from=".$from.
&to=".%to.
'&apiKey=".8api_key

)

$json = json_decode ($data);

$exec_price = (float) $json—>rate;

$query = ” INSERT INTO Orders (Account_ID, Units, Side, Instrument,

//Again, we need to update our tokens with the actual data:
$query_params = array (
’tacc-id > => $_POST[’acc.id '],
:units ’ => $_POST [’ units '],
:side’ => $_POST|[’side],
rinst 7 => $_POST[’inst '],
:price’ => $exec_price,
tp’ => $_POST[’tp’],
:sl’ => $_POST[sl ’]

)
//time to run our query, and create the user
try |

$stmt = $db—>prepare ($query);

$result = $stmt—>execute($query_params);

catch (PDOException $ex) {
// For testing, you could use a die and message.
//die(” Failed to run query: ” $ex—>getMessage ());

//or just use this use this one:

$response [” success”] = 0;
$response [” message”] = ”Database Error2. Please Try Again!”;
die(json_encode ($response));

¥

//encode final response

$response [” success”] = 1;

$response [” price”] = $exec_price;

echo json_encode($response);

//for a php webservice you could do a simple redirect and die.
//header (” Location: login.php”);
//die(” Redirecting to login.php”);

else {

<h1>Create Order</hl>
<form action="place_order .php” method="post”>
Account ID:

<input type="text” name="acc-id” value="" />

Side:

<input type="text” name="side” value="" />

Units:

<input type="text” name="units” value="" />

Instrument:

<input type="text” name="inst” value="" />

T/P:

<input type="text” name="tp” value="" />

S/L:

<input type="text” name="sl” value="" />

<input type="submit” value="Place Order” />
</form>
<?php

DROP DATABASE IF EXISTS broker;
CREATE DATABASE broker;
USE broker;

CREATE USER

CREATE TABLE Orders (

)s

Order_ID INTEGER PRIMARY KEY AUTOINCREMENT,
Account_ID VARCHAR(7),

Units INTEGER,

Side VARCHAR(4) ,

Instrument VARCHAR(7),

Order_Time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
Price DECIMAL(S,5),

Take_Profit DECIMAL(S,5),

Stop-Loss DECIMAL(8,5)

Price, Take_Profit,

INSERT INTO Orders (Account_ID, Units, Side, Instrument, Price, Take_Profit, Stop_Loss)
VALUES (1234567, 1000, ’buy’, ’EUR.USD’, 12.2345, 1.54321, 1.12345);

SELECT % FROM Orders WHERE Account_ID=1234567;

87

Stop-Loss) VALUES (

XII. Acknowledgement

Where to begin? I find it... jarring having to write this in a rush. Haha. (If you
must know, I had to defend, revise, and have this all finalized on the same day.)
There’s so much to thank about and so many people to thank them for.

Off the top of my head, I first want to thank my advisers. Yes, advisers. I had
three. Thank you, Sir Richard Bryann Chua for taking me under your wings as
one of your advisees. I took that as a vouch of confidence in my ideas. But alas,
ideas don’t always work. I'm still thankful because you pointed me to my next
adviser, Sir Geoffrey Solano. Thank you, sir, for working so patiently with me and
taking the time, online or offline, to discuss my work. Sadly, I wasn’t able to finish
before you had to go and focus on your Ph.D. This is where Ma’am Perl comes
in. Even during the first discussions of my SP, Ma’am Perl acted as a consultant
of sorts for me and Sir Solano. Thank you, ma’am, for working with me even as
an "adopted” advisee. I've seen you answer me and work through headaches and
vacation inertia just to cater to my questions and to your other advisees.

I really do sincerely appreciate you, Ma’am Perl and Sir Solano. Saan kaya
ako pupulutin kung di niyo ako tiniis? Haha.

Thank you also to all the professors and instructors that I had. UP was a
formative experience and you were all a major part of it. Thank you to the
support staff of UP Manila, both wonderful and not-so-wonderful. Haha. a special
shoutout to the Cash Office staff! The remaining part would be my classmates.
Thank you, too, guys!

For my friends, you know who you are (you should), I also thank you. I
love you, guys! If you're from UPM, thank you for making my college days less
harrowing than it should be. Haha. For my church peeps, thank you for praying
with me and being wonderful people to grow with.

For those that pushed, encouraged, prodded, berated, and yelled me into fin-
ishing this; thank you! When I couldn’t move myself, you gave me that much

needed push. Saan kaya ako pupulutin kung di niyo ako kinulit? Haha.

88

For everyone else that I couldn’t remember to put in here (time pressured eh),
thank you, too! I might not remember what you did, but it could have very well
been integral to me finishing my degree.

For my family, Mama Lynn, Papa Bhoy, Princess, Kyle, Prince, Chloe; thank
you! I love you so much! This one’s for you. When I couldn’t push myself to do
this for me, I thought I'm doing this for you. You stood by me through the many,
I mean many, challenges that led to me finishing this. A family like you is love
exemplified. Especially you, Mama and Papa. I'm glad that I can now finally say
that I'm doing you proud with a college degree—from UP no less! You deserve
the recognition.

Finally, I must acknowledge that I couldn’t have done this alone.
God brought me through all of this. With all my weaknesses and shortcom-
ings, I couldn’t imagine myself doing all this through my own ability or will. T
needed the mighty hand of God, holding my world and letting the boundary lines
fall into pleasant places. And thus, I don’t want to take the glory for myself. It is
God’s and God’s alone.

Not to us, Lord, not to us

but to your name be the glory,
because of your love and faithfulness.
-Psalm 115:1

Thank you, my Lord, my God, my King.

89

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Theoretical Framework
	Foreign Exchange Market
	Algorithmic Trading
	Fuzzy Set Theory
	Fuzzy Sets
	Fuzzy Set Operations

	Fuzzy Inference Systems
	Sugeno Fuzzy Inference
	Adaptive Neuro-Fuzzy Inference System
	Architecture
	Initial Fuzzy Model
	Hybrid Learning Rule

	Genetic Algorithm
	Genetic Algorithm Operators

	Genetic Programming
	Multi-objective Optimization
	Non-Dominated Sorting Genetic Algorithm II

	Design and Implementation
	Use-Case Diagram
	Context Diagram
	Flowchart
	Parameters and Input Pre-processing

	Architecture
	System Architecture
	Technical Architecture

	Results
	Discussions
	Conclusions
	Recommendations
	Bibliography
	Appendix
	Source Code

	Acknowledgement

