UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

USING SEMI-AUTO ANNOTATION AND OPTICAL
CHARACTER RECOGNITION FOR TRANSCRIPTION OF
PATIENT MONITOR USING SMARTPHONE CAMERA

A special problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Jan Federico P. Coscolluela IV
June 2023

UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

USING SEMI-AUTO ANNOTATION AND OPTICAL
CHARACTER RECOGNITION FOR TRANSCRIPTION OF
PATIENT MONITOR USING SMARTPHONE CAMERA

A special problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Jan Federico P. Coscolluela IV
June 2023

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser | No

Available only to those bound by confidentiality agreement | No

ACCEPTANCE SHEET

The Special Problem entitled “Using Semi-auto Annotation and Optical
Character Recognition for Transcription of Patient Monitor using Smartphone Camera” prepared
and submitted by Jan Federico P. Coscolluela IV in partial fulfillment of the requirements
for the degree of Bachelor of Science in Computer Science has been examined and is rec-
ommended for acceptance.

Marbert John C. Marasigan, M.Sc. (cand.)

Adviser
EXAMINERS:
Approved Disapproved
1. Avegail D. Carpio, M.Sc.
2. Richard Bryann L. Chua, Ph.D. (cand.)
3. Perlita E. Gasmen, M.Sc. (cand.)
4. Ma. Sheila A. Magboo, Ph.D. (cand.)
5. Vincent Peter C. Magboo, M.D.
6. Geoffrey A. Solano, Ph.D.

Accepted and approved as partial fulfillment of the requirements for the degree of
Bachelor of Science in Computer Science.

Vio Jianu C. Mojica, M.Sc. Marie Josephine M. De Luna, Ph.D.
Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Maria Constancia O. Carrillo, Ph.D.
Dean
College of Arts and Sciences

Abstract

Vital signs monitoring is a key function in healthcare delivery to ensure immediate and
precise evaluation of a patient’s well-being. It is done by attaching monitor devices to pa-
tients which collect, store, and display values on a screen. In many low-to-medium-income
countries (LMICs), hospitals still rely on manual observation and handwritten documen-
tation of vital signs, which is susceptible to human errors, data tampering, process in-
efficiency, and limited opportunities for comprehensive data analysis. More advanced
hospitals utilize interface engines which transmit data to electronic medical records but
tend to be model-specific and are very costly. Optical character recognition (OCR) offers
a cost-effective and non-invasive alternative to digitizing manual transcription of vital
signs data in healthcare settings with low financial resources. An image preprocessing
pipeline is proposed to perform contour-based screen extraction of the patient monitor
captured by a camera, thus providing a well-defined region more suitable for subsequent
tasks of object detection and data extraction. The study offers a newly accrued dataset
of over 4000 images of Mindray Beneview T8 patient monitor with multi-parameter an-
notations. Results showed that screen extraction prior to object detection significantly
improved the mean Average Precision (mAP) of the model from 68.55% to 93.65% at an
IoU threshold of 0.7.

Keywords: patient monitor, optical character recognition, object detection, image preprocessing,

annotation

Contents
Acceptance Sheet
Abstract

List of Figures

List of Tables

I. Introduction
A. Background of the Study o 0oL
B. Statement of the Problem
C. Objectivesof the Study
D. Significance of the Project
E. Scope and Limitations, .
F. Assumptions

II. Review of Related Literature

ITI. Theoretical Framework

A. Patient Monitor Screen L Lo
B. Image Annotation oL
C. Image Preprocessingo
1 OpenCV o e
2. Grayscalingo
3. Gamma Correction
4. Canny Edge Detection
D. Skew Correction Lo

IV. Design and Implementation

A. Data Collection Setup

111

ii

vi

vii

11
11
12
12
12
13
14
14
16

18

B. Dataset Annotation

1. Manual Annotation o oo
2. Object Detection Training
3. Bounding Box Proposal
4. Manual Fine-tuning oo
D. Workload Estimation
6. Labelled Dataset
C. Image Preprocessing Flowchart
1. Framing
2. Image Preprocessingo
D. System Architecture
E. Technical Architecture
V. Results
A, Dataset
1. Manual Annotation Lo
2. Semi-Auto Annotation L
B. Image Preprocessing Pipeline
1. Gamma Correction
2. Edge Detection
3. Accuracy
4. Processing time
C. Optical Character Recognition
D. System

VI. Discussions

VII. Conclusions

VIII. Recommendations

v

24
24
25
25
27
27
30
31
32
33
35

38

39

40

IX.

XI.

Bibliography

Appendix

A. Ethics Board Approval
B. Philippine General Hospital Approval
C. Source Code

Acknowledgment

41

46
46
49
20

65

List of Figures

10
11
12
13
14
15

16
17
18
19
20
21

Standard Patient Monitor o000 11
Architecture of OpenCV 13
Gamma Correction Lo 14
Canny Edge Detection oo 15
Skew Correction with OpenCV 17
Beneview T8 Patient Monitor 18
Semi-auto Annotation Methodoloy 19
Image Preprocessing Pipeline 22
Edge Detection Sub-Explosion 0L 22
Manual Annotation using Labellmg 25
Automated Annotation using Object Detection 26
Semi-auto Annotation Workload Reduction. 26
Image Preprocessing Pipeline Implementation 31
Image Preprocessing Time 32

Precision-Recall Curves of Object Detection. a-c) Raw Dataset; d-f) Pre-

processed Dataseto 33
Detected Health Parameters at minconfscore = 0.5 34
Home Page 35
In-app Camera Access Page 36
File Upload Page 36
Dataset Page 37
Guide Page 37

vi

List of Tables

N o

Dataset File Naming 21
Dataset Image Classes Overview 24
Comparison of Dynamic Gamma Correction on an Image with Natural

Lighting 28
Comparison of Dynamic Gamma Correction on an Image with Low Lighting 29

Error Deduction Summary for Image Quality Metrics (MSE, PSNR, SSIM) 29

Edge Detection Algorithms Comparison (mingesn, =40) 30
Average Precision (AP) across Health Parameters (IoU > 0.70) 34
OCR-extracted Vital Signs Data 34

Vil

I. Introduction

A. Background of the Study

Patient monitoring is a critical aspect of healthcare delivery, ensuring timely and accu-
rate assessment of vital signs and overall patient well-being. Patient monitor devices
serve as the primary tool to continuously measure and display vital signs such as heart
rate, blood pressure, and oxygen saturation. This provides healthcare professionals with
real-time information about a patient’s physiological status for long-term observation and
early medical interventions as needed [!]. Despite technological advancements, manual
monitoring techniques, such as nurses manually observing or taking note of value, still
persist in many hospitals. This approach poses several limitations, including the risk of
human error, consumption of time, difficulties in data storage and retrieval, and hindered
opportunities for comprehensive analysis.

Digitizing manual patient monitoring through the utilization of Optical Character Recog-
nition (OCR) technology offers a promising solution to address these challenges as it grows
to be a growing area of research [2]. This provides a cost-effective solution with reduced
hardware costs and connectivity expenses using camera without the need for expensive
cords or third party software. To this end, the UP Manila Standards and Interoperabil-
ity Lab (UPM SILAB) can incorporate data interoperability across health institutions

involving patient monitor data, specifically in the Philippine General Hospital (PGH).

B. Statement of the Problem

The inadequacy of publicly available patient monitor dataset poses challenge to the devel-
opment of OCR system with specific context and focus of application. Despite third-party
software offering simulated patient monitor videos, most of which are paid, these datasets
are already high-quality and mainly designed for trend analysis studies.

Furthermore, one common challenge encountered when working with computer vision is

the presence of noise in image datasets. The problem at hand is to develop effective

techniques and methodologies to mitigate noise in image datasets, thereby enhancing the

quality and reliability of the data for subsequent analysis and applications.

C. Objectives of the Study

This study intends to provide a newly accrued dataset of patient monitor images reflecting

a realistic hospital environment. In particular, the goals of the paper are as follows:
e Dataset Objectives:
1. Manually collect video recordings of patient monitor from the Post Anesthesia

Care Unit of Philippine General Hospital

2. Utilize smartphone camera to perform data collection in both natural and low

lighting conditions with different camera angles

direct camera

— skewed to the left

skewed to the right

skewed upwards

— skewed downwards

3. Perform frame extraction to obtain patient monitor image dataset from cap-

tured videos

4. Implement a semi-auto annotation approach to expedite the manual dataset

annotation procedure
5. Fully annotate raw and preprocessed images in PascalVOC XML format

6. Train a customized object detection model to locate vital signs from the newly

accrued dataset

7. Apply optical character recognition to extract vital signs from model detections

e System Objectives:

1. Allow the user to capture an image or video of a patient monitor via device

camera in real-time
2. Allow the user to upload a pre-taken image or video of a patient monitor

3. Implement frame extraction to retrieve individual images from video input

type at 2-second intervals
4. Implement a screen-extraction procedure using an image preprocessing pipeline

(a) gamma correction
(b) edge detection

(c) skew correction

5. Allow user to download preprocessed image output in ZIP and CSV format

D. Significance of the Project

A new dataset of camera-captured patient monitor images with multi-parameter annota-
tions is a contribution to computer vision which can aid benchmarking research, validation
of computer vision algorithms, and remote patient monitoring.

Creating a web application that allows access to camera and integrates image enhance-
ment procedures can also be scaled for future work of text and digit recognition or wave-
form interpretation. In particular, the proposed study can serve as an initial step for
UPM SILAB’s OCR project for PGH, focusing on image optimization before the OCR
process. By optimizing images prior to OCR, a more suitable image data for subsequent
tasks is obtained. The workload on healthcare staff can be minimized, and valuable

patient information can be preserved for research purposes.

E. Scope and Limitations

This study operates under the following conditions:

1. The dataset only considers Mindray Beneview Series patient monitor.
2. Camera angle during data collection is adjusted manually without the use of any
software.
F. Assumptions
This project operates under the following assumption/s.
1. The monitor is not obstructed by any object during capture.

2. The monitor is sufficiently captured and not cropped.

II. Review of Related Literature

Computer vision is a field of artificial intelligence that has been extensively utilized across
various domains such as real estate, businesses, and healthcare. It is used to simulate
human visual abilities by enabling computers to analyze surroundings as humans do—or
even more. A concept under computer vision known as optical character recognition
(OCR) is a highly researched topic [2]. This is typically done by having a digital image of
a document, performing image processing to remove unwanted information, training the
computer to locate characters of interest, and finally segmenting the detected characters
for identification [3]. For instance, self-driving cars incorporate OCR technology not only
to facilitate detection of objects such as obstacles and nearby vehicles but also to perform
corresponding actions to keep the car free from collision.

Majority of previous work utilizing OCR focused on number recognition, document anal-
ysis, and vehicular license plate recognition [1]. For instance, Zacharias et al [2] explored
the extraction of Intermodal Loading Units (ILU) codes printed on the rear end of swap
bodies (freight containers for road and rail transport) using a text recognition pipeline
with the open-source Tesseract OCR engine. A small variation in illumination among the
captured images was found to contribute to large errors in text recognition and thereby
negatively affect model success metrics. Implementation of deep learning-based model
can be promising to overcome the large fluctuation of model accuracy with scene text
images [2].

Such recommendation for use of deep learning was explored by an optical character recog-
nition post-correction study conducted by Karthikeyan et al. [5] which showed the feasi-
bility of model accuracy improvement applied on medical reports. Correct transcription
and recognition of documents is a key challenge identified in this paper due to presence
of noise such as obscured, skewed, or illegible text. Specific medical terminologies devi-
ating from general language lexicons were also found to compound the error rate of OCR

process. Introducing medical terminologies to the vocabulary of employed OCR model is

a highlighted technique that could be employed in patient monitor dataset since health
parameters and their symbols may not syntactically align with that of general language.
This apparent dependence of OCR model accuracy on dataset quality suggests the critical
role of data collection and proper image preprocessing as applied to a specific context of
data. In a medical study using lung MRI images as dataset, filtering techniques such as
Wiener, median, and Gaussian reduced the time it takes to process the images [6]. Blur
detection is a technique that can be explored in related works to assess the quality of
captured medical image beforehand and retake the data collection phase prior to further
processing.

Despite the extensive studies using OCR, work centered particularly on scanned doc-
uments ranging from business forms, receipts, and bibliographic data. Commercially
available OCR tools are also optimized for scanner-captured documents which results to
drastic decrease of the transcription accuracy for camera-captured images due to apparent
noise and distortion from environmental factors [7]. Further, lack of open studies around
these commercial tools leads to low system repeatability and assessment. The challenge
thus remains on expanding the application of OCR primarily in the context of healthcare
where captured images or video from data sources are not readily suitable for modeling.
For instance, medical data may come in the form of prescriptions and patient records
which are typically stored on paper with the possibility of content smudges, handwritten
corrections, and writing style differences. Pronouncing this tendency of low-quality data
is the fact that data collection in the medical context must be noninvasive and consen-
sual which could translate to moving the capturing device at a distance or angle to avoid
inconvenience.

Survey results showed that errors committed during data entry in clinical databases range
from 2.3% to 26.9% which roots from data entry mistakes and misinterpretation of in-
formation [3]. Adriano et al. [3] aimed to reduce the high error rate of data entry using
OCR applied on novel digital conversion model for hand-filled forms. Their dataset came

from a selected special database that readily provided forms (containing handwritten

text) to facilitate character recognition and training of classifiers. Their best-performing
pipeline used feature extraction via AlexNet, a convolutional neural network architecture.
They recommended other CNNs for exploration namely ResNet and Squeezenet, as well
as using other SVM kernels like Gaussian and RBF— points of work that presents great
utility. Exploring scanned medical prescriptions, a camera inside an IoT-enabled smart
medicine box embedded with OCR technology was explored by the work of Rumi et al.[9].
This targets elderly patients who cannot monitor their medication by notifying an indi-
vidual about the medication information extracted from their respective prescriptions.
The paper’s focus on scanned prescriptions can be further extended to another clinical
setup like patient information displayed on medical devices which not only requires text
recognition but also correct mapping of numerical health values to their corresponding
health parameters (e.g., heart rate, blood pressure).

In a work by Xue et al.[10], a text detection and recognition pipeline considered two real-
life scenarios in the medical scene: (1) multilingual laboratory reports, and (2) documents
with many textual objects each occupying a very small region. The authors proposed a
deep learning approach that performs a patch-based training strategy applied to a detec-
tor that outputs a set of bounding boxes containing texts. A concatenation structure is
then inserted into a recognizer that takes the areas of bounding boxes in the original im-
age as input, thereby outputting the recognized texts. The patch-based strategy enforced
by the authors in text detection module achieves 99.5% recall and 98.6% precision, a de-
sirable result given the average quality of images. Likewise, the concatenation structure
effectively improved the recognition performance by being able to deal with images with
different resolutions at 90% accuracy. Their patch-based strategy during text detection
may be something worth looking into given its contribution to achieve desirable success
outcomes in terms of recall and precision.

OCR works efficiently with printed text documents [I1]. However, as mentioned above,
medical data does not include textual forms alone but spans widely across different medi-

cal devices as such as blood pressure monitors and patient monitor systems among many

others. Few datasets exist such as the Queensland [12] and VitalDB [13] dataset but they
are both high-fidelity vital signs database designed for anesthesia monitoring research and
biosignal analysis, respectively. To the best knowledge of the researchers, there is a lack
of camera-captured patient monitor images reflecting actual environment conditions (e.g.,
illumination variation, background noise, etc.) which are essential in optical character
recognition.

In the work of Kulkarni et al. [I1], OCR was used to digitize camera-captured blood
pressure readings through a mobile application. The paper underscored medical data
transcription errors as well as relatively inadequate technologies in low- to middle-income
countries (LMICs). The use of ubiquitous phone camera to detect LCD frame location
provides a cost-effective solution to facilitate OCR without the need for expensive software
or high-end capturing devices Their modular image enhancement algorithm including im-
age binarization, LCD frame localization, and LCD frame normalization may also be used
as reference when applied on a similar medical tool like patient monitor. Similar to pre-
vious works, low image quality was found to significantly degrade their model accuracy,
hence post-OCR correction may be applied.

A study by Shenoy et al. [15] developed a smartphone-based system that automatically
reads and records biometric monitor results from a camera-captured monitor reading.
This was, however, limited to seven-segment displays and does not involve recognition of
alphanumeric content as observed in a patient monitor screen. Its target device is also
limited to Apple’s HealthKit in iOS, which leads to less generalizability but poses points
for open work.

Storage itself of extracted information is as equally important as text recognition to fa-
cilitate research, drive business decisions, and assist in forecasting and policy making.
However, medical devices and screens may have limited hardware capabilities to store
and export data for further clinical research and diagnosis. This is particularly the case
for LMICs, where technology may not be as advanced as other countries [14].

Document archiving and record management was explored with application of optical

character recognition in the paper of Jayoma et al. [16]. The authors of such document
archival study focused on digitization of multiple forms of records in the Department of
Social Worker and Development (DSWD) Caraga. Their general framework consolidat-
ing OCR and information storage used open-source technologies such as Django, MySQL,
and Pytesseract which can be used as references to develop a system using similar tech-
nologies. This can further be extended in terms of a different dataset (i.e., images from
medical devices).

In a work by Yadav et al.[17], a robust web application that uses OCR to extract informa-
tion from handwritten and printed documents was developed. Their technical architec-
ture comprised four sequential processes namely (1) adaptive thresholding, (2) connected
component analysis, and (3) line and word detection, and (4) two-layer text recognition.
Specifically, the use of adaptive thresholding to account for variations in illumination in
the image dataset may serve as reference in image preprocessing of different dataset. The
study showed the feasibility of text recognition hosted online.

A system built by Froese et al. [18] extracted the desired information from real-time
pump monitor images. Their methodology mainly used scripting to extract images from
a medication pump which is then fed to an OCR model. Recognized text and values are
then transferred to a real-time monitoring software. It was underlined that future work
is required for more universal application of such system which can be explored by su-
perimposing their model on a different medical dataset and assessing the accuracy. Their
data collection setup through a USB camera capturing images from the medical pump at
60 frames/second can be employed in my paper. By observation, data capture used in
such paper was relatively near the pump (i.e., the USB camera is immediately in front of
the device). Their capturing conditions can be extended in this study by incorporating
more realistic scenarios such as the camera slightly tilted or skewed with respect to the
patient monitor. Hence, further image optimization encompassing variation in camera
face angles can be explored [15].

The feasibility of using OCR to extract information from a patient monitor screen was

also shown in Bukhari’s work [19]. Various image preprocessing such as binarization and
bitwise masking were used on a high-quality dataset retrieved from SimCapture. The
OCR pipeline used in such paper includes a script that extracts frames per second from
input video and individually extracts health values eventually saved in a CSV file. This
may serve as basis of the proposed system to implement a data export functionality in
order to provide the user a downloadable file consisting of the extracted information in
easily editable format. Future work was encouraged which can be summarized in three
parts: (1) more image preprocessing to ensure that the model is dynamic, (2) automatic
detection of all pixel color values of parameter for classification, since only 4 colors are
considered in the paper, and (3) use of deep learning models in contrast to traditional
image processing techniques. Given that high data quality is required to maintain the
model accuracy [19], the study may be extended to be applied on patient monitor dataset
taken from a real medical setting with environmental factors present such as brightness
variation, blurring, distant capture, etc.

With all considered, data entry errors being committed in healthcare—let alone the te-
dious process of such task—slows down clinical procedures and leaves plenty of room for
improvement. It was further pronounced that dataset quality is a key consideration in de-
veloping an accurate OCR model, upon which OCR post-correction methods and several
image preprocessing techniques are possible workaround. To this end, the research aims
to fill in the gap among previous studies through (1) use of smartphone camera to collect
and curate realistic field image dataset of patient monitor, (2) creation of an image pre-
processing pipeline to improve image quality, and (3) development of a system to utilize
the image preprocessing pipeline to enhance raw image of patient monitor. Contributing
a new set of patient monitor images and developing an image preprocessing pipeline to
enhance such images would provide a benchmark dataset and development of real-time

OCR applications in a similar domain.

10

III. Theoretical Framework

A. Patient Monitor Screen

Patient monitoring system was introduced by Venetian Doctor Santorio in 1965 through
his publication of methods to measure body temperature using spirit thermometer and
pendulum for counting heart rate. With the advent of integrated circuits and advance-
ment of technology, computer-based patient monitoring systems with better computing
power have been developed. A widely used medical device is a patient monitor screen
which continuously monitors patient parameters such as oxygen level, heart rate, blood
pressure, etc. These data are observed via non-intrusive sensors on human body to check
the condition of the patient over time which facilitates prompt assessment and decision-
making relative to real-time patient status such as those coming straight from surgery
in Intensive Care Units (ICUs). A standard patient monitor [20] based from is shown in

Figure 1.

Figure 1: Standard Patient Monitor

A notable trend among patient monitors is that the numerical values are highly con-
trasted with a black background, with characters displayed in synthetic fonts. As of date,
these medical devices are still widely used to monitor patients not just in the medical

sector but also in social support such as retirement homes.

11

B. Image Annotation

Image annotation is the task of assigning labels to an image to create metadata for a
training dataset in computer vision models. The model utilizes such annotations as its
ground truth, and uses them to learn how to label or detect objects or images on its own.
Image annotation is typically useful in object recognition, or object detection, which
enables machines to identify a particular object in an image and apply the accurate
label. An example is a self-driving car which labels its surroundings depending on whether

vehicles and/or obstacles are nearby.

C. Image Preprocessing

The aim of image preprocessing is quality improvement by suppressing undesired distor-
tions and enhancing some features to obtain more suitable data for further processing

and analysis tasks.

1. OpenCV

Open-source computer vision (OpenCV) is an image preprocessing library that has gained
popularity in computer vision given it is open-source. It was originally envisioned to sup-
port computer operations such as object identification, image recognition, and object
movement tracking but has now expanded to over 2500 functions based on its documen-
tation. This enables faster execution of tasks such as color conversion, image masking,
and filter application. Furthermore, its interface flexibility allows for multiple program-
ming languages such as Python, Java, and C as well as different platforms such as Mac
and Windows. Figure 2 presents the architecture design of OpenCV in a mobile imaging

work [21].

12

Target archs:
X86

X64
ARM

Python 3rd party libs:
ava Core CUDA

Target OS:
FLANN Windows

Linux
MAC OS
Android

Figure 2: Architecture of OpenCV

In comparison with other similar tools like Matlab, OpenCV provides a relatively
detailed toolbox for image processing instead of generic solutions. The wide array of
functions in OpenCV also efficiently integrates common noise removal and image quality

manipulation techniques in one library.

2. Grayscaling

Most OCR engines normally perform better with grayscaled images which refers to a
color space with only one channel. Pixels in typical images are represented in Red-
Green-Blue (RGB) format which gives them the color that the human eye perceives.
There are three ways on how to compute the new value of pixel from RGB: average,
lightness, and luminosity. The average method takes the simple arithmetical mean across
the color channels of certain pixel. Lightness is computed by averaging the maximum
and minimum value of pixel color channel. Lastly, luminosity works with the average of
all color channels, with every single channel weighted. Formulas for these conversions are

shown in formulas (1), (2), (3).

lightness = (max(R,G, B) + min(R, G, B))/2 (1)
average = (R+ G+ B)/3 (2)
luminosity = 0.299(R) + 0.587(G) + 0.115(B) (3)

13

3. Gamma Correction

This technique can be used to control the brightness of an image. Such method is typically
used in image preprocessing to adjust the image brightness depending on how it was
captured. Gamma values less than 1 will shift the image towards the darker end of the
spectrum while gamma values greater than 1 will make the image appear lighter. A

gamma value exactly equal to one will result in no change in image [22].

SRa NG Images.
I

Figure 3: Gamma Correction

4. Canny Edge Detection

OCR generally performs better if the object of interest is narrowed down from the input
image. For instance, a scanned receipt may be slightly skewed, with other non-essential
objects included in the same image (e.g., pen, person, etc.). Edge detection is a technique
that aims to extract the four corners of an object of interest such as documents or monitor
display. Ome popular edge detection approach is Canny Edge Detection. The entire

process of this detection [23] is summarized in Figure 4.

14

input image Moise Reduction

h 4

Gradient Calculation ﬁ

Mon-maximum
Suppression

Hysteresis Edge | Double Threshald
Tracking

Y

Figure 4: Canny Edge Detection

e Noise Reduction via Blurring
Edge detection results are particularly sensitive to image noise and one way to
address this is through the application of Gaussian blur to smooth an input image.
To do so, image convolution technique is applied on an input image with a Gaussian
Kernel which may have varying kernel size such as 3x3, 5x5, etc. The kernel size

influences the intensity of blur, where higher value leads to more visible blur effect.

e Gradient Calculation
This step detects the intensity of edges as well as direction via calculation of the
gradient in the image using edge detection operators. A change of pixels’ intensity
represents an edge. Filters can be applied in order to highlight such intensity change

in horizontal and vertical directions and easily detect the edges.

e Non-maximum Suppression
Thin edges are ideal in the output images. Hence, presence of thick edges can
be addressed through non-maximum suppression to thin them out. The algorithm
essentially iterates through every point on the gradient intensity matrix and locates

the pixels whose value in the edge directions is maximum.

e Double Threshold
The goal of this step is to identify three kinds of pixels namely strong, weak, and

non-relevant:

15

— Strong pixels are those with relatively high intensity that assures as about

their contribution to the final edge.

— Weak pixels are those with intensity that is neither high or low enough to be
considered strong or non-relevant, hence are still potentially contributors in

the edge.

— Any other pixel not classified under the two aforementioned types belong to

this class.

With this considered, high threshold is used to identify the strong pixels while low
threshold is used to identify the non-relevant ones. On the other hand, the rest of
the pixels having intensity between both thresholds are identified as weak which are
then further filtered out by the next step to delineate whether it ultimately belongs

to strong or non-relevant.

e Edge Tracking by Hysteresis
Based on the threshold results, the hysteresis consists of transforming weak pixels
into strong ones, if and only if at least one of the pixels around the one being

processed is a strong one [23].

5. Skew Correction

Raw image content, especially text, sometimes tend to be skewed or tilted at a certain
angle. This is contributed by the point of capture where the camera is not leveled with
that of the object. For computer vision tasks, skew correction is essential to improve
model accuracy by ensuring as much wisually normal input as possible. Python has

libraries to implement correction of perspective like OpenCV [24].

16

ol
ment is how We want to app
Oﬂlrmt‘:&rgum :wZ.Ml"JWI,_SI“PLF I': :;?'P:::_
horio : i diagonal segments i
atal, vertical, and _ .
points only. This saves both computation and MEMOTY
we wanted all the points A o
jon, we can pass in cw2 CHAIN_AFPRER O v al
z-em ‘5paﬁng when using this function. e
) 1
p-uin\:&:lluﬁg a contour is often unnecessary
of resources.

mate the Angle: —4.09 degrees

Crur last argument is how we want to approximate the
contour. We use cv2 CHAIN_APPROX_SIMPLE to compress
horizontal, vertical, and diagonal segments into their end-
points only, This saves both computation and memory. If
we wanted all the points along the contour, without com-
pression, we can pass in v, CHAIN_APPROX_NONE; howewver,
be very sparing when using this function. Retrieving all
points along a contour is often unnecessary and is wasteful
of resources.

Figure 5: Skew Correction with OpenCV

In machine learning, especially computer vision, the quality of the data is just as impor-
tant (if not more) as the model itself. Hence, performing necessary image preprocessing

procedures on raw images have significant contribution toward noise reduction and overall

positive effect on model training.

17

IV. Design and Implementation

Ethical approval from UP Manila Research Ethics Board (UPM REB) and Philippine
General Hospital Expanded Hospital Research Office (PGH-EHRO) is obtained to pro-

ceed with the manual collection of dataset.

A. Data Collection Setup

A smartphone camera (iPhone 11) is mounted on a tripod to capture data from a Min-
dray Beneview T8 patient monitor attached to five (5) healthy volunteers at the Post-
Anesthesia Care Unit (PACU) of PGH. A sample image of the monitor is illustrated in

Figure 6.

Figure 6: Beneview T8 Patient Monitor

The inclusion criteria for data acquisition were as follows:

e Aged 18 - 65 years old

e Student, or faculty from College of Arts and Sciences and/or College of Medicine

Vital signs data are recorded at a resolution of 1920 x 1080 at 60 frames/second. Every

volunteer session lasts for 30 minutes and camera placement is adjusted every 3 minutes

18

to account for different capture conditions. The tilt and angle to which the camera was

skewed are manually adjusted up to a maximum of 45 degrees.

B. Dataset Annotation

In this paper, a practical heuristic for bounding box annotation on the proposed image
dataset is presented through a trained object detection model to automate the manual
approach. This intends to reduce workload by shifting the majority of human involvement
to the correction stage only.

Baich 4D{ Manual Annotation }—>| Fine-tuning }~ ——————— 1

Ny

‘ Object Detection

Bounding Box
Training

Proposal

A

Dataset
N

Dataset
N

—* Bakch
N-n,

| [
| 1
| [
| [
| [

Unlabelled | I Labelled
| [
| [
| 1
| [

[

Figure 7: Semi-auto Annotation Methodoloy

1. Manual Annotation

The process begins with domain experts manually annotating a randomly selected batch
of images (n;) from the unlabelled dataset. The annotation involves full human involve-
ment to draw bounding boxes around health parameters and provide their corresponding
class labels. The open-source annotation software Labellmg is used with no speed-up

procedures.

2. Object Detection Training

The next step is to train an object detection model. Transfer learning is applied by using
a pre-trained SSD network and fine-tuning on the proposed dataset [25]. The single shot

detector (SSD) network [26] proposed by Liu et al. is used for the detection architecture

19

given its lightweight nature. It is pre-trained with MS COCO dataset and is typically
the model of choice for resource-limited inference scenarios given that the detections are
produced directly in a single forward pass of the network [27]. Furthermore, the Mobilenet

V2 [28] is applied for the backbone.

3. Bounding Box Proposal

The trained model is used to predict bounding boxes for the unlabelled images with an
associated confidence level for each detection. A confidence threshold value between 0
and 1 is used to define a true positive. In other words, the model will only draw bounding
boxes around a detected parameter if and only if its associated confidence level is equal
to or higher than the specified threshold.

4. Manual Fine-tuning

The resulting annotations proposed by the model are inspected and manually corrected

by the domain experts through several corrective measures as follows:
e Addition: Missing bounding box is manually drawn around a parameter, if needed.
e Removal: Incorrectly predicted box is deleted from the annotation.
e Label Correction: Mislabeled class is corrected.

e Box Adjustment: If the predicted box is too wide or insufficiently encloses a

parameter, the box is recalibrated accordingly.

5. Workload Estimation

We estimate human workload by comparative analysis of how much time is spent between
the manual and semi-auto annotation strategies. For the manual approach, the total time
(T) to complete the annotation as described in Section B.1 is measured with a timer. The

average (t) is then calculated using the formula nll which corresponds to the estimated

20

time to annotate a single image. This value is then multiplied to the total number of
images in the dataset to estimate the overall duration to label the dataset exclusively
through a manual approach. On the other hand, the semi-auto annotation strategy is

measured by adding the time consumed both in Section B.1 and Section B.3.

6. Labelled Dataset

After the correction stage, the fully labeled image dataset is saved as a ZIP file containing
the images in JPG format and their corresponding annotations in Pascal VOC XML
format. This is done for both raw dataset and its preprocessed counterpart (screen-
extracted).

To enable easier navigation of the dataset, files are named as follows: volunteer number_
file code _ frame count. For instance, the image with file name 01_01_1.7pg corresponds to
the first extracted frame from the first volunteer data with a direct camera and natural

lighting condition.

File Code | Capture Orientation | Lighting Condition
01 Direct Camera Natural
02 Direct Camera Low
03 Skewed to Left Natural
04 Skewed to Left Low
05 Skewed to Right Natural
06 Skewed to Right Low
07 Skewed Upward Natural
08 Skewed Upward Low
09 Skewed Downward Natural
10 Skewed Downward Low

Table 1: Dataset File Naming

21

C. Image Preprocessing Flowchart

Figure 8 summarizes the proposed image preprocessing pipeline.

At

npu[r&v\\n}no—g

framing

gamma
correction

!

!

skew correction

Figure 8: Image Preprocessing Pipeline

1. Framing

corner detection :‘—'output fl!e

The OCR cannot process an input file in video format, hence frames are extracted. The

video dataset is fragmented into individual images at 2-second intervals.

2. Image Preprocessing

Once framing is done, the brightness of an image is automatically adjusted using the

concept of dynamic inverse gamma correction. Afterward, the brightness of an image

is automatically fine-tuned using dynamic inverse gamma correction followed by image

smoothing to blur the image. It is followed by edge detection to identify the edges of the

patient monitor to be extracted. The proposed flow for this detection is shown below.

extracted
frame

h J

Grayscale

Image Smoothing —» Edge Detection

Figure 9: Edge Detection Sub-Explosion

processed
frame

Lastly, skew correction is applied using OpenCV python library to address any degree

of skewness in the image information.

22

D. System Architecture

Monixor is a web application that uses PostgreSQL as the database server. It is developed
using the Python-based framework Django to enable easier integration with machine

learning, image preprocessing, and optical character recognition implementations.

E. Technical Architecture

The minimum requirements for the server machine include:
e Apache 2.4.23
e 1GB RAM

e PostgreSQL 14
The client-side must satisfy these minimum requirements:

e Google Chrome 57.0.2897

Mozilla Firefox 43.0.1

Windows 7 / Android 7.0+ / i0S 12.44

Intel Core i5-4200U

4GB RAM

23

V. Results

A. Dataset

A total of 4,674 images saved in JPG format were obtained after deleting extracted frames
with visible human subject/s to maintain data anonymity. Table 2 presents image samples

classified into one of the 10 classes.

Monixor Dataset (N = 4674)

Lighting Condition

Camera Orientation
Natural Low

Direct

(n = 917)

Skewed to Left
(n =933)

Skewed to Right
(n = 949)

Skewed Upwards
(n = 964)

Skewed Downwards

(n = 911) ' :,- ﬂ ’ ” s / “ “ i © 102/84

Table 2: Dataset Image Classes Overview

24

1. Manual Annotation

A total of 250 images were randomly selected from the unlabelled dataset in which each
class had 25 representatives. Seven health parameters were considered as objects and

labeled as follows:
1. heart rate < heartrate > 5. blood pressure < bloodpressure >
2. oxygen saturation < orygensaturation > 6. mean arterial pressure < map >
3. pulse rate < pulserate > 7. temperature < temperature >
4. respiratory rate < respiratoryrate >

These labels are in accordance with the official manual of Mindray Beneview T8

monitor [29] and as confirmed by a resident anesthesiologist in PGH.

Figure 10: Manual Annotation using Labellmg

2. Semi-Auto Annotation

An 80-20 data split was applied for model training, allotting 200 images for train data

and the remaining 50 for testing.

25

gl oy gensaturation: 33
1 0 0 [pulserate: 54% =

respiratoryrate: 59

bloodpressure: 5

-
temperature: 28%)
~23.0

wie
map: 769
Q

=

Figure 11: Automated Annotation using Object Detection
The trained model was then applied to automate the annotation for the rest of the
unlabelled dataset as illustrated by Figure 11. To speed up the process, an auto-labeling
tool was used in which a confidence score threshold of 0.2 was declared [30]. This means

that any object detected by the model with at least 20% confidence will have bounding

boxes drawn around it.

Time Comparison of Annotation Strategies

I Manual

I Object
Detection

P Manual

Fine-
Tuning

Traditional

Workload Reduction

Approach

Semi-Auto 3.08

0 20 40 &0 a0

Time (hr)

Figure 12: Semi-auto Annotation Workload Reduction.

Figure 12 shows the workload reduction in terms of time. The traditional approach of
manually annotating an image takes approximately 50 seconds. This translates to roughly

65 hours of projected time in order to annotate the entire dataset. On the other hand,

26

the object detection model annotated the entire dataset at around 5 minutes only with an
additional 3 hours incurred for manual fine-tuning of the results. The proposed semi-auto
annotation method expedited the manual process by 22 times. The methodology for time

measurement is discussed in Section B.5.

B. Image Preprocessing Pipeline

In addition to a newly accrued dataset with multi-parameter annotation, a preprocessing
pipeline was created to extract the screen of the patient monitor. By doing so, non-
textual elements which may hinder future tasks of optical character recognition were
removed while providing a well-defined region containing only the necessary details. The
preprocessing was divided into three stages namely (1) gamma correction, (2) edge de-

tection, and (3) skew correction.

1. Gamma Correction

Three dynamic gamma correction techniques were compared namely Blind Inverse Gamma
Correction with Maximized Differential Entropy (GCME) [31], Adaptive Gamma Correc-
tion (AGC) [32], and Improved Adaptive Gamma Correction with Weighting Distribution
(IAGCWD) [33]. Two sample images (natural and low lighting) were judged whether vi-
sually satisfactory or not. Basic application of Canny Edge detection (minpesn = 40)
was also implemented without extra enhancement procedures to see an immediate effect

on the detection of contours.

27

(c) Canny

(f) Canny

(g) Original (h) TAGCWD (i) Canny

Table 3: Comparison of Dynamic Gamma Correction on an Image with Natural Lighting

Table 3 shows the effect of different gamma correction techniques on an image with
natural lighting. Ideally, gamma correction should be able to enhance the brightness of
an image while improving the visibility of edges. As shown in (c), GCME best preserved
the continuity of edges. On the other hand, AGC and IAGCWD produced irrelevant
contours (or image artifacts) as presented by the application of edge detection despite

the successful adjustment of image brightness.

28

(g) Original (h) TAGCWD (i) Canny

Table 4: Comparison of Dynamic Gamma Correction on an Image with Low Lighting

Table 4 shows a similar finding on a relatively darker image, where the GCME tech-
nique performed superior over the others in terms of minimizing image artifacts that may
hinder successful edge detection. Table 5 shows a quantitative assessment of the two

image samples after gamma correction similar to metrics used by Sara et. al [34].

Image Method Quality Assessment Techniques

MSE PSNR SSIM

GCME 71.4269 29.5922 0.99

Natural Light AGC 520.7562 28.7108 0.9104

[IAGCWD 1476.1134 27.4494 0.9185

GCME 616.8686 28.1407 0.89467

Low Light AGC 753.3069 28.1144 0.82192

IAGCWD 1908.7040 28.6277 0.8573

Table 5: Error Deduction Summary for Image Quality Metrics (MSE, PSNR, SSIM)

29

A lower MSE means that the processed image is closer to the original image in terms
of pixel values. On the other hand, higher PSNR and SSIM mean that the processed
image has less distortion relative to the original image. Since GCME performed better
considering lower MSE values and higher PSNR and SSIM values for both image samples,

such gamma correction technique was adopted for the pipeline.

2. Edge Detection

Recent studies found that Canny’s algorithm is best suitable for object extraction in
most contexts as it yields less number of false edges, especially with noisy images [35, 30].

Table 6 compares it with two other techniques namely Sobel [37], and Laplacian detection

A,
ey

(c) Sobel Detection (d) Laplacian Detection

Table 6: Edge Detection Algorithms Comparison (mingpresp = 40)

Close morphological transformation [39] was applied to the raw detected edges for
enhancement and restoration of the shape of objects in the presence of edge gaps or dis-
continuity. The Canny approach performed best in preserving the edges of the patient

monitor. On the other hand, Sobel failed to sufficiently detect the upper edge of the

30

monitor. Laplacian was not able to identify the monitor edges at all.

Hence, Canny edge detection was adopted. Lastly, the corner coordinates obtained
from edge detection stage were used for skew correction using the OpenCV library Per-
spective Transform. Perspective transformation involves mapping points from one per-
spective to another, thereby changing the perceived viewpoint of the extracted monitor
region from the image. Figure 13 illustrates the proposed image preprocessing pipeline

for screen extraction.

VoA x

AN

JT RTINS 72 -

V100 b

(b) Gamma Correction

A MAI ST . TD

Sz
\ ; .
\C\'\j\i_/\uﬂf‘_fhw/ 3 = 100 L7

J/\/\/\’ZZ

48

o s i B + Gam
Pl e ake el e el el S e

vt . - Tody Awmoes Ress

(c) Edge Detection (d) Skew Correction

Figure 13: Image Preprocessing Pipeline Implementation

3. Accuracy

The 50 videos obtained from data collection were uploaded into the web application which
implements the proposed pipeline. The accuracy metric is computed by dividing the
number of successfully preprocessed images (i.e., screen-extracted) by the total number

of frames. The average accuracy was then obtained as the final metric value. Two

31

experiments were done as follows:

e Experiment 1. The images directly undergo Canny edge detection without image

enhancement techniques other than skew correction for post-processing.

e Experiment 2. The proposed image preprocessing pipeline is applied. This in-

cludes GCME gamma correction, image smoothing via bilateral filter, close mor-

phological transformation, and skew correction.

100

90

80

70

60

20

Accuracy of Screen Extraction

90.15
[] 84.63 85.64
82.92 81.69 . m
63.64
61.42 58.93 60.34
53.32 H H H
[
Direct Left Right Up Down
Legend: Experiment 1 Experiment 2 \

4. Processing time

On average, preprocessing an image takes 0.8 seconds. Image resolution used for this

assessment is 1920 x 10&0.

20

40

30

20

10

47.2
24.12
[
|
03] |
image 10-sec 30-sec 60-sec

Figure 14: Image Preprocessing Time

32

C. Optical Character Recognition

This section explores the feasibility of object detection to locate health parameters af-
ter screen extraction and extract the values using OCR. For this purpose, the training
data from Section B.2 was diversified by introducing a new batch of 250 screen-extracted
images to improve the generalizing ability of the model. Following similar evaluation
protocols as in the work of Bulatov et al. [10], three configurations of Mean Average
Precision (MAP) with different Intersection over Union (IoU) values were used to eval-
uate the object detection method. The IoU threshold from 0.3 to 0.7 demonstrates the
localization requirements from easy to hard. These metrics were calculated using a GUI-

based tool for object detection assessment [11]. The semi-auto-annotated dataset served

as the ground truth.

Precision x Recall curve, mAP=72.06% Precision x Recall curve, mAP=71.81% Precision x Recall curve, mAP=68.55%

10 _— e e 10 pe=—

°
®
°

°
&
°
°
&

precision
precision
precision

°
2

— bloodpressure — bloodpressure — bloodpressure

precision

—— pulserate

— temperature

— heartrate

— respiratoryrate

—— oxygensaturation
map

00 02 04 06 08 10
recall

(a) Easy (IoU > 0.3)

Precision x Recall curve, mAP=93.93%

— heartrate

—— oxygensaturation

— pulserate

— respiratoryrate

—— bloodpressure

— map
temperature

00 02 04 06 08 10
recall

(d) Easy (IoU > 0.3)

°

°

precision
° ° ° I
S & ® 5

°

°

— pulserate

— temperature

— heartrate

— respiratoryrate

—— oxygensaturation
map

00 02 04 06 08 10
recall

(b) Medium (IoU > 0.5)

Precision x Recall curve, mAP=93.93%

— heartrate

~—— oxygensaturation

— pulserate

— respiratoryrate

— bloodpressure

— map
temperature

00 02 04 06 08 10
recall

(e) Medium (IoU > 0.5)

precision

—— pulserate

— temperature

— heartrate

—— respiratoryrate

—— oxygensaturation
map

0.0 02 0.4 0.6 0.8 10
recall

(c) Hard (IoU > 0.7)

Precision x Recall curve, mAP=93.65%

— heartrate

~—— oxygensaturation

— pulserate

— respiratoryrate

—— bloodpressure

— map
temperature

0.0 0.2 0.4 0.6 0.8 10
recall

(f) Hard (IoU > 0.7)

Figure 15: Precision-Recall Curves of Object Detection. a-c) Raw Dataset; d-f) Preprocessed
Dataset

Figure 15 shows that the object detection model consistently performed better on
preprocessed frames across the three different IoU thresholds. The model performance

declined on raw dataset at IoU threshold > 0.7, especially on detecting some parameters

33

such as pulse rate and map, indicating that boxes could miss out a portion of the values.

heart rate oxy. sat. pulse rate resp. rate blood press. map temp.

Raw 0.7044 0.5182 0.5214 0.7044 0.9442 0.6116 .7942

Screen 0.9927 0.9920 0.6010 0.9889 0.9929 0.9950 0.9930

Table 7: Average Precision (AP) across Health Parameters (IoU > 0.70)

Table 7 presents the average precision of each health parameter at a strict threshold
of 0.7. The object detection model performed generally better on preprocessed images

than raw images, with lowest AP metric on the parameter pulse rate.

nas - 0952am

' - X ™% 100%
NI S T £

(a) Raw (b) Preprocessed

Figure 16: Detected Health Parameters at mincon f.score = 0.5

Figure 16 demonstrates the performance of a more selective object detection model
which differentiates true positives from false positives given a minimum confidence score
threshold of 50%. Optical character recognition was then applied using EasyOCR library

[20] to extract the values inside the detected bounding boxes.

heart rate oxy. sat. pulse rate resp. rate blood press. map temp.

Raw el 99’ - 23 '97/55’ - -

Screen el 99’ el 23 '97/55’ (81) 23.0¢

Table 8: OCR-extracted Vital Signs Data

34

Table 8 shows that health values were completely extracted on a preprocessed image

while three parameters were missed in the case of its raw image counterpart.

D. System

The home page shows an overview of the system’s functionalities such as allowing in-app
camera access, downloading of preprocessed images, and accessing the dataset. A Get
Started button is provided to redirect the user to the capture mode.

Monixor Capture Upload Dataset Guide:

Monixor

the

This system allows user to record a video (or capture a photo) of a

patient monit ptimized for furthe:

turn preprocessed framey

computer visl uch as opt cal character recognition.

Get Started

In-app/External Camera Output Frames Download Patient Monitor Dataset
Access device camera to record patient monitor Save a local copy of preprocessed image/s Use 2,000+ annotated patient monitor images
or upload pre-captured file. individually or as a zip file for further research.

Figure 17: Home Page

In the Capture page, the user can access the device camera and capture an image or video

of a patient monitor. A tooltip is provided on each capturing mode namely Photo and

Video.

Monixor Capture Upload Dataset Guide

Video Mode @ Photo Mode @

Status: Waiting to Start Record

‘START RECORD STOP RECORD

Live Preview Recorded Video

- Start recording as shown in live I
preview and check the replay

afterwards

Photo Mode @ [V el el (X 2]

Status: Waiting to Start Record

START RECORD STOP RECORD

Figure 18: In-app Camera Access Page

In the Upload page, the user can submit a pre-captured input file. After the submis-
sion of input file, the resulting preprocessed image/s will be displayed, and available for

download.

Monixor Capture Upload Dataset Guide

File Upload

the user to manually upload a p

This section allo captured image or

then be shown

video of a patient monitor. The preprocessed frame/s wi

below.

Upload your file here.
The file size limit is temporarily set to 200 MB.

Monitor input:‘ Choose File ‘ No file chosen

Figure 19: File Upload Page

In the Dataset page, the user can access the patient monitor dataset with annotations in

Z1P format. The file naming convention is also provided as a guide for navigating such

dataset.

36

PM-2023 Dataset

There is a lack of d
§

useful in compu

eld images of a patient

comprising rea

mmonitor. The availab

vision-related tasks such as obje tection, opfical

character recognition, and the likes.

A public repository of realistic field images of patient monitor is created by the
researchers to contribute a new dataset given its lack in the domain. Click the button

below to request for access.

File Naming Convention Code Capturing Condition Lighting Condition
Files are named following a certain convention to provide metadata which i

. . 01 Direct Camera Low
could help better experiments. Hence, an image is named as
{set}_{code}_{frame_count}, where set corresponds to the volunteers (i.e., 02 Direct Camera Natural
from 1 te 5).
For example, first frame of an image taken from direct camera with low 03 Skewed Upwards Low
lighting cendition in the first set is named as 1.01_001 while the second

na Slawmad Lnuarde Nlatira

Figure 20: Dataset Page

The user has the option to navigate the Guide page in order to find answers to their

questions as they encounter them while using the system.

Monixor

Upload Dataset Guide

FAQ

This section aims to provide tips on how to navigate the system.

What's the difference between Capture and
Upload?

| can't access my device camera as of the
moment.

Results are not showing when | click View Results

Please try to wait a few seconds before clicking

Capture mode is ideal when patient monitor is View Results button (or simply reload the page) as

Please make sure your camera has at least
readily available and user wishes to take a picture 1080x720 resolution. Nevertheless, you can click
the Upload button to send a pre-captured input

file taken from ancther device.

the system may have encountered a lag/buffer
or video of it. Upload is when a pre-taken input

file is available.

problem.

Upload process takes a long time.

This may naturally occur in inputs of big size like
videos with long duration (1 minute above). If
problem persists, please retry uploading

Why can't | access the front camera of my
mobile device when recording?

Back camera is intentionally accessed for use to
achieve an ideally higher quality.

Figure 21: Guide Page

37

Recording does not work on my end.

The system is compatible with typical browsers
(Chrome, Firefox, Opera, Safari). If the problem
remains, please try switching to Google Chrome

VI. Discussions

The semi-auto annotation on a newly collected dataset of patient monitor was shown to
expedite the manual approach using object detection model trained on a small subset of
the original data. Further, the proposed image preprocessing pipeline to perform screen
extraction of the patient monitor is not restricted to only one patient monitor model to
crop the screen as it is a contour-based approach. This means it simply bases on the
visibility of four corners of the screen in order to extract a well-defined region from the
rest of the image. This, however, requires the recording device to sufficiently capture the
monitor and has limitations on challenging camera angles that might affect the visibility
of edges. Nevertheless, this allows the applicability of the screen extraction method for
other models of patient monitors.

Screen extraction has also been shown to improve the accuracy of the object detection
model to locate health parameters as it may contribute to (1) reduced complexity and
background noise, (2) more consistent image characteristics, (3) enhanced object visibility.
Results also showed that the performance of the object detection model declined on
locating the parameters pulse rate and mean arterial pressure (map) which could be
attributed to their small size relative to the other parameters as well as similarity of color
with respect to the bigger values adjacent to them. This observation is pronounced on
raw images since the point of capture is taken from a distance with varying degrees of

skew.

38

VII. Conclusions

This paper presented an annotated dataset of patient monitor reflecting a real hospital
environment, together with an image preprocessing pipeline for screen extraction. Such
dataset can be instrumental in training and validating computer vision algorithms and
models such as vital signs estimation, trend analysis, remote patient monitoring, and
alert-aided anomaly detection. This can further enhance the accuracy of computer vision
systems in healthcare settings. It can also aid benchmarking needs to enable evaluation of
performance across different methods with respect to other similar datasets. The object
detection model further showed the feasibility of performing OCR on such medical device
even with relatively small training data.

Lastly, the non-invasive web application using camera shows that digitizing the acquisition
and storage of vital signs from a patient monitor is possible without third party software
and other expensive hardware to do so. Such tool offers a cost-effective solution to utilize
vital signs data for real-time applications involving patient monitoring, further research,

or policymaking purposes.

39

VIII. Recommendations

The provided dataset only considered one patient monitor model in the Philippine Gen-
eral Hospital namely the Mindray Beneview T8 model. Future work could expand such
dataset by considering other models or have it complement other existing patient mon-
itor datasets to create a better object detection model with higher generalizability for
recognizing vital signs.

In terms of screen extraction, other approaches can be explored such as the application of
deep learning or convolutional neural networks to improve the accuracy of edge detection.
Image segmentation techniques to separate the foreground from the background prior to
edge detection can also be studied. In addition, the object detection model used for OCR
in this study only used 10% of the dataset as training data. Hence, future work can
train a more complex object detection with larger data by utilizing the already-provided
annotations. Saving the extracted values as a dataframe could further enable conversion
of such data to waveforms represented by time series graph.

Future work is also encouraged to improve the web application by integrating the pro-
posed object detection and optical character recognition steps after the preprocessing

pipeline for complete data acquisition and extraction.

40

IX. Bibliography

1]
2]

G. Tohom, “Basic patient monitoring during anesthesia.” UpToDate, 2022 [Online].

E. Zacharias, M. Teuchler, and B. Bernier, “Image processing based scene-text de-

tection and recognition with tesseract,” ResearchGate, 2020.

J. Adriano, K. Calma, N. Lopez, J. Parado, L. Rabago, and J. Cabardo, “Digital
conversion model for hand-filled forms using optical character recognition (ocr),”

IOP Conference Series: Materials Science and Engineering, 2019.

S. Babbar, S. Kesarwani, N. Dewan, K. Shangle, and S. Patel, “A new approach for
vehicle number plate detection,” 2018 Eleventh International Conference on Con-

temporary Computing, 2018.

S. Karthikeyan, A. S. de Herrera, F. Doctor, and A. Mirza, “An ocr post- correction
approach using deep learning for processing medical reports,” IEEFE Transactions on

Circuits and Systems for Video Technology, 2021.

S. Perumal and V. Thambusamy, “Preprocessing by contrast enhancement tech-
niques for medical images,” International Journal of Pure and Applied Mathematics,

2018.

J. Liang, D. Doermann, and H. Li, “Camera-based analysis of text and documents:
a survey,” International Journal of Document Analysis and Recognition (IJDAR),

2005.

S. Goldberg, A. Niemierko, and A. Turchin, “Analysis of data errors in clinical

research databases,” AMIA Annual Symposium Proceedings, 2008.

R. I. Rumi, M. I. Pavel, E. Islam, M. B. Shakir, and M. A. Hossain, “lot enabled
prescription reading smart medicine dispenser implementing maximally stable ex-
tremal regions and ocr,” 2019 Third International Conference on I-SMAC (IoT in

Social, Mobile, Analytics, and Cloud)(I-SMAC)), 2019.

41

[10]

[11]

[12]

[13]

[15]

[16]

W. Xue, Q. Li, and Q. Xue, “Text detection and recognition for images of medical

laboratory reports with a deep learning approach,” IEEFE Access, 2019.

N. Ramesh, A. Srivastava, and K. Deeba, “Improving optical character recognition

techniques,” International Journal of Engineering and Technology, 2018.

D. Liu, M. Gorges, and S. Jenkins, “Vitaldb, a high-fidelity multi-parameter vital

signs database in surgical patients,” PhySioNet, 2022.

H.-C. Lee and C.-W. Jung, “University of queensland vital signs dataset: develop-
ment of an accessible repository of anesthesia patient monitoring data for research,”

2012.

S. S. Kulkarni, N. Katebi, C. E. Valderrama, P. Rohloff, and G. D. Clifford, “Cnn-
based lcd transcription of blood pressure from a mobile phone camera,” Frontiers in

Artificial Intelligence, vol. 36, 2021.

V. Shenoy and O. Aalami, “Utilizing smartphone-based machine learning in medical
monitor data collection: Seven segment digit recognition,” AMIA. Annual Sympo-

sium Proceedings. AMIA Symposium, 2018.

J. Jayoma, E. Moyon, and E. Morales, “Ocr based document archiving and index-
ing using pytesseract: A record management system for dswd caraga, philippines,”
2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Infor-
mation Technology, Communication and Control, Environment, and Management

(HNICEM), 2020.

R. Yadav, “Optical character recognition based webapp,” International Journal of

Advanced Research in Science, Communication and Technology, 2020.

L. Froese, J. Dian, C. Batson, A. Gomez, A. S. Sainbhi, B. Unger, and F. Zeiler,

“Computer vision for continuous bedside pharmacological data extraction: A novel

42

[19]

[20]

[25]

[26]

[27]

28]

[29]

application of artificial intelligence for clinical data recording and biomedical re-

search,” Frontiers in Big Data, 2021.

S. I. Bukhari, “Object character recognition from patient monitor screen,” Faculty

of Science and Technology, 2021.

Jaidedai, “Ready-to-use ocr with 80+ supported languages and all popular writing

scripts including latin, chinese, arabic, devanagari, cyrillic, and etc.,” Github, 2021.

Z. Chen and J. Chen, “Mobile imaging and computing for intelligent structural

damage inspection,” Advances in Civil Engineering, 2014.
A. Rosebrock, “Opencv gamma correction.” PylmageSearch, 2015 [Online].

S. Sahir, “Canny edge detection step by step in python — computer vision,” Towards

Data Science, 2019.

A. Rosebrock, “Text skew correction with opencv and python.” PylmageSearch,

2017 [Online].

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEFE Transactions on

Knowledge and Data Engineering, 2010.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, “Ssd:

single shot multibox detector,” European Conference on Computer Vision, 2016.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and
L. Zitnick, “Microsoft “ coco: common objects in context,” Computing Research

Repository, 2014.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018.

Mindray, “Beneview t5 t8 t9 operator’s manual.” Mindray, 2019 [Online].

43

[30]

[31]

[32]

[33]

[34]

A. L. C. Carneiro, “Auto-labeling tool for object detection.” Towards Data Science,

2022 [Online].

Y. Lee, S. Zhang, M. Li, and X. He, “Blind inverse gamma correction with maximized

differential entropy,” FElectrical Engineering and Systems Science, 2020.

S. Rahman, M. M. Rahman, M. Abdullah-Al-Wadud, G. D. Al-Quaderi, and

M. Shoyaib, “An adaptive gamma correction for image enhancement,” 2016.

G. Cao, L. Huang, H. Tian, X. Huang, Y. Wang, and R. Zhi, “Contrast enhancement

of brightness-distorted images by improved adaptive gamma correction,” 2018.

U. Sara, M. Akter, and M. S. Uddin, “Image quality assessment through fsim, ssim,

mse, and psnr-a comparative study,” 2019.

S. K. Katiyar and P. Arun, “Comparative analysis of common edge detection tech-

niques in context of object extraction,” 2012.

B. K. Shah, V. Kedia, R. Raut, S. Ansari, and A. Shroff, “Evaluation and compar-
ative study of edge detection techniques,” IOSR Journal of Computer Engineering,
2020.

OpenCV, “Sobel derivatives.” OpenCV Open Source Computer Vision.
OpenCV, “Laplace operator.” OpenCV Open Source Computer Vision.

OpenCV, “Morphological transformations.” OpenCV Open Source Computer Vi-

sion.

K. B. Bulatov, E. Emelianova, D. V. Tropin, N. S. Skoryukina, Y. S. Chernyshova,
A. V. Sheshkus, S. A. Usilin, Z. Ming, J.-C. Burie, M. M. Lugman, and V. V.
Arlazarov, “Midv-2020: A comprehensive benchmark dataset for identity document

analysis,” ArXiv, vol. abs/2107.00396, 2021.

44

[41] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and E. A. B. da Silva, “A com-
parative analysis of object detection metrics with a companion open-source toolkit,”

FElectronics, vol. 10, no. 3, 2021.

45

X. Appendix

A. Ethics Board Approval

UPMREB FORM 4(B)2019:CERTIFICATION OF APPROVAL
03/11/2021

CERTIFICATION OF APPROVAL

This certifies that the University of the Philippines Manila Research Ethics Board
(UPMREB) Review Panel 5C which is constituted and established, and functions in
accordance with the requirements set by the University of the Philippines Manila, the
Philippine Health Research Ethics Board (PHREB); and in compliance with the WHO
Standards and Operational Guidance for Ethics Review of Health-related Research with
Human Participants (2011), the International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use (2016), and the National Ethical
Guidelines for Health and Health-related Research (2017), has approved the following study

protocol and related documents:

TYPE OF SUBMISSION: Protocol Resubmission

UPMREB CODE: 2023-0012-UND

SUBMISSION DATE: 14 March 2023

STUDY PROTOCOL TITLE: Extracting Anonymized Data from Medical Monitors and
Information Systems in a Government Tertiary Care Facility (Monixor)

PRINCIPAL INVESTIGATOR: MR. JAN FEDERICO COSCOLLUELA

TYPE OF REVIEW: Expedited

SPONSOR/FUNDING AGENCY: Investigator

APPROVAL DATE: EXPIRY OF ETHICAL CLEARANCE*:
04 April 2023 03 April 2024

DUE DATE OF APPLICATION FOR FREQUENCY OF CONTINUING
RENEWAL OF ETHICAL CLEARANCE REVIEW:

(30 days before expiry): 03 March 2024 Yearly

Submit application using the UPMREB FORM 3(B):

Continuing Review Application Form.

APPROVED SITE/S: College of Arts and Sciences
DATE OF BOARD MEETING: N/A
QUORUM: N/A
CONFLICT OF INTEREST: N/A
MEMBERS IN ATTENDANCE: N/A
ACTION TAKEN DURING BOARD MEETING: N/A
DOCUMENTS APPROVED BY UPMREB:
1. Study Protocol version 2.0 dated 14 March 2023
2. Workflow for System Usage version 2.0 dated 14 March 2023
3. Patients Informed Consent Form (Filipino) version 2.0 dated 14 March 2023
4. Volunteer Informed Consent Form (English) version 2.0 dated 14 March 2023
TECHNICAL DOCUMENTS INCLUDED IN THE REVIEW:

46

UPMREB FORM 4(B)2019:CERTIFICATION OF APPROVAL
03/11/2021

1. Curriculum vitae of principal investigator, Jan Federico Coscolluela, and
certificate of completion in a six-hour course on Good Clinical Practices by NIDA
Clinical Trials Network dated 07 December 2022

2. Curriculum vitae of co-investigator, Alvin Marcelo, MD, and certificate of
completion of the e-learning course ICH Good Clinical Practice E6 (R2) dated 15
September 2022

3. Curriculum vitae of co-investigator, Marbert John Marasigan, and certificate of
completion in a six-hour course on Good Clinical Practices by NIDA Clinical Trials
Network dated 27 January 2022

4. Curriculum vitae of co-investigator, Miguel Sandino O. Aljibe, LME, MD, and
certificate of completion in a six-hour course on Good Clinical Practices by NIDA
Clinical Trials Network dated 16 March 2022

5. Budget Proposal version 2.0 dated 14 March 2023

RESPONSIBILITIES OF PRINCIPAL INVESTIGATOR WHILE STUDY IS IN
PROGRESS (Please note that forms may be downloaded from the UPMREB website:
reb.upm.edu.ph):

1. Register research study in the Philippine Health Research Registry upon approval
(http://registry.healthresearch.ph)

2. Progress report using the attached UPMREB FORM3(B)2012: Continuing Review
Application Form, as indicated above, which includes the following: (NOTE: In
view of active ethical clearance, this report is mandatory even if the study has not started
or is still mwaiting release of funds.)

Date covered by the report

Protocol summary and status report on the progress of the research
Philippine Health Research Registry ID

Number of participants accrued

Withdrawal or termination of participants

Complaints on the research since the last UPMREB review

I A

Summary of relevant recent research literature, interim findings and
amendments since the last UPMREB review
h. Any relevant multi-center research reports
i. Any relevant information especially about risks associated with the
research
j- A copy of the informed consent document
3. Any amendment/s in the protocol, especially those that may adversely affect the
safety of the participants during the conduct of the trial including changes in
personnel, and revisions in the informed consent, must be submitted or reported
using UPMREB FORM3(A)2012: Study Protocol Amendment Submission Form.

47

UPMREB FORM 4(B)2019:CERTIFICATION OF APPROVAL
03/11/2021

4. Report of non-compliance (deviation/violation), whether minor or major, at the
soonest possible time up to six (6) months after the event, using UPMREB FORM
3(D)2012: Study Protocol Non-Compliance (Deviation/Violation) Report.

5. Reports of adverse events including from other study sites (national, international)
using the UPMREB FORM 3(G)2012: Suspected, unexpected serious adverse
event/reaction/s report, with timelines for submission guided by the GL 02
Version 2.0: Guideline on Reporting Serious Adverse Events; or list of reportable
negative events using the UPMREB FORM 3(1)2012: Queries, Notification, and
Complaints.

6. Notice of early termination of the study and reasons for such using UPMREB
FORM 3(E)2012, or notice of time of completion of the study using UPMREB
FORM 3(C)2012: Final Report Form.

7. Any event which may have ethical significance, and/or any information which is
needed by the UPMREB to do ongoing review.

eSS Aé.,_::um.ﬁ)
A. TERESA DE GUZMAN, PhD

Chair, UPMREB Review Panel 5C

48

B. Philippine General Hospital Approval

EXPANDED HOSPITAL PERMIT TO CONDUCT EHI;(D)Igorm 3
RESEARCH OFFICE HENRaRCH Version 2
Philippine General Hospital
r Effective Date: July 2012 I l Page 1 of 1
12 April 2023
TO: Sally Candias, RN
PACU Head
UNIT/AREA: Post Anesthesia Care Unit (PACU)
UPMREB Registration No.: 2023-0012-UND
Title: Extracting Anonymized Data from Medical Monitors

and Information Systems in a Government Tertiary
Care Facility (Monixor)

Department: National Teacher Training Center for the Health
Professionals

Principal Investigator: Jan Federico Coscolluela, Mr
Co-Investigators: Alvin Marcelo, MD
Marbert John Marasigan

Miguel Sandino O. Aljibe, LME, MD

Please allow Principal Investigator and his representative/s to conduct research in your
area/unit.

Validity: 03 April 2024

For continuing study:
Date study started:
Amendment to protocol/ Informed Consent from last approval: (1 Yes [1No
If yes, provide: 1. Date of amendment

2. Amended document

Approved by:

e s B Tl

EAN ANNE B. TORAL, MD, MSc
Coordinator for Research

Noted: .

e Ty
RODNEY B. DOFITAS, MD

Deputy Director for Health Operations
‘ APR 1 32023

49

C.

Source Code

source—code/captureStyles.css

/* STYLES.CSS x/

.button—17 {
align —items: center;
appearance: none;
background—color: #073a49;
border—radius: 24px;
border—style: none;
box—shadow: rgba(0, 0, 0, 0.2) 0 3px 5px —1px,

rgba(0, 0, 0, 0.14) 0 6px 10px O, rgba(0, 0, 0, 0.12) 0 1px
18px 0;

box—sizing: border—box;
color: white;
cursor: pointer;
display: inline —flex;
fill : currentcolor;
font—family: ” Google Sans”, Roboto, Arial, sans—serif;
font—size: 14px;
font—weight: 500;
height: 48px;
justify —content: center;
letter —spacing: 0.25px;
line —height: normal;
max—width: 100%;

overflow: visible ;
padding: 2px 24px;
position: relative ;

text—align: center;

text—transform: none;

transition : box—shadow 280ms cubic—bezier(0.4, 0, 0.2, 1),
opacity 15ms linear 30ms, transform 270ms cubic—bezier(0,

0, 0.2, 1) Oms;

user—select: none;
webkit—user—select: none;

touch—action: manipulation;

width: auto;

will —change: transform, opacity;

z—index: 0;

}

.button—17:hover {
background: black;
color: white;

.button—17:active {
box—shadow: 0 4px 4px 0 rgb(60 64 67 / 30%),
0 8px 12px 6px rgb(60 64 67 / 15%);
outline: none;

.button—17:focus {
outline: none;
border: 2px solid #4285f4;

}

.button—17:not(:disabled) {
box—shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0,
rgba(60, 64, 67, 0.15) 0 4px 8px 3px;

.button—17:not(:disabled):hover {
box—shadow: rgba(60, 64, 67, 0.3) 0 2px 3px 0,
rgba(60, 64, 67, 0.15) 0 6px 10px 4px;
}

.button—17:not(:disabled):focus {
box—shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0,
rgba(60, 64, 67, 0.15) 0 4px 8px 3px;

.button—17:not(:disabled):active {
box—shadow: rgba(60, 64, 67, 0.3) 0 4px 4px O,
rgba(60, 64, 67, 0.15) 0 8px 12px 6px;
¥

.button—17:disabled {
box—shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0,
rgba(60, 64, 67, 0.15) 0 4px 8px 3px;

.button—18 {
align —items: center;
appearance: none;
background—color: maroon;
border—radius: 24px;
border—style: none;
box—shadow: rgba(0, 0, 0, 0.2) 0 3px 5px —1px,
rgba(0, 0, 0, 0.14) 0 6px 10px 0, rgba(0, 0, 0, 0.12) 0 1px

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

164
165
166
167
168
169
170
171
172
173

20

18px 0;
box—sizing: border—box;
color: white;
cursor: pointer;
display: inline —flex;
fill : currentcolor;
font—family: ” Google Sans”, Roboto, Arial, sans—serif;
font—size: 14px;
font—weight: 500;
height: 48px;
justify —content: center;
letter —spacing: 0.25px;
line —height: normal;
max—width: 100%;

overflow: visible ;
padding: 2px 24px;
position: relative ;

text—align: center;

text—transform: none;

transition : box—shadow 280ms cubic—bezier(0.4, 0, 0.2, 1),

opacity 15ms linear 30ms, transform 270ms cubic—bezier(0,

0, 0.2, 1) Oms;

user—select: none;

—webkit—user—select: none;

touch—action: manipulation;

width: auto;

will —change: transform, opacity;

z—index: 0;

}

.button—18:hover {
background: black;
color: white;

.button—18:active {
box—shadow: 0 4px 4px 0 rgh(60 64 67 / 30%),
0 8px 12px 6px rgb(60 64 67 / 15%);
outline: none;

.button—18:focus {

outline: none;

border: 2px solid #4285f4;
¥

.button—18:not(:disabled) {
box—shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0,
rgba(60, 64, 67, 0.15) 0 4px 8px 3px;

.button—18:not(:disabled):hover {
box—shadow: rgba(60, 64, 67, 0.3) 0 2px 3px 0,
rgba(60, 64, 67, 0.15) 0 6px 10px 4px;
}

.button—18:not(:disabled):focus {
box—shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0,
rgba(60, 64, 67, 0.15) 0 4px 8px 3px;

.button—18:not(:disabled):active {
box—shadow: rgba(60, 64, 67, 0.3) 0 4px 4px O,
rgha(60, 64, 67, 0.15) 0 8px 12px 6px;

.button—18:disabled {
box—shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0,
rgba(60, 64, 67, 0.15) 0 4px 8px 3px;

.button—19 {
align —items: center;
appearance: none;
background—color: green;
border—radius: 24px;
border—style: none;
box—shadow: rgba(0, 0, 0, 0.2) 0 3px 5px —1px,
rgha(0, 0, 0, 0.14) 0 6px 10px 0, rgba(0, 0, 0, 0.12) 0 1px
18px 0;
box—sizing: border—box;
color: white;
cursor: pointer;
display: inline —flex;
fill : currentcolor;
font—family: ” Google Sans”, Roboto, Arial, sans—serif;
font—size: 14px;
font—weight: 500;
height: 48px;
justify —content: center;

174
175
176
177
178
179
180
181
182
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

letter —spacing: 0.25px;

line —height: normal;

max—width: 100%;

overflow: visible ;

padding: 2px 24px;

position: relative ;

text—align: center;

text—transform: none;

transition : box—shadow 280ms cubic—bezier(0.4, 0, 0.2,

opacity 15ms linear 30ms, transform 270ms cubic—bezier(0,

0, 0.2, 1) Oms;
user—select: none;
—webkit—user—select: none;
touch—action: manipulation;
width: auto;
will —change: transform, opacity;
z—index: 0;

}

.button—19:hover {
background: black;
color: white;

.button—19:active {
box—shadow: 0 4px 4px 0 rgb(60 64 67 / 30%),
0 8px 12px 6px rgb(60 64 67 / 15%);
outline: none;

.button—19:focus {

outline: none;

border: 2px solid #4285f4;
¥

.button—19:not(:disabled) {
box—shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0,
rgba(60, 64, 67, 0.15) 0 4px 8px 3px;

.button—19:not(:disabled):hover {
box—shadow: rgba(60, 64, 67, 0.3) 0 2px 3px 0,
rgba(60, 64, 67, 0.15) 0 6px 10px 4px;
¥

.button—19:not(:disabled):focus {
box—shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0,
rgba(60, 64, 67, 0.15) 0 4px 8px 3px;

.button—19:not(:disabled):active {
box—shadow: rgba(60, 64, 67, 0.3) 0 4px 4px O,
rgba(60, 64, 67, 0.15) 0 8px 12px 6px;

.button—19:disabled {
box—shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0,
rgba(60, 64, 67, 0.15) 0 4px 8px 3px;

/* Stepper in Home Page */

:root {
——circle—size: clamp(0.5rem, 2vw, 1.5rem);
——spacing: clamp(0.25rem, 2vw, 0.5rem);

}

.c—stepper {
display: flex;

.c—stepper__item {
display: flex;
flex —direction: column;
flex: 1;
text—align: center;

}

.c—stepper__item:before {
——size: 2rem;
content: ”7;
display: block;
width: var(——circle—size);
height: var(——circle—size);
border—radius: 50%;
background—color: rgb(71, 3, 3);
margin: 0 auto lrem,;

}

.c—stepper__item:not(:last —child): after {
content: ”7;
position: relative ;
top: calc(var(——circle—size) / 2);

width: calc(100% — var(——circle—size) — calc(var(——spacing)

* 2));

267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

OO U R WN -

Jun

13

14
15
16
17
18
19
20

21

33

34
35
36
37
38
39
40
41

42
43

51

left : calc(50% + calc(var(——circle—size) / 2 + var(——
spacing)));

height: 2px;

background—color: #e0e0e0;

order: —1;

}

.c—stepper__title {
font—weight: bold;
color: black;
font—size: clamp(lrem, 4vw, 1.25rem);
margin—bottom: 0.5rem;

}

.c—stepper__desc {
color: rgh(73, 73, 73);
font—size: clamp(0.85rem, 2vw, lrem);
padding—left: var(——spacing);
padding—right: var(——spacing);

source—code/home.html

<!-—— HOME.HTML ——>

<!DOCTYPE html>
<html lang="en” >

<head>
<meta charset="UTF—8" >
<title>Home Page< /title>
{% load static %}
<link rel="icon” type="image/png” href="{% static ’/
images/home.ico’ %}” />

<meta name="viewport” content="width=device—width” >
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/

dist/css/bootstrap.min.css” rel="stylesheet”
integrity ="sha384-EVSTQN3/

azprG1Anm3QDgpJLIm9Nao0YzlztcQTwFspd3yD65VohhpuuCOmLAS;C

” crossorigin="anonymous” >

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5
.0.2/dist/js/bootstrap.bundle.min.js”
integrity =”sha384—MrcW6ZMFYlzcLASNI+4
NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/
tWtlaxVM”
crossorigin =” anonymous” > < /script>

<script src="https://code.jquery.com/jquery—3.2.1.slim.min
»

.js
integrity =”sha384—
KJ302DKtIkvYIK3UENzmM7KCkRr/rE9/
Qpg6aAZGIwFDMVNA /GpGFF93hXpG5KkN”
crossorigin =” anonymous” > < /script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1
.12.9/dist/umd/popper.min.js”
integrity ="sha384—ApNbgh9B+
Y1QKtv3Rn7W3mgPxhU9K/
ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q”
crossorigin =” anonymous” > < /script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4
.0.0/dist/js/bootstrap.min.js”
integrity ="sha384—JZR6Spejh4U02d8jOt6vLEHfe/
JQGIRRSQQxSfFWpilMquVdAyjUar5+76PVCmY1”
crossorigin =” anonymous” > < /script>

<link rel="stylesheet” href="{% static ’css/captureStyles.

css' %} >
< /head>

<body>

<nav class="navbar navbar—expand—Ilg navbar—light” style

="background—color: maroon;” >
<div class="”container—fluid” >

<a class="navbar—brand” href="{% url "home’ %}”

style="color: white” >Monixor
<button class="navbar—toggler” type="button”
data—bs—toggle="collapse” data—bs—target="#
navbarScroll”

aria—controls="navbarScroll” aria—expanded="

false” aria—label="Toggle navigation” >

 < /span>

</button>
<div class="collapse navbar—collapse” id=
navbarScroll” >

»

<ul class="navbar—nav ms—auto my—2 my—Ig
—0 navbar—nav—scroll” style=" ——bs—scroll—height: 100

px;” >
<li class="nav—item” >
<a class="nav—link active” aria—
current="page” href="{% url 'capture’ %}”

style="color: white” >Capture

<li class="nav—item” >
<a class="nav—link active” aria
current="page” href="{% url ’upload’ %}”

45
46
47
48

49
50
51

52
53
54
55
56
57
58

59
60
61

62
63
64
65
66
67
68
69

70

71
72
73
74
75

76
7
78
79
80
81
82
83

84

85
86
87
88

89

90
91
92
93

94

95
96
97
98
99
100
101
102

LD U A WN =

Jun

Jun
=

12

style ="color: white” >Upload

<li class="nav—item”>
<a class="nav—link” href="{% url ’
dataset’ %}” style="color: white” >Dataset

<li class="nav—item” >
<a class="nav—link” href="{% url ’
guide’ %}” style="color: white” >Guide

</div>
</div>
</nav>
<main>
<div class="container my—auto mx—auto” style="
padding—top: 10px;padding—bottom: 30px;” >
<div class="row” >
<div class="col—md—5" >
<img src="{% static ’/images/monixor.png’
%}” alt="Monixor” style="display: block;
margin—left: auto;
margin—right: auto;
width: 95%;” >
</div>
<div class="col-—md—7 my—auto” >
<div class="jumbotron my—auto” >
<hl class="display—4” >Monixor</h1>
<p class="lead” >This system allows the
user to record a video (or capture a photo) of a patient
monitor and return preprocessed
frame/s optimized for further computer vision tasks such
as
optical character recognition.
</p>
<hr class="my—4" >
<button class="button—18” >
<a href="{% url ’capture’ %}” style
="text—decoration: none; color: inherit;” >Get
Started</button>
</div>
</div>
</div>

<div class="row c—stepper” >
<div class="col—md—4 c—stepper__item” >
<h3 class="c—stepper__title” >In—app/
External Camera</h3>
<p class="c—stepper__desc” >Access device
camera to record patient monitor, or upload pre—captured
file .</p>
</div>
<div class="col—md—4 c—stepper__item” >
<h3 class="c—stepper__title” >Video Record
/Image Copy</h3>
<p class="c—stepper__desc” >Save local
copy of the extracted frames individually or as
a zip file .</p>
</div>
<div class="col—md—4 c—stepper__item” >
<h3 class="c—stepper__title” >Patient
Monitor Dataset</h3>
<p class="c—stepper__desc” >Use over 4,000
annotated images of camera—captured monitor.
</p>
</div>
</div>
</div>
< /main>
< /body>

</html>

source—code/capture.html

<!—— CAPTURE.HTML ——>

<!DOCTYPE html>
<html lang="en” >

<head>

<meta charset="UTF—8" >

<title>Capture</title>

{% load static %}

<link rel="icon” type="image/png” href="{% static ’/
images/capture.ico’ %}” />

<link rel="stylesheet” href="https://cdnjs.cloudflare.com/
ajax/libs/font—awesome/4.7.0/css/font—awesome.min.css
7>

<meta name="viewport” content="width=device—width” >

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/
dist/css/bootstrap.min.css” rel="stylesheet”

14

16
17
18
19
20
21
22
23
24
25
26
28
29
30
31
32
33
34
35
36
37

38
39

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73

52

integrity ="sha384—EVSTQN3/
azprG1Anm3QDgpJLIm9Nao0YzlztcQTwFspd3yD65VohhpuuCOmLAS;C
” crossorigin="anonymous” >
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5
.0.2/dist/js/bootstrap.bundle.min.js”
integrity =" sha384—MrcW6ZMFYlzcLA8NI+
NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/
tWtlaxVM”
crossorigin =” anonymous” > < /script>
<script src="https://code.jquery.com/jquery—3.2.1.slim.min
s’
integrity =”sha384—
KJ302DKtIkvYIK3UENzmM7KCkRr/rE9/
Qpgb6aAZGIJwFDMVNA /GpGFF93hXpG5KkN”
crossorigin =” anonymous” > < /script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1
.12.9/dist/umd/popper.min.js”
integrity =”sha384—ApNbgh9B+
Y1QKtv3Rn7W3mgPxhU9K/
ScQsAP7hUibX39j7fakFPskvXusvfaOb4Q”
crossorigin =” anonymous” > < /script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4
.0.0/dist/js/bootstrap.min.js”
integrity ="sha384—JZR6Spejh4U02d8jOt6vLEHfe/
JQGIRRSQQxSfFWpilMquVdAyjUar54+76PVCmY1”
crossorigin =” anonymous” > < /script>
<script defer src={% static ”js/capture.js” %}></script>
<link rel="stylesheet” href="{% static ’css/captureStyles.
css' %} >
<script>
$(document).ready(function () {
$ (’[data—toggle="popover”]’).popover();
1
< /script>

< /head>

<body>

<nav class="navbar navbar—expand—Ig navbar—light” style
="background—color: maroon;” >
<div class="container—fluid” >
<a class="navbar—brand” href="{% url ’home’ %}”
style="color: white” >Monixor
<button class="navbar—toggler” type="button”
data—bs—toggle="collapse” data—bs—target="#
navbarScroll”
aria—controls="navbarScroll” aria—expanded=
false” aria—label="Toggle navigation” >
 < /span>
</button>
<div class="collapse navbar—collapse” id=
navbarScroll” >
<ul class="navbar—nav ms—auto my—2 my—Ig
—0 navbar—nav—scroll” style=" ——bs—scroll—height: 100
px;” >

»

»

<li class="nav—item” >
<a class="nav—link active” aria—
current="page” href="{% url 'capture’ %}”
style="color: white” >Capture

<li class="nav—item” >
<a class="nav—link active” aria—
current="page” href="{% url ’upload’ %}”
style="color: white” >Upload

<li class="nav—item” >
<a class="nav—link” href="{% url ’
dataset’ %}” style="color: white” >Dataset

<li class="nav—item” >
<a class="nav—link” href="{% url ’
guide’ %}” style="color: white” >Guide

</div>
</div>
</nav>
<main>
<div class="container my—auto mx—auto” style="
padding—top: 30px; text—align: center;” >
<div style="display: flex; justify —content: center
;7>
<ul class="nav nav—pills mb—3” id="pills—tab
” role="tablist” >
<li class="nav—item mx—auto” data—
toggle="tooltip” data—placement="top”
title =” Capture a Photo using Camera
7>
<a class="nav—link active” id="pills—
profile—tab” data—toggle="pill” href="#pills—profile”
role="tab” aria—controls="pills—
profile” aria—selected="false” >Photo Mode
<i class="fa fa—question—circle”
aria—hidden="true” data—toggle="popover”
title =" Take photo as seen in

74

75
76
77

78

79

80

81

82

83
84
85
86
87
88
89

90
91
92
93
94

95
96
97

98
99

100
101
102
103
104
105

106
107

108
109
110
111

112
113
114
115
116

117
118

119
120
121
122

123
124
125
126
127
128
129
130
131

132

133
134
135
136
137
138

139

140
141
142
143
144

the live preview below”
data—content="Some content
inside the popover” data—bs—placement="top” ></i>

<li class="nav—item” style="margin—right:

20px;” >
<a class="nav—link” id="pills—home—
tab” data—toggle="pill” href="#pills—home” role="tab”
aria—controls="pills—home” aria—
selected="true” >Video Mode
<i class="fa fa—question—circle”
aria—hidden="true” data—toggle="popover”
title =" Start recording as shown
in live preview and check the replay afterwards”
data—content="Some content
inside the popover” data—bs—placement="top” ></i>

</div>

<p id="status” style="display: inline” >Status:
Waiting to Start Record</p>

</div>

<div class="tab—content” id="pills—tabContent” >
<div class="tab—pane fade” id="pills—home” role
="tabpanel” aria—labelledby="pills—home—tab” >
<div class="col—12 text—center” >

<button class="button—17" id="
btnStart” >START
RECORD< /button>
<button class="button—18” id="
btnStop” >STOP RECORD< /button>

</div>

<div class="container” >
<div class="row” >
<div class="col—md—6 text—center mx
—auto” >
<div class="card” >
<div class="card—header text—
center” >
Live Preview
</div>
<div class="card—body” >
<video id="vid1” controls
autoplay style="width: 100%; height: 100%” > < /video>

</div>
</div>

</div>
<div class="col—md—6 text—center mx
—auto” >
<div class="card” >
<div class="card—header text
center” >

Recorded Video
</div>
<div class="card—body” >
<video id="vid2” controls
autoplay style="width: 100%; height: 100%” > < /video>
</div>
</div>

</div>
</div>

<div class="col—12” style="margin: auto;
width: 50%; text—align: center;” >
<button class="btn btn—danger mx—
auto” type="button” id="loadingBtnVid” style="display:
none” >
<span class="spinner—border
spinner—border—sm” role="status” aria—hidden="true
?>< /span>
Extracting frames, please wait ...
</button>
</div>
<div class="col—12 text—center” >

<button class="button—19” id="
proceed” style="display: none;” >
<a href="{% url ’results’ %}”
style="text—decoration: none; color: white” >Extracted

Frames
</button>

</div>

145
146
147
148

149
150
151
152

153

154
155
156
157
158
159

160
161

162
163
164
165
166

167
168
169
170
171
172
173

174
175

176
177
178
179

180
181

182
183

184
185
186
187
188
189
190
191
192
193

194

195
196
197
198
199
200
201

202

203
204
205
206

207

208
209
210
211
212
213
214
215
216
217
218

23

</div>
</div>
<div class="tab—pane fade show active” id="pills—
profile” role="tabpanel”
aria—labelledby="pills—profile—tab” >
<div class="col—12 text—center” >

<button class="button—17" id="
initiate” >OPEN CAMERA < /button>
<button class="button—18" id="
startbutton” >TAKE PHOTO< /button>

</div>

<div class="container” >
<div class="row” >
<div class="col—md—6 text—center mx
—auto” >
<div class="card” >
<div class="card—header text—
center” >
Live Preview
</div>
<div class="card—body” >
<div class="camera” >
<video id="video”
controls style="width: 100%; height: 100%” >Video stream

not
available.</video>
</div>
</div>
</div>

</div>
<div class="col—md—6 text—center mx
—auto” >
<div class="card” >
<div class="card—header text—
center” >

Captured Photo
</div>
<div class="card—body” >
<canvas id="canvas” style
="display: none” >

< /canvas>
<img src="{% static ’/
images/emptyPic.png’ %}” id="canvasimg” alt="" width

=" 58%" >
<div class="output” >
<img id="photo” style
="width: 100%; height: 100%” />
</div>
</div>
</div>

</div>
</div>

<div class="col—12” style="margin: auto;
width: 50%; text—align: center;” >
<button class="btn btn—danger mx—
auto” type="button” id="loadingBtnPic” style="display:
none” >
<span class="spinner—border
spinner—border—sm” role="status” aria—hidden="true
7 >< /span>
Processing, please wait ...
</button>

</div>
<div class="col—12 text—center” >

<button class="button—17” id="
downloadImageContainer” style="display: none;” >
<a id="downloadImage”
download style="display: none” >
Download Image

</button>
<button class="button—19 mx—
auto” href id="proceedPic” style="display: none;” >
<a href=" {% url ’resultPic’
%}” style="text—decoration: none; color: white” >View

Results
</button>

</div>

</div>
</div>
</div>
< /main>

</body>

219
220

00Uk WN -

©

10
11
12
13
15

16

17

18

19
20

21

22

23

25
26
27

28
29

30

31

32
33
34

35

36
37

38
39
40
41

42

43
44
45

46

48

49
50
51
52
53
54
55

56
57
58

59
60
61

</html>
source—code/index.html

<!—— INDEX.HTML (UPLOAD FUNCTIONALITY) ——>
<!DOCTYPE html>
<html lang="en” >
<head>

<meta charset="UTF—8" >

<meta http—equiv="X—-UA—Compatible” content="IE=

edge” >

<meta name="viewport” content="width=device—width,
initial—scale=1.0" >

<title>Upload< /title>

{% load static %}

<link rel="icon” type="image/png” href="{% static ’/
images/upload.ico’ %}” />

{% load crispy-_forms_tags %}

<! Boostrap Dependencies >

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/
dist/css/bootstrap.min.css” rel="stylesheet”

integrity ="sha384—EVSTQN3/

azprG1Anm3QDgpJLIm9Nao0YzlztcQTwFspd3yD65VohhpuuC®mLASjC

” crossorigin="anonymous” >

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5
.0.2/dist/js/bootstrap.bundle.min.js”
integrity =”sha384—MrcW6ZMFYlzcLASNI+
NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/

tWtlaxVXM”
crossorigin =” anonymous” > < /script>
<!—— <script defer src={% static ”js/recordVid.js” %}></

script> ——>
<script src="https://ajax.googleapis.com/ajax/libs/jquery
/3.1.0/jquery.min.js” > < /script>

<!—— <script defer src={% static ”js/try.js” %}></script>
< /head>
<body>

<!—— Navbar ——>

<nav class="navbar navbar—expand—Ilg navbar—light” style
="background—color: maroon;” >
<div class="container—fluid” >
<a class="navbar—brand” href="{% url home’ %}”
style="color: white” >Monixor
<button class="navbar—toggler” type="button”
data—bs—toggle="collapse” data—bs—target="#
navbarScroll”
aria—controls="navbarScroll” aria—expanded="
false” aria—label=""Toggle navigation” >
< /span>
</button>
<div class="collapse navbar—collapse” id="
navbarScroll” >
<ul class="navbar—nav ms—auto my—2 my—Ilg
—0 navbar—nav—scroll” style="——bs—scroll—height: 100
px;” >
<li class="nav—item” >
<a class="nav—link active” aria—
current="page” href="{% url ’capture’ %}”
style="color: white” >Capture

<li class="nav—item” >
<a class="nav—link active” aria—
current="page” href="{% url ’upload’ %}”
style="color: white” >Upload

<li class="nav—item” >
<a class="nav—link” href="{% url ’
dataset’ %}” style="color: white” >Dataset

<li class="nav—item” >
<a class="nav—link” href="{% url ’
guide’ %}” style="color: white” >Guide

</div>
</div>
< /nav>
<main>
<div class="container my—auto mx—auto” style="
padding—top: 10px;” >
<div class="row” >
<div class="col—md—5" >
<img src="{% static ’/images/Upload.png’
%1}” alt="Monixor” style="display: block;
margin—left: auto;
margin—right: auto;
width: 95%;” >

62
63
64
65

66

67
68

69
70
71
72
73

74

75
76

7
78
79

80

82
83
84
85
86
87

88
89
90

91
92
93

94
95
96

97

98

99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114

115
116

117
118
119
120
121

122
123

124

125
126
127
128
129
130
131
132

o4

</div>
<div class="col—md—7 my—auto” >
<div class="jumbotron my—auto” >
<h1l class="display—4” >File Upload</
hl>
<p class="lead” >This section allows the
user to manually upload a pre—captured image or video of
a
patient monitor. The preprocessed
frame/s will then be
shown below.</p>
<hr class="my—4" >
<div class="card” >
<div class="card—body” >
<h5 class="card—title” >Upload
your file here.</h5>
<h6 class="card—subtitle mb—2
text—muted” >The file size limit is temporarily set to 500
MB.</h6>
<form action="" method="
POST” enctype="multipart/form—data” >
{% csrf_token %}
{{form.as_p}}
<button class="btn” type
="submit” style="background—color:maroon; color: white
7>
Upload </button>

< /form>
</div>
</div>
<div>
{% for message in messages %}
{% if ’success’ == message.tags %}

<div class="alert alert —success
alert —dismissible fade show” role="alert” >
Success! {{
message | striptags}}
<button type="button” class="
btn—close” data—bs—dismiss="alert”
aria—label="Close” > </
button>
</div>
{% else %}
<div class="alert alert —danger
alert—dismissible fade show” role="alert” >
Error! {{
message | striptags}}
<button type="button” class="
btn—close” data—bs—dismiss="alert”
aria—label="Close” > </
button>
</div>
{% endif %}
{% endfor %}
</div>
</div>
</div>
</div>

<section class="mx—auto my—auto text—center” >
{% if outputImages %}
<h3>Output</h3>
<i>Image Count: {{outputImages | length}} (
Kindly click an image to download) </i>

<div class="col—12 text—center” >
<button class="btn btn—success mx—auto
7>
<a href="{% url "downloadZipProcessed
D%y
style ="text—decoration: none; color:
inherit;” >Download

Image/s
< /button>
</div>

<div style="overflow—y: auto; height:500px;
margin—bottom: 50px” >
{% for outputImage in outputImages %}
<a href="{{outputImage.preprocessed.url
}}” download>
<img src="{{outputImage.preprocessed.
url}}” alt="Output image” width="250px” height="190px
»

style="padding: 10px;” >

{% endfor %}

{% else %}
<p></p>
{% endif %}

133
134
135
136
137
138
139

0O U WN =

©

11
12

13
14
15

16

17

18

19
20
21

23
24

25
26

27

28

29
30
31

32

33
34

35
36
37
38

39
40
41
42

43

45

46
47
48
49
50
51
52
53
54
55

56

57
58
59
60

< /section>
</div>
</div>
</main>
</body>

</html>

source—code/dataset.html

<!—— DATASET.HTML ——>

<!DOCTYPE html>
<html lang="en” >

<head>

<meta charset="UTF—-8" >

<meta http—equiv="X—-UA—Compatible” content="IE=
edge” >

<meta name="viewport” content="width=device—width,
initial—scale=1.0" >

<title>Dataset</title>

{% load static %}

<link rel="icon” type="image/png” href="{% static ’/
images/dataset.ico’ %}” />

<!—— Boostrap Dependencies ——>
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/
dist/css/bootstrap.min.css” rel="stylesheet”
integrity ="sha384—EVSTQN3/

azprG1Anm3QDgpJLIm9Nao0YzlztcQTwFspd3yD65VohhpuuC®3nLASjC

” crossorigin="anonymous” >

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5
.0.2/dist/js/bootstrap.bundle.min.js”
integrity =”sha384—MrcW6ZMFYlzcLA8NI+
NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/

tWtlaxVM”
crossorigin =” anonymous” > < /script>
< /head>
<body>
<!—— Navbar ——>

<nav class="navbar navbar—expand—Ilg navbar—light” style
="background—color: maroon;” >
<div class="container—fluid” >
<a class="navbar—brand” href="{% url ’home’%}”
style="color: white” >Monixor
<button class="navbar—toggler” type="button”
data—bs—toggle="collapse” data—bs—target="+#
navbarScroll”
aria—controls="navbarScroll” aria—expanded="
false” aria—label=""Toggle navigation” >
< /span>
</button>
<div class="collapse navbar—collapse” id="
navbarScroll” >
<ul class="navbar—nav ms—auto my—2 my—lg
—0 navbar—nav—scroll” style="——bs—scroll—height: 100
px;” >
<li class="nav—item” >
<a class="nav—link active” aria—
current="page” href="{% url ’capture’ %}”
style="color: white” >Capture

<li class="nav—item” >
<a class="nav—link active” aria—
current="page” href="{% url ’upload’ %}”
style ="color: white” >Upload

<li class="nav—item” >
<a class="nav—link” href="{% url’
dataset’ %}” style="color: white” >Dataset

<li class="nav—item” >
<a class="nav—link” href="{% url ’
guide’ %}” style="color: white” >Guide

</div>
</div>
< /nav>
<div class="container” style="padding—top: 10px;” >
<section>
<div class="container my—auto mx—auto” >
<div class="row” >
<div class="col—md—5" >
<img src="{% static ’/images/dataset.
png’ %}’ alt="Monixor” style="display: block;
margin—left: auto;
margin—right: auto;
width: 95%;” >
</div>

61
62
63

64
65
66
67

68
69

70

71
72
73
74

75

76
s
78
79
80
81
82

84

85

86
87
88

89
90

91

92
93
94
95
96

97
98

99

100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120
121

122
123
124
125
126
127
128
129
130

95

<div class="col—md—7 my—auto” >
<div class="jumbotron my—auto” >
<h1l class="display—4” >PM—2023
Dataset</h1>
<p class="lead” >There is a lack of
dataset comprising realistic field images of a patient
monitor. The availability of
such dataset with variability in quality can prove useful
in computer vision—related
tasks such as object detection, optical character
recognition, and the likes.</p
>
<hr class="my—4" >
<p>A public repository of realistic
field images of patient monitor is collected to
contribute a new dataset for
computer vision.
</p>
<p class="lead” >
<a class="btn btn—Ig”
href="https://drive.google.
com/drive/folders/1—7GUeSjbOU8XxQQJIJNE—
LOjObhutbLR_-Q57?usp=sharing”
role="button” style="
background—color: maroon; color: white;” >Dataset
</p>
</div>
</div>
</div>

<div class="row” >
<div class="col—md—6”" >
<h4>About the Dataset</h4>
<p>Files are named following a certain
convention to provide metadata for easier navigation of
files . An image is named as {
volunteer number}_{file code}_{frame_count}, where
volunteer
number
corresponds
to the 5 study participants (i.e.,
from 1 to 5).

For example, first frame of an
image taken from direct camera with low lighting condition
in
the first volunteer data is named
as 01_01_1.jpg while the second frame is named
01.01_2
and so on.
</p>
<p>
The dataset is divided into two
folders namely (1) <u>raw</u> and (2) <u>
preprocessed</u>.
The raw dataset
corresponds to extracted frames
from the collected
videos (2—sec interval) while the
preprocessed dataset corresponds to the screen—extracted
frame counterpart
of the raw dataset. The structure of
the dataset folder is illustrated below:

Raw
— annotations.zip
— images.zip

Preprocessed
— annotations.zip
— images.zip

</p>
</div>
<div class="col—md—6" >
<table class="table table—hover” >

<thead>
<tr>
<th scope="col” >File Code
</th>
<th scope="col” >Capturing
Condition</th>
<th scope="col” >Lighting
Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Direct Camera</td>
<td>Low< /td>
</tr>
<tr>

131
132
133
134
135
136
137

138
139
140
141
142

143
144
145
146
147

148
149
150
151
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

0O U WN =

©

11
12

13
14
15

16

17

18

td

td

<td>02< /td>
<td>Direct Camera</td>
<td>Natural</td>

</tr>

<tr>
<td>03</td>
<td>Skewed Upwards</td

<td>Low</td>

</tr>

<tr>
<td>04< /td>
<td>Skewed Upwards</td

<td>Natural</td>

</tr>

<tr>
<td>05< /td>
<td>Skewed Downwards</

>

<td>Low< /td>

</tr>

<tr>
<td>06</td>
<td>Skewed Downwards</

>

<td>Natural</td>

</tr>

<tr>
<td>07< /td>
<td>Skewed to Left</td>
<td>Low</td>

</tr>

<tr>
<td>08< /td>
<td>Skewed to Left</td>
<td>Natural</td>

</tr>

<tr>
<td>09</td>
<td>Skewed to Right</td>
<td>Low< /td>

</tr>

<tr>
<td>10< /td>
<td>Skewed to Right</td>
<td>Natural</td>

</tr>

</tbody>
</table>
</div>
</div>

</section>

</div>
</body>

</html>

source—code/guide.html

<!—— FAQ.HTML ——>

<!DOCTYPE html>
<html lang="en” >

<head>

<meta charset="UTF—8">
<meta http—equiv="X—-UA—Compatible” content="IE=

ed,

ge” >

<meta name="viewport” content="width=device—width,
initial—scale=1.0" >

<tit

le>Guide< /title>

{% load static %}

<lin

k rel="icon” type="image/png” href="{% static '/

images/guide.ico’ %}” />

<!—— Boostrap Dependencies ——>

<lin

k href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/

dist/css/bootstrap.min.css” rel="stylesheet”

azprG1Anm3QDgpJLIm9Nao0YzlztcQTwFspd3yD65VohhpuuC®mLASjC
crossorigin="anonymous” >

»

integrity ="sha384—EVSTQN3/

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5

.0.

2/dist/js/bootstrap.bundle.min.js”
integrity =" sha384—MrcW6ZMFYlzcLA8NI+

NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/

tWtlaxVM”
crossorigin =” anonymous” > < /script>
< /head>
<body>
<!—— Navbar ——>

24

25
26

27

28

29
30
31

32

33
34

35
36
37
38

39
40
41
42

43
44
45

46
47
48
49
50
51
52
53
54

55
56

57
58
59
60
61

62
63
64

65
66

67
68
69
70
71

72
73
74

75

76
7
78
79
80
81

82
83
84

86
87
88
89
90
91
92

93

26

<nav class="navbar navbar—expand—lg navbar—light” style
="background—color: maroon;” >
<div class="”container—fluid” >
<a class="navbar—brand” href="{% url ’home’%}”
style="color: white” >Monixor
<button class="navbar—toggler” type="button”
data—bs—toggle="collapse” data—bs—target="#
navbarScroll”
aria—controls="navbarScroll” aria—expanded="
false” aria—label="Toggle navigation” >
 < /span>
</button>
<div class="collapse navbar—collapse” id=
navbarScroll” >
<ul class="navbar—nav ms—auto my—2 my—lg
—0 navbar—nav—scroll” style=" ——bs—scroll—height: 100
px;” >

»

<li class="nav—item” >
<a class="nav—link active” aria—
current="page” href="{% url ’capture’ %}”
style="color: white” >Capture

<li class="nav—item”>
<a class="nav—link active” aria—
current="page” href="{% url ’upload’ %}”
style="color: white” >Upload

<li class="nav—item” >
<a class="nav—link” href="{% url ’
dataset’ %}” style="color: white” >Dataset

<li class="nav—item” >
<a class="nav—link” href="{% url ’
guide’ %}” style="color: white” >Guide

< /ul>
</div>
</div>
< /nav>
<!——Section: FAQ——>
<div class="container” style="padding—top: 20px;” >
<section>
<h3 class="text—center mb—4 pb—2 fw—bold” >
FAQ</h3>
<p class="text—center mb—5">
This section aims to provide tips on how to
navigate the system.
</p>

<div class="row” >
<div class="col—-md—6 col—lg—4 mb—4" >
<h6 class="mb—3 ”><i class="far fa—
paper—plane” ></i>What’s the difference between
Capture and
Upload?</h6>
<p>
Capture mode is ideal when patient
monitor is readily available and user wishes to take a
picture or video of it.
Upload is when a pre—taken input file is
available .
</p>
</div>

<div class="col—md—6 col—lg—4 mb—4" >
<h6 class="mb—3 ”><i class="fas fa—pen
—alt”></i> I can’t access my device camera as of the
moment.</h6>
<p>
Please make sure your camera has at
least 720x480 resolution. Alternatively, you can click the
Upload button to send a
pre—captured input file taken from another
device.
</p>
</div>

<div class="col-md—6 col—lg—4 mb—4” >
<h6 class="mb—3 ”><i class="fas fa—user
”></i> Results are not showing when I click View
Results
</h6>
<p>
Please try to wait a few seconds before
clicking View Results button (or simply
reload
the page) as the system may have
encountered a lag/buffer problem.
</p>
</div>

<div class="col—md—6 col—Ilg—4 mb—4”>
<h6 class="mb—3 ”><i class="fas fa—
rocket” >< /i> Upload process takes a long time.
</h6>

94
95

96

97
98
99
100
101

102
103
104

105
106
107
108

109
110

111

112
113
114
115
116
117
118
119
120

o
O W0 U WN -

11
12
13
14
15
16

OO W

©

10
11
12
13

14
15
16
17
18

20

21
22
23
24

<p>
This may naturally occur in inputs of
big size. The upload is currently limited to 500 MB
input.
If problem persists, please retry
uploading or trimming your videos.
</p>
</div>

<div class="col—md—6 col—lg—4 mb—4” >
<h6 class="mb—3 ”><i class="fas fa—
home” ></i>Why can’t I access the front camera of my
mobile device when recording?
</h6>
<p>Back camera is intentionally accessed
for use to achieve an ideally higher quality.</p>
</div>

<div class=”"col—md—6 col—lg—4 mb—4”" >
<h6 class="mb—3 ”><i class="fas fa—
book—open” >< /i>Recording does not work on my end.</
h6>
<p>
The system is compatible with typical
browsers (Chrome, Firefox, Opera, Safari). If the problem
remains, please try switching to Google
Chrome.
</p>
</div>
</div>
< /section>
<!——Section: FAQ——>
</div>
</body>

</html>

source—code/requirements.txt

REQUIRED DEPENDENCIES

asgiref ==3.6.0

backports.zoneinfo==0.2.1

Django==4.1.3
django—cors—headers==3.13.0
django—crispy—forms==1.14.0
gunicorn==20.0.4

numpy==1.24.1
opencv—contrib—python—headless==4.7.0.68
opencv—python—headless==4.7.0.68
Pillow==9.4.0

tzdata==2022.7
whitenoise==6.3.0

source—code/models.py

#MODELS.PY

from django.db import models
from .validators import file_size

class Monitor(models.Model):
monitor_input = models.FileField(upload_to="input/%y/%m
/%d/”, validators=[file_size], null=True, blank=True)

def __str__ (self):
return 7’

class Images(models.Model):
monitor_images = models.FileField(upload_-to="image/%y”,
null=True, blank=True)
stamp = models.DateTimeField(auto-now_add=True)

def __str__ (self):
return ’

class Preprocessed(models.Model):
preprocessed = models.FileField(upload_to="image/%y”,
null=True, blank=True)
stamp = models.DateTimeField(auto-now_add=True)

def __str__ (self):
return 7’

source—code/views.py

©00~TDU s WN =

55
56
57
58
59
60

61
62
63
64

65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

o7

#VIEWS.PY

from
from
from
from
from
from

tabnanny import check

django.shortcuts import render, redirect
django.http import HttpResponse, FileResponse
django.core. files .base import File, ContentFile
.models import *

forms import *

import os
import cv2
import numpy as np

from
from
from
from
from
from

django.conf import settings

PIL import Image, ImageEnhance
django.contrib import messages

zipfile import ZipFile

wsgiref. util import FileWrapper
django.views.decorators. csrf import csrf_exempt

import csv
import time

from
from
from
from
from
from
from

django.http import HttpResponse
django.shortcuts import render

.models import *

django.core.mail import EmailMessage
django.views.decorators import gzip
django.http import StreamingHttpResponse
threading import Thread

def home(request):
try:

Images.objects. all () . delete ()

except Images.DoesNotExist:

pass

return render(request, ’home.html’)

@Qcsrf_exempt
def capturePic(request):
try:

Images.objects. all () . delete ()

except Images.DoesNotExist:

pass

if request.method == 'POST":

f = open(’./file .jpg’, 'wb’)
f.write(request.body)
filePath = os.path.realpath(f.name)

f. close ()

img = cv2.imread(filePath)

final = preprocess(img)

ret, buf = cv2.imencode(’.jpg’, final)

content = ContentFile(buf.tobytes())

img_model = Images()

img_model.monitor_images.save(’outputFrame.jpg’,
content)

return render(request, ’capture.html’)

class WebcamStream:
def __init__ (self, stream_id):

self .stream_id = stream_id # default is 0 for main
camera
self .vcap = cv2.VideoCapture(self.stream_id)
if self .vcap.isOpened() is False:
exit (0)
fps_input_stream = int(self .vcap.get(5)) # hardware
fps

self .grabbed, self.frame = self.vcap.read()

if self .grabbed is False:
print (’[Exiting] No more frames to read’)
exit (0)

self .stopped = False

thread instantiation

self .t = Thread(target=self.update, args=())

self .t.daemon = True # daemon threads run in

background

def start(self):

self .stopped = False
self . t. start ()

def update(self):

while True:
if self .stopped is True:
break
self .grabbed, self.frame = self.vcap.read()
if self .grabbed is False:
self .stopped = True
break
self .vcap.release ()

def read(self):

return self .frame

91

93
94
95
96

97

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170
171
172
173
174
175
176
177

179

def encode(self):
img_model = Images()
ret, buf = cv2.imencode(’.jpg’, self .frame)
content = ContentFile(buf.tobytes())
img_model.monitor_images.save(’output’ + 7.7 + ”.jpg”,
content)

def stop(self):
self .stopped = True

@Qcsrf_exempt
def captureVid(request):
try:
Images.objects. all () . delete ()
except Images.DoesNotExist:
pass

try:

Preprocessed.objects. all () . delete ()

except Preprocessed.DoesNotExist:
pass

if request.method == "POST":
vidInput = request.FILES[”video”].file.name
index, nameCounter = 1
webcam_stream = WebcamStream(

stream_id=vidInput) # 0 id for main camera

webcam_stream.start()
vidcap = cv2.VideoCapture(vidlnput)
fps = vidcap.get(cv2.CAP_PROP_FPS)

if ((fps >= 50 and fps <= 80) or fps == 1000):
fps = 60

else:
fps = 30

success, img = vidcap.read()

while (success):
if (index > fps and index % fps == 0):
ret, buf = cv2.imencode(’.jpg’, img)
content = ContentFile(buf.tobytes())

img-model = Images()
img_model.monitor_images.save(

‘output’ 4+ 7" 4 str(nameCounter) + ”.jpg
”, content)
nameCounter += 1
index +=1

success, img = vidcap.read()

vidcap.release ()
num-_frames_processed = 0
img_model = Images()

while True:

if webcam_stream.stopped is True:
break

else:
frame = webcam_stream.read()
webcam_stream.encode()

adding a delay for simulating video processing

time

delay = 0.5 # delay value in seconds

time.sleep (delay)

num_frames_processed += 1

webcam_stream.stop()
return redirect (’/ results ’)

@Qcsrf_exempt
def index(request):
try:
Preprocessed.objects. all () . delete ()
except Preprocessed.DoesNotExist:
pass
if request.method == "POST”:
form = MonitorForm(request.POST, request.FILES)

if form.is_valid () and ’monitor_input’ in request.FILES

form.save()
monitorInput = Monitor.objects.latest(’id’)
filePath = monitorInput.monitor_input.path
extension = os.path.splitext (

str (request. FILES[’monitor_input’]))[1]
fileName = os.path.splitext (

str (request. FILES[’monitor_input’])) [0]

if (extension == ’.png’ or extension == ’.jpg’ or
extension == ’.jpeg’ or
extension == ".JPG’ or extension == *.PNG’ or
extension == ".JPEG’):

img = cv2.imread(filePath)

180
181
182
183
184
185

186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210

211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

257
258
259
260
261
262
263

264

265
266

o8

orig-img = img.copy()

final = preprocess(orig_img)

ret, buf = cv2.imencode(’.jpg’, final)

content = ContentFile(buf.tobytes())

img_model = Preprocessed()

img_model.preprocessed.save(fileName + ’.jpg’,
content)

else:

sec =0

frameRate = 2 # //it will capture image every
2 seconds

count = 1

success, img = getFrame(sec, filePath)

orig-img = img.copy()

while success:
count = count + 1
sec = sec + frameRate
sec = round(sec, 2)
final = preprocess(img)
ret, buf = cv2.imencode(’.jpg’, final)
content = ContentFile(buf.tobytes())
img_model = Preprocessed()
img_model.preprocessed.save(
fileName + 7.7 + str(count—1) + ”.jpg”,
content)
success, img = getFrame(sec, filePath)
outputImages = Preprocessed.objects.all()

context = {’form’: form,
’filePath ’: filePath,
’monitorInput’: monitorInput,
’outputImages’: outputImages}

messages.success(request, ”File succcessfully

uploaded.”)
else:
context = {’form’: form}
messages.error(
request, ”No file chosen or size exceeds limit

'17)
return render(request, ’index.html’, context)

form = MonitorForm()
context = {’form’: form}
return render(request, ’index.html’, context)

def preprocess(img):

orig_-img = img.copy()

gamma, output = GCME(img)

img = cv2. bilateralFilter (output, 11, 125, 100)

gray = cv2.cvtColor(img, cv2.COLOR-BGR2GRAY)

canny = cv2.Canny(gray, 40, 120)

canny = cv2.dilate(canny, cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (3, 3)))

con = np.zeros_like (img)

contours, hierarchy = cv2.findContours(
canny, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)

page = sorted(contours, key=cv2.contourArea, reverse=True)

con = cv2.drawContours(con, contours, —1, (0, 255, 255), 3)
con = np.zeros_like (img)

maxArea = 0

biggest = []

for ¢ in page:
area = cv2.contourArea(c)
if area > 100000:
epsilon = 0.02 * cv2.arcLength(c, True)
corners = cv2.approxPolyDP(c, epsilon, True)
if area > maxArea and len(corners) == 4:
biggest = corners
maxArea = area

if len(biggest) != 0:
cv2.drawContours(con, ¢, —1, (0, 255, 255), 3)
cv2.drawContours(con, biggest, —1, (0, 255, 0), 10)
biggest = sorted(np.concatenate(biggest). tolist ())

for index, c in enumerate(biggest):
character = chr(65 + index)
cv2.putText(con, character, tuple(
¢), ¢v2.FONT_HERSHEY_SIMPLEX, 1, (255, 0,
0), 1, cv2.LINE_AA)

biggest = order_points(biggest)

destination_corners = find_dest(biggest)

M = cv2.getPerspectiveTransform(np.float32(
biggest), np.float32(destination_corners))

final = cv2.warpPerspective(
orig_img, M, (destination_corners [2][0],

destination_corners [2][1]) , flags=cv2.INTER_LINEAR)
else:
final = orig_img

267
268
269
270
271
272
273
274
275
276
277

278
279
280
281
282
283
284
285
286
287
288
289
290

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

327

328
329
330

331

332
333
334
335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

def

def

de

S

def

def

def

de

2

def

return final

getFrame(sec, file_name):

vidcap = cv2.VideoCapture(file_name)

vidcap.set (cv2.CAP_PROP_POS_MSEC, sec*1000)
hasFrames, image = vidcap.read()

return hasFrames, image

GCME(image, mask=None, normalize=False):
if np.ndim(image) == 3 and image.shape[—1] == 3: #
color image
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
img = hsv[:, :, 2]
color_flag = True
elif np.ndim(image) == 2: # gray image
img = image
color_flag = False
else:
return 1, None

if normalize: # max—min normalization
img = img.astype(np.float)
img = (255 * (img — np.min(img[:])) / (np.max(img[:]
) — np.
min(img[:]) + 0.1)).astype(np.float)

img = (img + 0.5) / 256

img_log = np.log(img)
if mask is not None:
mask[mask < 255] = 0
img_log[mask == 0] = np.NaN
gamma = —1 / np.nanmean(img-log|[:])

output = np.power(img, gamma)

if mask is not None:
output = (output * 256 — 0.5) * mask / 255.0
else:
output = (output x 256 — 0.5)
output = output.round().astype(np.uint8)
if color_flag :
hsv[:;, : 2] = output
output = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

return gamma, output

order_points(pts):

rect = np.zeros((4, 2), dtype=’'float32’)
pts = np.array(pts)

s = pts.sum(axis=1)

rect [0] = pts[np.argmin(s)]

rect [2] = pts[np.argmax(s)]

diff = np.diff (pts, axis=1)

rect [1] = pts[np.argmin(diff)]

rect [3] = pts[np.argmax(diff)]

return rect.astype(’int’) . tolist ()

find_dest (pts):

(tl, tr, br, bl) = pts

Widthz? = np.sqrt(((br[0] — bl[0]) =% 2) + ((br[1] — bl[1])
Kk 2

width]?);): np.sqrt(((tr[0] — t1[0]) == 2) + ((tr[1] — t1[1])
*k 2

maxWidth = max(int(widthA), int(widthB))

heightA = np.sqrt(((tr[0] — br[0]) ** 2) + ((tr[1] — br[1])
sk 2))

heightB = np.sqrt(((t1[0] — bl[0]) =x 2) + ((t1[1] — bl[1])
ok 2))

maxHeight = max(int(heightA), int(heightB))

destination_corners = [[0, 0], [maxWidth, 0],

[maxWidth, maxHeight], [0,

maxHeight]]

return order_points(destination_corners)

guide(request):

return render(request, ’guide.html’)
capture(request):

return render(request, ’capture.html’)
dataset(request):

return render(request, ’dataset.html’)

resultPic (request) :
monitorImages = Images.objects.all()

context = {
’monitorImages’: monitorImages

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

422
423
424
425
426
427
428
429
430
431
432
433

434
435
436
437
438
439
440
441
442
443
444
445
446

29

def

def

s,

de

def

def

def

def

return render(request, ’resultPic.html’, context)

results (request):
monitorImages = Images.objects.all()

context = {
’monitorImages’: monitorImages

return render(request, ’results.html’, context)

preprocessing(request):
count = 1

monitorImages = Images.objects.all()
for monitorImage in monitorImages:
img = cv2.imread(monitorImage.monitor_images.path)
final = preprocess(img)
ret, buf = cv2.imencode(’.jpg’, final)
content = ContentFile(buf.tobytes())
img_model = Preprocessed()
img_model.preprocessed.save(
’output’ + ”_” + str(count) + ”.jpg”, content)
count +=1

return redirect (’/ processed’)

processed (request):
preprocessedImages = Preprocessed.objects.all()

context = {
’preprocessedImages’: preprocessedImages

return render(request, ’processed.html’, context)

downloadZipResults(request):
monitor_images = Images.objects.all()

with ZipFile (’ outputframes.zip’, ’w’) as export_zip:
for monitor_image in monitor_images:
img_path = monitor_image.monitor_images.path
print (img_path)
export_zip.write(img_path, img_path.split(”\\”)[—1])

wrapper = FileWrapper(open(’outputframes.zip’, 'rb’))
content_type = ’application/zip’
content_disposition = ’attachment; filename=Frames.zip’

response = HttpResponse(wrapper, content_type=
content_type)
response [’ Content—Disposition’] = content_disposition

return response

downloadZipProcessed(request):
monitor_images = Preprocessed.objects.all()

with ZipFile ("outputframes.zip’, 'w’) as export_zip:
for monitor_image in monitor_images:
img_path = monitor_image.preprocessed.path
export_zip.write(img_path, img_path.split(”\\”)[—1])

wrapper = FileWrapper(open(’outputframes.zip’, 'rb’))
content_type = ’application/zip’
content_disposition = ’attachment; filename=Frames.zip’

response = HttpResponse(wrapper, content_type=
content_type)
response [’ Content—Disposition’] = content_disposition

return response

downloadCSV (request):
monitor_images = Images.objects.all()
stamp = ["Time Stamp’]

img_path = ['Image File’]

response = HttpResponse(
content_type=’'text/csv’,
headers={’Content—Disposition’: ’attachment; filename
="Data.csv”’},

)

writer = csv.writer(response)

for monitor_image in monitor_images:
stamp.append(monitor_image.stamp)
img_path.append(monitor_image.monitor_images.name)
value in range(len(stamp)):

writer . writerow([stamp|[value], img_path[value]])

for

return response

download CSVProc(request):
monitor_images = Preprocessed.objects.all()

447
448
449
450
451
452

453
454
455
456
457
458
459
460
461
462
463
464
465

© 00N U WN =

18
19
20
21
22
23

24

25

© 00U WN =

10

stamp = ['Time Stamp’]
img_path = ['Image File’]

response = HttpResponse(
content_type=’text/csv’,
headers={’Content—Disposition’: ’attachment; filename
="Data.csv”’},

)

writer = csv.writer(response)

for monitor_image in monitor_images:
stamp.append(monitor_image.stamp)
img_path.append(monitor_image.preprocessed.name)

for value in range(len(stamp)):
writer . writerow([stamp|[value], img_path[value]])

return response

def delete (image):

os.remove(image)

source—code/urls.py

#URLS.PY

from django.urls import path
from django.urls import path

from .

import views

urlpatterns = [

path (*’, views.home, name="home’),

path(’guide /’, views.guide, name=’guide’),

path(’upload/’, views.index, name="upload”),

path(’capture/’, views.capture, name="capture”),

path(’captureVid/’, views.captureVid, name="captureVid”),

path(’capturePic/’, views.capturePic, name="capturePic”),

path(’dataset /°, views.dataset, name="dataset”),

path(’results /°, views.results, name="results”),

path(’resultPic /’, views.resultPic, name="resultPic”),

path(’preprocessing /’, views.preprocessing, name="
preprocessing”),

path(’processed /’, views.processed, name="processed”),

path(’downloadZipResults/’, views.downloadZipResults,

name="downloadZipResults”),
path(’downloadZipProcessed/’, views.downloadZipProcessed,
name="downloadZipProcessed”),

path(’downloadCSV/’, views.downloadCSV, name="
downloadCSV”),

path(’downloadCSVProc/’, views.downloadCSVProc, name
="downloadCSVProc”),

source—code/capture.js

// VIDEO CAPTURE ACCESS GRANT

let start = document.getElementBylId(”btnStart”);

let stop = document.getElementBylId(”btnStop”);

let vidPreview = document.getElementByld(”vid1”);

let vidSave = document.getElementBylId(”vid2”);

let recordingStatus = document.getElementByld(”status”);
let canvasImg = document.getElementByld(” canvasimg”);
let downloadImage = document.getElementById(”

let downloadImageContainer = document.getElementBylId(

downloadImage”);

downloadImageContainer”);

let videoURL = "”;
let chunks = [J;

let constraintObj = {

18

audio: false,
video: {
width: {
min: 720,
ideal : 1280,
max: 3840,

}s
frameRate: { min: 10, ideal: 60, max: 80 },
facingMode: { ideal: “environment” },
height: {

min: 480, //HD

ideal: 720, //FHD

max: 2160, //4k

’

1

start .addEventListener(”click”, (ev) => {

//handle older browsers that might implement getUserMedia in

some way

34
35
36

37
38

39
40
41

42
43
44
45

71
72
73
74

75
76
77
78

79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107
108
109
110
111
112

113
114
115
116
117
118

60

if (navigator.mediaDevices === undefined) {

navigator.mediaDevices = {};
navigator.mediaDevices.getUserMedia = function (
constraintObj) {
let getUserMedia =
navigator.webkitGetUserMedia || navigator.
mozGetUserMedia;
if (!getUserMedia) {
return Promise.reject (
new Error(”getUserMedia is not implemented in this
browser”)

)

return new Promise(function (resolve, reject) {
getUserMedia.call(navigator, constraintObj, resolve,
reject) ;
1
s

} else {

navigator.mediaDevices
.enumerateDevices()
.then((devices) => {
devices.forEach((device) => {
console.log(device.kind.toUpperCase(), device.label);

bs

.catch((err) => {
console.log(err.name, err.message);

1)

navigator.mediaDevices

.getUserMedia(constraintObj)
.then(function (mediaStreamObj) {
//connect the media stream to the first video element
let video = document.querySelector(”video”);
if (”srcObject” in video) {
video.srcObject = mediaStreamObj;
} else {
//old version
video.src = window.URL.createObjectURL(
mediaStreamObj);

}

video.onloadedmetadata = function (ev) {

//show in the video element what is being captured by
the webcam

video.play();

H

let mediaRecorder = new MediaRecorder(mediaStreamObj

);

mediaRecorder.start();
recordingStatus.innerHTML =
” " + ”Status: Currently
Recording” + ”";
console. log(mediaRecorder.state);

stop.addEventListener(”click”, (ev) => {
mediaRecorder.stop();
console. log(mediaRecorder.state);

s

mediaRecorder.ondataavailable = function (ev) {
if (ev.data.size > 0) {
chunks.push(ev.data);
} else {
console.log(”NO DATA”);

IS

mediaRecorder.onstop = (ev) => {
let blob = new Blob(chunks, {
type: ”video/mp4”,
L
chunks = [];
videoURL = URL.createObjectURL(blob);
vidSave.src = videoURL;
recordingSize = parseFloat(blob.size / 1000000).toFixed
(2);
recordingStatus.innerHTML =
” ” +
”Status: Stopped Recording (7 +
recordingSize +
» MB)”,
(" ");
let loadingBtnVid = document.getElementById(”
loadingBtnVid”);
loadingBtnVid.style.display = ”block”;

var fd = new FormData();
var file = new File([blob], ”vidd.mp4”);
fd.append(”video”, file);

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161
162
163
164
165
166
167
168
169
170
171
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

195
196
197
198
199
200
201
202
203
204
205

206
207

console.log(file);

var xhr = new XMLHttpRequest();

xhr.open(”POST”, ” /captureVid/”, true);

xhr.onload = function (e) {
console.log(”Sent”);
loadingBtnVid.style.display = ”none”;

let x = document.getElementById(” proceed”);
x.style .display = ”inline”;

}s

xhr.send(fd);
b
.catch(function (err) {
console.log(err.name, err.message);
1)
1

function getCookie(name) {
var cookieValue = null;
if (document.cookie && document.cookie == "") {
var cookies = document.cookie.split(”;”);
for (var i = 0; i < cookies.length; i++) {
var cookie = cookies[i]. trim();
if (cookie.substring(0, name.length + 1) === name +
n=) {
cookieValue = decodeURIComponent(cookie.substring(
name.length + 1));
break;
}
}
}

return cookieValue;

function sendPicData(data) {
let csrftoken = getCookie(” csrftoken”);
let response = fetch(” /capturePic/”, {
method: ”post”,
body: data,
headers: { ”X—CSRFToken”: csrftoken },
}).then((data) => {
let loadingBtnPic = document.getElementById(”
loadingBtnPic”);
loadingBtnPic.style.display = ”"none”;

downloadImage.style.color = ”inherit”;
downloadImage.style.textDecoration = “none”;
downloadImage.style.display = ”inline”;
downloadImageContainer.style.display = ”inline”;
proceedPic.style.display = ”inline”;

s
}

const width = 1280; // We will scale the photo width to this
let height = 0; // This will be computed based on the input
stream

let streaming = false;

let video = null;

let canvas = null;

let photo = null;

let startbutton = null;

let startPic = document.getElementBylId(”initiate”);

let proceedPic = document.getElementByld(” proceedPic”);

startPic.addEventListener(”click”, (ev) => {
video = document.getElementByld(” video”);
canvas = document.getElementById(” canvas”);
photo = document.getElementById(” photo”);
startbutton = document.getElementById(”startbutton”);

navigator.mediaDevices
.getUserMedia(constraintObj)
.then((stream) => {
video.srcObject = stream;
recordingStatus.innerHTML =

” ” + ”Status: Currently Active

» 4 < /span>;
video.play();

.catch((err) => {
console. error (‘An error occurred: ${err}‘);

1)

video.addEventListener(
”canplay”,
(ev) => {
if (!streaming) {

);

if (isNaN(height)) {

height = video.videoHeight / (video.videoWidth / width

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256

N U W=

=
o ©

11
12
13

14
15
16
17

18
19

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

61

height = width / (4 / 3);
}

video.setAttribute(” width”, width);
video.setAttribute(” height”, height);
canvas.setAttribute(” width”, width);
canvas.setAttribute(” height”, height);
streaming = true;
}
3
false

)

startbutton.addEventListener(

” click 7,

(ev) =>{
takepicture();
recordingStatus.innerHTML =

” " + ”Status: Photo Taken!”

+ 7 < /span>";
ev.preventDefault();

false

)i

clearphoto();

5

function takepicture() {

canvasImg.style.display = "none”;

const context = canvas.getContext(”2d”);

if (width && height) {
canvas.width = width;
canvas.height = height;
context.drawlmage(video, 0, 0, width, height);

const data = canvas.toDataURL(”images/png”);
photo.setAttribute(”src”, data);

canvas.toBlob((blob) => {
let loadingBtnPic = document.getElementById(”
loadingBtnPic”);
loadingBtnPic.style.display = ”block”;
imageURL = URL.createObjectURL(blob);
downloadImage.set Attribute(”href”, data);
sendPicData(blob);

1)

else {

canvasImg.style.display = “none”;

-

source—code/object_detection.py

—*— coding: utf—8 —*—
777 [Diversified] Train_-Object_Detection_-model_TF2.ipynb

Automatically generated by Colaboratory.

Original file

is located at
https://colab.research.google.com/drive/1
CyHKmW2VMhHu00ViJOoAJfS69NT5iU0G

*xSP ROADMAP*x*

Author: Jan Federico Coscolluela IV

*

*

*

®

*

Collect the dataset of images and label them to get their xml
files .

Install the TensorFlow Object Detection API.

Generate the TFRecord files required for training. (need
generate_tfrecord.py script and csv files for this)

Edit the model pipeline config file and download the pre—
trained model checkpoint.

Train and evaluate the model.

Apply OCR to detected objects.

*x Initialization **

*x1) Import Librariessx

EXTE)

import os

import glob

import xml.etree.ElementTree as ET
import pandas as pd

import tensorflow as tf

import cv2

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64

65
66
67
68
69
70
71
72

73
74
75

76
77

78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121

print (tf. __version__)
77 44 xx2) Mount drive and link your folderx*”””

from google.colab import drive
drive.mount(’/content/gdrive’, force_remount=True)
!In —s /content/gdrive/My\ Drive/ /mydrive

7744 %x3) Clone the tensorflow models git repository & Install
TensorFlow Object Detection APIskx

REX

! git clone ——q https://github.com/tensorflow/models.git
!protoc object_detection/protos/*.proto ——python_out=.
!cp object_detection /packages/tf2/setup.py .

I'python —m pip install .

7 44t xx4) Test the model builderssx

REE

testing the model builder
!python object_detection/builders/ model_builder_tf2_test .py

777 4k «xWorkspace Setupsx

=x5) Unzip the *images.zipx and xannotations.zip* files into
the xdatax folderss

REX

lunzip /mydrive/Monixor/Detection/diversified /images.zip —d .
lunzip /mydrive/Monixor/Detection/diversified /annotations.zip

»rr 44 xx6) Create test_labels & train_labelssx

Divide annotations into test_labels (20%) and train_labels(80%).

BESH

!mkdir test_labels train_labels

!ls annotations/ | sort —R | head —100 | xargs —I{} mv {}
test_labels/

!ls annotations/* | xargs —I{} mv {} train_labels/

7 «xT7) Create the CSV files and the ”label_map.pbtxt” file

*k

Run xml_to_csv script below to create xxxtest_labels .csvk** and
sxxtrain_labels.csviorx

This also creates the sxxlabel-map.pbtxt*xx file using the

classes mentioned in the xml files .
509

def xml_to_csv(path):
classes_names =]
xml_list = []

for xml_file in glob.glob(path + ’/*.xml’):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall ("object’) :
classes_names.append(member[0].text)
value = (root.find (’filename’) .text ,
int (root. find (’ size’) [0]. text),
int (root. find (’ size’) [1]. text),
member[0].text,
int (member([4][0].text),
int (member([4][1].text),
int (member[4][2].text),
int (member[4][3].text))
xml_list . append(value)
column_name = [’filename’, "'width’, "height’,
’ymin’, ’xmax’, ’ymax’]
xml_df = pd.DataFrame(xml_list, columns=column_name)
classes_names = list (set (classes_names))
classes_names. sort ()
return xml_df, classes_names

’class’, ’xmin’,

for label_path in [’ train_labels ’, ’ test_labels ’]:
image_path = os.path.join(os.getcwd(), label_path)
xml_df, classes = xml_to_csv(label_path)

xml_df.to_csv(f’{label_path}.csv’, index=None)
print (f’ Successfully converted {label_path} xml to csv.’”)

label_map_path = os.path.join(”label_map.pbtxt”)
pbtxt_content = ””

for i, class_name in enumerate(classes):
pbtxt_content = (
pbtxt_content

+ 7item {{\n id: {O}\n

format(i + 1, class_name)

name: '{1}’\n}}\n\n".

pbtxt_content = pbtxt_content.strip()
with open(label_map_path, "w”) as f:

122
123
124
125
126

127
128
129

130

131
132
133

134

135
136
137

138
139
140

141

142

143
144
145

146
147
148

149
150

151
152
153

154
155
156
157
158

159
160
161
162
163
164
165
166
167

168
169

170
171
172

173
174
175
176
177

62

f.write(pbtxt_-content)
print (’ Successfully created label_map.pbtxt)

77 fH xx8) Create train.record & test.record files*x
Run the xgenerate_tfrecord.py* script to create xtrain.records

and xtest.recordx files
EEDS

Ipython /mydrive/Monixor/Detection/diversified/
generate_tfrecord.py train_labels.csv label_map.pbtxt
images/ train.record

!python /mydrive/Monixor/Detection/diversified/
generate_tfrecord.py test_labels.csv label-map.pbtxt
images/ test.record

772 4 xx9) Download pre—trained model checkpointss

Download #*ssd-mobilenet_v2_fpnlite_-320x320_cocol7_tpu—8.tar.
gz** into the kx*xdataxxx folder & unzip it.

A list of detection checkpoints for tensorflow 2.x can be found
[here](https://github.com/tensorflow/models/blob/master
/research/object_detection/g3doc/tf2_detection_zoo.md).

BE

!wget http://download.tensorflow.org/models/object_detection/
t£2/20200711 /ssd_mobilenet_v2_fpnlite_320x320_cocol7_tpu
8.tar.gz
Itar —xzvf ssd_mobilenet_v2_fpnlite_-320x320_cocol7_tpu—=8.tar.gz

77 44 %%x10) Get the model pipeline config file, make changes to
it and put it inside the xdatax folderxx

Edit the config file from s*x/content/models/research/
object_detection/configs/tf2#** in colab and copy the
edited config file to the x*x/mydrive/customTF2/dataskxx*
folder.

You can also find the pipeline config file inside the model
checkpoint folder we just downloaded in the previous step.

**%You need to make the following changes:*x

* change x*xnum_classes*** to number of your classes.

* change x*xxtest.records*** path, s*xtrain.record**x path &
sxx]labelmap#*** path to the paths where you have created
these files (paths should be relative to your current
working directory while training).

* change xx*fine_tune_checkpoint**x* to the path of the directory

where the downloaded checkpoint from step 12 is.

* change s*xfine_tune_checkpoint_typesxs* with value xx
classification ** or #xdetectionx* depending on the type..

% change s*xbatch_sizex** to any multiple of 8 depending upon
the capability of your GPU.

(eg:— 24,128,...,512) .Mine is set to 64.

* change xxknume_steps*x* to number of steps you want the

detector to train.
2

!cp /content/models/research/object_detection/configs/tf2/
ssd_mobilenet_v2_fpnlite_320x320_cocol7_tpu—8.config /
mydrive/Monixor/Detection/mAP /data

777 44 xx11) Load Tensorboardsx”””

load tensorboard
Y%otensorboard logdir ’/content/gdrive/MyDrive/Monixor/
Detection/diversified /training’

777 4 xxModel Trainings*

#+# Navigate to the s*xobject_detectionx** folder in colab vm
239

772 4 12) Training using model_main_tf2.py

Here **{PIPELINE_CONFIG_PATH }** points to the pipeline
config and **{MODEL_DIR}** points to the directory in
which training checkpoints and events will be written.

For best results, you should stop the training when the loss is
less than 0.1 if possible, else train the model until the
loss does not show any significant change for a while.
The ideal loss should be below 0.05 (Try to get the loss

as low as possible without overfitting the model.)
e

!python model_main_tf2.py ——pipeline_config_path=/mydrive/
Monixor/Detection/diversified /data/
ssd_mobilenet_v2_fpnlite_-320x320_cocol7_tpu—8.config ——
model_dir=/mydrive/Monixor/Detection/diversified /
training ——alsologtostderr

7944 13) Export inference graph

ERIE

!python exporter_main_v2.py ——trained_checkpoint_dir=/
mydrive/Monixor/Detection/diversified /training ——
pipeline_config_path=/content/gdrive/MyDrive/Monixor/
Detection/diversified/data/
ssd_mobilenet_v2_fpnlite_320x320_cocol7_tpu—=8.config ——

178
179
180
181
182
183
184
185
186
187

188
189
190
191
192
193
194
195
196
197

198
199
200
201
202
203

204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

228
229
230
231
232
233
234
235
236
237
238
239
240

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

output-directory /mydrive/Monixor/Detection/diversified/
data/inference_graph

774 #xObject Detection & OCR#*x

14) Test Object Detection

LR

!wget https://freefontsdownload.net/download/160187/arial.zip
'unzip arial .zip —d .

!sed —i ”s/font = ImageFont.truetype(’arial.ttf’, 50)/font =
ImageFont.truetype(’arial. ttf ’, 50)/” visualization_utils .
Py

import tensorflow as tf

import time

import numpy as np

import warnings

warnings. filterwarnings (’ignore’)

from PIL import Image

from google.colab.patches import cv2_imshow

from object_detection. utils import label_map_util

from object_detection. utils import visualization_utils as
viz_utils

import matplotlib.pyplot as plt

filename = ”test”

IMAGE_SIZE = (10, 8) # Output display size as you want

PATH_TO_SAVED_MODEL="/mydrive/Monixor/Detection/
diversified /data/inference_graph/saved-model”

print (’ Loading model...”, end="")

Load saved model and build the detection function
detect_fn=tf.saved_model.load(PATH_TO_SAVED_MODEL)
print (' Done!”)

category_index=label_map_util.
create_category_index_from_labelmap(” <path/to/label_map
.pbtxt>",use_display_name=True)

def load_image_into_numpy_array(path):
return np.array(Image.open(path))
image_path = ” <path/to/image>”

image_np = load-image_into_numpy_array(image_path)
input_tensor = tf.convert_to_tensor (image_np)
input_tensor = input_tensor[tf.newaxis,

detections = detect_fn(input_tensor)

num_detections = int(detections.pop(’num_detections’))
detections = {key: value[0, :num_detections].numpy()
for key, value in detections.items()}

detections [’ detection_classes '] = detections[’ detection_classes
’]. astype(np.int64)

image_np_with_detections = image_np.copy()

viz_utils . visualize_boxes_and_labels_on_image_array (
image_np_with_detections,
detections [’ detection_boxes '],
detections [’ detection_classes ’],
detections [’ detection_scores ’],
category-index,
use_normalized_coordinates=True,
max-boxes_to_draw=200,
line_thickness =3,
min_score_thresh=0.4, # Adjust this value to set the
minimum probability boxes to be classified as True
agnostic_mode=False)

%matplotlib inline

plt. figure (figsize =IMAGE_SIZE, dpi=200)

plt . axis(” off”)

plt .imshow(image_np_with_detections)

plt .show()

7744 16) Test Optical Character Recognition”””

pip install easyocr
import torch

import torch.nn as nn

import torch.nn.functional as F

import torchvision

import torchvision.transforms as transforms
import easyocr

import cv2 #opencv

from matplotlib import pyplot as plt

import numpy as np

from google.colab.patches import cv2_imshow

263
264
265

266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

289
290

291
292
293
294
295
296

297
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

326
327
328
329
330
331
332
333
334
335
336

00O U W+

(@)
w

def ocr_detection(full_path, imgWidth, imgHeight, min_score):

IMAGE_SIZE = (10, 8) # Output display size as you want

PATH_TO_SAVED_MODEL=" <path/to/saved/
detection_model >”

detect_fn=tf.saved_model.load (PATH_.TO_SAVED_MODEL)

category_index=label_map_util.
create_category_index_from_labelmap(” <path/to/label_map
.pbtxt>" use_display_name=True)

def load_image_into_numpy_array(path):

return np.array(Image.open(path))

image-np = load-image_into_-numpy_array(full_path)

input_tensor = tf.convert_to_tensor (image_np)
input_tensor = input_tensor[tf.newaxis,
detections = detect_fn(input_tensor)

image_np_-with_detections = image_np.copy()
image = image_np_with_detections

num-_detections = int(detections.pop(’num_detections’))
detections = {key: value[0, :num_detections].numpy()
for key, value in detections.items()}

detections [detection_classes '] = detections|[’
detection_classes ’]. astype(np.int64)

scores = list (filter (lambda x:x> min_score, detections|’
detection_scores ’]))

boxes = detections[’ detection_boxes ’][: len(scores)]

classes = detections[’ detection_classes ’][: len(scores)]

for idx, box in enumerate(boxes):
roi = boxx*[imgHeight, imgWidth, imgHeight, imgWidth]

region = imagelint(roi[0]) :int (roi [2]) , int(roi [1]) :int (roi
BD]

reader = easyocr.Reader([’en’], verbose=False)

result = reader.readtext(region, detail=0, min_size=20,

paragraph=True)

if detections [’ detection_classes ’][idx] == 1:
print (”bloodpressure: 7, result)

elif detections [detection_classes ’|[idx] == 2:
print (” heartrate: result)

elif detections [detection_classes ’][idx] ==
print ("map: 7, result)

elif detections [detection_classes ’][idx] ==
print (” oxygensaturation: 7, result)

elif detections [’ detection_classes ’|[idx] ==
print (” pulserate: result)

elif detections " detection_classes ’|[idx] == 6:
print (” respiratoryrate: ”, result)

else:

print (”temperature: ”

, result)

viz_utils . visualize_boxes_and_labels_on_image_array (
image_np_with_detections,
detections [’ detection_boxes '],
detections [detection_classes ’],
detections [’ detection_scores ’],
category_index,
use_normalized_coordinates=True,
max-boxes_to_draw=200,
line_thickness =3,
skip-labels =True, #removes lables
min_score_thresh=min_score, # Adjust this value to set

the minimum probability boxes to be classified as True

agnostic.mode=False)

plt. figure (figsize =IMAGE_SIZE, dpi=200)

plt. axis(” off ”)

plt .imshow(image_np_with_detections)

plt.show()

full_path = ”<path/to/test_image>"

img = cv2.imread(full_path)

img_width = img.shape[1]

img_height = img.shape[0]

ocr_detection (full_path , img_width, img_height, 0.4)

source—code/extract_frame.py

Frame Extraction Script

import os

import cv2

import glob

from pathlib import Path
import time

9 def getFrame(sec,file_name,count, short_name):

10
11
12
13
14

vidcap = cv2.VideoCapture(file_name)

vidcap.set (cv2. CAP_PROP_POS_MSEC,sec*1000)
hasFrames,image = vidcap.read()

if hasFrames:

cv2.imwrite(r” <path>”+4short_name+"_" +str(count)+".

jpg”, image) # save frame as JPG file
print (short_name+str(count))
return hasFrames

apply getFrame to all videos in a folder
for filename in glob.iglob (f’{video_folder_path}/«’):

sec = 0

21
22
23
24
25
26
27
28

30

64

frameRate = 2 #//it will capture image every 2 seconds
count=1
if filename.endswith(” <video_file_extension>"):
nameNoExtension = Path(filename).stem
success = getFrame(sec,filename,count, nameNoExtension)
while success:
count = count + 1
sec = sec + frameRate
sec = round(sec, 2)
success = getFrame(sec,filename,count,
nameNoExtension)

XI. Acknowledgment

I would like to express my sincere gratitude to my adviser, Sir Marasigan, for his in-
valuable guidance and support throughout the duration of this project. His constructive
feedbacks and insights were instrumental in shaping the direction and progress of my
work.

I am also deeply thankful to Doc Aljibe and Doc Marcelo for their mentorship and for
providing me with the opportunity to engage in a meaningful project with practical ap-
plications in healthcare. Their expertise in the medical field and dedication to fostering
a stimulating learning environment have been pivotal in shaping my understanding and
passion for the subject matter.

Furthermore, I would like to extend my heartfelt appreciation to my mom for being my
go-to support system since college day 1. Her belief in my abilities has been a constant
source of motivation, and for that I am grateful. To my family, whom I hold in the

highest regard, this accomplishment is equally yours as it is mine.

65

	Acceptance Sheet
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Theoretical Framework
	Patient Monitor Screen
	Image Annotation
	Image Preprocessing
	OpenCV
	Grayscaling
	Gamma Correction
	Canny Edge Detection
	Skew Correction

	Design and Implementation
	Data Collection Setup
	Dataset Annotation
	Manual Annotation
	Object Detection Training
	Bounding Box Proposal
	Manual Fine-tuning
	Workload Estimation
	Labelled Dataset

	Image Preprocessing Flowchart
	Framing
	Image Preprocessing

	System Architecture
	Technical Architecture

	Results
	Dataset
	Manual Annotation
	Semi-Auto Annotation

	Image Preprocessing Pipeline
	Gamma Correction
	Edge Detection
	Accuracy
	Processing time

	Optical Character Recognition
	System

	Discussions
	Conclusions
	Recommendations
	Bibliography
	Appendix
	Ethics Board Approval
	Philippine General Hospital Approval
	Source Code

	Acknowledgment

