University of the Philippines Manila College of Arts and Sciences Department of Physical Sciences and Mathematics

USING SEMI-AUTO ANNOTATION AND OPTICAL CHARACTER RECOGNITION FOR TRANSCRIPTION OF PATIENT MONITOR USING SMARTPHONE CAMERA

A special problem in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science

Submitted by:

Jan Federico P. Coscolluela IV June 2023

University of the Philippines Manila College of Arts and Sciences Department of Physical Sciences and Mathematics

USING SEMI-AUTO ANNOTATION AND OPTICAL CHARACTER RECOGNITION FOR TRANSCRIPTION OF PATIENT MONITOR USING SMARTPHONE CAMERA

A special problem in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Jan Federico P. Coscolluela IV June 2023

Permission is given for the following people to have access to this SP:

Available to the general public	Yes
Available only after consultation with author/SP adviser	No
Available only to those bound by confidentiality agreement	No

ACCEPTANCE SHEET

The Special Problem entitled "Using Semi-auto Annotation and Optical Character Recognition for Transcription of Patient Monitor using Smartphone Camera" prepared and submitted by Jan Federico P. Coscolluela IV in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science has been examined and is recommended for acceptance.

	Marbert John C.	Marasigan, M.Sc. (cand.) Adviser
EXAMINERS:	Approved	Disapproved
 Avegail D. Carpio, M.Sc. Richard Bryann L. Chua, Ph.D. (cand.) Perlita E. Gasmen, M.Sc. (cand.) Ma. Sheila A. Magboo, Ph.D. (cand.) Vincent Peter C. Magboo, M.D. Geoffrey A. Solano, Ph.D. 		

Vio Jianu C. Mojica, M.Sc.

Transfer in

Unit Head
Mathematical and Computing Sciences Unit
Department of Physical Sciences
and Mathematics

Marie Josephine M. De Luna, Ph.D.

Chair
Department of Physical Sciences
and Mathematics

Maria Constancia O. Carrillo, Ph.D.

Dean College of Arts and Sciences

Abstract

Vital signs monitoring is a key function in healthcare delivery to ensure immediate and precise evaluation of a patient's well-being. It is done by attaching monitor devices to patients which collect, store, and display values on a screen. In many low-to-medium-income countries (LMICs), hospitals still rely on manual observation and handwritten documentation of vital signs, which is susceptible to human errors, data tampering, process inefficiency, and limited opportunities for comprehensive data analysis. More advanced hospitals utilize interface engines which transmit data to electronic medical records but tend to be model-specific and are very costly. Optical character recognition (OCR) offers a cost-effective and non-invasive alternative to digitizing manual transcription of vital signs data in healthcare settings with low financial resources. An image preprocessing pipeline is proposed to perform contour-based screen extraction of the patient monitor captured by a camera, thus providing a well-defined region more suitable for subsequent tasks of object detection and data extraction. The study offers a newly accrued dataset of over 4000 images of Mindray Beneview T8 patient monitor with multi-parameter annotations. Results showed that screen extraction prior to object detection significantly improved the mean Average Precision (mAP) of the model from 68.55% to 93.65% at an IoU threshold of 0.7.

Keywords: patient monitor, optical character recognition, object detection, image preprocessing, annotation

Contents

Acce	eptan	ice Sheet	1
Abst	tract		ii
\mathbf{List}	of Fi	gures	vi
List	of Ta	ables	vii
I.	Inti	roduction	1
	A.	Background of the Study	1
	В.	Statement of the Problem	1
	C.	Objectives of the Study	2
	D.	Significance of the Project	3
	E.	Scope and Limitations	3
	F.	Assumptions	4
II.	Rev	view of Related Literature	5
III.	The	eoretical Framework	11
	A.	Patient Monitor Screen	11
	В.	Image Annotation	12
	C.	Image Preprocessing	12
	1.	OpenCV	12
	2.	Grayscaling	13
	3.	Gamma Correction	14
	4.	Canny Edge Detection	14
	5.	Skew Correction	16
IV.	Des	sign and Implementation	18
	Α.	Data Collection Setup	18

VIII	Rec	ommendations	40
VII.	Con	clusions	39
VI.	Disc	cussions	38
	D.	System	35
	C.	Optical Character Recognition	33
	4.	Processing time	32
	3.	Accuracy	31
	2.	Edge Detection	30
	1.	Gamma Correction	27
	В.	Image Preprocessing Pipeline	27
	2.	Semi-Auto Annotation	25
	1.	Manual Annotation	25
	A.	Dataset	24
V.	Res	m ults	24
	E.	Technical Architecture	23
	D.	System Architecture	23
	2.	Image Preprocessing	22
	1.	Framing	22
	C.	Image Preprocessing Flowchart	22
	6.	Labelled Dataset	21
	5.	Workload Estimation	20
	4.	Manual Fine-tuning	20
	3.	Bounding Box Proposal	20
	2.	Object Detection Training	19
	1.	Manual Annotation	19
	В.	Dataset Annotation	19

IX.	Bib	liography	41	
х.	$\mathbf{A}\mathbf{p}$	pendix	46	
	A.	Ethics Board Approval	46	
	В.	Philippine General Hospital Approval	49	
	C.	Source Code	50	
XI.	Acl	knowledgment	65	

List of Figures

1	Standard Patient Monitor	11
2	Architecture of OpenCV	13
3	Gamma Correction	14
4	Canny Edge Detection	15
5	Skew Correction with OpenCV	17
6	Beneview T8 Patient Monitor	18
7	Semi-auto Annotation Methodoloy	19
8	Image Preprocessing Pipeline	22
9	Edge Detection Sub-Explosion	22
10	Manual Annotation using LabelImg	25
11	Automated Annotation using Object Detection	26
12	Semi-auto Annotation Workload Reduction.	26
13	Image Preprocessing Pipeline Implementation	31
14	Image Preprocessing Time	32
15	Precision-Recall Curves of Object Detection. a-c) Raw Dataset; d-f) Pre-	
	processed Dataset	33
16	Detected Health Parameters at $min_{conf.score} = 0.5$	34
17	Home Page	35
18	In-app Camera Access Page	36
19	File Upload Page	36
20	Dataset Page	37
21	Guide Page	37

List of Tables

1	Dataset File Naming	21
2	Dataset Image Classes Overview	24
3	Comparison of Dynamic Gamma Correction on an Image with Natural	
	Lighting	28
4	Comparison of Dynamic Gamma Correction on an Image with Low Lighting	29
5	Error Deduction Summary for Image Quality Metrics (MSE, PSNR, SSIM)	29
6	Edge Detection Algorithms Comparison $(min_{thresh} = 40)$	30
7	Average Precision (AP) across Health Parameters (IoU \geq 0.70)	34
8	OCR-extracted Vital Signs Data	34

I. Introduction

A. Background of the Study

Patient monitoring is a critical aspect of healthcare delivery, ensuring timely and accurate assessment of vital signs and overall patient well-being. Patient monitor devices serve as the primary tool to continuously measure and display vital signs such as heart rate, blood pressure, and oxygen saturation. This provides healthcare professionals with real-time information about a patient's physiological status for long-term observation and early medical interventions as needed [1]. Despite technological advancements, manual monitoring techniques, such as nurses manually observing or taking note of value, still persist in many hospitals. This approach poses several limitations, including the risk of human error, consumption of time, difficulties in data storage and retrieval, and hindered opportunities for comprehensive analysis.

Digitizing manual patient monitoring through the utilization of Optical Character Recognition (OCR) technology offers a promising solution to address these challenges as it grows to be a growing area of research [2]. This provides a cost-effective solution with reduced hardware costs and connectivity expenses using camera without the need for expensive cords or third party software. To this end, the UP Manila Standards and Interoperability Lab (UPM SILAB) can incorporate data interoperability across health institutions involving patient monitor data, specifically in the Philippine General Hospital (PGH).

B. Statement of the Problem

The inadequacy of publicly available patient monitor dataset poses challenge to the development of OCR system with specific context and focus of application. Despite third-party software offering simulated patient monitor videos, most of which are paid, these datasets are already high-quality and mainly designed for trend analysis studies.

Furthermore, one common challenge encountered when working with computer vision is the presence of noise in image datasets. The problem at hand is to develop effective techniques and methodologies to mitigate noise in image datasets, thereby enhancing the quality and reliability of the data for subsequent analysis and applications.

C. Objectives of the Study

This study intends to provide a newly accrued dataset of patient monitor images reflecting a realistic hospital environment. In particular, the goals of the paper are as follows:

• Dataset Objectives:

- Manually collect video recordings of patient monitor from the Post Anesthesia
 Care Unit of Philippine General Hospital
- 2. Utilize smartphone camera to perform data collection in both natural and low lighting conditions with different camera angles
 - direct camera
 - skewed to the left
 - skewed to the right
 - skewed upwards
 - skewed downwards
- 3. Perform frame extraction to obtain patient monitor image dataset from captured videos
- 4. Implement a semi-auto annotation approach to expedite the manual dataset annotation procedure
- 5. Fully annotate raw and preprocessed images in PascalVOC XML format
- 6. Train a customized object detection model to locate vital signs from the newly accrued dataset
- 7. Apply optical character recognition to extract vital signs from model detections

• System Objectives:

- 1. Allow the user to capture an image or video of a patient monitor via device camera in real-time
- 2. Allow the user to upload a pre-taken image or video of a patient monitor
- 3. Implement frame extraction to retrieve individual images from video input type at 2-second intervals
- 4. Implement a screen-extraction procedure using an image preprocessing pipeline
 - (a) gamma correction
 - (b) edge detection
 - (c) skew correction
- 5. Allow user to download preprocessed image output in ZIP and CSV format

D. Significance of the Project

A new dataset of camera-captured patient monitor images with multi-parameter annotations is a contribution to computer vision which can aid benchmarking research, validation of computer vision algorithms, and remote patient monitoring.

Creating a web application that allows access to camera and integrates image enhancement procedures can also be scaled for future work of text and digit recognition or waveform interpretation. In particular, the proposed study can serve as an initial step for UPM SILAB's OCR project for PGH, focusing on image optimization before the OCR process. By optimizing images prior to OCR, a more suitable image data for subsequent tasks is obtained. The workload on healthcare staff can be minimized, and valuable patient information can be preserved for research purposes.

E. Scope and Limitations

This study operates under the following conditions:

- 1. The dataset only considers Mindray Beneview Series patient monitor.
- 2. Camera angle during data collection is adjusted manually without the use of any software.

F. Assumptions

This project operates under the following assumption/s.

- 1. The monitor is not obstructed by any object during capture.
- 2. The monitor is sufficiently captured and not cropped.

II. Review of Related Literature

Computer vision is a field of artificial intelligence that has been extensively utilized across various domains such as real estate, businesses, and healthcare. It is used to simulate human visual abilities by enabling computers to analyze surroundings as humans do—or even more. A concept under computer vision known as optical character recognition (OCR) is a highly researched topic [2]. This is typically done by having a digital image of a document, performing image processing to remove unwanted information, training the computer to locate characters of interest, and finally segmenting the detected characters for identification [3]. For instance, self-driving cars incorporate OCR technology not only to facilitate detection of objects such as obstacles and nearby vehicles but also to perform corresponding actions to keep the car free from collision.

Majority of previous work utilizing OCR focused on number recognition, document analysis, and vehicular license plate recognition [4]. For instance, Zacharias et al [2] explored the extraction of Intermodal Loading Units (ILU) codes printed on the rear end of swap bodies (freight containers for road and rail transport) using a text recognition pipeline with the open-source Tesseract OCR engine. A small variation in illumination among the captured images was found to contribute to large errors in text recognition and thereby negatively affect model success metrics. Implementation of deep learning-based model can be promising to overcome the large fluctuation of model accuracy with scene text images [2].

Such recommendation for use of deep learning was explored by an optical character recognition post-correction study conducted by Karthikeyan et al. [5] which showed the feasibility of model accuracy improvement applied on medical reports. Correct transcription and recognition of documents is a key challenge identified in this paper due to presence of noise such as obscured, skewed, or illegible text. Specific medical terminologies deviating from general language lexicons were also found to compound the error rate of OCR process. Introducing medical terminologies to the vocabulary of employed OCR model is

a highlighted technique that could be employed in patient monitor dataset since health parameters and their symbols may not syntactically align with that of general language. This apparent dependence of OCR model accuracy on dataset quality suggests the critical role of data collection and proper image preprocessing as applied to a specific context of data. In a medical study using lung MRI images as dataset, filtering techniques such as Wiener, median, and Gaussian reduced the time it takes to process the images [6]. Blur detection is a technique that can be explored in related works to assess the quality of captured medical image beforehand and retake the data collection phase prior to further processing.

Despite the extensive studies using OCR, work centered particularly on scanned documents ranging from business forms, receipts, and bibliographic data. Commercially available OCR tools are also optimized for scanner-captured documents which results to drastic decrease of the transcription accuracy for camera-captured images due to apparent noise and distortion from environmental factors [7]. Further, lack of open studies around these commercial tools leads to low system repeatability and assessment. The challenge thus remains on expanding the application of OCR primarily in the context of healthcare where captured images or video from data sources are not readily suitable for modeling. For instance, medical data may come in the form of prescriptions and patient records which are typically stored on paper with the possibility of content smudges, handwritten corrections, and writing style differences. Pronouncing this tendency of low-quality data is the fact that data collection in the medical context must be noninvasive and consensual which could translate to moving the capturing device at a distance or angle to avoid inconvenience.

Survey results showed that errors committed during data entry in clinical databases range from 2.3% to 26.9% which roots from data entry mistakes and misinterpretation of information [8]. Adriano et al. [3] aimed to reduce the high error rate of data entry using OCR applied on novel digital conversion model for hand-filled forms. Their dataset came from a selected special database that readily provided forms (containing handwritten

text) to facilitate character recognition and training of classifiers. Their best-performing pipeline used feature extraction via AlexNet, a convolutional neural network architecture. They recommended other CNNs for exploration namely ResNet and Squeezenet, as well as using other SVM kernels like Gaussian and RBF— points of work that presents great utility. Exploring scanned medical prescriptions, a camera inside an IoT-enabled smart medicine box embedded with OCR technology was explored by the work of Rumi et al.[9]. This targets elderly patients who cannot monitor their medication by notifying an individual about the medication information extracted from their respective prescriptions. The paper's focus on scanned prescriptions can be further extended to another clinical setup like patient information displayed on medical devices which not only requires text recognition but also correct mapping of numerical health values to their corresponding health parameters (e.g., heart rate, blood pressure).

In a work by Xue et al.[10], a text detection and recognition pipeline considered two real-life scenarios in the medical scene: (1) multilingual laboratory reports, and (2) documents with many textual objects each occupying a very small region. The authors proposed a deep learning approach that performs a patch-based training strategy applied to a detector that outputs a set of bounding boxes containing texts. A concatenation structure is then inserted into a recognizer that takes the areas of bounding boxes in the original image as input, thereby outputting the recognized texts. The patch-based strategy enforced by the authors in text detection module achieves 99.5% recall and 98.6% precision, a desirable result given the average quality of images. Likewise, the concatenation structure effectively improved the recognition performance by being able to deal with images with different resolutions at 90% accuracy. Their patch-based strategy during text detection may be something worth looking into given its contribution to achieve desirable success outcomes in terms of recall and precision.

OCR works efficiently with printed text documents [11]. However, as mentioned above, medical data does not include textual forms alone but spans widely across different medical devices as such as blood pressure monitors and patient monitor systems among many

others. Few datasets exist such as the Queensland [12] and VitalDB [13] dataset but they are both high-fidelity vital signs database designed for anesthesia monitoring research and biosignal analysis, respectively. To the best knowledge of the researchers, there is a lack of camera-captured patient monitor images reflecting actual environment conditions (e.g., illumination variation, background noise, etc.) which are essential in optical character recognition.

In the work of Kulkarni et al. [14], OCR was used to digitize camera-captured blood pressure readings through a mobile application. The paper underscored medical data transcription errors as well as relatively inadequate technologies in low- to middle-income countries (LMICs). The use of ubiquitous phone camera to detect LCD frame location provides a cost-effective solution to facilitate OCR without the need for expensive software or high-end capturing devices Their modular image enhancement algorithm including image binarization, LCD frame localization, and LCD frame normalization may also be used as reference when applied on a similar medical tool like patient monitor. Similar to previous works, low image quality was found to significantly degrade their model accuracy, hence post-OCR correction may be applied.

A study by Shenoy et al. [15] developed a smartphone-based system that automatically reads and records biometric monitor results from a camera-captured monitor reading. This was, however, limited to seven-segment displays and does not involve recognition of alphanumeric content as observed in a patient monitor screen. Its target device is also limited to Apple's HealthKit in iOS, which leads to less generalizability but poses points for open work.

Storage itself of extracted information is as equally important as text recognition to facilitate research, drive business decisions, and assist in forecasting and policy making. However, medical devices and screens may have limited hardware capabilities to store and export data for further clinical research and diagnosis. This is particularly the case for LMICs, where technology may not be as advanced as other countries [14].

Document archiving and record management was explored with application of optical

character recognition in the paper of Jayoma et al. [16]. The authors of such document archival study focused on digitization of multiple forms of records in the Department of Social Worker and Development (DSWD) Caraga. Their general framework consolidating OCR and information storage used open-source technologies such as Django, MySQL, and Pytesseract which can be used as references to develop a system using similar technologies. This can further be extended in terms of a different dataset (i.e., images from medical devices).

In a work by Yadav et al.[17], a robust web application that uses OCR to extract information from handwritten and printed documents was developed. Their technical architecture comprised four sequential processes namely (1) adaptive thresholding, (2) connected component analysis, and (3) line and word detection, and (4) two-layer text recognition. Specifically, the use of adaptive thresholding to account for variations in illumination in the image dataset may serve as reference in image preprocessing of different dataset. The study showed the feasibility of text recognition hosted online.

A system built by Froese et al. [18] extracted the desired information from real-time pump monitor images. Their methodology mainly used scripting to extract images from a medication pump which is then fed to an OCR model. Recognized text and values are then transferred to a real-time monitoring software. It was underlined that future work is required for more universal application of such system which can be explored by superimposing their model on a different medical dataset and assessing the accuracy. Their data collection setup through a USB camera capturing images from the medical pump at 60 frames/second can be employed in my paper. By observation, data capture used in such paper was relatively near the pump (i.e., the USB camera is immediately in front of the device). Their capturing conditions can be extended in this study by incorporating more realistic scenarios such as the camera slightly tilted or skewed with respect to the patient monitor. Hence, further image optimization encompassing variation in camera face angles can be explored [18].

The feasibility of using OCR to extract information from a patient monitor screen was

also shown in Bukhari's work [19]. Various image preprocessing such as binarization and bitwise masking were used on a high-quality dataset retrieved from SimCapture. The OCR pipeline used in such paper includes a script that extracts frames per second from input video and individually extracts health values eventually saved in a CSV file. This may serve as basis of the proposed system to implement a data export functionality in order to provide the user a downloadable file consisting of the extracted information in easily editable format. Future work was encouraged which can be summarized in three parts: (1) more image preprocessing to ensure that the model is dynamic, (2) automatic detection of all pixel color values of parameter for classification, since only 4 colors are considered in the paper, and (3) use of deep learning models in contrast to traditional image processing techniques. Given that high data quality is required to maintain the model accuracy [19], the study may be extended to be applied on patient monitor dataset taken from a real medical setting with environmental factors present such as brightness variation, blurring, distant capture, etc.

With all considered, data entry errors being committed in healthcare—let alone the tedious process of such task—slows down clinical procedures and leaves plenty of room for improvement. It was further pronounced that dataset quality is a key consideration in developing an accurate OCR model, upon which OCR post-correction methods and several image preprocessing techniques are possible workaround. To this end, the research aims to fill in the gap among previous studies through (1) use of smartphone camera to collect and curate realistic field image dataset of patient monitor, (2) creation of an image preprocessing pipeline to improve image quality, and (3) development of a system to utilize the image preprocessing pipeline to enhance raw image of patient monitor. Contributing a new set of patient monitor images and developing an image preprocessing pipeline to enhance such images would provide a benchmark dataset and development of real-time OCR applications in a similar domain.

III. Theoretical Framework

A. Patient Monitor Screen

Patient monitoring system was introduced by Venetian Doctor Santorio in 1965 through his publication of methods to measure body temperature using spirit thermometer and pendulum for counting heart rate. With the advent of integrated circuits and advancement of technology, computer-based patient monitoring systems with better computing power have been developed. A widely used medical device is a patient monitor screen which continuously monitors patient parameters such as oxygen level, heart rate, blood pressure, etc. These data are observed via non-intrusive sensors on human body to check the condition of the patient over time which facilitates prompt assessment and decision-making relative to real-time patient status such as those coming straight from surgery in Intensive Care Units (ICUs). A standard patient monitor [20] based from is shown in Figure 1.

Figure 1: Standard Patient Monitor

A notable trend among patient monitors is that the numerical values are highly contrasted with a black background, with characters displayed in synthetic fonts. As of date, these medical devices are still widely used to monitor patients not just in the medical sector but also in social support such as retirement homes.

B. Image Annotation

Image annotation is the task of assigning labels to an image to create metadata for a training dataset in computer vision models. The model utilizes such annotations as its ground truth, and uses them to learn how to label or detect objects or images on its own. Image annotation is typically useful in object recognition, or object detection, which enables machines to identify a particular object in an image and apply the accurate label. An example is a self-driving car which labels its surroundings depending on whether vehicles and/or obstacles are nearby.

C. Image Preprocessing

The aim of image preprocessing is quality improvement by suppressing undesired distortions and enhancing some features to obtain more suitable data for further processing and analysis tasks.

1. OpenCV

Open-source computer vision (OpenCV) is an image preprocessing library that has gained popularity in computer vision given it is open-source. It was originally envisioned to support computer operations such as object identification, image recognition, and object movement tracking but has now expanded to over 2500 functions based on its documentation. This enables faster execution of tasks such as color conversion, image masking, and filter application. Furthermore, its interface flexibility allows for multiple programming languages such as Python, Java, and C as well as different platforms such as Mac and Windows. Figure 2 presents the architecture design of OpenCV in a mobile imaging work [21].

Figure 2: Architecture of OpenCV

In comparison with other similar tools like Matlab, OpenCV provides a relatively detailed toolbox for image processing instead of generic solutions. The wide array of functions in OpenCV also efficiently integrates common noise removal and image quality manipulation techniques in one library.

2. Grayscaling

Most OCR engines normally perform better with grayscaled images which refers to a color space with only one channel. Pixels in typical images are represented in Red-Green-Blue (RGB) format which gives them the color that the human eye perceives. There are three ways on how to compute the new value of pixel from RGB: average, lightness, and luminosity. The average method takes the simple arithmetical mean across the color channels of certain pixel. Lightness is computed by averaging the maximum and minimum value of pixel color channel. Lastly, luminosity works with the average of all color channels, with every single channel weighted. Formulas for these conversions are shown in formulas (1), (2), (3).

$$lightness = (max(R, G, B) + min(R, G, B))/2$$
(1)

$$average = (R + G + B)/3 \tag{2}$$

$$luminosity = 0.299(R) + 0.587(G) + 0.115(B)$$
(3)

3. Gamma Correction

This technique can be used to control the brightness of an image. Such method is typically used in image preprocessing to adjust the image brightness depending on how it was captured. Gamma values less than 1 will shift the image towards the darker end of the spectrum while gamma values greater than 1 will make the image appear lighter. A gamma value exactly equal to one will result in no change in image [22].

Figure 3: Gamma Correction

4. Canny Edge Detection

OCR generally performs better if the object of interest is narrowed down from the input image. For instance, a scanned receipt may be slightly skewed, with other non-essential objects included in the same image (e.g., pen, person, etc.). Edge detection is a technique that aims to extract the four corners of an object of interest such as documents or monitor display. One popular edge detection approach is Canny Edge Detection. The entire process of this detection [23] is summarized in Figure 4.

Figure 4: Canny Edge Detection

• Noise Reduction via Blurring

Edge detection results are particularly sensitive to image noise and one way to address this is through the application of Gaussian blur to smooth an input image. To do so, image convolution technique is applied on an input image with a Gaussian Kernel which may have varying kernel size such as 3x3, 5x5, etc. The kernel size influences the intensity of blur, where higher value leads to more visible blur effect.

• Gradient Calculation

This step detects the intensity of edges as well as direction via calculation of the gradient in the image using edge detection operators. A change of pixels' intensity represents an edge. Filters can be applied in order to highlight such intensity change in horizontal and vertical directions and easily detect the edges.

• Non-maximum Suppression

Thin edges are ideal in the output images. Hence, presence of thick edges can be addressed through non-maximum suppression to thin them out. The algorithm essentially iterates through every point on the gradient intensity matrix and locates the pixels whose value in the edge directions is maximum.

• Double Threshold

The goal of this step is to identify three kinds of pixels namely strong, weak, and non-relevant:

- Strong pixels are those with relatively high intensity that assures as about their contribution to the final edge.
- Weak pixels are those with intensity that is neither high or low enough to be considered strong or non-relevant, hence are still potentially contributors in the edge.
- Any other pixel not classified under the two aforementioned types belong to this class.

With this considered, high threshold is used to identify the strong pixels while low threshold is used to identify the non-relevant ones. On the other hand, the rest of the pixels having intensity between both thresholds are identified as weak which are then further filtered out by the next step to delineate whether it ultimately belongs to strong or non-relevant.

• Edge Tracking by Hysteresis

Based on the threshold results, the hysteresis consists of transforming weak pixels into strong ones, if and only if at least one of the pixels around the one being processed is a strong one [23].

5. Skew Correction

Raw image content, especially text, sometimes tend to be skewed or tilted at a certain angle. This is contributed by the point of capture where the camera is not leveled with that of the object. For computer vision tasks, skew correction is essential to improve model accuracy by ensuring as much *visually normal* input as possible. Python has libraries to implement correction of perspective like OpenCV [24].

Figure 5: Skew Correction with OpenCV

In machine learning, especially computer vision, the quality of the data is just as important (if not more) as the model itself. Hence, performing necessary image preprocessing procedures on raw images have significant contribution toward noise reduction and overall positive effect on model training.

IV. Design and Implementation

Ethical approval from UP Manila Research Ethics Board (UPM REB) and Philippine General Hospital Expanded Hospital Research Office (PGH-EHRO) is obtained to proceed with the manual collection of dataset.

A. Data Collection Setup

A smartphone camera (iPhone 11) is mounted on a tripod to capture data from a Mindray Beneview T8 patient monitor attached to five (5) healthy volunteers at the Post-Anesthesia Care Unit (PACU) of PGH. A sample image of the monitor is illustrated in Figure 6.

Figure 6: Beneview T8 Patient Monitor

The inclusion criteria for data acquisition were as follows:

- Aged 18 65 years old
- Student, or faculty from College of Arts and Sciences and/or College of Medicine

Vital signs data are recorded at a resolution of 1920 x 1080 at 60 frames/second. Every volunteer session lasts for 30 minutes and camera placement is adjusted every 3 minutes

to account for different capture conditions. The tilt and angle to which the camera was skewed are manually adjusted up to a maximum of 45 degrees.

B. Dataset Annotation

In this paper, a practical heuristic for bounding box annotation on the proposed image dataset is presented through a trained object detection model to automate the manual approach. This intends to reduce workload by shifting the majority of human involvement to the correction stage only.

Figure 7: Semi-auto Annotation Methodoloy

1. Manual Annotation

The process begins with domain experts manually annotating a randomly selected batch of images (n_1) from the unlabelled dataset. The annotation involves full human involvement to draw bounding boxes around health parameters and provide their corresponding class labels. The open-source annotation software LabelImg is used with no speed-up procedures.

2. Object Detection Training

The next step is to train an object detection model. Transfer learning is applied by using a pre-trained SSD network and fine-tuning on the proposed dataset [25]. The single shot detector (SSD) network [26] proposed by Liu et al. is used for the detection architecture

given its lightweight nature. It is pre-trained with MS COCO dataset and is typically the model of choice for resource-limited inference scenarios given that the detections are produced directly in a single forward pass of the network [27]. Furthermore, the Mobilenet V2 [28] is applied for the backbone.

3. Bounding Box Proposal

The trained model is used to predict bounding boxes for the unlabelled images with an associated confidence level for each detection. A confidence threshold value between 0 and 1 is used to define a true positive. In other words, the model will only draw bounding boxes around a detected parameter if and only if its associated confidence level is equal to or higher than the specified threshold.

4. Manual Fine-tuning

The resulting annotations proposed by the model are inspected and manually corrected by the domain experts through several corrective measures as follows:

- Addition: Missing bounding box is manually drawn around a parameter, if needed.
- **Removal**: Incorrectly predicted box is deleted from the annotation.
- Label Correction: Mislabeled class is corrected.
- Box Adjustment: If the predicted box is too wide or insufficiently encloses a parameter, the box is recalibrated accordingly.

5. Workload Estimation

We estimate human workload by comparative analysis of how much time is spent between the manual and semi-auto annotation strategies. For the manual approach, the total time (T) to complete the annotation as described in Section B.1 is measured with a timer. The average (t) is then calculated using the formula $\frac{T}{n_1}$ which corresponds to the estimated

time to annotate a single image. This value is then multiplied to the total number of images in the dataset to estimate the overall duration to label the dataset exclusively through a manual approach. On the other hand, the semi-auto annotation strategy is measured by adding the time consumed both in Section B.1 and Section B.3.

6. Labelled Dataset

After the correction stage, the fully labeled image dataset is saved as a ZIP file containing the images in JPG format and their corresponding annotations in Pascal VOC XML format. This is done for both raw dataset and its preprocessed counterpart (screenextracted).

To enable easier navigation of the dataset, files are named as follows: volunteer number—file code $_{-}$ frame count. For instance, the image with file name $01_{-}01_{-}1.jpg$ corresponds to the first extracted frame from the first volunteer data with a direct camera and natural lighting condition.

File Code	Capture Orientation	Lighting Condition
01	Direct Camera	Natural
02	Direct Camera	Low
03	Skewed to Left	Natural
04	Skewed to Left	Low
05	Skewed to Right	Natural
06	Skewed to Right	Low
07	Skewed Upward	Natural
08	Skewed Upward	Low
09	Skewed Downward	Natural
10	Skewed Downward	Low

Table 1: Dataset File Naming

C. Image Preprocessing Flowchart

Figure 8 summarizes the proposed image preprocessing pipeline.

Figure 8: Image Preprocessing Pipeline

1. Framing

The OCR cannot process an input file in video format, hence frames are extracted. The video dataset is fragmented into individual images at 2-second intervals.

2. Image Preprocessing

Once framing is done, the brightness of an image is automatically adjusted using the concept of dynamic inverse gamma correction. Afterward, the brightness of an image is automatically fine-tuned using dynamic inverse gamma correction followed by image smoothing to blur the image. It is followed by edge detection to identify the edges of the patient monitor to be extracted. The proposed flow for this detection is shown below.

Figure 9: Edge Detection Sub-Explosion

Lastly, skew correction is applied using OpenCV python library to address any degree of skewness in the image information.

D. System Architecture

Monixor is a web application that uses PostgreSQL as the database server. It is developed using the Python-based framework Django to enable easier integration with machine learning, image preprocessing, and optical character recognition implementations.

E. Technical Architecture

The minimum requirements for the server machine include:

- Apache 2.4.23
- 1GB RAM
- PostgreSQL 14

The client-side must satisfy these minimum requirements:

- Google Chrome 57.0.2897
- Mozilla Firefox 43.0.1
- Windows 7 / Android 7.0+ / iOS 12.4+
- Intel Core i5-4200U
- \bullet 4GB RAM

V. Results

A. Dataset

A total of 4,674 images saved in JPG format were obtained after deleting extracted frames with visible human subject/s to maintain data anonymity. Table 2 presents image samples classified into one of the 10 classes.

Table 2: Dataset Image Classes Overview

1. Manual Annotation

A total of 250 images were randomly selected from the unlabelled dataset in which each class had 25 representatives. Seven health parameters were considered as objects and labeled as follows:

1. heart rate < heartrate >

- 5. blood pressure < bloodpressure >
- 2. oxygen saturation < oxygen saturation >
- 6. mean arterial pressure $\langle map \rangle$

3. pulse rate < pulserate >

- 7. temperature < temperature >
- 4. respiratory rate < respiratory rate >

These labels are in accordance with the official manual of Mindray Beneview T8 monitor [29] and as confirmed by a resident anesthesiologist in PGH.

Figure 10: Manual Annotation using LabelImg

2. Semi-Auto Annotation

An 80-20 data split was applied for model training, allotting 200 images for train data and the remaining 50 for testing.

Figure 11: Automated Annotation using Object Detection

The trained model was then applied to automate the annotation for the rest of the unlabelled dataset as illustrated by Figure 11. To speed up the process, an auto-labeling tool was used in which a confidence score threshold of 0.2 was declared [30]. This means that any object detected by the model with at least 20% confidence will have bounding boxes drawn around it.

Figure 12: Semi-auto Annotation Workload Reduction.

Figure 12 shows the workload reduction in terms of time. The traditional approach of manually annotating an image takes approximately 50 seconds. This translates to roughly 65 hours of projected time in order to annotate the entire dataset. On the other hand,

the object detection model annotated the entire dataset at around 5 minutes only with an additional 3 hours incurred for manual fine-tuning of the results. The proposed semi-auto annotation method expedited the manual process by 22 times. The methodology for time measurement is discussed in Section B.5.

B. Image Preprocessing Pipeline

In addition to a newly accrued dataset with multi-parameter annotation, a preprocessing pipeline was created to extract the screen of the patient monitor. By doing so, non-textual elements which may hinder future tasks of optical character recognition were removed while providing a well-defined region containing only the necessary details. The preprocessing was divided into three stages namely (1) gamma correction, (2) edge detection, and (3) skew correction.

1. Gamma Correction

Three dynamic gamma correction techniques were compared namely Blind Inverse Gamma Correction with Maximized Differential Entropy (GCME) [31], Adaptive Gamma Correction (AGC) [32], and Improved Adaptive Gamma Correction with Weighting Distribution (IAGCWD) [33]. Two sample images (natural and low lighting) were judged whether visually satisfactory or not. Basic application of Canny Edge detection ($min_{thresh} = 40$) was also implemented without extra enhancement procedures to see an immediate effect on the detection of contours.

Table 3: Comparison of Dynamic Gamma Correction on an Image with Natural Lighting

Table 3 shows the effect of different gamma correction techniques on an image with natural lighting. Ideally, gamma correction should be able to enhance the brightness of an image while improving the visibility of edges. As shown in (c), GCME best preserved the continuity of edges. On the other hand, AGC and IAGCWD produced irrelevant contours (or image artifacts) as presented by the application of edge detection despite the successful adjustment of image brightness.

Table 4: Comparison of Dynamic Gamma Correction on an Image with Low Lighting

Table 4 shows a similar finding on a relatively darker image, where the GCME technique performed superior over the others in terms of minimizing image artifacts that may hinder successful edge detection. Table 5 shows a quantitative assessment of the two image samples after gamma correction similar to metrics used by Sara et. al [34].

Image	Method	Quality Assessment Technique		echniques
		MSE	PSNR	SSIM
	GCME	71.4269	29.5922	0.99
Natural Light	AGC	520.7562	28.7108	0.9104
	IAGCWD	1476.1134	27.4494	0.9185
	GCME	616.8686	28.1407	0.89467
Low Light	AGC	753.3069	28.1144	0.82192
	IAGCWD	1908.7040	28.6277	0.8573

Table 5: Error Deduction Summary for Image Quality Metrics (MSE, PSNR, SSIM)

A lower MSE means that the processed image is closer to the original image in terms of pixel values. On the other hand, higher PSNR and SSIM mean that the processed image has less distortion relative to the original image. Since GCME performed better considering lower MSE values and higher PSNR and SSIM values for both image samples, such gamma correction technique was adopted for the pipeline.

2. Edge Detection

Recent studies found that Canny's algorithm is best suitable for object extraction in most contexts as it yields less number of false edges, especially with noisy images [35, 36]. Table 6 compares it with two other techniques namely Sobel [37], and Laplacian detection [38].

Table 6: Edge Detection Algorithms Comparison $(min_{thresh} = 40)$

Close morphological transformation [39] was applied to the raw detected edges for enhancement and restoration of the shape of objects in the presence of edge gaps or discontinuity. The Canny approach performed best in preserving the edges of the patient monitor. On the other hand, Sobel failed to sufficiently detect the upper edge of the monitor. Laplacian was not able to identify the monitor edges at all.

Hence, Canny edge detection was adopted. Lastly, the corner coordinates obtained from edge detection stage were used for skew correction using the OpenCV library *PerspectiveTransform*. Perspective transformation involves mapping points from one perspective to another, thereby changing the perceived viewpoint of the extracted monitor region from the image. Figure 13 illustrates the proposed image preprocessing pipeline for screen extraction.

Figure 13: Image Preprocessing Pipeline Implementation

3. Accuracy

The 50 videos obtained from data collection were uploaded into the web application which implements the proposed pipeline. The accuracy metric is computed by dividing the number of successfully preprocessed images (i.e., screen-extracted) by the total number of frames. The average accuracy was then obtained as the final metric value. Two

experiments were done as follows:

- Experiment 1. The images directly undergo Canny edge detection without image enhancement techniques other than skew correction for post-processing.
- Experiment 2. The proposed image preprocessing pipeline is applied. This includes GCME gamma correction, image smoothing via bilateral filter, close morphological transformation, and skew correction.

4. Processing time

On average, preprocessing an image takes 0.8 seconds. Image resolution used for this assessment is 1920×1080 .

Figure 14: Image Preprocessing Time

C. Optical Character Recognition

This section explores the feasibility of object detection to locate health parameters after screen extraction and extract the values using OCR. For this purpose, the training data from Section B.2 was diversified by introducing a new batch of 250 screen-extracted images to improve the generalizing ability of the model. Following similar evaluation protocols as in the work of Bulatov et al. [40], three configurations of Mean Average Precision (MAP) with different Intersection over Union (IoU) values were used to evaluate the object detection method. The IoU threshold from 0.3 to 0.7 demonstrates the localization requirements from easy to hard. These metrics were calculated using a GUI-based tool for object detection assessment [41]. The semi-auto-annotated dataset served as the ground truth.

Figure 15: Precision-Recall Curves of Object Detection. a-c) Raw Dataset; d-f) Preprocessed Dataset

Figure 15 shows that the object detection model consistently performed better on preprocessed frames across the three different IoU thresholds. The model performance declined on raw dataset at IoU threshold ≥ 0.7 , especially on detecting some parameters

such as *pulse rate* and *map*, indicating that boxes could miss out a portion of the values.

	heart rate	oxy. sat.	pulse rate	resp. rate	blood press.	map	temp.
Raw	0.7044	0.5182	0.5214	0.7044	0.9442	0.6116	.7942
Screen	0.9927	0.9920	0.6010	0.9889	0.9929	0.9950	0.9930

Table 7: Average Precision (AP) across Health Parameters (IoU ≥ 0.70)

Table 7 presents the average precision of each health parameter at a strict threshold of 0.7. The object detection model performed generally better on preprocessed images than raw images, with lowest AP metric on the parameter *pulse rate*.

Figure 16: Detected Health Parameters at $min_{conf.score} = 0.5$

Figure 16 demonstrates the performance of a more selective object detection model which differentiates true positives from false positives given a minimum confidence score threshold of 50%. Optical character recognition was then applied using EasyOCR library [20] to extract the values inside the detected bounding boxes.

	heart rate	oxy. sat.	pulse rate	resp. rate	blood press.	map	temp.
Raw	'79'	'99'	_	'23'	'97/55'	_	_
Screen	'79'	,99 [,]	'79'	'23'	'97/55'	'(81)'	'23.0'

Table 8: OCR-extracted Vital Signs Data

Table 8 shows that health values were completely extracted on a preprocessed image while three parameters were missed in the case of its raw image counterpart.

D. System

The home page shows an overview of the system's functionalities such as allowing in-app camera access, downloading of preprocessed images, and accessing the dataset. A *Get Started* button is provided to redirect the user to the capture mode.

Figure 17: Home Page

In the *Capture* page, the user can access the device camera and capture an image or video of a patient monitor. A tooltip is provided on each capturing mode namely *Photo* and *Video*.

Figure 18: In-app Camera Access Page

In the *Upload* page, the user can submit a pre-captured input file. After the submission of input file, the resulting preprocessed image/s will be displayed, and available for download.

Figure 19: File Upload Page

In the *Dataset* page, the user can access the patient monitor dataset with annotations in ZIP format. The file naming convention is also provided as a guide for navigating such dataset.

Figure 20: Dataset Page

The user has the option to navigate the *Guide* page in order to find answers to their questions as they encounter them while using the system.

Figure 21: Guide Page

VI. Discussions

The semi-auto annotation on a newly collected dataset of patient monitor was shown to expedite the manual approach using object detection model trained on a small subset of the original data. Further, the proposed image preprocessing pipeline to perform screen extraction of the patient monitor is not restricted to only one patient monitor model to crop the screen as it is a contour-based approach. This means it simply bases on the visibility of four corners of the screen in order to extract a well-defined region from the rest of the image. This, however, requires the recording device to sufficiently capture the monitor and has limitations on challenging camera angles that might affect the visibility of edges. Nevertheless, this allows the applicability of the screen extraction method for other models of patient monitors.

Screen extraction has also been shown to improve the accuracy of the object detection model to locate health parameters as it may contribute to (1) reduced complexity and background noise, (2) more consistent image characteristics, (3) enhanced object visibility. Results also showed that the performance of the object detection model declined on locating the parameters pulse rate and mean arterial pressure (map) which could be attributed to their small size relative to the other parameters as well as similarity of color with respect to the bigger values adjacent to them. This observation is pronounced on raw images since the point of capture is taken from a distance with varying degrees of skew.

VII. Conclusions

This paper presented an annotated dataset of patient monitor reflecting a real hospital environment, together with an image preprocessing pipeline for screen extraction. Such dataset can be instrumental in training and validating computer vision algorithms and models such as vital signs estimation, trend analysis, remote patient monitoring, and alert-aided anomaly detection. This can further enhance the accuracy of computer vision systems in healthcare settings. It can also aid benchmarking needs to enable evaluation of performance across different methods with respect to other similar datasets. The object detection model further showed the feasibility of performing OCR on such medical device even with relatively small training data.

Lastly, the non-invasive web application using camera shows that digitizing the acquisition and storage of vital signs from a patient monitor is possible without third party software and other expensive hardware to do so. Such tool offers a cost-effective solution to utilize vital signs data for real-time applications involving patient monitoring, further research, or policymaking purposes.

VIII. Recommendations

The provided dataset only considered one patient monitor model in the Philippine General Hospital namely the Mindray Beneview T8 model. Future work could expand such dataset by considering other models or have it complement other existing patient monitor datasets to create a better object detection model with higher generalizability for recognizing vital signs.

In terms of screen extraction, other approaches can be explored such as the application of deep learning or convolutional neural networks to improve the accuracy of edge detection. Image segmentation techniques to separate the foreground from the background prior to edge detection can also be studied. In addition, the object detection model used for OCR in this study only used 10% of the dataset as training data. Hence, future work can train a more complex object detection with larger data by utilizing the already-provided annotations. Saving the extracted values as a dataframe could further enable conversion of such data to waveforms represented by time series graph.

Future work is also encouraged to improve the web application by integrating the proposed object detection and optical character recognition steps after the preprocessing pipeline for complete data acquisition and extraction.

IX. Bibliography

- [1] G. Iohom, "Basic patient monitoring during anesthesia." UpToDate, 2022 [Online].
- [2] E. Zacharias, M. Teuchler, and B. Bernier, "Image processing based scene-text detection and recognition with tesseract," *ResearchGate*, 2020.
- [3] J. Adriano, K. Calma, N. Lopez, J. Parado, L. Rabago, and J. Cabardo, "Digital conversion model for hand-filled forms using optical character recognition (ocr)," IOP Conference Series: Materials Science and Engineering, 2019.
- [4] S. Babbar, S. Kesarwani, N. Dewan, K. Shangle, and S. Patel, "A new approach for vehicle number plate detection," 2018 Eleventh International Conference on Contemporary Computing, 2018.
- [5] S. Karthikeyan, A. S. de Herrera, F. Doctor, and A. Mirza, "An ocr post-correction approach using deep learning for processing medical reports," *IEEE Transactions on Circuits and Systems for Video Technology*, 2021.
- [6] S. Perumal and V. Thambusamy, "Preprocessing by contrast enhancement techniques for medical images," International Journal of Pure and Applied Mathematics, 2018.
- [7] J. Liang, D. Doermann, and H. Li, "Camera-based analysis of text and documents: a survey," *International Journal of Document Analysis and Recognition (IJDAR)*, 2005.
- [8] S. Goldberg, A. Niemierko, and A. Turchin, "Analysis of data errors in clinical research databases," *AMIA Annual Symposium Proceedings*, 2008.
- [9] R. I. Rumi, M. I. Pavel, E. Islam, M. B. Shakir, and M. A. Hossain, "Iot enabled prescription reading smart medicine dispenser implementing maximally stable extremal regions and ocr," 2019 Third International Conference on I-SMAC (IoT in Social, Mobile, Analytics, and Cloud)(I-SMAC)), 2019.

- [10] W. Xue, Q. Li, and Q. Xue, "Text detection and recognition for images of medical laboratory reports with a deep learning approach," *IEEE Access*, 2019.
- [11] N. Ramesh, A. Srivastava, and K. Deeba, "Improving optical character recognition techniques," *International Journal of Engineering and Technology*, 2018.
- [12] D. Liu, M. Gorges, and S. Jenkins, "Vitaldb, a high-fidelity multi-parameter vital signs database in surgical patients," *PhySioNet*, 2022.
- [13] H.-C. Lee and C.-W. Jung, "University of queensland vital signs dataset: development of an accessible repository of anesthesia patient monitoring data for research," 2012.
- [14] S. S. Kulkarni, N. Katebi, C. E. Valderrama, P. Rohloff, and G. D. Clifford, "Cnn-based lcd transcription of blood pressure from a mobile phone camera," Frontiers in Artificial Intelligence, vol. 36, 2021.
- [15] V. Shenoy and O. Aalami, "Utilizing smartphone-based machine learning in medical monitor data collection: Seven segment digit recognition," AMIA. Annual Symposium Proceedings. AMIA Symposium, 2018.
- [16] J. Jayoma, E. Moyon, and E. Morales, "Ocr based document archiving and indexing using pytesseract: A record management system for dswd caraga, philippines," 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 2020.
- [17] R. Yadav, "Optical character recognition based webapp," International Journal of Advanced Research in Science, Communication and Technology, 2020.
- [18] L. Froese, J. Dian, C. Batson, A. Gomez, A. S. Sainbhi, B. Unger, and F. Zeiler, "Computer vision for continuous bedside pharmacological data extraction: A novel

- application of artificial intelligence for clinical data recording and biomedical research," Frontiers in Big Data, 2021.
- [19] S. I. Bukhari, "Object character recognition from patient monitor screen," Faculty of Science and Technology, 2021.
- [20] Jaidedai, "Ready-to-use our with 80+ supported languages and all popular writing scripts including latin, chinese, arabic, devanagari, cyrillic, and etc.," *Github*, 2021.
- [21] Z. Chen and J. Chen, "Mobile imaging and computing for intelligent structural damage inspection," Advances in Civil Engineering, 2014.
- [22] A. Rosebrock, "Opency gamma correction." PyImageSearch, 2015 [Online].
- [23] S. Sahir, "Canny edge detection step by step in python computer vision," *Towards Data Science*, 2019.
- [24] A. Rosebrock, "Text skew correction with opency and python." PyImageSearch, 2017 [Online].
- [25] S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Transactions on Knowledge and Data Engineering, 2010.
- [26] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. Berg, "Ssd: single shot multibox detector," *European Conference on Computer Vision*, 2016.
- [27] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and L. Zitnick, "Microsoft 'coco: common objects in context," Computing Research Repository, 2014.
- [28] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks," Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.
- [29] Mindray, "Beneview t5 t8 t9 operator's manual." Mindray, 2019 [Online].

- [30] A. L. C. Carneiro, "Auto-labeling tool for object detection." Towards Data Science, 2022 [Online].
- [31] Y. Lee, S. Zhang, M. Li, and X. He, "Blind inverse gamma correction with maximized differential entropy," *Electrical Engineering and Systems Science*, 2020.
- [32] S. Rahman, M. M. Rahman, M. Abdullah-Al-Wadud, G. D. Al-Quaderi, and M. Shoyaib, "An adaptive gamma correction for image enhancement," 2016.
- [33] G. Cao, L. Huang, H. Tian, X. Huang, Y. Wang, and R. Zhi, "Contrast enhancement of brightness-distorted images by improved adaptive gamma correction," 2018.
- [34] U. Sara, M. Akter, and M. S. Uddin, "Image quality assessment through fsim, ssim, mse, and psnr-a comparative study," 2019.
- [35] S. K. Katiyar and P. Arun, "Comparative analysis of common edge detection techniques in context of object extraction," 2012.
- [36] B. K. Shah, V. Kedia, R. Raut, S. Ansari, and A. Shroff, "Evaluation and comparative study of edge detection techniques," IOSR Journal of Computer Engineering, 2020.
- [37] OpenCV, "Sobel derivatives." OpenCV Open Source Computer Vision.
- [38] OpenCV, "Laplace operator." OpenCV Open Source Computer Vision.
- [39] OpenCV, "Morphological transformations." OpenCV Open Source Computer Vision.
- [40] K. B. Bulatov, E. Emelianova, D. V. Tropin, N. S. Skoryukina, Y. S. Chernyshova, A. V. Sheshkus, S. A. Usilin, Z. Ming, J.-C. Burie, M. M. Luqman, and V. V. Arlazarov, "Midv-2020: A comprehensive benchmark dataset for identity document analysis," ArXiv, vol. abs/2107.00396, 2021.

[41] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and E. A. B. da Silva, "A comparative analysis of object detection metrics with a companion open-source toolkit," *Electronics*, vol. 10, no. 3, 2021.

X. Appendix

A. Ethics Board Approval

UPMREB FORM 4(B)2019:CERTIFICATION OF APPROVAL 03/11/2021

CERTIFICATION OF APPROVAL

This certifies that the University of the Philippines Manila Research Ethics Board (UPMREB) Review Panel 5C which is constituted and established, and functions in accordance with the requirements set by the University of the Philippines Manila, the Philippine Health Research Ethics Board (PHREB); and in compliance with the WHO Standards and Operational Guidance for Ethics Review of Health-related Research with Human Participants (2011), the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (2016), and the National Ethical Guidelines for Health and Health-related Research (2017), has approved the following study protocol and related documents:

TYPE OF SUBMISSION: Protocol Resubmis	ssion		
UPMREB CODE: 2023-0012-UND			
SUBMISSION DATE: 14 March 2023			
STUDY PROTOCOL TITLE: Extracting And	onymized Data from Medical Monitors and		
Information Systems in a Government Terti	ary Care Facility (Monixor)		
PRINCIPAL INVESTIGATOR: MR. JAN FEDERICO COSCOLLUELA			
TYPE OF REVIEW: Expedited			
SPONSOR/FUNDING AGENCY: Investigator			
APPROVAL DATE: EXPIRY OF ETHICAL CLEARANCE*:			
04 April 2023	03 April 2024		
DUE DATE OF APPLICATION FOR	FREQUENCY OF CONTINUING		
RENEWAL OF ETHICAL CLEARANCE	REVIEW:		
(30 days before expiry): 03 March 2024	Yearly		
Submit application using the UPMREB FORM 3(B):			
Continuing Review Application Form.			
APPROVED SITE/S: College of Arts and Sciences			
DATE OF BOARD MEETING: N/A			
QUORUM: N/A			
CONFLICT OF INTEREST: N/A			
MEMBERS IN ATTENDANCE: N/A			
ACTION TAKEN DURING BOARD MEETING: N/A			
DOCUMENTS APPROVED BY UPMREB:			
1. Study Protocol version 2.0 dated 14 March 2023			
2. Workflow for System Usage version 2.0 dated 14 March 2023			
3. Patients Informed Consent Form (Filipino) version 2.0 dated 14 March 2023			
4. Volunteer Informed Consent Form (English) version 2.0 dated 14 March 2023			
TECHNICAL DOCUMENTS INCLUDED IN THE REVIEW:			

- Curriculum vitae of principal investigator, Jan Federico Coscolluela, and certificate of completion in a six-hour course on Good Clinical Practices by NIDA Clinical Trials Network dated 07 December 2022
- Curriculum vitae of co-investigator, Alvin Marcelo, MD, and certificate of completion of the e-learning course ICH Good Clinical Practice E6 (R2) dated 15 September 2022
- Curriculum vitae of co-investigator, Marbert John Marasigan, and certificate of completion in a six-hour course on Good Clinical Practices by NIDA Clinical Trials Network dated 27 January 2022
- Curriculum vitae of co-investigator, Miguel Sandino O. Aljibe, LME, MD, and certificate of completion in a six-hour course on Good Clinical Practices by NIDA Clinical Trials Network dated 16 March 2022
- 5. Budget Proposal version 2.0 dated 14 March 2023

RESPONSIBILITIES OF PRINCIPAL INVESTIGATOR WHILE STUDY IS IN PROGRESS (*Please note that forms may be downloaded from the UPMREB website: reb.upm.edu.ph*):

- 1. Register research study in the Philippine Health Research Registry upon approval (http://registry.healthresearch.ph)
- 2. Progress report using the attached UPMREB FORM3(B)2012: Continuing Review Application Form, as indicated above, which includes the following: (NOTE: In view of active ethical clearance, this report is mandatory even if the study has not started or is still awaiting release of funds.)
 - a. Date covered by the report
 - b. Protocol summary and status report on the progress of the research
 - c. Philippine Health Research Registry ID
 - d. Number of participants accrued
 - e. Withdrawal or termination of participants
 - f. Complaints on the research since the last UPMREB review
 - g. Summary of relevant recent research literature, interim findings and amendments since the last UPMREB review
 - h. Any relevant multi-center research reports
 - i. Any relevant information especially about risks associated with the research
 - j. A copy of the informed consent document
- 3. Any amendment/s in the protocol, especially those that may adversely affect the safety of the participants during the conduct of the trial including changes in personnel, and revisions in the informed consent, must be submitted or reported using UPMREB FORM3(A)2012: Study Protocol Amendment Submission Form.

- 4. Report of non-compliance (deviation/violation), whether minor or major, at the soonest possible time up to six (6) months after the event, using UPMREB FORM 3(D)2012: Study Protocol Non-Compliance (Deviation/Violation) Report.
- 5. Reports of adverse events including from other study sites (national, international) using the UPMREB FORM 3(G)2012: Suspected, unexpected serious adverse event/reaction/s report, with timelines for submission guided by the GL 02 Version 2.0: Guideline on Reporting Serious Adverse Events; or list of reportable negative events using the UPMREB FORM 3(I)2012: Queries, Notification, and Complaints.
- 6. Notice of early termination of the study and reasons for such using UPMREB FORM 3(E)2012, or notice of time of completion of the study using UPMREB FORM 3(C)2012: Final Report Form.
- 7. Any event which may have ethical significance, and/or any information which is needed by the UPMREB to do ongoing review.

MA. TERESA DE GUZMAN, PhD

Chair, UPMREB Review Panel 5C

В. Philippine General Hospital Approval

PERMIT TO CONDUCT RESEARCH

EHRO Form 3 2010 Version 2

Effective Date: July 2012

Page 1 of 1

·O·	Sally Candias, RN

PACU Head

Post Anesthesia Care Unit (PACU)

2023-0012-UND

Extracting Anonymized Data from Medical Monitors Title:

and Information Systems in a Government Tertiary

Care Facility (Monixor)

National Teacher Training Center for the Health Department:

Professionals

Jan Federico Coscolluela, Mr Principal Investigator:

Alvin Marcelo, MD Co-Investigators:

Marbert John Marasigan

Miguel Sandino O. Aljibe, LME, MD

Please allow Principal Investigator and his representative/s to conduct research in your area/unit.

03 April 2024 Validity:

For continuing study: Date study started: Amendment to protocol/ Informed Consent from last approval: \square Yes \square No If yes, provide: 1. Date of amendment 2. Amended document

Jean anne B. Toral TEAN ANNE B. TORAL, MD, MSc

Coordinator for Research

RODNEY B. DOFITAS, MD Deputy Director for Health Operations

APR 1 3 2023

C. Source Code

source-code/captureStyles.css

```
box-sizing: border-box;
                                                                                                                                         box-sizing: border-box;
color: white;
cursor: pointer;
display: inline-flex;
fill: currentcolor;
font-family: "Google Sans", Roboto, Arial, sans—serif;
font-size: 14px;
font-wight, 500.
       /* STYLES.CSS */
                                                                                                                               88
       .button-17 {
    align-items: center;
                                                                                                                               89
                                                                                                                               90
           appearance: none;
         appearance: none;
background—color: #073a49;
border—radius: 24px;
border—style: none;
box—shadow: rgba(0, 0, 0, 0.2) 0 3px 5px -1px,
rgba(0, 0, 0, 0.14) 0 6px 10px 0, rgba(0, 0, 0, 0.12) 0 1px
                                                                                                                               92
                                                                                                                                         font—weight: 500;
height: 48px;
justify—content: center;
letter—spacing: 0.25px;
                                                                                                                              94
95
          18px 0;
box—sizing: border—box;
                                                                                                                                         line—height: normal;
max—width: 100%;
overflow: visible;
padding: 2px 24px;
position: relative;
10
                                                                                                                               98
          color: white;
cursor: pointer;
display: inline -flex;
                                                                                                                              100
13
                                                                                                                              101
          fill: currentcolor;
font—family: "Google Sans", Roboto, Arial, sans—serif;
font—size: 14px;
14
                                                                                                                              102
15
16
                                                                                                                              103
                                                                                                                                          text-align: center
                                                                                                                                          text—transform: none;
transition: box—shadow 280ms cubic—bezier(0.4, 0, 0.2, 1),
opacity 15ms linear 30ms, transform 270ms cubic—bezier(0,
                                                                                                                              104
         font—weight: 500;
height: 48px;
justify—content: center;
letter—spacing: 0.25px;
17
18
                                                                                                                              105
                                                                                                                             106
                                                                                                                                                0, 0.2, 1) 0ms;
                                                                                                                             107
                                                                                                                                          user-select: none:
          line—height: normal;
max—width: 100%;
21
22
                                                                                                                             108
109
                                                                                                                                         -webkit-user-select: none;
touch-action: manipulation;
         overflow: visible;
padding: 2px 24px;
position: relative;
text—align: center;
\frac{23}{24}
                                                                                                                                          width: auto;
will-change: transform, opacity;
                                                                                                                              110
                                                                                                                              111
\frac{25}{26}
                                                                                                                             112
                                                                                                                                          z-index: 0;
                                                                                                                              113
27
28
          text-transform: none;
transition: box-shadow 280ms cubic-bezier(0.4, 0, 0.2, 1),
                                                                                                                             114
                                                                                                                                      .button-18:hover
             opacity 15ms linear 30ms, transform 270ms cubic—bezier(0, 0, 0.2, 1) 0ms;
29
                                                                                                                             116
                                                                                                                                         background: black;
                                                                                                                             117
                                                                                                                                         color: white;
          user—select: none;
—webkit—user—select: none;
30
                                                                                                                             118
                                                                                                                              119
32
          touch—action: manipulation; width: auto;
                                                                                                                             120
                                                                                                                                       .button=18:active { box=shadow: 0 4px 4px 0 rgb(60 64 67 / 30%),
33
34
35
                                                                                                                              121
          \begin{array}{l} \mbox{will--change: transform, opacity;} \\ \mbox{z--index: 0;} \end{array}
                                                                                                                             122
                                                                                                                                            0 8px 12px 6px rgb(60 64 67 / 15%);
                                                                                                                                         outline: none;
36
37
38
                                                                                                                             124
                                                                                                                              125
                                                                                                                                       .button-18:focus {
       .button-17:hover {
                                                                                                                             126
                                                                                                                                         outline: none;
border: 2px solid #4285f4;
          background: black;
40
41
42
          color: white;
                                                                                                                             128
                                                                                                                              129
                                                                                                                             130
        .button=17:active { box=shadow: 0 4px 4px 0 rgb(60 64 67 / 30%), 0 8px 12px 6px rgb(60 64 67 / 15%);
                                                                                                                                       \begin{array}{l} . button{-}18:not(:disabled) \; \{\\ box{-}shadow: rgba(60, \; 64, \; 67, \; 0.3) \; 0 \; 1px \; 3px \; 0, \\ rgba(60, \; 64, \; 67, \; 0.15) \; 0 \; 4px \; 8px \; 3px; \\ \end{array} 
43
44
                                                                                                                             132
45
46
47
48
                                                                                                                              133
                                                                                                                             134
          outline: none;
                                                                                                                              135
                                                                                                                             136
                                                                                                                                      .button-18:not(:disabled):hover {
                                                                                                                                          box-shadow: rgba(60, 64, 67, 0.3) 0 2px 3px 0, rgba(60, 64, 67, 0.15) 0 6px 10px 4px;
49
50
       .button-17\mathrm{:}\mathrm{focus} {
                                                                                                                              137
          outline: none;
                                                                                                                             138
51
52
          border: 2px solid #4285f4;
                                                                                                                             139
                                                                                                                                     }
                                                                                                                             140
                                                                                                                                      53
54
55
56
                                                                                                                             \frac{141}{142}
        \begin{array}{l} . button-17:not(:disabled) \; \{ \\ box-shadow: rgba(60,\; 64,\; 67,\; 0.3) \; 0 \; 1px \; 3px \; 0, \\ rgba(60,\; 64,\; 67,\; 0.15) \; 0 \; 4px \; 8px \; 3px; \end{array} 
                                                                                                                             \begin{array}{c} 143 \\ 144 \end{array}
                                                                                                                                     }
57
58
                                                                                                                             145
                                                                                                                                      .button-18:not(:disabled):active {
                                                                                                                             146
                                                                                                                                          box-shadow: rgba(60, 64, 67, 0.3) 0 4px 4px 0, rgba(60, 64, 67, 0.15) 0 8px 12px 6px;
59
60
       147
                                                                                                                              148
\frac{61}{62}
                                                                                                                             149
                                                                                                                                     }
                                                                                                                             150
\frac{63}{64}
                                                                                                                             \frac{151}{152}
                                                                                                                                      .button-18:disabled { box-shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0,
        \begin{array}{l} . button-17:not(:disabled):focus \; \{\\ box-shadow:\; rgba(60,\; 64,\; 67,\; 0.3)\; 0 \; 1px \; 3px \; 0, \\ rgba(60,\; 64,\; 67,\; 0.15)\; 0 \; 4px \; 8px \; 3px; \\ \end{array} 
                                                                                                                             \frac{153}{154}
65
                                                                                                                                             {\rm rgba}(60,\ 64,\ 67,\ 0.15)\ 0\ 4{\rm px}\ 8{\rm px}\ 3{\rm px};
66
67
                                                                                                                             155
                                                                                                                              156
                                                                                                                                      .button-19 {
       69
70
71
72
73
74
75
                                                                                                                             157
                                                                                                                                         align—items: center; appearance: none;
                                                                                                                             159
                                                                                                                                          background-color: green;
                                                                                                                                          border-radius: 24px;
                                                                                                                                         border—style: none; box—shadow: rgba(0, 0, 0, 0.2) 0 3px 5px -1px,
                                                                                                                              161
       .button—17:disabled {  box-shadow: rgba(60,\ 64,\ 67,\ 0.3)\ 0\ 1px\ 3px\ 0, \\ rgba(60,\ 64,\ 67,\ 0.15)\ 0\ 4px\ 8px\ 3px; 
                                                                                                                                             {\rm rgba}(0,\ 0,\ 0,\ 0.14)\ 0\ 6{\rm px}\ 10{\rm px}\ 0,\ {\rm rgba}(0,\ 0,\ 0,\ 0.12)\ 0\ 1{\rm px}
                                                                                                                             163
76
77
78
79
                                                                                                                                         18px 0;
box—sizing: border—box;
color: white;
cursor: pointer;
display: inline—flex;
      }
                                                                                                                             164
       .button-18 {
                                                                                                                              166
80
81
           align—items: center;
                                                                                                                              167
                                                                                                                                          fill: currentcolor;
font-family: "Google Sans", Roboto, Arial, sans—serif;
          appearance: none;
                                                                                                                              168
82
83
          background—color: maroon;
                                                                                                                              169
          border—radius: 24px;
border—style: none;
box—shadow: rgba(0, 0, 0, 0.2) 0 3px 5px -1px,
                                                                                                                                         font—size: 14px;
font—weight: 500;
                                                                                                                              170
                                                                                                                                         height: 48px;
justify—content: center;
             rgba(0, 0, 0, 0.14) 0 6px 10px 0, rgba(0, 0, 0, 0.12) 0 1px
```

```
letter -spacing: 0.25px;
                                                                                                        267
                                                                                                                  left : calc(50% + calc(var(--circle-size) / 2 + var(--
\frac{175}{176}
          line—height: normal;
max—width: 100%;
                                                                                                                  spacing)));
height: 2px;
                                                                                                        268
177
178
          overflow: visible;
padding: 2px 24px;
                                                                                                        269
                                                                                                                  background-color:\ \#e0e0e0;
                                                                                                        270
                                                                                                                  order: -1;
179
           position: relative;
                                                                                                        271 }
          text—align: center;
text—transform: none;
transition: box—shadow 280ms cubic—bezier(0.4, 0, 0.2, 1),
180
181
                                                                                                        273
                                                                                                               .c-stepper\_title~\{
182
                                                                                                        274
                                                                                                                  font-weight: bold;
183
             opacity 15ms linear 30ms, transform 270ms cubic—bezier (0, 
                                                                                                        275
                                                                                                                  color: black;
font—size: clamp(1rem, 4vw, 1.25rem);
                0, 0.2, 1) 0ms;
                                                                                                        276
          user—select: none;
—webkit—user—select: none;
                                                                                                        \frac{277}{278}
184
                                                                                                                  margin-bottom: 0.5rem;
185
186
          touch—action: manipulation;
                                                                                                        279
          width: auto;
                                                                                                                    stepper__desc {
                                                                                                                  color: rgb(73, 73, 73);
font—size: clamp(0.85rem, 2vw, 1rem);
188
          will-change: transform, opacity;
                                                                                                        281
          z-index: 0;
                                                                                                                  padding-left: var(--spacing);
padding-right: var(--spacing);
190
                                                                                                        283
       .button-19:hover {
192
                                                                                                        285
          background: black;
194
          color: white;
       }
                                                                                                                                    source-code/home.html
196
197
       .button-19:active {
          box-shadow: 0 4px 4px 0 rgb(60 64 67 / 30%),
                                                                                                              <!-- HOME.HTML -->
198
             0 8px 12px 6px rgb(60 64 67 / 15%);
          outline: none;
                                                                                                               <!DOCTYPE html>
200
                                                                                                          3
201
                                                                                                               <html lang="en">
202
203
       .\, {\tt button-19:focus}\ \{
                                                                                                                     <meta charset="UTF-8">
204
         outline: none;
border: 2px solid #4285f4;
205
                                                                                                                      <title>Home Page</title>
                                                                                                                     206
                                                                                                           9
\frac{207}{208}
       .\, \mathtt{button-}19\mathtt{:}\mathtt{not}(\mathtt{:}\mathtt{disabled})\ \{
          box-shadow: rgba(60, 64, 67, 0.3) 0 1px 3px 0, rgba(60, 64, 67, 0.15) 0 4px 8px 3px;
209
210
                                                                                                         12
211
                                                                                                         13
       .button-19:not(:disabled):hover \{ \\ box-shadow: rgba(60, 64, 67, 0.3) \ 0 \ 2px \ 3px \ 0, \\ rgba(60, 64, 67, 0.15) \ 0 \ 6px \ 10px \ 4px; \\ \end{cases}
                                                                                                                        azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" crossorigin="anonymous">
213
214
                                                                                                                     crossorigin= anonymous /

script src="https://cdn.jsdelivr.net/npm/bootstrap@5
.0.2/dist/js/bootstrap.bundle.min.js"
integrity="sha384-MrcW6ZMFYlzcLA8Nl+
NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/
+W4LaVYM"
215
                                                                                                         14
216
      }
217
                                                                                                         15
       .button-19:not(:disabled):focus \{ \\ box-shadow: rgba(60, \ 64, \ 67, \ 0.3) \ 0 \ 1px \ 3px \ 0, \\ rgba(60, \ 64, \ 67, \ 0.15) \ 0 \ 4px \ 8px \ 3px; \\ \end{cases}
219
                                                                                                                        tWtIaxVXM"
                                                                                                                     crossorigin="anonymous"></script>
<script src="https://code.jquery.com/jquery-3.2.1.slim.min
                                                                                                         16
221
                                                                                                         17
       .button-19:not(:disabled):active~\{$box-shadow: rgba(60,~64,~67,~0.3)~0~4px~4px~0,$$rgba(60,~64,~67,~0.15)~0~8px~12px~6px;$}
                                                                                                                        integrity ="sha384-
KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/
223
                                                                                                         18
                                                                                                                     AJSoZDKIN TIKSO ENZIMM'I ACKRI [TES]
Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN"
crossorigin = "anonymous" > </script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1
.12.9/dist/umd/popper.min.js"
integrity = "sha384-ApNbgh9B+
Y1QKtv3Rn7W3mgPxhU9K/
SCOA PZPJILIN 39:7fsfkFpskyXperfs0b40"
225
227
                                                                                                         20
       229
                                                                                                         21
230
                                                                                                                     Y1Qktv3kn7W3mgPxhU9K/
SCQsAPThUibX39j7fakFPskvXusvfa0b4Q"
crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4
.0.0/dist/js/bootstrap.min.js"
integrity="sha384-JZR6Spejh4U02d8jOt6vLEHfe/
231
233
       /* Stepper in Home Page */
                                                                                                         23
\frac{234}{235}
                                                                                                                     integrity="sha384-JZR6Spejh4U02d8jOt6vLEHfe/
JQGiRRSQQxSffWpi1MquVdAyjUar5+76PVCmYl"
crossorigin="anonymous"></script>
<link rel="stylesheet" href="{% static 'css/captureStyles.
css'%}">
                                                                                                         24
          --circle-size: clamp(0.5rem, 2vw, 1.5rem);
--spacing: clamp(0.25rem, 2vw, 0.5rem);
236
237
                                                                                                         25
238
239
\frac{240}{241}
         c—stepper {
display: flex;
                                                                                                         28
242
      }
243
                                                                                                                     <nav class="navbar navbar-expand-lg navbar-light" style
                                                                                                         30
                                                                                                                       .c—stepper__item { display: flex;
244
                                                                                                         31
246
          flex —direction: column; flex: 1;
                                                                                                         32
247
248
          _{\rm text-align:\ center\,;}
                                                                                                         33
      }
250
                                                                                                                        navbarScroll"
251
       .\,c-stepper\_item:before~\{
                                                                                                                                     aria-controls="navbarScroll" aria-expanded="
                                                                                                         34
          --size: 2rem;
content: "";
                                                                                                                       false" aria—label="Toggle navigation">

<span class="navbar-toggler-icon"></span>
252
                                                                                                         35
         content: "";
display: block;
width: var(--circle-size);
height: var(--circle-size);
border-radius: 50%;
                                                                                                                                </br>
</button>
<div class="collapse navbar-collapse" id=</p>
254
                                                                                                         36
                                                                                                         37
256
                                                                                                                        navbarScroll">
                                                                                                         38
                                                                                                                                      background—color: rgb(71, 3, 3);
258
                                                                                                                        -0navbar—nav—scroll" style="--bs-scroll—height: 100\,
259
          margin: 0 auto 1rem;
                                                                                                                       260
                                                                                                         39
                                                                                                         40
       .c-stepper_item:not(:last-child):after { content: ""; position: relative;
262
263
                                                                                                                                            264
                                                                                                         42
          top: calc(var(--circle-size) / 2);
width: calc(100% - var(--circle-size) - calc(var(--spacing)
                                                                                                         43
                                                                                                                                            <li class="nav-item">
                                                                                                                       44
                * 2));
```

```
style="color: white">Upload</a>
                                                                                                                                            14
                                                                                                                                                                   integrity="sha384-EVSTQN3/
 \frac{46}{47}
                                                {\tt azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC}
                    crossorigin="anonymous"
                                                                                                                                                           <script src="https://cdn.jsdelivr.net/npm/bootstrap@5
.0.2/dist/js/bootstrap.bundle.min.js"
  integrity="sha384-MrcW6ZMFYlzcLA8Nl+
  NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/</pre>
 48
                                                                                                                                            15
 49
                                               16

<
 50
 51
                                                                                                                                                               tWtIaxVXM"
                                                                                                                                                                  crossorigin = "anonymous" > </script>
 52
                                               18
                                                                                                                                                            <\!\!\mathrm{script\ src} = \mathrm{"https://code.jquery.com/jquery} - 3.2.1.\mathrm{slim.min}
 53
                                        .js
 54
55
                                                                                                                                                                  integrity="sha384-
                                </div>
                                                                                                                                           19
                         </div>
                                                                                                                                                           KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/
Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN"
crossorigin = "anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1
.12.9/dist/umd/popper.min.js"
integrity = "sha384—ApNbgh9B+
Y1QKtv3Rn7W3mgPxhU9K/
ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q"
crossorigin = "anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4
.0.0/dist/js/bootstrap.min.js"
integrity = "sha384—JZR6Spejh4U02d8jOt6vLEHfe/
JQGiRRSQQxSfFWpilMquVdAyjUar5+76PVCmYI"
                                                                                                                                                               KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/
 \frac{56}{57}
                 </nav>
                                                                                                                                            20
                    div class="container my-auto mx-auto" style="
padding-top: 10px;padding-bottom: 30px;">
 58
                                                                                                                                           21
 59
                                <div class="row">
                                                                                                                                           22
                     61
                                                                                                                                           23
 62
                                                                                                                                           24
 63
                                                                                                                                           25
 64
                                                                                                                                                           integrity = "sna384-JZR6Spejh4U02d8jUtbvLEHte/
JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmYI"
crossorigin = "anonymous" > </script>
<script defer src={% static "js/capture.js" %}></script>
<link rel="stylesheet" href="{% static 'css/captureStyles.
                                        </div>
 65
                                        <div class="col-md-7 my-auto">
 66
                                                                                                                                           26
                     67
68
                                                                                                                                           27
28
 69
                                                                                                                                                               _{\mathrm{css'\%}})"\!>
                                                                                                                                           29
                                                                                                                                                           <script>
                                                                                                                                                                  $(document).ready(function () {
 70
                                                                                                                                            30
                    frame/s optimized for further computer vision tasks such
                                                                                                                                                                          ('[data-toggle="popover"]').popover(); \\
                                                                                                                                            31
                                                                                                                                            39
                   as optical calculation of the class optical calculation optical 
                                                                                                                                                           </script>
                                                                                                                                           33
 71
 72
73
                                                                                                                                           34
35
                                                                                                                                                   </head>
 74
75
                                                                                                                                           36
37
                                                                                                                                                            <nav class="navbar navbar-expand-lg navbar-light" style
                                                                                                                                                               and class="navbar-wavbar-wavbar-light style
="background-color: maroon;">
<div class="container-fluid">
<a class="navbar-brand" href="{% url 'home' %}"
style="color: white">Monixor</a>
<br/>
<br/>
cbutton class="navbar-toggler" type="button"
data-bs-toggle="collapse" data-bs-target="#
 76
                                                                                                                                            38
 77
78
79
80
                                                                                                                                            39
                                        </div>
                                </div>
                                                                                                                                           40
                                <br/>br>
 \frac{81}{82}
                                navbarScroll'
                                                                                                                                                               41
 83
                                               <\!\mathrm{h3\ class} = "c - stepper\_title" > \!\! In - app/
                    External Camera-(h3> class="c-stepper_desc">Access device camera to record patient monitor, or upload pre-captured
                                                                                                                                            42
                                                                                                                                                                           </button>
 84
                                                                                                                                            43
                                                                                                                                                                           <div class="collapse navbar-collapse" id="</pre>
                                                                                                                                            44
 85
                                                       file .
                                                                                                                                                               navbarScroll">
                                                                                                                                            45

    -0 navbar-nav-scroll" style="--bs-scroll-height: 100

                                       87
                    46
                                                                                                                                                                                          class="nav-item">
                                                                                                                                                               current="page" href="{" style="color: white"><b>Capture

class="nav-link active" aria-

current="page" href="{" style="color: white"><b>Capture

 89
                                       a zip file .
                    copy of the extracted frames individually or as
 90
                                                                                                                                           48
                                                                                                                                                               </b></a>
 91
                                        class="nav-item">
 93
                                                                                                                                            50
                                                                                                                                                               <a class="nav-link active" aria-current="page" href="{% url 'upload' %}"
                    {\rm Monitor~Dataset} \! < \! / {\rm h3} \! >
                                                                                                                                            51
 94
                                              Use over 4,000
                                                                                                                                                                                                        style="color: white">Upload</a>
                      annotated images of camera—captured monitor.
                                                                                                                                            52
                                                                                                                                                                                          95
                                               53
                                                                                                                                                                                         96
97
                                        </div
                                                                                                                                            54
                                </div>
                                                                                                                                           55
 98
99
                                                                                                                                                               dataset' %}" style="color: white">Dataset</a>
                         </div>
                 </main>
                                                                                                                                            56
                                                                                                                                                               </body>
                                                                                                                                           57
58
100
101
         </html>
102
                                                                                                                                            59
                                                                                                                                                                                          60
                                                                                                                                                                                  </div>
                                                                                                                                           61
                                                                                                                                           62
                                                                                                                                                                  </div>
                                  source-code/capture.html
                                                                                                                                            63
                                                                                                                                                            </nav>
                                                                                                                                            64
                                                                                                                                                           <main>
                                                                                                                                            65
         <!-- CAPTURE.HTML -->
                                                                                                                                                                   <div class="container my-auto mx-auto" style="</p>
                                                                                                                                                               <!DOCTYPE html>
                                                                                                                                            66
         <html lang="en">
                                                                                                                                            67
                                                                                                                                                                                   " role="tablist">
                                                                                                                                                               <meta charset="UTF-8">
                                                                                                                                           68
                <meta charset="UTF-8">
<title>Capture</title>
{% load static %}
link rel="icon" type="image/png" href="{% static '/
images/capture.ico' %}" />
link rel="stylesheet" href="https://cdnjs.cloudflare.com/
ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css
">
                                                                                                                                            69
  10
                                                                                                                                                                                                  <a class="nav-link active" id="pills
```

70

71

72

73

11

12

<meta name="viewport" content="width=device-width";</pre>

k href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" rel="stylesheet"

```
the live preview below"
                                                                                             <br>>
74
                                   data-content="Some content
                                                                                         </div>
                                                                     146
          inside the popover" data-bs-placement="top"></i>
                                                                                     </div>
                        </a>

<div class="tab-pane fade show active" id="pills-
profile" role="tabpanel"</pre>
 75
                                                                     148
 76
                                                                               profile" role="tabpanel"

aria-labelledby="pills-profile-tab">
</idv class="col-12 text-center">
</span style="display: inline">
</button class="button-17" id="
initiate">OPEN CAMERA</button>
</button class="button-18" id="
ctartbutton">TAKE PHOTO (button)</br>
 77
                        class="nav-item" style="margin-right:
                                                                     149
           20px;">
                                                                     150
          78
                                                                     151
                                                                     152
79
                                                                     153
          startbutton">TAKE PHOTO</button>
80
                                                                                             </span>
                                                                                         </div>
81
                                                                     155
           in live preview and check the replay afterwards
                                                                     156
                                                                                         <br>
                                                                                         <div class="container">
82
                                   data-content="Some content
                                                                     157
                   | data
| </a>
| 
| 
| iv>
                                                                                             inside the popover" data-bs-placement="top"></i>
 83
                                                                     159
                                                                                -auto">
                                                                                                    <div class="card">
                                                                     160
85
                </div>
                                                                                                        <div class="card-header text-
                                                                     161
87
88
                                                                                center">
                                                                                                            Live Preview
                                                                     162
          Status:
Waiting to Start Record
                                                                                                        </div>
89
                                                                     163
                                                                                                        <div class="card-body">
                                                                     164
 90
                                                                                                            <div class="camera">
                </b>
                                                                     165
91
92
                                                                               </div>
                                                                     166
            <br>
          93
                                                                                                                    {\it available.} < / {\it video} >
                                                                     167
94
                                                                                                            </div>
                                                                     168
95
                                                                     169
                                                                                                        </div>
                                                                                                     </div>
96
                                                                     170
97
                                                                                                     <br>
                                                                     171
          {\tt btnStart"}\!>\!\!{\tt START}
                                                                     \begin{array}{c} 172 \\ 173 \end{array}
                                                                                                 </div>
          RECORD</button>
<br/>
<br/>
<br/>
<br/>
<br/>
RECORD</button>
<br/>
<br/>
<br/>
<br/>
RECORD</button-18" id="
98
                                                                                                 <div class="col-md-6 text-center mx"
99
                                                                                -auto">
                                                                                                     <div class="card">
                    {</{\rm span}>} \\ {</{\rm div}>}
100
                                                                     175
                                                                                                        <div class="card-header text-
                                                                                center">
101
                    <br/><br><div class="container">
102
                                                                     176
                                                                                                            Captured Photo
                                                                                                        </div>
103
                                                                     177
104
                        <div class="row">
                                                                     178
                                                                                                        <div class="card-body">
105
                           <div class="col-md-6 text-center mx
                                                                     179
                                                                                                            <canvas id="canvas" style
          -auto">
                                                                                ="display: none">
                                                                               <div class="card">
107
                                   <div class="card-header text-
                                                                     181
          center">
108
                                      Live Preview
                                   </div>
                                                                                                            <div class="output">
  <img id="photo" style</pre>
109
                                                                     182
                                   <div class="card-body">
110
                                                                     183
          ="width: 100%; height: 100%" /> </div>
111
                                                                     184
112
                                   </div>
                                                                     185
                                                                                                        </div>
                               </div>
                                                                                                     </div>
113
                                                                     186
                                                                                                    <br>>
                                                                     187
                                                                                                 </div>
                           </div>
                                                                     188
116
                           <div class="col-md-6 text-center mx</pre>
                                                                     189
                                                                                             </div>
          -auto">
                                                                     190
                                                                                             <br>>
                                                                                             cdiv class="col-12" style="margin: auto;
width: 50%; text-align: center;" >
                               <div class="card">
                                                                     191
                                   <div class="card-header text-
118
                                                                     192
                                                                               cbutton class="bth btn-danger mx-
auto" type="button" id="loadingBtnPic" style="display:
          center">
                                                                     193
119
                                       Recorded Video
                                   </div>
120
                                   <div class="card-body">
                                                                                <span class="spinner-border
spinner-border-sm" role="status" aria-hidden="true</pre>
                                                                     194
121
122
          <video id="vid2" controls
autoplay style="width: 100%; height: 100%"></video>
                                                                                 ></span>
                               </div>
123
                                                                     195
                                                                                                    Processing, please wait ...
                                                                     196
                                                                                                 </button>
124
                               (br>
                                                                                                <br/>br>
125
                                                                     197
                           </div>
                                                                     198
                                                                                             </div>
126
                                                                               127
                        </div>
                                                                     199
128
                        <br>>
                                                                     200
129
                        <div class="col-12" style="margin: auto;</pre>
                                                                     201
          130
131
                                                                     202
                                                                                download style="display: none">
                                                                     203
                                                                                                           Download Image
          132
                                                                     204
                                                                                                     </button>
                                                                     205
                                                                               ></span>
133
                               Extracting frames, please wait ...
                            </button>
134
                                                                     207
                        </div>
135
                        Results </a>
                                                                                                     </button>
137
                                                                     209
                                                                     210
                                                                                                 </span>
                                                                                             </div><br><
          {\tt proceed"\ style="display:\ none;"}>
                                                                     211
139
                                   <a href="{% url 'results' %}"
          style="text-decoration: none; color: white">Extracted Frames</a>
                                                                     213
                                                                                             <br>
140
                                                                     214
                                                                                         </div>
                               </button>
                                                                                     </div>
                                                                     215
141
                                                                                  </div>
                            </span>
                        </div>
                                                                              </main>
                                                                     217
143
                        <br/>br>
                                                                          </body>
```

```
62
                                                                                                         </div>
                                                                                                         220
     </html>
                                                                                  63
                                                                                  64
                                                                                  65
                      source-code/index.html
                                                                                              This section allows the
user to manually upload a pre-captured image or video of
                                                                                  66
     <!-- INDEX.HTML (UPLOAD FUNCTIONALITY) -->
                                                                                  67
                                                                                  68
                                                                                                                      patient monitor. The preprocessed
  3
      <!DOCTYPE html>
                                                                                             frame/s will then be
                                                                                  69
                                                                                                                      shown below.
     <html lang="en">
                                                                                  70
71
                                                                                                                  <hr class="my-4">
<div class="card">
  6
     <head>
                                                                                                                      <meta charset="UTF-8">
                                                                                  72
          <meta http-equiv="X-UA-Compatible" content="IE=
  8
                                                                                              your file here. </h5>
                                                                                                                           <h6 class="card-subtitle mb-2"
  9
          <meta name="viewport" content="width=device-width,</pre>
                                                                                  74
          initial—scale=1.0">

<title>Upload</title>

{% load static %}

link rel="icon" type="image/png" href="{% static '/
                                                                                              text—muted">The file size limit is temporarily set to 500\,
                                                                                             MB.</hd>
MB.</hd>
/h6>
form action="" method="
POST" enctype="multipart/form-data">
                                                                                  75
76
 10
 \frac{11}{12}
          images/upload.ico' %}" /> {% load crispy_forms_tags %}
                                                                                  77
78
                                                                                                                               {% csrf_token %}
{{form.as_p}}
 13
          <br/>
button class="btn" type
 14
 15
                                                                                              ="submit" style="background-color:maroon; color: white
                                                                                                                          \begin{array}{c} {\rm Upload} < /{\rm button} > \\ < /{\rm form} > \end{array}
 16
                                                                                                                      </div>
          cossorigin= anonymous /
script src="https://cdn.jsdelivr.net/npm/bootstrap@5
.0.2/dist/js/bootstrap.bundle.min.js"
integrity = "sha384 — MrcW6ZMFYlzcLA8Nl+
NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/
tWtIaxVXM"
                                                                                                                  </div>
 17
                                                                                  83
                                                                                                                  84
 18
                                                                                  85
                                                                                  86
                                                                                  87
              crossorigin="anonymous"></script>
- <script defer src={% static "js/recordVid.js" %}></
                                                                                             19
                                                                                  88
 20
          <!-- \Script deco to ...
script> -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery
/3.1.0/jquery.min.js"></script>
<!-- <script defer src={% static "js/try.js" %}></script>
                                                                                             message | striptags}}
                                                                                  89
                                                                                                                           <br/>
<br/>
button type="button" class="
 21
                                                                                             btn-close" data-bs-dismiss="alert" aria-label="Close"></
                                                                                  90
 22
                                                                                             button>
 23
                                                                                                                       </div>
     </head>
                                                                                                                      {% else %}
 \frac{24}{25}
                                                                                  92
                                                                                             93
     <body>
         ody>
<!-- Navbar -->
<nav class="navbar navbar-expand-lg navbar-light" style
="background-color: maroon;">
<div class="container-fluid">
<a class="navbar-brand" href="{% url 'home' %}"
style="color: white">Monixor</a>
<button class="navbar-toggler" type="button"
data-bs-toggle="collapse" data-bs-target="#
navbarSroll"
 26
 27
                                                                                  94
                                                                                             message | striptags}}
 28
                                                                                  95
                                                                                                                           <br/>
<br/>button type="button" class="
 29
                                                                                             btn-close" data-bs-dismiss="alert"
                                                                                                                              aria-label="Close"></
                                                                                  96
 30
                                                                                             button>
                                                                                                                        /div>
                                                                                                                      {% endif %}
            navbarScroll"
                                                                                  98
            aria—controls="navbarScroll" aria—expanded="false" aria—label="Toggle navigation">
<span class="navbar—toggler—icon"></span>
 31
                                                                                  99
                                                                                                                      \{\% \text{ endfor } \%\}
                                                                                                                  </div>
                                                                                 100
                                                                                 101
                                                                                                             </div>
 32
                   </button>
                                                                                                         </div>
 33
                                                                                 102
 34
                   <div class="collapse navbar-collapse" id="</pre>
                                                                                 103
                                                                                                    </div>
            navbarScroll">
                                                                                 104
 35
                       <ul class="navbar-nav ms-auto my-2 my-lg
                                                                                                     <br><br><
            -0 navbar-nav-scroll" style="--bs-scroll-height: 100
                                                                                 106
                                                                                 107
                                                                                                     <section class="mx-auto my-auto text-center">
                                                                                                         {% if outputImages %}
                            class="nav-item">
                                                                                 108
 36
            current="page" href="{% url 'capture' %}"
style="color: white">Capture</a>
 37
                                                                                 109
                                                                                                         <h3>Output</h3>
                                                                                             110
                                                                                 111
                            39
                                                                                                         <br>>
                            \frac{112}{113}
                                                                                                         <div class="col-12 text-center">
 41
            current="page" href="(% url 'upload' %)"
style="color: white"><<b>Upload
                                                                                 114
                                                                                                             <br/>
<br/>button class="btn btn-success mx-auto
                                                                                             " >
 42
                                                                                 115
                                                                                                                  <a href="{% url 'downloadZipProcessed
            </b></a>
                                                                                             , %}"
 43
                            44
                            116
                                                                                                                      style = "text-decoration: none; color:
                                                                                              inherit;">Download
 45
            dataset' %}" style="color: white">Dataset</a>
                                                                                 117
                                                                                                                     \rm Image/s </a>
 46
                                                                                                             </button>
            </div>
 47
                                                                                 119
                                                                                                         ⟨br>
                                                                                 120
 48
                                                                                                         <div style="overflow-y: auto; height:500px;</pre>
                                                                                 121
                                                                                             margin-bottom: 50px">

{% for outputImage in outputImages %}
 49
                            50
51
                       122
                                                                                                             <a href="{{outputImage.preprocessed.url
                   </div>
 52
53
              </div>
                                                                                             }}" download>
          </nav>
                                                                                             <img src="{{outputImage.preprocessed.
url}}" alt="Output image" width="250px" height="190px</pre>
                                                                                 124
 54
55
          <main>
               <div class="container my-auto mx-auto" style="</pre>
           125
                                                                                                                      style="padding: 10px;">
 56
                                                                                 126
                                                                                                             </a>
                                                                                                             {% endfor %} <br/><br>>
 57
                                                                                 127
 58
                                                                                 128
                                                                                 129
                                                                                                             <br>>
                                                                                                             {% else %}
 59
                                                                                 130
                           margin—right: auto; width: 95%;">
 60
                                                                                 131
                                                                                                              132
                                                                                                             {% endif %}
```

```
133
                            </section>
                                                                                                                          61
                                                                                                                                                                   <div class="col-md-7 my-auto">
134
                      </div>
                                                                                                                          62
63
                                                                                                                                                                         <div class="jumbotron my-auto">
     <h1 class="display-4">PM-2023
135
136
               </main>
                                                                                                                                           Dataset</h1>
        </\mathrm{body}>
                                                                                                                                                                                 There is a lack of
137
                                                                                                                           64
                                                                                                                                           dataset comprising realistic field images of a patient monitor. The availability of such dataset with variability in quality can prove useful in computer vision—related
138
        </html>
                                                                                                                          65
139
                                                                                                                           66
                                                                                                                                           tasks such as object detection , optical character recognition , and the likes . 
                              source-code/dataset.html
                                                                                                                          67
        <!-- DATASET.HTML -->
                                                                                                                                                                                 <hr class="my-4">
                                                                                                                                            $<\!\!\mathrm{p}\!\!>\!\!\mathrm{A} public repository of realistic field images of patient monitor is collected to
                                                                                                                          69
        <!DOCTYPE html>
        <html lang="en">
                                                                                                                          70
                                                                                                                                                                                      contribute a new dataset for
                                                                                                                                           computer vision.
                                                                                                                           71
   6
                                                                                                                                                                                 <meta charset="UTF-8">
               <meta http-equiv="X-UA-Compatible" content="IE=
edge">
   8
                                                                                                                           73
                                                                                                                                           {\rm com/drive/folders/1-7GUeSjbOU8xQQJNE}
               <meta name="viewport" content="width=device-width,
   9
                                                                                                                                           LOj0bhutbLR_Q5?usp=sharing" role="button" style="
                  initial-scale=1.0"
               title="scale" / static / 
                                                                                                                          75
 10
                                                                                                                                                                  background-color: maroon; color: white;">Dataset</a>
                                                                                                                           76
 12
                  images/dataset.ico' %}" />
                                                                                                                           77
78
  13
                                                                                                                           79
                                                                                                                                                             </div>
               <!-- Boostrap Dependencies -->
               link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/
dist/css/bootstrap.min.css" rel="stylesheet"
integrity="sha384-EVSTQN3/
 15
                                                                                                                           80
                                                                                                                                                             <br>
                                                                                                                                                            81
 16
                                                                                                                           82
               integrity = "sha384—EVSTQN3/
azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuC\(\mathbb{G}\)\text{mLASjC}
"crossorigin="anonymous"> 84
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5
.0.2/dist/js/bootstrap.bundle.min.js" 85
integrity = "sha384—MrcW6ZMFYlzcLA8Nl+
NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/
tWtIavYXM" 86
                                                                                                                                           convention to provide metadata for easier navigation of files . An image is named as {
 17
                                                                                                                                           volunteer number}_{file code}_{frame_count}, where
 18
                                                                                                                                           volunteer
                  tWtIaxVXM"
                                                                                                                           86
                                                                                                                                                                                number
                      crossorigin="anonymous"></script>
                                                                                                                                                                                corresponds
 19
                                                                                                                           87
 \frac{20}{21}
        </head>
                                                                                                                           88
                                                                                                                                                                                to the 5 study participants (i.e.,
                                                                                                                                           from 1 to 5).
 \frac{22}{23}
                                                                                                                           89
                                                                                                                                                                                For example, first frame of an
               <!-- Navbar -
                                                                                                                           90
 24
               <nav class="navbar navbar-expand-lg navbar-light" style
                                                                                                                                           image taken from direct camera with low lighting condition
                  ="background-color: maroon;">

<div class="container-fluid">

<a class="navbar-brand" href="{% url 'home'%}"

style="color: white">Monixor</a>

<button class="navbar-toggler" type="button"
                                                                                                                                           the first volunteer data is named as <\!b>01\_01\_1.jpg</b> while the second frame is named
 25
                                                                                                                          91
 26
                                                                                                                                                                                <\!b\!>\!01\_01\_2<\!/b\!>
                                                                                                                           92
 27
                                                                                                                           93
                                                                                                                                                                                and so on.
                  data—bs—toggle="collapse" data—bs—target="#navbarScroll"
                                                                                                                          94
                                                                                                                                                                          The dataset is divided into two
 28
                  aria—controls="navbarScroll" aria—expanded="false" aria—label="Toggle navigation" >
                                                                                                                          96
                                                                                                                                           folders namely (1) <u>raw</u> and (2) <u>
 29
                                  <\!\!\operatorname{span\ class}="\operatorname{navbar}-\operatorname{toggler}-\operatorname{icon"}\!></\!\operatorname{span}\!>
                                                                                                                                           preprocessed </u>.
                             </button>
                                                                                                                           97
 30
                             <div class="collapse navbar-collapse" id="
 31
                                                                                                                          98
                                                                                                                                                                                corresponds to extracted frames
                  \text{aut class= conapse havoar conapse ...}

navbarScroll">

        class="navbar-nav ms-auto my-2 my-lg

                                                                                                                                           from the collected
                                                                                                                          99
                                                                                                                                                                                videos (2-sec interval) while the
 32
                    -0 navbar-nav-scroll" style="--bs-scroll-height: 100
                                                                                                                                           preprocessed dataset corresponds to the screen—extracted
                                                                                                                         100
                  px;">
                                                                                                                                                                                frame counterpart
                                          class="nav-item">
                                                                                                                                                                                of the raw dataset. The structure of
                                                                                                                         101
                  <a class="nav-link active" aria-
current="page" href="{% url 'capture' %}"
style="color: white">Capture</a>
                                                                                                                                             the dataset folder is illustrated below:
 34
                                                                                                                         102
                                                                                                                                                                         35
                                                                                                                                                                                <b>Raw</b>
                                                                                                                         103

    annotations.zip

    images.zip

                                                                                                                         104
 36
                                          class="nav-item">
                                                                                                                         105
 37
                  current="page" href="{% url 'upload' %}"

                                                                                                                                                                                <b>Preprocessed</b>
 38
                                                                                                                         106
                                                                                                                         107
                                                     style="color: white">Upload</a>
                                                                                                                                                                                      annotations.zipimages.zip
 39
                                                                                                                         108
                                          109
 40
                  41
                                                                                                                         110
                                                                                                                                                                                 42
                                                                                                                         111
                                                                                                                         112
                                                                                                                         113
                                                                                                                                                                          43
                                                                                                                         114
                                                                                                                                                                   </div>
                  115
                                                                                                                                                                   <div class="col-md-6">
 44
                                                                                                                         \frac{116}{117}
 45
                                                                                                                                                                         <thead>
 \frac{46}{47}
                                          118
                                                                                                                                                                                       <tr>
                                   File Code
                                                                                                                                           48
                            </div>
 49
                      </div>
                                                                                                                         120
                                                                                                                                                                                              Capturing
 50
51
                                                                                                                                            Condition
               </nav>
               <div class="container" style="padding-top: 10px;">
                                                                                                                         121
                                                                                                                                                                                              Lighting
                      <section>
                                                                                                                                           Condition
 \frac{52}{53}
                            <div class="container my-auto mx-auto">
                                                                                                                         122
                                                                                                                                                                                       \frac{54}{55}
                                                                                                                                                                                 </thead>
                                                                                                                         123
                                                                                                                         124
                                                                                                                                                                                 56
                                                                                                                         125
                                                                                                                                                                                       <td>>01</td>
<td>>Direct Camera</td>
                                                                                                                         126
                                                margin—left: auto;
 57
                                                                                                                         127
                                                margin-right: auto;
                                                                                                                                                                                               Low 
                                                                                                                                                                                       59
                                                width: 95%:">
                                                                                                                         129
                                          </div>
                                                                                                                         130
```

```
131
                                           02
                                                                              24
                                                                                       <nav class="navbar navbar-expand-lg navbar-light" style
                                                                                        132
                                           Direct Camera
                                                                              25
133
                                       134
                                                                              26
135
136
                                            03 
                                                                              27
                                           Skewed Upwards</td
137
                                                                                         navbarScroll'
                                                                                        138
                                            Low 
                                                                              28
                                       139
                                       29
                                                                                               </br>
</button>
<div class="collapse navbar-collapse" id="</pre>
141
                                            04 
                                                                              30
                                           Skewed Upwards</td
142
                                                                              31
                                                                                         navbarScroll">
143
                                           Natural
                                                                              32
                                                                                                   class="navbar-nav ms-auto my-2 my-lg"
                                       −0 navbar−nav−scroll" style="−−bs−scroll−height: 100
144
                                       class="nav-item">
146
                                                                              33
                                                                                        carrent="page" href="{% url 'capture' %}"
147
                                           Skewed Downwards</
                                                                              34
           td>
148
                                                                                                               style="color: white">Capture</a>
                                           Low
                                                                              35
                                       149
                                                                              36
                                                                                                       class="nav-item">
                                                                                        06
151
                                                                              38
                                           Skewed Downwards</
152
                                                                              39
           td>
153
                                                                              40
                                                                                                        Natural
                                       class="nav-item">
154
                                                                              41
                                                                                        155
                                                                              42
                                           07
156
157
                                            Skewed to Left 
                                                                              43
                                                                                                        class="nav-item">
158
                                            Low 
                                                                              44
                                                                                        159
                                       45
160
                                       <tr>
                                                                                                   <td>>08</td>
<td>>Skewed to Left</td>
161
                                                                              46
                                                                              47
162
163
                                           <td>Natural</td>
                                                                              48
                                                                                           </div>
                                                                              49
164

165
                                       50
                                           09
166
                                                                              51
                                           Skewed to RightLow
167
                                                                              52
                                                                              53
168
169
                                       54
                                                                                               <h3 class="text-center mb-4 pb-2 fw-bold">
                                       FAQ</h3>
                                           10
171
                                                                              55

    This section aims to provide tips on how to
172
                                                                              56
                                                                                         navigate the system.
173
                                           Natural
                                                                                               175
                                                                              58
                                                                                        \begin{array}{c} <\!\!\mathrm{div}\;\mathrm{class} = "\mathrm{row}" > \\ <\!\!\mathrm{div}\;\mathrm{class} = "\mathrm{col} - \mathrm{md} - 6\;\mathrm{col} - \mathrm{lg} - 4\;\mathrm{mb} - 4" > \\ <\!\!\mathrm{h6}\;\mathrm{class} = "\mathrm{mb} - 3 " > <\!\!\mathrm{i}\;\mathrm{class} = "\mathrm{far}\;\mathrm{fa} - \\ \mathrm{paper} - \mathrm{plane}" > <\!\!/\mathrm{i} > \!\!\mathrm{What's}\;\mathrm{the}\;\mathrm{difference}\;\mathrm{between} \end{array}
                               59
                          </div>
177
                                                                              60
                      </div>
                                                                              61
179
                      <br/>br>
              </section>
                                                                                                           Upload? < /h6 >
         </div>
181
                                                                              62
     </body>
                                                                                                       Capture mode is ideal when patient
183
                                                                              64
     </html>
                                                                                         monitor is readily available and user wishes to take a picture or video of it.
                                                                              65
                                                                              66
                                                                                                            Upload is when a pre—taken input file is
                                                                                          available.
                     source-code/guide.html
                                                                              67
                                                                                                   </div>
                                                                              68
     <!-- FAQ.HTML -->
                                                                              69
                                                                                         70
      <!DOCTYPE html>
                                                                              71
  4
     <html lang="en">
                                                                              72
                                                                                                           moment.</h6>
  6
                                                                              73
                                                                                                       >
                                                                                        Please make sure your camera has at least 720x480 resolution. Alternatively, you can click the <em>Upload</em> button to send a pre—captured input file taken from another
         74
  8
                                                                              75
  9
         <meta name="viewport" content="width=device-width,</pre>
         initial-scale=1.0">
<title>Guide</title>
                                                                              76
                                                                                                           device.
                                                                                                        10
                                                                              77
         {% load static %}
k rel="icon" type="image/png" href="{% static '/images/guide.ico' %}" />
                                                                              78
                                                                                                   </div>
                                                                              79
 12
                                                                                                   80
                                                                              81
 13
                                                                                         "></i> Results are not showing when I click <em>View
Results</em>
 14
          <!-- Boostrap Dependencies
         <!== Boostrap Dependences == 'steel' steel' steel' steel' https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" rel="stylesheet" integrity = "sha384-EVSTQN3/</p>
                                                                              82
 15
                                                                                                       </h6>
                                                                              83
16
                                                                                                       Please try to wait a few seconds before
Provided for simply
         clicking <em>View Results</em> button (or simply
17
                                                                                                            the page) as the system may have
18
                                                                                                           encountered a lag/buffer problem.
                                                                                                        </div>
           tWtIaxVXM"
                                                                              89
                                                                              90
              crossorigin="anonymous"></script>
                                                                                        \label{eq:class} $$ \begin{array}{ll} <& \mbox{div class} = "\mbox{col} - \mbox{md} - 6 \ \mbox{col} - \mbox{lg} - 4 \ \mbox{mb} - 4" > \\ <& \mbox{h6 class} = "\mbox{mb} - 3 " > < i \ \mbox{class} = "\mbox{fas} \ \mbox{fa} - \\ \mbox{rocket}" > </i > \mbox{Upload process takes a long time.} \end{array}
     </head>
20
                                                                              91
     <br/><br/><!-- Navbar -->
22
                                                                              93
```

```
95
           This may naturally occur in inputs of big size. The upload is currently limited to 500 MB
96
                             If problem persists, please retry
           uploading or trimming your videos.
97
                     98
99
          100
101
102
                         </h6>
103
104
                          Back camera is intentionally accessed
           for use to achieve an ideally higher quality.
105
106
                     <div class="col-md-6 col-lg-4 mb-4">
<h6 class="mb-3"><i class="fas fa-
108
           book-open"></i>Recording does not work on my end.</
109
           The system is compatible with typical browsers (Chrome, Firefox, Opera, Safari). If the problem
110
111
                             remains, please try switching to Google
112
113
                 </div>
114
115
             </section>
116
             <!--Section: FAQ-->
         </div>
118
     </body>
     </html>
120
```

source-code/requirements.txt

```
# REQUIRED DEPENDENCIES

2

3 asgiref == 3.6.0
4 backports.zoneinfo== 0.2.1
5 Django== 4.1.3
6 django-cors-headers== 3.13.0
7 django-crispy-forms== 1.14.0
8 gunicorn== 20.0.4
9 numpy== 1.24.1
10 opencv-contrib-python-headless== 4.7.0.68
11 opencv-python-headless== 4.7.0.68
12 Pillow== 9.4.0
13 psycopg2== 2.9.5
14 sqlparse== 0.4.3
15 tzdata== 2022.7
16 whitenoise== 6.3.0
```

source-code/models.py

```
#MODELS.PY
 \frac{3}{4}
     from django.db import models
     from .validators import file_size
     class Monitor(models.Model):
         monitor(iniodeis.Modei):
monitor_input = models.FileField(upload_to="input/%y/%m
//%d/", validators=[file_size], null=True, blank=True)
          def __str__ (self):
\frac{10}{11}
              return
12
     class Images(models, Model):
13
         monitor_images = models.FileField(upload_to="image/%y",
            null=True, blank=True)
          stamp = models.DateTimeField(auto_now_add=True)
\frac{15}{16}
          def __str__ (self):
\frac{17}{18}
              return
    class Preprocessed(models.Model):
19
20
         preprocessed = models.FileField(upload_to="image/%y", null=True, blank=True)
\frac{21}{22}
          stamp = models.DateTimeField(auto_now_add=True)
          def __str__ ( self ):
23
              return
```

source-code/views.py

```
from tabnanny import check
      from django.shortcuts import render, redirect from django.http import HttpResponse, FileResponse from django.core. files .base import File, ContentFile
      from .models import *
      from .forms import *
9
10
     import os
import cv2
     import numpy as np from django.conf import settings from PIL import Image, ImageEnhance
      from django.contrib import messages
from zipfile import ZipFile
from wsgiref. util import FileWrapper
      from django.
views.decorators.csrf import csrf_exempt
      import csv
      import time
      from django.http import HttpResponse
      from django.shortcuts import render from .models import \ast
      from django.core.mail import EmailMessage
from django.views.decorators import gzip
      from django.http import StreamingHttpResponse from threading import Thread
27
      def home(request):
29
30
                Images.objects.all().delete()
\frac{31}{32}
            except Images.DoesNotExist:
33
           return render(request, 'home.html')
35
     def capturePic(request):
try:
Images.objects.all().delete()
37
38
39
           except Images.DoesNotExist:
41
                 pass
42
43
            if request.method == 'POST':
                 f = open('./file.jpg', 'wb')
f.write(request.body)
filePath = os.path.realpath(f.name)
44
45
46
47
                 f.close()
48
49
                 img = cv2.imread(filePath)
50
51
                 final = preprocess(img)
ret, buf = cv2.imencode('.jpg', final)
52
53
                 content = ContentFile(buf.tobytes())
img_model = Images()
54
                 img\_model.monitor\_images.save ('outputFrame.jpg',
55
56
           return render(request, 'capture.html')
57
58
      {\bf class\ WebcamStream:}
           def __init__ (self , stream_id):
    self .stream_id = stream_id # default is 0 for main
59
60
              camera
61
                  self.vcap = cv2.VideoCapture(self.stream\_id)
62
                  if self.vcap.isOpened() is False
                 fps_input_stream = int(self.vcap.get(5)) # hardware
64
65
66
67
68
69
                  self.grabbed, self.frame = self.vcap.read()
                 if self.grabbed is False:
print ('[Exiting] No more frames to read')
                       exit(0)
70
71
                  self.stopped = False
                  # thread instantiation
72
73
                  self.t = Thread(target=self.update, args=())
self.t.daemon = True # daemon threads run in
74
75
76
           def start(self):
    self.stopped = False
    self.t.start()
77
78
79
80
            def update(self):
                 while True:
81
82
                       if self.stopped is True:
                            break
                       self.grabbed, self.frame = self.vcap.read()
if self.grabbed is False:
83
84
85
                             self.stopped = True
86
                            break
87
88
                  {\it self.vcap.release}\,()
89
           def read(self):
                 return self.frame
```

#VIEWS.PY

```
180
                                                                                                                                                            \operatorname{orig\_img} = \operatorname{img.copy}()
              def encode(self):
    img_model = Images()
    ret, buf = cv2.imencode('.jpg', self.frame)
    content = ContentFile(buf.tobytes())
                                                                                                                                                            origing = mig.copy()
final = preprocess(origing)
ret, buf = cv2.imencode('.jpg', final)
content = ContentFile(buf.tobytes())
img_model = Preprocessed()
 92
93
                                                                                                                         181
182
 94
95
                                                                                                                         183
                     \begin{array}{lll} & \text{img\_model.monitor\_images.save('output' + "\_" + ".jpg")}, \end{array}
 96
                                                                                                                         185
                                                                                                                                                            img_model.preprocessed.save(fileName + '.jpg',
                                                                                                                                            content)
 97
                                                                                                                         186
               def stop(self):
self.stopped = True
 98
                                                                                                                          187
                                                                                                                                                            frameRate = 2 \ \# \ //it \ will \ capture \ image \ every
 99
                                                                                                                         188
100
                                                                                                                                            2 seconds
       @csrf_exempt
def captureVid(request):
                                                                                                                                                            \begin{aligned} & \text{count} = 1 \\ & \text{success, img} = \text{getFrame}(\text{sec, filePath}) \end{aligned}
101
                                                                                                                          189
102
                                                                                                                          190
103
                                                                                                                          191
                                                                                                                                                            \rm orig\_img = img.copy()
                    Images.objects.all().delete()
                                                                                                                                                            while success: count = count + 1
105
               except Images.DoesNotExist:
                                                                                                                          193
106
                                                                                                                                                                   sec = sec + frameRate
107
                                                                                                                          195
                                                                                                                                                                  sec = sec + frameRate
sec = round(sec, 2)
final = preprocess(img)
ret, buf = cv2.imencode('.jpg', final)
content = ContentFile(buf.tobytes())
img_model = Preprocessed()
img_model.preprocessed.save(
fileName + "_" + str(count-1) + ".jpg",
108
               try:
Preprocessed.objects.all().delete()
109
                                                                                                                          197
110
               except Preprocessed.DoesNotExist:
                                                                                                                          198
111
                                                                                                                          199
                                                                                                                          200
               if request.method == 'POST':
113
                                                                                                                         201
                      vidInput = request.FILES["video"].file.name
114
                                                                                                                         202
                     widex, nameCounter = 1
webcam_stream = WebcamStream(
stream_id=vidInput) # 0 id for main camera
115
                                                                                                                                             content)
                                                                                                                                                      success, img = getFrame(sec, filePath)
outputImages = Preprocessed.objects.all()
                                                                                                                         203
                                                                                                                         204
117
118
                      webcam_stream.start()
vidcap = cv2.VideoCapture(vidInput)
fps = vidcap.get(cv2.CAP_PROP_FPS)
                                                                                                                         205
                                                                                                                                                     context = {'form': form,
    'filePath': filePath,
    'monitorInput': monitorInput,
    'outputImages': outputImages}
messages.success(request, "File succcessfully
119
                                                                                                                         206
120
                                                                                                                         207
121
                                                                                                                         208
                      if ((fps >= 50 and fps <= 80) or fps == 1000): fps = 60
199
                                                                                                                         209
123
                                                                                                                         210
124
                      else:
fps = 30
                                                                                                                                            uploaded.")
                                                                                                                         211
125
                                                                                                                                                else:
126
                      \frac{1}{1} success, \frac{1}{1} img = \frac{1}{1} vidcap.read()
                                                                                                                         212
                                                                                                                                                      context = \{'form': form\}
127
                                                                                                                         213
                                                                                                                                                      messages.error(
                     while (success):
    if (index > fps and index % fps == 0):
        ret, buf = cv2.imencode('.jpg', img)
        content = ContentFile(buf.tobytes())
                                                                                                                                                            request, "No file chosen or size exceeds limit
128
                                                                                                                         214
                                                                                                                                            .")
129
                                                                                                                         215
130
                                                                                                                         216
                                                                                                                                               return render(request, 'index.html', context)
131
132
                                                                                                                         217
                                   img\_model = Images()
                                                                                                                         218
                                                                                                                                         form = MonitorForm()
134
                                  img_model.monitor_images.save(
   'output' + "_" + str(nameCounter) + ".jpg
                                                                                                                         219
                                                                                                                                        context = {'form': form}
return render(request, 'index.html', context)
                                                                                                                          220
135
                  ". content)
                                                                                                                         221
136
                                   nameCounter += 1
                                                                                                                                 def preprocess(img):
                                                                                                                                        preprocess(img):
orig.img = img.copy()
gamma, output = GCME(img)
img = cv2. bilateralFilter (output, 11, 125, 100)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 40, 120)
canny = cv2.dilate(canny, cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (3, 3)))
                            index += 1
success, img = vidcap.read()
137
                                                                                                                         223
                                                                                                                          224
139
                                                                                                                         225
                      vidcap.release()
                                                                                                                          226
                     num_frames_processed = 0
img_model = Images()
141
                                                                                                                         227
142
                                                                                                                          228
143
                                                                                                                         229
                                                                                                                                        con = np.zeros_like(img)
contours, hierarchy = cv2.findContours(
canny, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
144
                                                                                                                          230
                            \begin{array}{c} \text{if webcam\_stream.stopped is True:} \\ \text{break} \end{array}
145
                                                                                                                         231
146
                                                                                                                         232
                                                                                                                                        page = sorted(contours, \: key = cv2.contourArea, \: reverse = True)
147
                                                                                                                         233
                                   frame = webcam\_stream.read()
                                                                                                                         234
                                                                                                                                        con = cv2.drawContours(con, contours, -1, (0, 255, 255), 3)
149
                                   webcam_stream.encode()
                                                                                                                         235
236
                            # adding a delay for simulating video processing
                                                                                                                                         con = np.zeros_like(img)
150
                  time
                                                                                                                                        maxArea = 0
                            \begin{array}{l} \rm delay = 0.5 \  \  \# \  delay \  \, value \  \, in \  \, seconds \\ \rm time.sleep(delay) \end{array}
151
                                                                                                                         237
                                                                                                                                        biggest = []
                                                                                                                         238
152
153
                            num\_frames\_processed += 1
                                                                                                                          239
                                                                                                                                         for c in page:
                                                                                                                          \frac{240}{240}
                                                                                                                                               area = cv2.contourArea(c)
154
                                                                                                                                               if area > 1000000:

if area > 1000000:

epsilon = 0.02 * cv2.arcLength(c, True)

corners = cv2.approxPolyDP(c, epsilon, True)

if area > maxArea and len(corners) == 4:
                                                                                                                         \frac{241}{242}
155
                      webcam_stream.stop()
156
157
               return redirect ('/ results')
                                                                                                                         243
158
                                                                                                                          \frac{244}{244}
        @csrf\_exempt
                                                                                                                                                            biggest = corners \\ maxArea = area
159
                                                                                                                         245
       def index(request):
                                                                                                                         246
160
161
                                                                                                                         247
                     Preprocessed.objects.all().delete()
                                                                                                                          248
162
                                                                                                                                         if len(biggest) != 0:
                                                                                                                                               163
               except Preprocessed.DoesNotExist:
                                                                                                                         249
164
                     pass
               if request.method == "POST":
form = MonitorForm(request.POST, request.FILES)
165
                                                                                                                         251
166
                                                                                                                                             for index, c in enumerate(biggest):
    character = chr(65 + index)
    cv2.putText(con, character, tuple(
        c), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 1, cv2.LINE_AA)
167
                                                                                                                         253
                      if form.is_valid() and 'monitor_input' in request.FILES
                                                                                                                         255
                            norm.save()
monitorInput = Monitor.objects.latest('id')
filePath = monitorInput.monitor.input.path
extension = os.path.splitext(
    str(request.FILES['monitor.input']))[1]
170
                                                                                                                                               biggest = order_points(biggest)
172
                                                                                                                         258
                                                                                                                         259
                                                                                                                                                destination_corners = find_dest(biggest)
                                                                                                                                            destination_corners = ind_dest(orggest)

M = cv2.getPerspectiveTransform(np.float32(biggest), np.float32(destination_corners))

final = cv2.warpPerspective(orig_img, M, (destination_corners [2][0], destination_corners [2][1]), flags=cv2.INTER_LINEAR)
                            fileName = os.path.splitext(
    str(request.FILES['monitor_input']))[0]
174
                                                                                                                         260
176
                                                                                                                         262
                 \begin{array}{l} {\rm else:} \\ {\rm final} \ = {\rm orig\_img} \end{array}
178
                                                                                                                         264
                                                                                                                          265
179
                                  img = cv2.imread(filePath)
                                                                                                                         266
```

```
267
            return final
                                                                                                 355
                                                                                                              return render(request, 'resultPic.html', context)
                                                                                                 \frac{356}{357}
268
269
      def getFrame(sec, file_name):
                                                                                                        def results (request):
            vidcap = cv2.VideoCapture(file_name)
vidcap.set(cv2.CAP_PROP_POS_MSEC, sec*1000)
270
                                                                                                 358
                                                                                                              monitorImages = Images.objects.all()
271
                                                                                                  359
272
            hasFrames, image = vidcap.read()
                                                                                                 360
                                                                                                              context = {
273
                                                                                                  361
                                                                                                                    'monitorImages': monitorImages
274
            return hasFrames, image
                                                                                                 362
275
                                                                                                  363
276
      def GCME(image, mask=None, normalize=False):
    if np.ndim(image) == 3 and image.shape[-1] == 3: #
                                                                                                 364
                                                                                                              return render(request, 'results.html', context)
                                                                                                  365
277
               color image hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
                                                                                                 \frac{366}{367}
                                                                                                        \  \, \mathrm{def\ preprocessing}(\mathrm{request})\colon
                                                                                                              count = 1
278
            img = hsv[:, :, 2]
color_flag = True
elif np.ndim(image) == 2: # gray image
279
                                                                                                 368
                                                                                                  369
                                                                                                              monitorImages = Images.objects.all()
                                                                                                              for monitorImage in monitorImages:
img = cv2.imread(monitorImage.monitor_images.path)
281
                                                                                                 370
                 img = image
color_flag = False
                                                                                                  371
                                                                                                                   final = preprocess(img)
ret, buf = cv2.imencode('.jpg', final)
content = ContentFile(buf.tobytes())
283
                                                                                                 372
                                                                                                 373
374
            else:
                 return 1, None
285
                                                                                                 375
                                                                                                                   img\_model = Preprocessed()
286
                                                                                                                   \label{eq:continuity}  \begin{aligned} & \text{img\_model.preprocessed.save}(\\ & \text{'output'} + \text{"\_"} + \text{str}(\text{count}) + \text{".jpg"}, \, \text{content}) \end{aligned}
287
            if normalize: # max-min normalization
                                                                                                 376
288
                  img = img.astype(np.float)
                 \mathrm{img} = (255*(\mathrm{img-np.min(img[:])}) \; / \; (\mathrm{np.max(img[:]})
                                                                                                                   count += 1
289
                                                                                                 378
290
                                                                                                 379
               \min(\mathrm{img}[:])\,+\,0.1)).astype(\mathrm{np.float}\,)
                                                                                                 380
                                                                                                              return redirect ('/processed')
291
                                                                                                  381
           img = (img + 0.5) / 256
292
                                                                                                 382
                                                                                                       def processed(request):
293
                                                                                                 383
                                                                                                              preprocessed.mages = Preprocessed.objects.all()
            img_log = np_log(img)
                                                                                                 384
294
                mask is not None
295
                                                                                                 385
            mask[mask < 255] = 0
img_log[mask == 0] = np.NaN
gamma = -1 / np.nanmean(img_log[:])
                                                                                                 386
296
                                                                                                                    'preprocessedImages': preprocessedImages
297
                                                                                                 387
                                                                                                 388
298
299
300
                                                                                                 389
390
                                                                                                              return render(request, 'processed.html', context)
            output = np.power(img, gamma)
301
                                                                                                 391
392
                                                                                                       def downloadZipResults(request):
    monitor_images = Images.objects.all()
            if mask is not None:
302
303
                 \mathrm{output} = (\mathrm{output} * 256 - 0.5) * \mathrm{mask} \; / \; 255.0
                                                                                                 393
                                                                                                 394
                                                                                                              with ZipFile ('outputframes.zip', 'w') as export_zip:
            else:
304
                                                                                                                   for monitor_image in monitor_images:
img_path = monitor_image.monitor_images.path
305
                 output = (output * 256 - 0.5)
                                                                                                 395
            output = output.round().astype(np.uint8)
                                                                                                  396
306
                color_flag:
hsv[:, :, 2] = output
output = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
307
                                                                                                 397
                                                                                                                        print(img_path) export_zip.write(img_path, img_path.split("\\")[-1])
308
                                                                                                  398
309
                                                                                                 399
                                                                                                  400
310
                                                                                                              wrapper = FileWrapper(open('outputframes.zip', 'rb'))
                                                                                                              content_type = 'application/zip'
content_disposition = 'attachment; filename=Frames.zip'
311
            return gamma, output
                                                                                                 401
                                                                                                  402
      313
                                                                                                 403
314
                                                                                                 404
                                                                                                              response = HttpResponse(wrapper, content_type=
                                                                                                              content_type)
response['Content_Disposition'] = content_disposition
315
                                                                                                  405
317
            rect [0] = pts[np.argmin(s)]
rect [2] = pts[np.argmax(s)]
                                                                                                 406
318
                                                                                                  407
                                                                                                              return response
            diff = np.diff(pts, axis=1)
rect [1] = pts[np.argmin(diff)]
rect [3] = pts[np.argmax(diff)]
return rect.astype('int'). tolist ()
319
                                                                                                 408
                                                                                                  409
                                                                                                        {\it def \ downloadZipProcessed(request):}
                                                                                                              monitor\_images = Preprocessed.objects.all()
321
                                                                                                 410
322
                                                                                                 411
                                                                                                 412
                                                                                                              with ZipFile('outputframes.zip', 'w') as export_zip:
323
      \begin{array}{ll} {\rm def\ find\_dest\,(pts)\colon} \\ & ({\rm tl}\ ,\ {\rm tr}\ ,\ {\rm br}\ ,\ {\rm bl}) = {\rm pts} \\ & {\rm width}A = {\rm np.sqrt}((({\rm br}[0] - {\rm bl}[0])\ **\ 2)\ + (({\rm br}[1]\ - {\rm bl}[1]) \end{array}
                                                                                                 413 \\ 414
                                                                                                                   for monitor_image in monitor_images:
img_path = monitor_image.preprocessed.path
324
325
                                                                                                 \frac{415}{416}
                                                                                                                         \begin{array}{l} \texttt{export\_zip.write(img\_path, img\_path.split("\\")[-1])} \end{array} 
326
327
            widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1])
                                                                                                 417
                                                                                                              wrapper = FileWrapper(open('outputframes.zip', 'rb'))
                                                                                                 418
                                                                                                              content_type = 'application/zip' content_disposition = 'attachment; filename=Frames.zip'
328
            \max Width = \max(\inf(widthA), \inf(widthB))
                                                                                                  419
329
                                                                                                  420
330
            heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1])
                                                                                                 421
                                                                                                              response = HttpResponse(wrapper, \, content\_type =
                                                                                                                content_type)
331
            \label{eq:heightB} \begin{split} \text{heightB}' &= \text{np.sqrt}(((\text{tl}\,[0]\,-\,\text{bl}\,[0])\,\,**\,2)\,+((\text{tl}\,[1]\,-\,\text{bl}\,[1]) \end{split}
                                                                                                 422
                                                                                                              response \cite{Content-Disposition'} = content\_disposition
                                                                                                 423
332
            maxHeight = max(int(heightA), int(heightB))
                                                                                                 424
                                                                                                 425
333
334
            destination_corners = [[0, 0], [maxWidth, 0], [maxWidth, maxHeight], [0,
                                                                                                 426
                                                                                                        def downloadCSV(request):
                                                                                                 427
                                                                                                             monitor.images = Images.objects.all()
stamp = ['Time Stamp']
img_path = ['Image File']
335
               maxHeight]]
                                                                                                 428
                                                                                                  429
336
337
            return order_points(destination_corners)
                                                                                                 430
                                                                                                  431
338
                                                                                                              response = HttpResponse(
                                                                                                                content_type='text/csv',
headers={'Content-Disposition': 'attachment; filename
="Data.csv"'},
339
      def guide(request):
                                                                                                 432
            return render(request, 'guide.html')
340
341
      def capture(request):
            return render(request, 'capture.html')
343
                                                                                                 435
                                                                                                              writer = csv.writer(response)
                                                                                                              for monitor_image in monitor_images:
stamp.append(monitor_image.stamp)
345
      def dataset(request):
                                                                                                 437
            return render(request, 'dataset.html')
                                                                                                  438
                                                                                                                  img_path.append(monitor_image.monitor_images.name)
value in range(len(stamp)):
347
                                                                                                 439
                                                                                                  440
      def resultPic(request):
349
           monitorImages = Images.objects.all()
                                                                                                 441
                                                                                                                   writer.writerow([stamp[value],\ img\_path[value]])
350
                                                                                                 442
            context = {
351
                                                                                                 443
                                                                                                              return response
                  'monitorImages': monitorImages
            }
                                                                                                        def downloadCSVProc(request):
353
                                                                                                 445
                                                                                                              {\tt monitor\_images} = {\tt Preprocessed.objects.all()}
```

```
447
             stamp = ['Time Stamp']
\frac{448}{449}
              img_path = ['Image File']
             response = HttpResponse(
    content_type='text/csv',
    headers={'Content-Disposition': 'attachment; filename
="Data.csv"'},
450
451
452
453
454
455
             writer = csv.writer(response)
for monitor_image in monitor_images:
456
                   stamp.append(monitor\_image.stamp)\\img\_path.append(monitor\_image.preprocessed.name)
457
458
             for value in range(len(stamp)):
    writer.writerow([stamp[value], img_path[value]])
459
460
461
              return response
463
       def delete(image):
465
             os.remove(image)
```

source-code/urls.py

```
#URLS.PY
   3
            from django.urls import path
            from django.urls import path
            from . import views
            urlpatterns = [
   path('', views.home, name='home'),
                      path (", views.home, name="home"),
path ('guide', views.guide, name="guide'),
path ('upload/', views.index, name="upload"),
path ('capture/', views.capture, name="capture"),
path ('captureVid/', views.captureVid, name="captureVid"),
path ('capturePic/', views.capturePic, name="capturePic"),
path ('dataset/', views.dataset, name="dataset"),
path ('results', views.results, name="results"),
path ('resultPic', views.resultPic, name="resultPic"),
path ('preprocessing', views.preprocessing, name="
preprocessing"),
path ('processed', views.processed, name="processed"),
path ('downloadZipResults/', views.downloadZipResults,
name="downloadZipResults'),
path ('downloadZipProcessed, views.downloadZipProcessed,
path ('downloadZipProcessed, views.downloadZipProcessed, views.downloadZipProcessed,
 10
 11
 \frac{13}{14}
 15
16
17
\frac{18}{19}
20
\frac{21}{22}
                        path('downloadZipProcessed,', views.downloadZipProcessed, name="downloadZipProcessed"),
23
                        path('downloadCSV/', views.downloadCSV, name="
                        downloadCSV"), path('downloadCSVProc/', views.downloadCSVProc, name
24
                              ="downloadCSVProc"),
25
```

source-code/capture.js

```
// VIDEO CAPTURE ACCESS GRANT
     {\tt let \ start = document.getElementById("btnStart");}
     let downloadImageContainer = document.getElementById("
downloadImageContainer");
let videoURL = "";
10
11
     let chunks = [];
12
13
14
     let\ constraintObj = \{
\frac{15}{16}
        audio: false,
        video:
          width: {
    min: 720,
    ideal: 1280,
    max: 3840,
17 \\ 18 \\ 19 \\ 20
\frac{21}{22}
           frameRate: { min: 10, ideal: 60, max: 80 },
facingMode: { ideal: "environment" },
\frac{23}{24}
           height: {
             min: 480, //HD
ideal: 720, //FHD
max: 2160, //4k
25
26
27
28
29
30
31
           },
       },
     start.addEventListener("click",\ (ev)\ =>\ \{
        //handle older browsers that might implement getUserMedia in
              some way
```

```
35
36
             navigator.mediaDevices = {};
navigator.mediaDevices.getUserMedia = function (
                constraintObj) {
let getUserMedia
                \begin{tabular}{ll} navigator. webkitGetUserMedia || navigator. \\ mozGetUserMedia; \end{tabular}
 38
 39
                if \ (!\,getUserMedia)\ \{\\
                   return Promise.reject(
  40
 41
                     new Error ("get User Media is not implemented in this
                browser")
  42
                  );
  43
                return new Promise(function (resolve, reject) {
    getUserMedia.call(navigator, constraintObj, resolve,
  44
  45
                 reject);
 47
             navigator.mediaDevices
  49
  50
                . \, enumerate Devices ()
 51
52
                 .then((devices) =>
                   intent(devices) => {
    devices.forEach((device) => {
      console.log(device.kind.toUpperCase(), device.label);
    }
}
  53
 54
55
                catch((err) => {
  console.log(err.name, err.message);
 56
57
  58
 59
          }
  60
 61
          navigator.mediaDevices
             wigator.mediaDevices
.getUserMedia(constraintObj)
.then(function (mediaStreamObj) {
    //connect the media stream to the first video element
    let video = document.querySelector("video");
    if ("srcObject" in video) {
        video.srcObject = mediaStreamObj;
    }
}
 62
63
 64
65
 66
67
 68
                   else {
//old version
  69
                   video.src = window.URL.createObjectURL(
  70
                mediaStreamObj);
  \frac{71}{72}
 73
74
                video.onloaded<br/>metadata = function (ev) {    //show in the video element what is being captured by
                the webcam
  75
                   {\rm video.play}()\,;
                };
  76
  78
                let mediaRecorder = new MediaRecorder(mediaStreamObj
  79
  80
                mediaRecorder.start();
                mediatecordingStatus.innerHTML =
"<span style='color: red'>" + "Status: Currently
Recording" + "</span>";
  81
  82
  83
                console.log(mediaRecorder.state);
  84
 85
86
                stop.addEventListener("click", (ev) => {
                   mediaRecorder.stop():
 87
88
                   console. log(media Recorder. state);\\
  89
  90
                mediaRecorder.ondataavailable = function (ev) {
                   if (ev.data.size > 0) {
    chunks.push(ev.data);
 91
92
                      else {
console.log("NO DATA");
 93
94
 95
96
 97
98
                mediaRecorder.onstop = (ev) = > \{
                   let blob = new Blob(chunks, {
type: "video/mp4",
 99
100
101
102
                   chunks = [];
                   videoURL = URL.createObjectURL(blob);
vidSave.src = videoURL;
103
104
                   recordingSize = parseFloat(blob.size / 1000000).toFixed
105
                   recordingStatus.innerHTML = "<span style='color: green'>"
106
107
                      "Status: Stopped Recording (" +
108
109
                      recordingSize +
                    " MB)";
("</span>");
110
                let loadingBtnVid = document.getElementById("loadingBtnVid");
112
113
                   loadingBtnVid.style.display = "block";
114
                   var fd = new FormData();
115
                   var file = new File([blob], "vidd.mp4");
fd.append("video", file);
117
```

if (navigator.mediaDevices === undefined) {

```
console.log( file );
var xhr = new XMLHttpRequest();
xhr.open("POST", "/captureVid/",
xhr.onload = function (e) {
  console.log("Sent");
119
                                                                                                                                                  208
                                                                                                                                                                                 height = width / (4 / 3);
\frac{120}{121}
                                                                                                                                                   209
                                                                                                                                                   210
                                                                                             ", true);
                                                                                                                                                                            video.setAttribute("width", width);
video.setAttribute("height", height);
canvas.setAttribute("width", width);
canvas.setAttribute("height", height);
122
                                                                                                                                                  211
123
124
                              loadingBtnVid.style.display = "none";
                                                                                                                                                  213
                                                                                                                                                   214
125
126
                              let x = document.getElementById("proceed");
                                                                                                                                                  215
                                                                                                                                                                             streaming = true;
                                                                                                                                                   216
127
128
                              x.style.display = "inline";
                                                                                                                                                  217
130
                          xhr.send(fd);
                                                                                                                                                  219
                                                                                                                                                   220
131
                      };
                                                                                                                                                                 startbutton.add EventListener (\\
132
                  })
                                                                                                                                                  221
                                                                                                                                                                     " click",
(ev) => {
                  .catch(function (err) {
134
                      console.log(err.name, err.message);
                                                                                                                                                   223
                                                                                                                                                   224
                                                                                                                                                                         takepicture();
                                                                                                                                                                         recordingStatus.innerHTML =
136
         });
                                                                                                                                                   225
                                                                                                                                                                          " <span style='color: green'>" + "Status: Photo Taken!"
+ " </span > ";
         function \ getCookie(name) \ \{
138
              inction getCookie(name) {
var cookieValue = null;
if (document.cookie && document.cookie !== "") {
var cookies = document.cookie.split(";");
for (var i = 0; i < cookies.length; i++) {
var cookie = cookies[i].trim();
if (cookie substring(0 name length + 1) === 1
                                                                                                                                                  227
                                                                                                                                                                         ev.preventDefault();
140
                                                                                                                                                   228
                                                                                                                                                   229
                                                                                                                                                                      false
                                                                                                                                                                 ):
142
                                                                                                                                                   230
143
                                                                                                                                                   231
                       if (cookie.substring(0, name.length + 1) === name +
                                                                                                                                                   232
144
                                                                                                                                                                 clearphoto();
                                                                                                                                                  233
234
                                                                                                                                                            });
                          cookieValue = decodeURIComponent(cookie.substring(
145
                      name.length + 1));
                                                                                                                                                   235
                                                                                                                                                             function\ takepicture()\ \{
                                                                                                                                                                 canvasImg.style.display = "none";
const context = canvas.getContext("2d");
if (width && height) {
146
                                                                                                                                                   236
                          break:
147
                                                                                                                                                  237
148
                 }
                                                                                                                                                   238
                                                                                                                                                                     canvas.width = width;
canvas.height = height;
149
                                                                                                                                                   239
                                                                                                                                                   240
             return cookieValue;
150
                                                                                                                                                  \frac{241}{242}
                                                                                                                                                                     context.drawImage(video,\ 0,\ 0,\ width,\ height);
151
         }
        function sendPicData(data) {
  let csrftoken = getCookie("csrftoken");
  let response = fetch("/capturePic/", {
    method: "post",
153
                                                                                                                                                  \frac{243}{244}
                                                                                                                                                                    const data = canvas.toDataURL("images/png");
photo.setAttribute("src", data);
154
155
                                                                                                                                                  245
                                                                                                                                                                     canvas.toBlob((blob) => {
  let loadingBtnPic = document.getElementById("
  loadingBtnPic");
156
                                                                                                                                                   246
                  body: data,
headers: { "X-CSRFToken": csrftoken },
157
                                                                                                                                                  247
158
159
              }).then((data) => {
  let loadingBtnPic = document.getElementById("
                                                                                                                                                  248
                                                                                                                                                                         loadingBtnPic.style.display = "block";
imageURL = URL.createObjectURL(blob);
160
                  loadingBtnPic");
loadingBtnPic.style.display = "none";
                                                                                                                                                  250
                                                                                                                                                                         downloadImage.setAttribute("href", data);
                                                                                                                                                                         sendPicData(blob);
                                                                                                                                                   251
161
162
                                                                                                                                                  252
                                                                                                                                                                 } else {
                  downloadImage.style.color = "inherit";
                 downloadImage.style.textDecoration = "none";
downloadImage.style.display = "inline";
downloadImage.style.display = "inline";
downloadImageContainer.style.display = "inline";
proceedPic.style.display = "inline";
164
                                                                                                                                                  254
                                                                                                                                                                     can vas Img. style. display = "none";\\
165
                                                                                                                                                            }
166
                                                                                                                                                  256
168
             });
169
                                                                                                                                                                              source-code/object_detection.py
170
         const width = 1280; // We will scale the photo width to this let height = 0; // This will be computed based on the input
                                                                                                                                                            # -*- coding: utf-8 -*-
"""[Diversified] Train_Object_Detection_model_TF2.ipynb
172
173
                                                                                                                                                       3
          let streaming = false;
                                                                                                                                                            Automatically generated by Colaboratory.
175
\frac{176}{177}
                 video = null;
                                                                                                                                                             Original file is located at
                                                                                                                                                                     https://colab.research.google.com/drive/1
CyHKmW2VMhHu00ViJOoAJfS69NT5iUoG
          let
                 canvas = null;
178
          let photo = null;
          let startbutton = null;
let startPic = document.getElementById("initiate");
let proceedPic = document.getElementById("proceedPic");
179
180
                                                                                                                                                             ## **SP ROADMAP**
181
                                                                                                                                                     10
                                                                                                                                                             Author: Jan Federico Coscolluela IV
          startPic.addEventListener("click", (ev) => {
183
184
185
             video = document.getElementById("video");
canvas = document.getElementById("canvas");
                                                                                                                                                             * Collect the dataset of images and label them to get their xml
                                                                                                                                                     13
                                                                                                                                                                           files
             photo = document.getElementById("photo");
startbutton = document.getElementById("startbutton");
186
                                                                                                                                                     14
187
                                                                                                                                                             * Install the TensorFlow Object Detection API.
                                                                                                                                                     15
188
189
              navigator.mediaDevices
                                                                                                                                                             * Generate the TFRecord files required for training. (need
                                                                                                                                                     17
190
                  .getUserMedia(constraintObj)
.then((stream) => {
                                                                                                                                                                         generate_tfrecord.py script and csv files for this)
191
                                                                                                                                                     18
                     inten((stream) => {
    video.srcObject = stream;
    recordingStatus.innerHTML =
    "<span style='color: red'>" + "Status: Currently Active
" + "</span>";
    video.srcObject = stream;
    recordingStatus.innerHTML =
    "<span>";
    video.srcObject = stream;
    recordingStatus.innerHTML =
    video.srcObject = stream;
    video.srcObject = stream;
    recordingStatus.innerHTML =
    video.srcObject = stream;
    video.srcObj
192
                                                                                                                                                     19
                                                                                                                                                            * Edit the model pipeline config file and download the pre-
193
                                                                                                                                                                         trained model checkpoint
194
                                                                                                                                                     20
                                                                                                                                                     ^{21}
                                                                                                                                                             * Train and evaluate the model.
195
                      video.play();
196
                                                                                                                                                     23
                                                                                                                                                            * Apply OCR to detected objects.
                  \operatorname{catch}((\operatorname{err}) = > \{
197
                                                                                                                                                     24
                      console.error ('An error occurred: ${err}');
                                                                                                                                                             \# **Initialization **
199
                                                                                                                                                     26
                                                                                                                                                            ## **1) Import Libraries**
200
201
              video.addEventListener(
                                                                                                                                                     28
                  "canplay",
(ev) => {
    if (!streaming) {
                                                                                                                                                     29
203
                                                                                                                                                     30
                                                                                                                                                            import os
                                                                                                                                                            import glob
import xml.etree.ElementTree as ET
204
                          height = video.videoHeight / (video.videoWidth / width
205
                                                                                                                                                     32
                                                                                                                                                             import pandas as pd
206
                                                                                                                                                            import tensorflow as tf import cv2
207
                           if (isNaN(height)) {
```

```
36 print (tf. __version__ )
                                                                                                                             122
                                                                                                                                             f.write(pbtxt_content)
 37
38
                                                                                                                             123
                                                                                                                                             print ('Successfully created label_map.pbtxt')
                                                                                                                             124
        """## **2) Mount drive and link your folder**""
                                                                                                                                    """## **8) Create train.record & test.record files **
Run the *generate_tfrecord.py* script to create *train.record*
 39
40
                                                                                                                             125
        from google.colab import drive
                                                                                                                             126
 \frac{41}{42}
        drive.mount('/content/gdrive', force_remount=True) !ln -s /content/gdrive/My\ Drive/ /mydrive
                                                                                                                                               and *test.record* files
 43
                                                                                                                             128
        """## **3) Clone the tensorflow models git repository & Install
 44
                                                                                                                            129
                                                                                                                                     !python \ /mydrive/Monixor/Detection/diversified/\\
                    TensorFlow Object Detection API**
                                                                                                                                                generate_tfrecord.py train_labels.csv label_map.pbtxt images/ train.record
        ,, ,, ,,
 45
                                                                                                                                     !python /mydrive/Monixor/Detection/diversified/
generate_tfrecord.py test_labels.csv label_map.pbtxt
 \frac{46}{47}
                                                                                                                             130
        !\, {\it git}\ \ {\it clone}\ \ --{\it q}\ \ {\it https://github.com/tensorflow/models.git}
        !protoc\ object\_detection/protos/*.proto\ --python\_out=.!cp\ object\_detection/packages/tf2/setup.py\ .
 48
                                                                                                                                                images/ test.record
                                                                                                                                    """## **9) Download pre—trained model checkpoint**

Download **ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu—8.tar.
    gz** into the ***data*** folder & unzip it.

A list of detection checkpoints for tensorflow 2.x can be found
    [here](https://github.com/tensorflow/models/blob/master
    /research/object_detection/g3doc/tf2_detection_zoo.md).
"""
 50
        !python -\mathbf{m} pip install .
                                                                                                                             132
        """## **4) Test the model builder**
 52
 53
54
        ,, ,, ,,
 55
        # testing the model builder
 56
                                                                                                                             135
        !python object_detection/builders/model_builder_tf2_test.py
 57
                                                                                                                             136
        """# **Workspace Setup**
                                                                                                                                     !wget http://download.tensorflow.org/models/object_detection/ tf2/20200711/ssd\_mobilenet\_v2\_fpnlite\_320x320\_coco17\_tpu
 58
                                                                                                                            137
 59
        ## **5) Unzip the *images.zip* and *annotations.zip* files into
 60
                                                                                                                                                -8.tar.gz
                  the *data* folder**
                                                                                                                             138
                                                                                                                                              -xzvf ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz
 61
                                                                                                                             139
                                                                                                                                    """ ## **10) Get the model pipeline config file, make changes to
 62
        !unzip /mydrive/Monixor/Detection/diversified/images.zip -{\rm d}.!unzip /mydrive/Monixor/Detection/diversified/annotations.zip
                                                                                                                                    "it and put it inside the *data* folder**
Edit the config file from ***/content/models/research/
object_detection/configs/tf2*** in colab and copy the
edited config file to the ***/mydrive/customTF2/data***
 63
 64
                                                                                                                             141
                    -d .
        """## **6) Create test_labels & train_labels**
 66
                                                                                                                                                folder.
                                                                                                                                    You can also find the pipeline config file inside the model
checkpoint folder we just downloaded in the previous step.
 67
68
        Divide annotations into test_labels (20%) and train_labels(80%).
                                                                                                                                   checkpoint folder we just downloaded in the previous step.

**You need to make the following changes:**

change ***num_classes*** to number of your classes.

change ***test.record*** path, ***train.record*** path &

***labelmap*** path to the paths where you have created
these files (paths should be relative to your current
working directory while training).

change ***fine_tune_checkpoint*** to the path of the directory
where the downloaded checkpoint from step 12 is.
 69
70
                                                                                                                             143
        !mkdir test_labels train_labels !ls annotations/* | sort -R \mid head -100 \mid xargs -I\{\} mv {} test_labels/
 71
                                                                                                                            145
 72
        !ls annotations/* | xargs -I{} mv {} train_labels/
                                                                                                                             146
        """## **7) Create the CSV files and the "label_map.pbtxt" file
                                                                                                                                    **change ***fine-tune.checkpoint.type*** with value **
classification ** or **detection** depending on the type..

* change ***batch.size*** to any multiple of 8 depending upon
the capability of your GPU.

(eg:— 24,128,...,512) .Mine is set to 64.

* change ***num.steps*** to number of steps you want the
                                                                                                                             147
        Run xml_to_csv script below to create ***test_labels.csv*** and ***train_labels.csv***
 77
                                                                                                                             148
                                                                                                                             149
        This also creates the ***label_map.pbtxt*** file using the
                                                                                                                             150
                   classes mentioned in the xml files.
                                                                                                                                               detector to train.
 81
                                                                                                                             152
        def \ xml\_to\_csv(path):
                                                                                                                                     \label{eq:content/models/research/object_detection/configs/tf2/ssd_mobilenet_v2_fpnlite_320x320\_coco17\_tpu-8.config / \end{substitute}
           classes\_names = []
 83
84
            xml_list = []
                                                                                                                                                mydrive/Monixor/Detection/mAP/data
 85
                                                                                                                            154
 86
87
            for xml_file in glob.glob(path + '/*.xml'):
                                                                                                                            155
                                                                                                                                    """## **11) Load Tensorboard**""
               tree = ET.parse(xml.file)
root = tree.getroot()
for member in root.findall('object'):
                                                                                                                            156
 88
89
                                                                                                                                     load\ tensorboard
                                                                                                                                     %tensorboard ——logdir '/content/gdrive/MyDrive/Monixor/
                                                                                                                             158
                  90
91
                                                                                                                                               Detection/diversified/training
                                                                                                                             159
 92
93
                                                                                                                             160 """# **Model Training**
                                                                                                                             161
                                                                                                                                     ## Navigate to the ***object_detection*** folder in colab vm
 94
95
                                  member[0].text,
int(member[4][0].text),
                                                                                                                             162
                                                                                                                             163
 96
97
                                  int (member[4][1].text),
int (member[4][2].text),
                                                                                                                             164
                                                                                                                                    """## 12) Training using model_main_tf2.py
                                                                                                                             165
           int(member[4][2].text),
    int(member[4][3].text))
    xml_list.append(value)

column_name = ['filename', 'width', 'height', 'class', 'xmin',
    'ymin', 'xmax', 'ymax']

xml_df = pd_DataFrame(xml_list, columns=column_name)

classes_names = list(set(classes_names))

classes_names sort(
 98
 99
                                                                                                                                    Here **{PIPELINE_CONFIG_PATH}** points to the pipeline
                                                                                                                             167
                                                                                                                                               config and **{MODEL_DIR}** points to the directory in which training checkpoints and events will be written.
100
101
                                                                                                                             168
                                                                                                                                    For best results, you should stop the training when the loss is less than 0.1 if possible, else train the model until the loss does not show any significant change for a while.
                                                                                                                             169
102
103
            classes\_names.sort\left(\right)
104
            return xml_df, classes_names
                                                                                                                                               The ideal loss should be below 0.05 (Try to get the loss as low as possible without overfitting the model.)
105
106
        for label_path in ['train_labels', 'test_labels']:
           image_path = os.path.join(os.getcwd(), label_path)
xml_df, classes = xml_to_csv(label_path)
xml_df.to_csv(f'{label_path}.csv', index=None)
print(f'Successfully converted {label_path} xml to csv.')
                                                                                                                            170
107
109
                                                                                                                             172
                                                                                                                                    !python model_main_tf2.py --pipeline_config_path=/mydrive/
Monixor/Detection/diversified/data/
110
                                                                                                                                               sed_mobilenet.v2_fpulite_320x320_coco17_tpu-8.config model_dir=/mydrive/Monixor/Detection/diversified/
111
        label\_map\_path = os.path.join("label\_map.pbtxt") \\ pbtxt\_content = ""
113
                                                                                                                                                training -- alsologtostderr
                                                                                                                                     """## 13) Export inference graph
        for i, class_name in enumerate(classes): pbtxt\_content = (
115
                                                                                                                             174
                   \begin{array}{ll} pbtxt\_content \\ + "item \{\{ \ n \quad id: \{0\} \ n \quad name: '\{1\}' \ n\} \} \ n \ n'' . \\ format(i+1, class\_name) \end{array} 
117
                                                                                                                             176
                                                                                                                                    !python exporter_main_v2.py —-trained_checkpoint_dir=/
mydrive/Monixor/Detection/diversified/training —-
pipeline_config_path=/content/gdrive/MyDrive/Monixor/
Detection/diversified/data/
118
       pbtxt_content = pbtxt_content.strip() with open(label_map_path, "w") as f:
120
                                                                                                                                                ssd\_mobilenet\_v2\_fpnlite\_320x320\_coco17\_tpu-8.config \ --
```

```
output_directory /mydrive/Monixor/Detection/diversified/
178
       """# **Object Detection & OCR**
179
                                                                                                                               detection_model>"
180
                                                                                                              266
181
       \#\# 14) Test Object Detection
                                                                                                              267
                                                                                                                          detect_fn=tf.saved_model.load(PATH_TO_SAVED_MODEL)
                                                                                                               268
182
                                                                                                                         \label\_map\_util. \\ create\_category\_index\_from\_labelmap("<path/to/label\_map\_pbtxt>",use\_display\_name=True)
183
                                                                                                              269
184
        ! wget\ https://freefontsdownload.net/download/160187/arial.zip
185
       !unzip arial.zip -d
       !sed -i "s/font = ImageFont.truetype('arial.ttf', 50)/font = ImageFont.truetype('arial.ttf', 50)/" visualization_utils .
                                                                                                              \frac{271}{272}
187
                                                                                                                         {\tt def~load\_image\_into\_numpy\_array(path):}
                                                                                                              273
                                                                                                                               return np.arrav(Image.open(path))
189
       import tensorflow as tf
                                                                                                               275
                                                                                                                         image_np = load_image_into_numpy_array(full_path)
        import time
                                                                                                               276
       import numpy as np
import warnings
                                                                                                                         input_tensor = tf.convert_to_tensor(image_np)
191
                                                                                                              277
                                                                                                              278
279
                                                                                                                         input_tensor = input_tensor[tf.newaxis, ...]
detections = detect_fn(input_tensor)
        warnings. filterwarnings ('ignore')
193
       from PIL import Image
                                                                                                               280
       from google.colab.patches import cv2_imshow from google.colab.patches import label_map_util from object_detection.utils import visualization_utils as
195
                                                                                                               281
                                                                                                                         image\_np\_with\_detections = image\_np.copy()
                                                                                                               282
                                                                                                                           mage = image_np_with_detection
197
                                                                                                               283
                                                                                                              \frac{284}{285}
                                                                                                                         {\tt num\_detections} = {\tt int}({\tt detections.pop}({\tt 'num\_detections'}))
                  viz_utils
198
       import matplotlib.pyplot as plt
                                                                                                                         detections = {key: value[0, :num_detections].numpy()
                                                                                                              286
287
                                                                                                                                               for key, value in detections.items()}
       filename = "test"
200
                                                                                                                          detections [' detection_classes '] = detections ['
                                                                                                              288
       IMAGE_SIZE = (10, 8) # Output display size as you want PATH_TO_SAVED_MODEL="/mydrive/Monixor/Detection/diversified/data/inference_graph/saved_model" print ('Loading model...', end="')
202
                                                                                                                                detection_classes ']. astype(np.int64)
203
                                                                                                              289
                                                                                                                         scores = list( filter (lambda x:x> min_score, detections['
    detection_scores ']) )
boxes = detections['detection_boxes '][: len(scores)]
                                                                                                              290
204
                                                                                                              291
205
       # Load saved model and build the detection function detect_fn=tf.saved_model.load(PATH_TO_SAVED_MODEL)
                                                                                                              292
293
                                                                                                                          classes = detections['detection_classes'][:len(scores)]
206
207
                                                                                                                          for idx, box in enumerate(boxes):
roi = box*[imgHeight, imgWidth, imgHeight, imgWidth]
region = image[int(roi[0]):int(roi[2]), int(roi[1]):int(roi
208
       print ('Done!')
                                                                                                              294
209
                                                                                                               295
       \label\_map\_util. \\ create\_category\_index\_from\_labelmap("<path/to/label\_map) \\
210
                                                                                                              296
                                                                                                                            reader = easyocr.Reader(['en'], verbose=False)
result = reader.readtext(region, detail=0, min_size=20,
                 .pbtxt>",use_display_name=True)
                                                                                                               297
                                                                                                               298
212
       def load_image_into_numpy_array(path):
                                                                                                                               _{\rm paragraph=True)}
                                                                                                               299
                                                                                                                            if detections [' detection_classes '][idx] == 1:
print("bloodpressure: ", result)
elif detections [' detection_classes '][idx] == 2:
print("heartrate: ", result)
elif detections [' detection_classes '][idx] == 3:
print("map: ", result)
elif detections [' detection_classes '][idx] == 4:
print("ovyvensaturation: ", result)
214
              {\tt return\ np.array}({\tt Image.open(path)})
                                                                                                               300
                                                                                                               301
      image_path = "<path/to/image>"
216
                                                                                                               302
                                                                                                               303
       \begin{split} & image\_np = load\_image\_into\_numpy\_array(image\_path) \\ & input\_tensor = tf. convert\_to\_tensor(image\_np) \\ & input\_tensor = input\_tensor[tf.newaxis, ...] \\ & detections = detect\_fn(input\_tensor) \end{split}
218
                                                                                                               304
                                                                                                               305
220
                                                                                                               306
                                                                                                                            elif detections ['detection_classes'][ldx] == 4:
print("oxygensaturation: ", result)
elif detections ['detection_classes'][idx] == 5:
print("pulserate: ", result)
elif detections ['detection_classes'][idx] == 6:
print("respiratoryrate: ", result)
                                                                                                              307
308
222
       {\tt num\_detections} = {\tt int}({\tt detections.pop}({\tt 'num\_detections'}))
                                                                                                               309
       224
                                                                                                              310
                                                                                                                             else:
226
                                                                                                               312
227
       detections [' detection_classes '] = detections [' detection_classes
                                                                                                               313
                                                                                                                               print("temperature: ", result)
                 ']. astype(np.int64)
                                                                                                              314
228
                                                                                                                          viz_utils .visualize_boxes_and_labels_on_image_array(
229
       image_np_with_detections = image_np.copv()
                                                                                                               316
                                                                                                                                  image_np_with_detections.
                                                                                                                                  detections ['detection_boxes'],
detections ['detection_classes'],
detections ['detection_scores'],
                                                                                                              317
318
\frac{230}{231}
        viz_utils .visualize_boxes_and_labels_on_image_array(
                tils . Visualize_boxes_and_labels_c
image_np_with_detections,
detections ['detection_boxes'],
detections ['detection_classes'],
detections ['detection_scores'],
232
                                                                                                               319
                                                                                                                                  category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
233
                                                                                                               320
234
                                                                                                              \frac{321}{322}
235
                category_index,
use_normalized_coordinates=True,
                                                                                                                                   line_thickness = 3,
skip_labels = True, #removes lables
236
                                                                                                               323
237
                                                                                                               324
                 max_boxes_to_draw=200, line_thickness = 3,
                                                                                                                               min_score.thresh=min.score, # Adjust this value to set the minimum probability boxes to be classified as True
238
                                                                                                               325
239
                                                                                                                         agnostic_mode=False)
plt.figure(figsize=IMAGE_SIZE, dpi=200)
plt.axis("off")
plt.inshow(image_np_with_detections)
                min_score_thresh=0.4, # Adjust this value to set the minimum probability boxes to be classified as True
240
                                                                                                              326
                                                                                                               327
241
       agnostic_mode=False)
# %matplotlib inline
                                                                                                               328
                                                                                                               329
242
243
       plt.figure(figsize =IMAGE_SIZE, dpi=200)
plt.axis("off")
                                                                                                               330
                                                                                                                          plt.show()
                                                                                                               331
                                                                                                                      full-path = "<path/to/test.image>"
img = cv2.imread(full-path)
img.width = img.shape[1]
img.height = img.shape[0]
245
        plt.imshow(image_np_with_detections)
                                                                                                              332
246
                                                                                                               333
247
                                                                                                              334
       """## 16) Test Optical Character Recognition""
249
                                                                                                                      ocr_detection(full_path, img_width, img_height, 0.4)
       pip install easyocr
251
                                                                                                                                      source-code/extract_frame.py
253
        import torch.nn as nn
        import torch.nn.functional as F
       import torchvision
255
                                                                                                                      \# Frame Extraction Script
        import torchvision.transforms as transforms
257
       import easyocr
                                                                                                                 3
                                                                                                                     import os
       import cv2 #opencv
                                                                                                                      import cv2
259
                                                                                                                      import glob
from pathlib import Path
       from matplotlib import pyplot as plt
       import numpy as np
from google.colab.patches import cv2_imshow
                                                                                                                      import time
261
```

```
def getFrame(sec,file_name,count, short_name):

vidcap = cv2.VideoCapture(file_name)

vidcap = cv2.VideoCapture(file_name)

vidcap.set(cv2.CAP_PROP_POS_MSEC,sec*1000)

hasFrames,image = vidcap.read()

if hasFrames,image = vidcap.read()

cv2.imwrite(r"<path>"+short_name+"_"+str(count)+".

jpg", image)  # save frame as JPG file

print(short_name+str(count))

print(short_name+str(count))

return hasFrames

print(short_name)  # apply getFrame to all videos in a folder

for filename in glob.iglob(f'{video_folder_path}/*'):

sec = 0

frameRate = 2 #//it will capture image every 2 seconds

count=1

if filename.endswith("<video_file_extension>"):

nameNoExtension = Path(filename).stem

success = getFrame(sec,filename,count, nameNoExtension)

while success:

count = count + 1

sec = sec + frameRate

sec = sec + frameRate

sec = round(sec, 2)

success = getFrame(sec,filename,count,
nameNoExtension)
```

XI. Acknowledgment

I would like to express my sincere gratitude to my adviser, Sir Marasigan, for his invaluable guidance and support throughout the duration of this project. His constructive feedbacks and insights were instrumental in shaping the direction and progress of my work.

I am also deeply thankful to Doc Aljibe and Doc Marcelo for their mentorship and for providing me with the opportunity to engage in a meaningful project with practical applications in healthcare. Their expertise in the medical field and dedication to fostering a stimulating learning environment have been pivotal in shaping my understanding and passion for the subject matter.

Furthermore, I would like to extend my heartfelt appreciation to my mom for being my go-to support system since college day 1. Her belief in my abilities has been a constant source of motivation, and for that I am grateful. To my family, whom I hold in the highest regard, this accomplishment is equally yours as it is mine.