UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

LEAFSNAP PH: A MOBILE APPLICATION FOR
IDENTIFYING LEAF SAMPLES OF PHILIPPINE PLANTS

A special problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Marbert John C. Marasigan
May 2016

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser | No

Available only to those bound by confidentiality agreement | No

ACCEPTANCE SHEET

The Special Problem entitled “LeafSnap PH: A Mobile Application for
Identifying Leaf Samples of Philippine Plants” prepared and submitted by Marbert
John C. Marasigan in partial fulfillment of the requirements for the degree of Bachelor
of Science in Computer Science has been examined and is recommended for accep-
tance.

Marvin John C. Ignacio, M.Sc.(candidate)
Adviser

EXAMINERS:
Approved Disapproved
1. Gregorio B. Baes, Ph.D. (candidate)
2. Avegail D. Carpio, M.Sc.
3. Richard Bryann L. Chua, Ph.D.(candidate)
4. Perlita E. Gasmen, M.Sc. (candidate)
5. Ma. Sheila A. Maghoo, M.Sc.
6. Vincent Peter C. Magboo, M.D.; M.Sc.

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Ma. Sheila A. Magboo, M.Sc. Marcelina B. Lirazan, Ph.D.
Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Leonardo R. Estacio Jr., Ph.D.
Dean
College of Arts and Sciences

Abstract

The task of identifying plants is time-consuming even for botanists. LeafSnap PH is a
mobile application that will aid users in identifying plant species through their leaves.
The system will allow the user to search the database, browse the list of collected leaf
samples, and take pictures of leaves and analyze them. The leaf feature that will be
extracted is its shape using contour points, and this will be used in identifying the
leaf using support vector machine.

Keywords: leaf recognition, mobile application, support vector machine

Contents

Acceptance Sheet i
Abstract ii
List of Figures v
I. Introduction 1
A. Background of the Study 1

B. Statement of the Problem 3

C. Objectives of the Study 3

D. Significance of the Project 4

E. Scope and Limitations 4

F. Assumptions 4

II. Review of Related Literature 6
III. Theoretical Framework 9
A. Leaf Recognition. 9

B. Image Classification, 13

C. Computer Vision 14

1. Expectation-Maximization Algorithm 14
Histograms of Curvature over Scale 15

D. Machine Learning o oo 16

1. Support Vector Machine 17

E. Mobile Application o 20

1. Android Software Development Kit 20

IV. Design and Implementation 21
A. UseCase Diagram 21

il

VI.

VII.

VIII.

IX.

XI.

B. Entity-Relationship Diagram
C. Data Dictionary Lo
D. Activity Flow Diagram
E. System Architecture oo
1. LIBSVM
2 OpenCV
F. Technical Architecture
1 Minimum System Requirements
Results

A. Splash Screen
B. Search
C. Gallery
Discussions

Conclusions

Recommendations

Bibliography

Appendix

A. Source Code
Acknowledgment

v

27
27
27
29

34

36

37

38

43
43

62

List of Figures

10
11
12

13
14
15

16
17
18
19
20
21
22
23
24

A Simple Dichotomous Key 9
Types of Leaf Arrangement on Stem 10
Types of Leaf Arrangement on Stem 10
Types of Leaf Shapes 11
Leaf Apex Shapes 11
Leaf Base Shapes 11
Leaf Margin Shapes 12
Conifer Type Leaf Venations 12
Ginkgo Leaf oo 13
Parallel Venation in Monocot Leaf 13
Venation of Dicot Leaves 13

Expectation Maximization on a Leaf Sample Over The Saturation-

Value Space L 15
A Linearly Separable Dataset 17
A Linearly Nonseparable Dataset 18

The Data in R* With a Linear Separating Hyperplane (Left) and the

Data Transformed Back to R? Along With the Hyperplane. 18
Use Case Diagram 21
Entity-Relationship Diagram 22
Activity Flow Diagram 24
Alloy Splash Screen 27
Search Window oo 27
Search Window After Displaying Search Results 28
Alert After Database Is Successfully Downloaded 28
Gallery Window 29
Gallery Window When User Taps an Item 29

25
26
27
28
29
30
31

Prompt When A User Doubletaps an Item 30
Activity Indicator for Processing Identify Request 30
Option Dialog Displaying the 5 Closest Choices 31
Prompt When User Attempts to Identify Image Without a Connection 31
Prompt for Deleting an Item 32
Prompt When User Attempts to Identify Image With a Connection . 33

Prompt When An Image is Captured Without a Connection 33

vi

I. Introduction

A. Background of the Study

One of the most time consuming tasks a botanist faces is the identification of a
plant. They would usually use the leaf, flower, stem, fruit, etc. to extract discriminat-
ing features[l] . A key is ”a device in which successive choices between contrasting
statements are followed until the correct name is found by the process of elimina-
tion.” A modern key is constructed in a dichotomous fashion, which means that a
statement can only be either true or false[2]. This would require a long list given the

approximate number of 400000 known plant species around the world][3].

Currently, there has been a lot of work on automating plant recognition [1, 5, 6, 7].
Wang et al. used the centroid-contour distance curve in finding the leaf shape[1].
Wu et al. extracted the leaf shape (using slimness, roundness, solidity, and moment
invariants), leaf dent, and leaf vein and used a feed-forward back-propagation neural
network to identify a leaf[5]. Du et al. uses the Douglas-Peucker approximation to
get the polygonal approximation of the leaf and modified dynamic programming for
shape matching[0]. Kumar et al. used histograms of curvature to obtain the shape
of the leaf and used the Nearest Neighbors Algorithm to identify a list of candidates
for the leaf[7]. The first three were implemented in a PC [4, 5, 6]. Only Kumar et al.

was able to develop a mobile application for leaf identification called LeafSnap[7].

In iOS, Leafsnap is an application published in the App Store for users to be able
to identify plant species using images of leaf samples[3, 9, 10]. A picture of the leaf is
taken by a user via the smartphone’s camera and the image is uploaded to a server,
and the server responds with a list of possible plants based on the leaf’s shape. In
the server, a Support Vector Machine (SVM) is used to classify an image as leaf or

non-leaf. Once the image has been identified as a leaf, the image will undergo initial

segmentation using Expectation-Maximization to separate the foreground and the
background. False-positive regions are removed and the leaf stem is also removed.
Histograms of curvature are computed and species identification is then done by the

nearest neighbors[7].

The main feature of LeafSnap is plant identification by taking a picture of a leaf
using a smartphone’s camera. The application can also handle textual searches of the
common or scientific name of a leaf in its database. LeafSnap can also locate nearby
plants in a map by a database, where users send information (geographical location,
name of plant identified, etc.) to the server. The application also has a game where
you match a certain leaf to its common or scientific name. Currently, the developers
of Leafsnap are working on an Android version of the app, yet there is still no news on
its release[7, 11]. Although, there are theses on an Android app similar to Leafsnap,
but none of it has been released in the Google Play Store[l2, 13]. There are two
datasets of Leafsnap: one covers the trees of the Northeast United States[l 1], which
is found in the original Leafsnap app|¥, 9], the other covers the trees found in the
United Kingdom|!l 1], which is found in the Leafsnap UK app[l0]. Currently, there is

no local version of Leafsnap|[11].

According to a forecast, by the year 2015, 65.8% of the world will have own a
smartphone[l1]. Of the 2.03 billion smartphone users[l4], 65% of them have an
Android-powered smartphone[15]. In the Philippines, Android-powered smartphone
sales are at 91%[10]. This makes Android a good platform to develop apps, if app

accessibility, whether in a local or global scale, is considered here.

The Philippine Plant Information System (PPIS) contains information on the plant
collections and specimens from the different herbaria in the Philippines collected,

aggregated and publicly shared. The PPIS allows users to search, store and share

Philippine plant information. The PPIS uses the Darwin Core standard to store the

information.

The mobile application is part of a project along with the Philippine Plant Infor-

mation System.

B. Statement of the Problem

Botanists, when identifying plant species, are always on the field and thus mobility
is needed. Smartphones can provide the mobility botanists need, but not all botanists
have an iPhone or iPad. With the absence of an Android-based, leaf recognition
mobile application published in the market, there is a need to bring leaf recognition
to Android users. The challenge is to provide that application with as much tools as
needed to botanists given the limitations of a smartphone. There is also an absence
of a mobile application for identifying Philippine plants or even a mobile database

for Philippine plants.

C. Objectives of the Study
1. Create a mobile application that allow users to:

(a) Take a picture of a leaf. The image is stored in the device’s file storage,

then:

i. If the device has an internet connection and the user chooses to proceed
with identification, the image will be sent to the server. The server
will extract features, and use the extracted features to identify the
leaf with a trained model, and then the server will return the top five
(5) predictions. The user will then choose which label is the closest,
and the leaf’s common name and scientific name will be stored to the

device’s internal database.

ii. If the device has no internet connection or the user chooses not to
proceed with identification, the image is still stored in the file storage

and can be identified at a later time.
(b) Re-identify a leaf that has been previously identified.
(c) Browse the gallery of images stored in the device.

(d) Do a textual search of plants by their common or scientific name in the

database.
2. Create a server that allows the AI expert to:

(a) Extract features from images of JPEG format.

(b) Train the support vector machine (SVM) using LIBSVM.

D. Significance of the Project

The system developed in Android would be able to provide a useful tool for
botanists in the field to identify leaf samples. Even without a broad knowledge of

plants, this would make the identification process less time-consuming.

E. Scope and Limitations

1. The project’s database would only include local plants.
2. Leaf identification would only be limited to leaf samples in the database.
3. Leaf samples and those for identification are simple leaves.

4. Accuracy would depend on the trained model.

F. Assumptions

1. The user doesn’t take a picture of any other part of the tree, only the leaf.

4

. The leaf sample is placed on a white background.
. The leaf sample is not tampered, torn, crumpled or distorted in any way.
. The leaf sample is in its mature stage.

. The leaf’s orientation is upright with respect to the portrait orientation of the

smartphone.
. The leaf no longer contains the leaf stem.

. The leaf image is bright (i.e. taken with a well-lit background), but should not

be taken with the device’s camera flash.

II. Review of Related Literature

Leafsnap is a mobile application for the identification of plant species through leaf
recognition. It is currently deployed in iOS-run devices and an Android version of
the application is still in the process of development. Currently, its dataset includes
all 184 tree species of the Northeastern United States. The system is composed
of a backend server, where front-end clients would send input images accepted by
the server for recognition. The front-end application, a mobile application, provides
clients with browsing, textual searching, and sorting functions. Images captured by
clients through the mobile phones camera are sent to the server for recognition and a
response with the most likely candidates are sent to the phone for the user to identify

the captured leaf image|[7].

In the LeafSnap application, the image is first classified as a leaf or non-leaf using a
support vector machine. If an image is recognized as a leaf, the process will proceed.
If, however, the image is recognized as a non-leaf, the application will inform the user
that it has captured either something that is not a leaf or a leaf but doesn’t meet the
standards (a leaf placed on a white background with no clutter) and the user will be
asked to take another picture. After the classification, the leaf image will undergo
preprocessing, where the original leaf image will be converted to the hue-saturation-
value color space. However, hue is not useful because the background would often
have greenish tinge, therefore, only the saturation and value color space will be used
in segmentation. Expectation-Maximization will be used for the initial segmentation.
Next, false positive regions and the leaf stem is removed. This comprises the segmen-
tation part. The feature that is to be extracted is the leaf shape. First, curvature
values are computed using either the area measure or arclength measure. Using these
measures, the contour is extracted and the curvature image is produced. Histograms

are then taken at each row of the curvature image and this forms the Histograms of

Curvature over Scale (HoCS) feature.

A lot of work has been done on leaf recognition and shape extraction. Munisami
et al.[17] uses shape features derived from the aspect ratio, white area ratio, perime-
ter to area, perimeter to hull, hull area ratio, distance map x, distance map y, and
centroid radial distrance measurements. These ratios are then used to compute for
the Euclidean distances with those of the database. The 3 closest results are then
returned using the k-nearest neighbors classifier. Satti et al.[18] extracted three types
of shape features namely, geometric features, morphological features, and tooth fea-
tures. The color feature and shape features are then used in identifying a leaf. The
study found that Artificial Neural Networks are more accurate, with an accuracy of
about 93%), than the k-Nearest Neighbors algorithm. Chaki and Parekh[19] compared
the Moments-Invariant (MI) model and Centroid-Radii (CR) model of extracting leaf
shape features. It is found that combining the MI and CR features would yield a
higher accuracy. Larese[20] et al. used solely leaf venation to identify leaves of three
legumes. In getting the veins, the researchers used unconstrained hit-or-miss trans-
form to be able to extract the vein pattern. It is reported to have a higher accuracy
compared to manual classification. Bai et al.[2]] decomposed shapes into contour
fragments and aggregated them "to a compact vector of limited dimension to stand
for a shape” called Vector of Aggregated Contour Fragments (VACF). Tt is found that
using VACF yields higher accuracy compared to skeleton paths, class segment set,
and contour segments, which aren also shape-classification algorithms. It is reported
that VACF saves time and memory and useful for mobile development. Ehsanirad[2?]
used texture features to identify a leaf. The researcher compared the gray level co-
occurence matrices (GLCM) algorithm and the principal component analysis (PCA)
algorithm. The GLCM is a popular texture analysis algorithm. The PCA is based
on the eigenspace approach. The GLCM yielded a 79% accuracy, while the PCA had

about 98%.

The support vector machine (SVM) was first proposed by Vapnik[23]. It is ” a
computer algorithm that learns by example to assign labels to objects.” [24] In the
paper of Srivastava and Bhambhu, it is reported that SVM (with the Radial Basis
Function or RBF kernel) gives more accurate results than other classifiers used[23].
The training set of the data are projected in a multiple or infinite dimensional space
and the SVM finds a linear separating hyperplane with the maximal margin[25].
(Classification is done by projecting the test data to the multiple or infinite dimensional

space and checked in which side of the space it is in.

III. Theoretical Framework

A. Leaf Recognition

Plant recognition is done by many ways. The easiest way is to ask an expert who
already knows. Another way is to consult picture books containing images of plants
and its different parts like the leaf, twig, flower, etc. However, this is time-consuming,
since one has to cross-examine the leaf to the images one-by-one. Another way of
identifying plants is by using keys. Keys are devices where successive choices between
contrasting statements are followed until the correct name of the plant is found. This
is done by the process of elimination. Modern keys are dichotomous, meaning, each
statement only has two choices. An example of a dichotomous key is found in Figure

1[26].

A Simple Dichotomous Key: Example

1a. Plastic bag packaging 1b. Hard tube packaging

2a. Chips have ridged surface - goto 3 Za. Chips orange color
2b. Chips have non-ridged surface- go to 4 = Pringles Cheddar Cheese
2b. Chips have other color-go to 3

3a. Chips orange color = Ruffles BBQ

3b. Chips tan color = Ruffles Original 3a. Chips solid tan

with no speckles = Pringles Original
4a. Orange color = Lays BBQ 3b. Chips tan w/ greenish speckles = Lays
4b. Tan color = Lays Classic Stax Sour Cream and Onion

Figure 1: A Simple Dichotomous Key

In identifying leaves, keys can also be used. Leaves can be classified in may ways[27].

By leaf arrangement on stems, leaves can be classified into four types as shown in

Figure 2[27]: Alternate, Opposite, Whorled, and Rosette.

Alternate Opposite Whorled

Figure 2: Types of Leaf Arrangement on Stem

A leaf can also be classified by leaflet arrangement on petiole as shown in Figure
3[27]. These are, simple or compound. Under compound, a leaf can be pinnately

compound, palmately compound, or doubly compound.

Simple Pinnately Palmately Doubly
Compound Compound Compound

Figure 3: Types of Leaf Arrangement on Stem

A leaf can also be classified by its shape and it is the primary tool in plant identifica-
tion. Common shapes are oval, lanceolate, elliptical, spatulate, cordate, oblanceolate,

obcordate, oblong, linear, peltate, cuneate, reniform, and hastate as shown in Figure

4p7).

Leaf apex (or the tip) and base can also be used in identification. Leaf apex shapes
can come in acuminate, acute, cuspidate, emarginate, mucronate, obcordate, obtuse,
or truncate as shown in Figure 5[27]. Leaf base shapes can be actue, auriculate,

cordate, hastate, oblique, rounded, sagittate, or tumcate as shown in Figure 6[27].

10

49089

owval lanceolate obowvate elliptical spatulate

VY @ 8|

cordate oblanceolate obcordate oblong linear

R 7 S A

peltate cuneate reniform hastate

(T
N

Figure 4: Types of Leaf Shapes

& &4N

acuminate acute cuspidate emarginate

Mucronate obcordate obtuse truncate

Figure 5: Leaf Apex Shapes

T P PR

auriculate cordate hastate

FYTT

oblique rounded sagittate tumcate

Figure 6: Leaf Base Shapes

Another tool in leaf identification is its margin. Shapes of leaf margins can be
crenate, incised, sinuate, undulate, lobed, entire, serrate, serrulate, double serrate, or

dentate as shown in Figure 7[27].

11

P00 &

crenate incised sinuate undulate lobed

AL

entire serrate serrulate doubly serrate dentate

Figure 7: Leaf Margin Shapes

Leaves can also be classified into four types: conifer, ginkgo, monocot, and dicot.

These four types can be classified further by their leaf venation.

Conifer types can be classified into four types based on their venation namely, scale-
like, awl-shaped, linear-shaped, and needle-like as shown in Figure 8[27]. Needle-like

leaves can be single, bundled, or clustered.

%/

scale-like awl linear single bundled clustered
Shaped shaped needles needles needles

Figure 8: Conifer Type Leaf Venations

The ginkgo type has a dichotomous venation shown in Figure 9[27]. These are

found in Ginkgo trees.

Monocot type plants like grasses, tulips, etc. have a parallel venation as shown in

Figure 10[27], while Dicot type plants are net-veined. Net-veined plants can either

12

Figure 9: Ginkgo Leaf

have a pinnate venation or a palmate vennation as shown in Figure 11[27].

pinnate palmate
wenation wenation

Figure 11: Venation of Dicot Leaves

B. Image Classification

According to [28], “Classification includes a broad range of decision-theoretic ap-
proaches to the identification of images (or parts thereof). All classification algorithms
are based on the assumption that the image in question depicts one or more features
and that each of these features belongs to one of several distinct and exclusive classes.”
In image classification, the numerical properties of image features are analyzed and
these are classified into different categories. Classification algorigthms usually have
two steps: training and testing. In the training step, the characteristic features of
images are extracted, and based on these, a training class (which contains unique
descriptions of each category) is created. In the test step, the training class is used

to classify image features. Training classes should contain these three qualities:

13

1. Independence: A change in the description of a training class should not change

the value of another
2. Discriminability: Different image features should result in different descriptions

3. Reliability: All image features within a training group must share the common

definitive characteristics of that group

C. Computer Vision

”Computer vision is the science of endowing computers or other machines with
vision, or the ability to see.” Computer vision has two goals: to make things work
(engineering), and to understand intelligence. In the engineering approach, computer
vision is used to solve real-world problems. Examples are leaf recognition and facial
recognition. Some are also in to understanding human intelligence by computer vision.
Researchers are trying to build something that works like the human brain in order
to understand how human brains store memory, learn, etc. Computer vision has
applications in Optics, Photography and Photogrammetry, Computer Graphics and
Art, Neuroscience and Physiology, psychology and Psychopysics, and Probability,

Statistics and Machine Learning. [29]

1. Expectation-Maximization Algorithm

The Expectation-Maximization (EM) Algorithm is an iterative procedure to get
the Maximum Likelihood Estimate (MLE) with hidden or missing data. The first
step is the E-step or the expectation step. The missing data are estimated given the
observed data and current estimate of the modeled parameters. The second step is the
M-step or the maximization step. In this step, the likelihood function is maximized
which assumes that the missing data are known. The likelihood is increased at each

iteration and thus, convergence is assured[30]. LeafSnap uses the saturation and value

14

fields in the HSV space for Expectation-Maximization [7]. Here, the EM algorithm
is used to separate the leaf from the background. The probabitlity distribution of a
pixel is modeled by the sum of two Gaussians. The Gaussians have a mean of i and
a shared covariance of ». Each gaussian are given weights of % Basically, what the
EM algorithm here does is to separate the leaf from the background. Figure 12[7]
shows a leaf image in RGB (a), then it is converted to the saturation-value space (b),

and then it is segmented using the EM algorithm in (c).

(a) (k) ()

Figure 12: Expectation Maximization on a Leaf Sample Over The Saturation-Value
Space

2. Histograms of Curvature over Scale

Functions of the curvature at a boundary point are computed using integral mea-
sures. ”One measure in 2D is the area of intersection of a disk centered at a contour
point and the inside of the contour”. Another is the arclength, which is the fraction
of the disk’s perimeter inside the contour. The histograms of curvature values at each
scale are computed and then concatenated to form the Histograms of Curvature over
Scale (HoCS)[7]. In obtaining the leaf shape, we first get its curvature image. Each
row in the curvature image represent the area/arclength (whichever approach) over a
radius r. Radius increases as the row number goes up. Each column in the curvature
image represent a contour point. To obtain the HoCS, we calculate a histogram at
each row of the histogram. These histograms form the HoCS, where the scale is the

radius of the circle.

15

D. Machine Learning

Machine Learning is a broad field and is quickly expanding, creating more subfields
and types of Machine Learning[31]. According to [32], “Machine Learning has be-
come one of the mainstays of information technology and with that, a rather central,
albeit usually hidden, part of our life. With the ever increasing amounts of data be-
coming available there is good reason to believe that smart data analysis will become
even more pervasive as a necessary ingredient for technological progress.” One of the
recent definitions of Machine Learning was given by Tom Mitchell in 1997: “A com-
puter program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T', as measured by P, improves
with experience E.[31] Machine Learning algorithms consist these three things: a
set of models to look through, a way to test the model, and a way to find a good
model by undergoing only a few tests[33]. There are three types of Machine Learning

algorithms|[31]:

1. Supervised Learning: This algorithm consist of dependent variables (or out-
comes) which are predicted from a given set of independent variables (or pre-
dictors). From these set of variables, we want to create a function that will
map the inputs to the desired output. This training continues until it reaches
a certain level of accuracy. Examples of supervised learning are Regression,

K-Nearest Neighbors, etc.

2. Unsupervised Learning: This algorithm does not have a set of variables to
predict, instead the population is clustered or grouped. Examples are K-Means

and the Apriori Algorithm.

3. Reinforcement Learning: In this algorithm, the machine is exposed to an envi-
ronment where it trains itself continually by trial-and-error. The machine learns

through past experience and gather the best knowledge, then tries to make the

16

best decisions. An example would be the Markov Decision Process.

1. Support Vector Machine
A support vector machine (SVM) is a supervised learning technique applicable in

classification and regression [35]. Linear SVM is a binary classifier.

According to [36], Linear SVM aims to find the optimal separation between two
classes by using a hyperplane. However, not all datasets can be linearly divided like

that in Figure 13[30].

SVM Decision Boundary, Linear Kernel (1.0 accuracy, C=1.0)

-2

-4

2 0 2 7 5

Figure 13: A Linearly Separable Dataset

Figure 14[36] shows an example of a dataset that is not linearly separable.

Ideally, an ellipse would be the best to separate the two classes. However, SVM
only generates a linearly separating hyperplane. Therefore, in R?, it is impossible to
“perfectly” fit a linear function that would separate the two classes. However, when

the graph in Figure 14[30] is projected in R3, the data becomes linearly separable

17

Dataset: N=800, '0": 0.71375 '1": 0.28625

15 ‘ ‘
® g ° .
Lo} o qop Shosl %&‘g@% %0
o g BUmY 5 00 pedile
0
A o .
I DY . °?Q ®
03 %“%9) °® fo‘;' ".' g °
Lut il ?g T
o0 ° L]
] 3 802
W b €D D, b
° ot by oeoo
wo ¢ o.;) ° %d’
® 0o o o
) i)
TR+ L R, &
-0.5 ® og ° o %8¢
00 s ¢ 8 0 %wa
o s °p
°§95’ & o v 308 °©
0%, g% ug';‘ 09 °§°:&& *
10} «$ %°°w°i°‘"
o
(-]
133 10 -05 00 05 10 15

Figure 14: A Linearly Nonseparable Dataset

by a hyperplane. But, the challenge lies in finding a transformation ¢ : R? — R3.
Assuming that the transformation ¢ was found, we transform the training set, say X
with ¢, giving us X’. We then train a linear SVM on the transformed training set
X' to get the classifier fs,,. In testing, we transform x to 2’ = ¢(z) and the output
label is determined by fem(2'). If we then project back to R? we will obtain the
decision boundary that is nonlinear as shown in Figure 15[30].

Data projected to R"~2 (hyperplane projection shown)

Data in R~ 3 (separable w/ hyperplane)

05F

0.0}

[CCal4
Y Label

=05}

X Label

71'751.5 -1.0 =05 0.0 0.5 1.0 15

X Label

Figure 15: The Data in R?* With a Linear Separating Hyperplane (Left) and the Data
Transformed Back to R? Along With the Hyperplane.

18

Therefore, a dataset D that is linearly nonseparable in RY may be linearly separable
in RM (where M > N) as long as a transformation ¢ is found. The problem is
if M > N (M grows very quickly with respect to N, e.g. M € O(2V)), then
learning SVMs by data transformation would incur very large time complexities and
space complexities. However, during training, SVM does not need to work in high-
dimensional spaces. The optimization problem only uses the training examples to
compute pair-wise dot products. There exist functions that, when given two vectors
¥ and @ in RY, implicitly computes the dot product of ¥ and @ in R without
explicitly transforming the vectors to RM. These functions are called kernel functions
K (v,). This means, we do not need more memory to a higher dimension R* and
only a little addition to the computation time (which is the time used to compute
the dot products). Since, SVM training uses dot products, we can replace these dot
products with the kernel function K (¥, @) to obtain nonlinear decision boundaries.
This is called the "kernel trick.” Most classifiers, would offer three popular kernels:
the polynomial, radial basis function (RBF), and sigmoid kernels. The following are

the mathematical expressions for each kernel:

1. Polynomial Kernel: (v - (7}, z;) + 7)¢

2. Radial Basis Function (RBF) Kernel: e-71%-%1") where v > 0

3. Sigmoid Kernel: tanh({x;, z;) +)

The C parameter, for all kernels, is the parameter that balances between misclas-
sification and simplicity of the decision surface/hyperplane. A low C' value makes
the decision surface smoother, while a high C' value allows more samples to become
support vectors, or essentially trying to classify all training examples correctly[37].

The degree parameter, d of the polynomial kernel determines the flexibility of the

classifier. A degree of 1 is the linear kernel. The degree parameter is similar to the ~

19

parameter of the RBF kernel. Both determine the flexibility of the resulting classifier
in fitting the data. If ~, for the RBF kernel, or d, for the polynomial kernel grows

too large, overfitting will occur[38].

E. Mobile Application

Mobile applications are “end-user software applications that are designed for a mobile
device operating system and which extend that devices capabilities.” [39] Mobile ap-
plications started off as small arcade games, ring tone editors, calculators, calendars,
etc. back in the twentieth century[10]. Mobile applications nowadays include mobile
payment, mobile navigation, mobile games, etc. [11] Among the mobile operating

systems, the most popular are i0S, Android, and Windows Phone 8[12].

1. Android Software Development Kit

The Android Software Development Kit (SDK) includes required libraries, a debug-
ger, an emulator, relevant documentation for the Android application programming
interfaces (APIs), sample source codes, and tutorials for the Android OS to develop
applications for the Android platform. Each time Google releases a new version of An-
droid, the corresponding SDK will also be released. Android applications are written
in Java, and therefore a Java Development Kit (JDK) would also be required|[13].
sectionAppcelerator Titanium Appcelerator Titanium is an open, extensible de-
velopment environment that allows developers to develop cross-platform mobile ap-
plications using HTML5, CSS and Javascript. The operating systems supported are
iOS, Android and Windows Phone. The Appcelerator Titanium includes a Software
Development Kit (SDK), Studio, an Eclipse-based IDE, Alloy, an MVC framework,

and Cloud Services.[11]

20

IV. Design and Implementation

A. Use Case Diagram

The system has three users: the public user, the server, and the Philippine Plant

Information System as shown in the Use Case Diagram in Figure 16.

The public user can download the database of leaves, uploaded by the Philippine

Plant Information System, and make a textual search of the database.

The public user can also capture a leaf’s image using the device’s camera and
upload them for the server to analyze. The server will extract the features of the
given leaf, and feed these features to the support vector machine with the trained

model, and then throw a response back to the user identifying the leaf.

The public user can also view the gallery of leaves he has captured with the device’s

camera, and check also their respective details.

Search Plant

receive| plant list

send plant lis b
Get FPlant Picture
d plc:tu =
Extends

-
Label Plant Philippine
Flant
user -
C:I ke Gall Information
= - EF&- Swystem
ure

Extends
Check Gallery Entry
Server

Leafsnap PH

Figure 16: Use Case Diagram

21

B. Entity-Relationship Diagram

There is only one table for LeafSnap PH, as shown in Figure 17,and that is the
leaves. This includes the id, sciName, commonName, longitude, latitude, day, month,
year, and filename. id is the device-unique identifier given to a captured leaf sample.
sciName is the scientific name of the leaf sample, while commonName is the common
name of the leaf sample. latitude and longitude are the GPS coordinates of the leaf
sample. day, month, and year stores the date in which the sample was taken. filename

is the path where the leaf is stored inside the device.

leaves

id PK
filename

longitude

latitude

month
day
year

sciMame

commonMame

LeafSnap PH

Figure 17: Entity-Relationship Diagram

C. Data Dictionary

D. Activity Flow Diagram

The process of capturing an image sample of a leaf to receiving a response from the
server is shown in Figure 18. First, the user captures an image of the leaf sample. The
mobile application will then save the image in the file system storage of the device.
If the device doesn’t have an internet connection, the process ends. However, if the

device has an internet connection, the mobile app will then prompt the user if the

22

Field Type Description

id integer | Unique identifier of the leaf image

filename text Filename where the leaf image is stored in the device
longitude real Longitudinal location where the image was captured
latitude real Latitudinal location where the image was captured
month integer | Month when the image was taken

day integer | Date when the image was taken

year integer | Year when the image was taken

sciName text Scientific name of the leaf displayed in the image
commonName text Common name of the leaf displayed in the image

Table 1: leaves table

user wants to send the image now for identification. If the user chooses not to, the
process ends. If the user chooses to send it now, the device would send the image
along with its device ID (a unique identifier for Android devices) to the server. The
server would then check if a directory exists for that device ID. If yes, the server would
proceed to the identification process. If not, the server will create a directory unique
to that device ID then proceed to the identification proces. The server starts the
identification process by saving the image in the directory unique to the device 1D.
It will then extract the image’s features, and then using those features, will identify
then output the labels of the five closest matches. The server will proceed to get the
scientific names and common names mapped to those labels. And then, the server
will encode the scientific name-common name pairs in Javascript Object Notation
(JSON) format and send that JSON string back to the mobile device. The device,
upon receiving the response, will parse the JSON string. After parsing, the device
will display the matches to the user. The user would then choose one of the match.
And the process ends after the device has updated the scientific and common name

of the leaf image captured.

23

Does user want i
identify leaf now?

Selects a

choice

Savesimage

internet connection?

MOBILE APP

Does device have [

Sends image
and device ID

Receive Parse JSON Display
Response Siring choices

H

Updates
scientific and

comman name

B

|—®

-

Does directory for
=device D> exist?

Yes [Create
directory for
<device ID=

SERVER

1

Saves image
in directory for
=device ID=

Extract Identify leafand Get scientifc
Features output 5 closest and commaon
matches’ labels names of labels

Encode in
JSON Farmat

H

\
Send
Response

|

]

E.

1. LIBSVM

LIBSVM is a library for support vector machines. LIBSVM was used in computer
vision, natural language processing, neuroimaging, and bioinformatics. It supports
two-class and multiclass support vector classification, support vector regression, and
one-class support vector machine. The LIBSVM package includes the core C/C++
programs and sample data, the tools subdirectory, which is used for checking data for-
mat and for selecting SVM parameters, and other sub-directories containing pre-built
binary files to other languages, like Python, Java, etc. LIBSVM supports five SVM
formulations, namely, C-Support Vector Classification, v-Support Vector Classifica-
tion, Distribution Estimation (or the one-class SVM), e-Support Vector Regression,

and v-Support Vector Regression. LIBSVM also supports probability estimates, even

Figure 18: Activity Flow Diagram

System Architecture

though SVM predicts only the class label.

24

2. OpenCV

OpenCV (Open Source Computer Vision Library) is an open source library used in
computer vision and machine learning. It was written in C++ and has C, C++,
Python, Java, and MATLAB interfaces, supported in Windows, Linux and Mac OS.
It has more than 2500 optimized algorithms, which includes computer vision and
machine learning algorithms. These algorithms can be used for face detection, object

identification, image classification, etc. [15]

F. Technical Architecture

The system is downloadable and is run on an Android mobile device. The device’s
internal storage is where the database of leaves and gallery of leaves are stored. The
database of leaves can be downloaded from the server with a reliable internet connec-

tion.

1. Minimum System Requirements

Mobile Device:
1. Processor: 1.4GHz Dual-core
2. RAM: 1 GB
3. Internal Memory: 8 GB
4. Camera: 5 MP, rear
5. 3G/Wi-Fi enabled
6. Operating System: Android v.2.3.x (Gingerbread)

7. A reliable internet connection

25

Server:

1. Processor: 1GHz

2. RAM: 2 GB

3. Internal Memory: 100 GB

4. Apache PHP version 5.6.8

5. Operating System: Windows Server 2012

6. A reliable internet connection

26

V. Results

A. Splash Screen

Upon opening the application, the splash screen, as shown in Figure 19, displaying
the Alloy standard splash screen, is displayed. After the splash screen, two tabs are

displayed: ”Search” and ”Gallery”.

Figure 19: Alloy Splash Screen

B. Search

The Search window, as shown in Figure 20, is opened on the start of the application,

after the splash screen closes.
aveso% = A “ k4 02313

Search Gallery

Download Latest Database

Figure 20: Search Window

27

The user can search the database of leaves using the search box. After a successful

query, the results are displayed on the list as shown in Figure 21.

CIRECE X3~ X3

Search Gallery

COMMON NAME: Oregano
SCIENTIFIC NAME: Origanum vulgrae

Download Latest Database

Figure 21: Search Window After Displaying Search Results

The user can tap on a row to view the leaf’s image. The user can also download
the latest database from the server. Once the download is complete, an alert dialog

will tell the user that the database has been updated as shown in Figure 22.

Figure 22: Alert After Database Is Successfully Downloaded

28

C. Gallery

The Gallery window can be opened through the Gallery tab as shown in Figure
23. Here, the list of all user-captured leaf images are stored and the user can browse

through it.

YO8 OLGR T M02%iE 02320

Search Gallery

LEAF ID:3
COMMON NAME: Indian Tree
SCIENTIFIC NAME: Polyathia longifolia
DATE CAPTURED: 2016517

LEAF ID: 4
COMMON NAME: Indian Tree
SCIENTIFIC NAME: Polyathia longifolia
DATE CAPTURED: 2016517

LEAF ID: 6
COMMON NAME: Indian Tree
SCIENTIFIC NAME: Polyathia longifolia
DATE CAPTURED: 2016517

Take a Sample

Figure 23: Gallery Window

The user can view the image of a leaf by tapping as shown in Figure 24. The user

can then either identify a leaf or delete an entry by double-tapping as shown in Figure

25.

= 6244 02320

Search Gallery

LEAFID: 7
COMMON NAME: Indian Tree
SCIENTIFIC NAME: Polyathia longifolia
DATE CAPTURED: 2016517

LEAFID:8
COMMON NAME: UNIDENTIFIED
SCIENTIFIC NAME: UNIDENTIFIED

DATE CAPTURED: 2016517

LEAF ID: 9
COMMON NAME: UNIDENTIFIED
SCIENTIFIC NAME: UNIDENTIFIED

DATE CAPTURED: 2016-5-17

ID: 8

Take a Sample

Figure 24: Gallery Window When User Taps an Item

29

a0 sOLG =R

Action

What do you want to do?

Figure 25: Prompt When A User Doubletaps an Item

When a user opts to identify /re-identify a leaf in the gallery, and if the device has
an active, reliable internet connection, the device would send the image to the server
to identify the leaf. An activity indicator is present to notify the user of the ongoing

process, as shown in Figure 26.

Search Gallery

Processing your request

LEAF ID: 7
COMMON NAME: Indian Tree
SCIENTIFIC NAME: Polyathia longifolia
DATE CAPTURED: 2016517

LEAFID: 8
COMMON NAME: UNIDENTIFIED
SCIENTIFIC NAME: UNIDENTIFIED

DATE CAPTURED: 2016517

LEAFID: 9

COMMON NAME: UNIDENTIFIED
SCIENTIFIC NAME: UNIDENTIFIED
DATE CAPTURED: 2016517

L4

Take a Sample

Figure 26: Activity Indicator for Processing Identify Request

B

ID: 8

An option dialog will then be displayed displaying the 5 closest choices. The sci-
entific names, common names, and probabilities are displayed as shown in Figure 27.

After the user has chosen one of the options, the database entry of that leaf is updated

30

and the list is refreshed. However, if there is no internet connection, a prompt will
display showing that the device must be connected to the internet to proceed with
the identification/re-identification process as shown in Figure 28.

OOHRE&/0O »NUFTO»:HE1550

Which leaf is it?

Narra Tree(Pterocarpus indicus) —
30.303%

Sampaguita(Jasminum sambac) —
16.9501%

Ashitaba(Angelica keiskei) -
15,9041%

Macopa(Syzygium malaccense) —
11.3715%

Oregano(Origanum vulgrae) -
10,6879%

Figure 27: Option Dialog Displaying the 5 Closest Choices

B gl eo%ia 11250

No Connectivity

It looks Iike you don't have network

connectivity. Connect to the Internet so
we can fdentify it.

1 Understand

Figure 28: Prompt When User Attempts to Identify Image Without a Connection

When a user chooses to delete a leaf image, a prompt will appear as shown in

Figure 29. If the user chooses ”Yes,” the entry will be deleted.

31

Confirm Action

Are You Sure?

Copied to clipboard,

Figure 29: Prompt for Deleting an Item

A user can capture a new leaf image by tapping the "Take a Sample” button,
and after tapping, the device’s camera application will be opened. After the user
successfully captures a picture of the leaf sample, it will be stored in the file system
of the device. If the device has an active internet connection, the user can either opt
to identify the image sample now or identify it at a later time as shown in Figure 30.
The process for identification is the same as that when identifying/re-identifying a
leaf from the gallery. If the device has no internet connection, a prompt will display
stating that an internet connection is required to identify the image sample, as shown

in Figure 31.

32

at0s0GLUR

Confirm Identification

Do you want to send this image now for
identification?

Figure 30: Prompt When User Attempts to Identify Image With a Connection

No Connectivity

It looks Iike you don't have network
connectivity. We'll need network
connect

Meanwhile, we'll store this one in the

gallery.

I Understand

Figure 31: Prompt When An Image is Captured Without a Connection

33

VI. Discussions

LeafSnap PH is a mobile application that aims to classify Philippine plants by leaf
images with a mobile front-end. Leafsnap[7] has the same goal, however, this uses
Support Vector Machine (SVM) to identify the leaf sample, Leafsnap is an iOS-only

application, and Leafsnap’s database only contains American plants.

The feature extraction of the leaf is the same as [7]. The image is first converted
from RGB to HSV. The Expectation-Maximization (EM) algorithm is used to sep-
arate the leaf from the background and then get the shape of the leaf using Canny
Edge Detection. Using the image obtained from Canny Edge Detection, we determine
the contour points and use these points as a reference for the image produced by the
EM algorithm. We then proceed to get the white areas in the contour points from a
radius of 5 units to 30 units with a 1 unit increment. This will be used to produce
the curvature image, and is used as the feature for identifying the leaf. One major
observation is that using the device’s flash to capture an image drastically alters the
HSV values of the image, thus when the EM algorithm is executed, the leaf cannot be
fully separated from the background, thus using flash in capturing images is highly
discouraged. Another issue that was addressed is that sometimes the background
is too dark, and thus, using the EM algorithm treats the whole leaf as part of the
background. The solution is to brighten the image before processing it for feature
extraction. The brightness level, however, was achieved only through trial-and-error

means, and therefore, a much more robust solution is needed.

The mobile application was written in HTML5, Javascript and CSS in compliance
to the Appcelerator platform. SQLite is also needed to perform in-device database
operations, namely, storing leaf information, deleting leaf information, and updating

leaf information. For the database of leaves, it is assumed that Javacript Object

34

Notation (JSON) will be the standard format used as it is lightweight and is easily
serialized into and out of the Appcelerator platform, which is Javascript-based[10].
For the feature extraction and labeling of the leaf in the server side, Visual C++, with
the OpenCV extension for image processing, was used in writing the application. PHP

was also used in the server side to handle the POST request by the mobile application.

A major issue in developing the mobile application is memory management. With
such little RAM, comapred to desktops and laptops, operations are much more lim-
ited. Displaying all the leaf images in one go resulted in a lack of memory and thus,
some of the images were not displayed. Therefore, a remedy is to only create a single
image view and the image of the leaf can only be viewed upon tapping on a leaf

sample.

The model was trained using 240 images. There are 8 classes and each class con-
sist of 30 images. For the test set, 40 images that were not part of the 240-image
training set were used. The 40 images were composed of 5 images from each of the
8 classes. Obtaining the optimal C, with a value of 2.0, and gamma, with a value of
3.0517578125e-05, parameters is done by running the grid.py script (which uses the
RBF kernel) from LIBSVM. The model also underwent a 5-fold cross-validation. The
model resulted with a 65% accuracy with the test set, when considering the closest

answer, and a 90% accuracy, when considering the 5 closest answers.

35

VII. Conclusions

LeafSnap PH has been developed to give users a mobile front-end for identifying
leaf samples of Philippine plants. This addresses the rapid growth of the mobile
platform, the rapid increase in the number of mobile users, and the lack of a mobile
application for such purpose. The convenience and quickness of the program allows
those who have little to no botanical background to be able to identify leaves.

The accuracy of the model is 65% when considering the closest result, but taking
into account the 5 closest results, the accuracy would be 90%. Leafsnap has an
accuracy of 96.8% considering the 5 closest results[7]. Leafsnap US has a database
of 184 species, compared to the model used, which has 8, therefore, comparing the

accuracy of the two datasets would lead to inconclusive results.

36

VIII. Recommendations

LeafSnap PH can be further improved by increasing the accuracy of the training
model to 90%. This can be achieved by providing more image inputs per class to
the training set. The data can also be improved by taking into account the size of
the leaf. Aside from increasing input images, other feature-extraction algorithms can
be used. It is highly recommended for future studies to try the principal component
analysis[22] or the vector of aggregated contour fragments[21]. To cover a wider range
of plant species, it is also recommended to include complex leaves and conifers into

the dataset.

An i0S version of it can be developed to expand the scope of users of the appli-
cation. A map function, where location data of plants are sent to a server and can
be viewed by all users, can also be implemented to utilize the longitude and latitude

components of the database.

As stated in the conclusion, the accuracy of the model compared to Leafsnap is
slightly lower, but the model has significantly fewer classes than that of Leafsnap.
Therefore, it is highly recommended to increase the size of the database, by adding

more classes, to make the results more conclusive.

37

IX. Bibliography

1]

T. Weier, C. Stocking, M. Barbour, and T. Rost, Botany: An Introduction to
Plant Biology. John Wiley and Sons, 1982.

D. Woodland, Contemporary Plant Systematics. Andrews University Press, 2009.

“Plant species numbers.” http://www.bgci.org/ourwork/1521/. Accessed:

2015-02-25.

Z. Wang, Z. Chi, et al., “Leaf image retrieval with shape features,” Lectures Notes

in Computer Science, vol. Advances in Information Systems: 4th International

Conference, VISUAL 2000, Lyon, France, November 2000: Proceedings, 2000.

Q. Wu, C. Zhou, and C. Wang, “Feature extraction and automatic recognition
of plant leaf using artificial neural network,” Advances in Artificial Intelligence,

2006.

J.-X. Du, D.-S. Huang, et al., “Computer-aided plant species identification

bh

(CAPSI) based on leaf shape matching technique,” Transactions of the Insti-

tute of Measurement and Control, 2006.

N. Kumar, P. Belhumeur, et al., “Leafsnap: A computer vision system for au-
tomatic plant species identification,” Lecture Notes in Computer Science/Image
Processing, Computer Vision, Pattern Recognition and Graphics, vol. Computer
Vision ECCV 2012: 12th European Conference on Computer Vision, Florence,
Italy, October 7-13, 2012. Proceedings, Part 6, 2012.

C. University, U. of Maryland, and S. Institution, “Leafsnap.” https://itunes.

apple.com/us/app/leafsnap/id4306498297mt=8, 2014. Accessed: 2014-10-15.

38

[9]

[10]

[15]

[16]

[17]

C. University, U. of Maryland, and S. Institution, “Leafsnap for ipad.” https:
//itunes.apple.com/us/app/leafsnap-for-ipad/id4335226837mt=8, 2014.

Accessed: 2014-10-15.

C. University, U. of Maryland, and S. Institution, “Leafsnap uk.” https://
itunes.apple.com/us/app/leafsnap-uk/id8773978847mt=8, 2014. Accessed:

2014-10-15.

C. University, U. of Maryland, and S. Institution, “Leafsnap: An electronic field

guide.” http://leafsnap.com/about/, 2011. Accessed: 2014-10-15.
M. Sul¢, “Image-based recognition of plants,” 2012.
T. Sixta, “Image and video-based recognition of natural objects,” 2011.

eMarketer, “Smartphone users worldwide will total 1.75 billion in 2014.”
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-

Total-175-Billion-2014/1010536, 2014. Accessed: 2014-10-16.

C. Ratcliff, “6bhttps://econsultancy.com/blog/64376-65-0f-global-
smartphone-owners-use-android-os-stats#i.5nxxql18m7fbmx, 2014.

Accessed: 2014-10-16.

J. Pinaroc, “The philippines continues to embrace android.” http://www.zdnet.
com/the-philippines-continues-to-embrace-android-7000024072/, 2013.

Accessed: 2014-10-16.

T. Munisami, M. Ramsurn, et al., “Plant leaf recognition using shape features
and colour histogram with k-nearest neighbour classifiers,” Second International

Symposium on Computer Vision and the Internet, vol. 58, 2015.

39

[18]

[19]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. Chaki and R. Parekh, “Plant leaf recognition using shape based features and
neural network classifiers,” International Journal of Advanced Computer Science

and Applications, vol. 2, 2011.

V. Satti, A. Satya, and S. Sharma, “An automatic leaf recognition system for
plant identification using machine vision technology,” International Journal of

Engineering Science and Technology, vol. 58, 2013.

M. G. Larese, R. M. Craviotto, et al., “Legume identification by leaf vein images

classification,” Pattern Recognition, vol. 47, 2014.

S. Bai, X. Wang, and B. Xiang, “Aggregating contour fragments for shape clas-

sifications,” IEEE Conference on Image Processing, 2014.

A. Ehsanirad, “Plant classification based on leaf recognition,” International

Journal of Computer Science and Information Security, vol. 8, 2010.

D. K. Srivastava and L. Bhambhu, “Data classification using support vector

machine,” Journal of Theoretical and Applied Information Technology, 2010.

W. S. Noble, “What is a support vector machine,” Nature Biotechnology, vol. 24,
2006.

C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support vector clas-

7

sification.” http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf,

2003. Accessed: 2015-05-31.

“Plant structures: Leaves.” http://00.edu-cdn.com/files/592001_593000/

592099/dichotomous-key-3. jpg. Accessed: 2016-05-20.

“A simple dichotomous key example.” http://www.ext.colostate.edu/mg/

Gardennotes/134 .html. Accessed: 2016-05-20.

40

[28]

[29]

[30]

[31]

[34]

N. Meccrea, “Classification.” http://homepages.inf.ed.ac.uk/rbf/HIPR2/

classify.htm. Accessed: 2016-05-21.

E. G. Learned-Miller, “Introduction to computer vision.” https://people.
cs.umass.edu/~elm/Teaching/Docs/IntroCV_1_19_11.pdf, 2011. Accessed:

2016-05-20.

S. Borman, “The expectation maximization algorithm a short tutorial.” http:

//www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf, 2004. Accessed:

2015-05-31.
R. Fisher, S. Perkins, et al, “An introduction to machine learn-
ing theory and its applications: A visual tutorial with examples.”

https://www.toptal.com/machine-learning/machine-learning-theory-

an-introductory-primer. Accessed: 2016-05-21.

A. Smola and S. Vishwanathan, Introduction to Machine Learning. Cambridge

University Press, 2008.

“Everything you wanted to know about machine learning, but were too afraid
to ask (part one).” https://blog.bigml.com/2013/02/15/everything-you-
wanted-to-know-about-machine-learning-but-were-too-afraid-to-ask-

part-one/. Accessed: 2016-05-21.

S. Ray, “Essentials of machine learning algorithms (with python and r
codes).” http://www.analyticsvidhya.com/blog/2015/08/common-machine-

learning-algorithms/. Accessed: 2016-05-21.

“Introduction to support vector machines.” http://www.svms.org/

introduction.html. Accessed: 2015-05-31.

41

[36]

[37]

[38]

[39]

[40]

[42]

[44]

[45]

[46]

“Everything you wanted to know about the kernel trick (but were too afraid
to ask).” http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.

html. Accessed: 2016-05-20.

“Rbf svm parameters.” http://scikit-learn.org/stable/auto_examples/

svm/plot_rbf_parameters.html. Accessed: 2016-05-20.

A. Ben-Hur and J. Weston, “A users guide to support vector machines.” http:

//www.cs.colostate.edu/~asa/pdfs/howto.pdf. Accessed: 2016-05-20.

H. Yang, “Bon appétit for apps: Young american consumers’ acceptance of mo-

bile applications,” Journal of Computer Information Systems, vol. 53, 2013.

J. F. Clark, “History of mobile applications.” http://www.uky.edu/~jclark/

mas490apps/History%200£f%20Mobile’20Apps . pdf. Accessed: 2014-12-09.

H. Zheng, Y. Li, and D. Jiang, “Empirical study and model of user’s acceptance
for mobile commerce in china,” International Journal of Computer Science Is-

sues, vol. 9, 2012.

A. Zamfiroiu and B. Vintila, “Management of mobile web application devel-
opment with quality assurance,” Journal of Mobile, Embedded and Distributed

Systems, 2013.

C. Janssen, “Android sdk.” http://www.techopedia.com/definition/4220/

android-sdk. Accessed: 2014-12-12.

“Appcelerator platform.” https://docs.appcelerator.com/platform/

latest/#!/guide/Appcelerator_Platform. Accessed: 2016-05-19.
O. D. Team, “About.” http://opencv.org/about.html. Accessed: 2016-05-20.

“Working with json data.” http://docs.appcelerator.com/platform/

latest/#!/guide/Working with_JSON_Data. Accessed: 2016-05-18.

42

X. Appendix

A. Source Code

source—code/mobile/views /index.xml

<Alloy>
<TabGroup backgroundColor="white” exitOnClose="true” >
<Tab id="tabl” title="Search” icon="KS_nav_views.png’>
<Require src="search” id="search” />
</Tab>
<Tab id="tab2” title="Gallery”>
<Window id="gallery”>
<View id = ”captureButtonView” height="10%" top="90%">
<Button width="100%" height = "100%” title="Take a Sample”
="showCamera” />
</View>
</Window>
</Tab>
</TabGroup>
</Alloy>
source—code/mobile/controllers/index.js
var idNum = 0;
var firstLoad = true;
var url = ’192.168.42.63:80/leafsnap/server.php’; //url to server

var db = Ti.Database.open(’leafDB’); //open database
var fname;
var json;
var devicelD = Ti.Platform.getId();
var optionDialog;
var leafList = Ti.Ul.createScrollView ({
layout: ”vertical”,
top: ”5%”,
height: ”60%”,
width: ”100%”,
borderColor: ”black”,
borderWidth: 2,
borderRadius: 5

s

var leaflmage = Ti.Ul.createlmageView ({
height: 100,
width: 100,
top: 7"70%”,

s

var idCaption = Ti.Ul.createView ({
height: 100,
width: 100,
top: "70%",
left: O
s

var idCaptionLabel = Ti.Ul.createLabel ({
font: {fontSize:20},
color: ”black”,
touchEnabled: false

1)

idCaption.add(idCaptionLabel);

function showCamera () {
var f;
var db;
var longt, lat;
Ti.Media.showCamera ({
showControls: true,
mediaTypes: Ti.Media. MEDIA. TYPE_PHOTO,
allowEditing: false ,
success: function (event){
var d= new Date();

var capturedlmage = event.media;

idNum++;

fname = devicelD 4+ ”_” 4+ d.getFullYear() + 7.7 4+ (d.getMonth() + 1
+ d.getDate() + 7.7 4 idNum + ”.jpg”;

f = Ti.Filesystem.getFile(Ti.Filesystem.applicationDataDirectory ,
f.write (capturedIlmage) ;
Ti.Geolocation.Android . manualMode = false;
Ti.Geolocation.accuracy = Ti.Geolocation . ACCURACY_HIGH;
Ti.Geolocation.getCurrentPosition (function (e){

if (e.error){

43

onClick

y 4+ 7

fname) ;

longt = 0;

lat = 0;
else{
longt = e.coords.longitude;
lat = e.coords.latitude;
}
3
db = Ti.Database.open(’leafDB) ;
db.execute (’INSERT INTO leaves (id, filename ,longitude ,latitude ,month,day,
year ,sciName ,commonName) VALUES (?,?,?,7,7,?,?,7,?)’, idNum, fname,
longt , lat, d.getMonth() 4+ 1, d.getDate(), d.getFullYear() ,’7,7");
if (Ti.Network.networkType == Ti.Network .NETWORKNONE) {

else{

var alertDialog = Ti.Ul.createAlertDialog ({
title: "No Connectivity”,
message: "It looks like you don’t have network
connectivity. We’ll need network connectivity to
identify this leaf sample. Meanwhile, we\’ll store
this one in the gallery.”,
buttonNames:[’I Understand ’]
1)
alertDialog .show () ;
refreshGallery () ;

var alertDialog = Ti.Ul.createAlertDialog ({

title: ”Confirm Identification”,

message: "Do you want to send this image now for
identification?”,

buttonNames:[’Sure’, ’'No, Not Now’]

alertDialog.addEventListener (’click ’,function (e){
if (e.index==0){
//identify plant

var activityIndicator = Ti.UI.
createActivityIndicator ({
color: ’black’,
font: {fontFamily: Helvetica Neue’, fontSize
115},
message: ’Processing your request...’,
style: Ti.UI.ActivityIndicatorStyle .DARK,
top:0,
left:10,

height : Ti.UI.SIZE,
width: Ti.UI.SIZE
}) s
$.gallery .add(activityIndicator);
activityIndicator .show () ;
var xhr = Titanium.Network.createHTTPClient () ;
xhr.open (’POST’ , url);
xhr.onload = function(response){
var response = this.responseText;
json = JSON. parse(response);
var choicesArray = new Array();
for(var i = 0; i < 5; i++){
choicesArray[i] = json.
choices [i].common +
”(” 4 json.choices[i].

scientific + 7)) — 7 +
json.choices[i].proby
Lo,

}

optionDialog = null;

optionDialog = Ti.UI.
createOptionDialog ({
options: choicesArray ,
destructive: O,

title : ”"Which leaf is it
on
1)
optionDialog.addEventListener (’
click >, function(e){
db.execute ('UPDATE leaves
SET sciName=? WHERE id
=7’, json.choices|[e.
source.selectedIndex .
scientific , idNum) ;
db.execute ("UPDATE leaves
SET commonName=? WHERE
id=7’, json.choices[e
.source.selectedIndex
].common, idNum) ;
refreshGallery () ;
activityIndicator . hide();
1)

optionDialog .show () ;

xhr.send ({
thelmage: f,
imgFilename: fname,
deviceID: devicelID

44

3

else if (e.index == 1){
var alertDialog = Ti.Ul.createAlertDialog ({
title: ”Store Image”,
message: ”“Image is now stored in the

gallery , and you may opt to identify
the leaf at a later time.”,
buttonNames : [OK’]

s
refreshGallery () ;
1)
alertDialog .show () ;
}
I
cancel: function (){
return ;
Iz
error: function (){
return ;
}

1)
}

function refreshGallery (){

$.gallery .remove(leafList);

leafList = null;

leafList = Ti.Ul.createScrollView ({
layout: ”vertical”,
top: 75%”,
height: "60%”,
width: ”100%”,
borderColor: ”black”,
borderWidth: 2,
borderRadius: 5

1)

populateLeafView () ;

function populateLeafView () {

var set = false; //boolean for checking non—emptiness of database
var leavesSet = db.execute (’SELECT id ,filename ,longitude ,latitude ,month,day, year ,sciName,
commonName FROM leaves ’) ;
var f;
var common, scientific;
var leafld , leafFilename , leafLong, leafLat , leafMonth, leafDay, leafYear, leafSci,
leafCommon, leafRow;
var captionView , commonNameLabel, sciNameLabel, dateLabel, idLabel;
/*leafList = Ti.Ul.createScrollView ({
layout: ”vertical”,
top: O,
height: ”"85%”,
width: ”100%”
)i/

var leafData, alertDialog;
while (leavesSet.isValidRow ()){
set = true;

leafld = leavesSet.fieldByName(’id) ;
leafFilename = leavesSet.fieldByName (’filename ’) ;
leafLong = leavesSet.fieldByName (’longitude ’) ;
leafLat = leavesSet.fieldByName(’latitude ’);
leafMonth = leavesSet.fieldByName (’month’) ;
leafDay = leavesSet.fieldByName (’day’) ;

leafYear = leavesSet.fieldByName(’year’);
leafSci = leavesSet.fieldByName (’sciName’) ;
leafCommon = leavesSet . fieldByName (’commonName’) ;

if (firstLoad){
idNum = leafld;

leafRow = Ti.Ul.createView ({
width: '100%°,
height: 100,
top: O,
left: O,
borderColor: ”black”,
borderWidth: 1,
leaf_id: leafld ,
focusable: true,
backgroundSelectedColor: "#BCED91”

1)
if (leafSci == ’7){

scientific = "UNIDENTIFIED” ;
else{

scientific = leafScij

45

if (leafCommon == ’~

common = ”UNIDENTIFIED” ;
else{
common = leafCommon;
}
captionView = Ti.Ul.createView ({
left: 100,
top: O,
touchEnabled: false
1)

idLabel = Ti.Ul.createLabel ({
font:{ fontSize: 10},

color: ”black”,

text: "LEAF ID: ” 4+ leafld ,
top: 5,

left: 5,

touchEnabled: false

3

commonNameLabel = Ti.Ul.createLabel ({
font:{fontSize:13},

color: ”black”,

text: "COMMON NAME: ” 4 common,
top: 20,

left: 5,

touchEnabled: false

1)

sciNameLabel = Ti.Ul.createLabel ({
font: {fontSize:10},

color: ”black”,

text: "SCIENTIFIC NAME: ” + scientific ,
top: 35,

left: 5,

touchEnabled: false
1)
dateLabel = Ti.Ul.createLabel ({
font: {fontSize:10},

color: ”black”,

top: 50,

left: 5,

text: "DATE CAPTURED: ” + leafYear + ”—" 4 leafMonth + ”—" 4+ leafDay,

touchEnabled: false
1)
captionView .add(idLabel);
captionView .add (commonNameLabel) ;
captionView .add(sciNameLabel) ;
captionView .add(dateLabel);
//leafRow .add (leaflmage) ;
leafRow .add (captionView) ;
leafRow .addEventListener (’click >, function (e){
//db = Ti.Database.open(’leafDB ") ;
leafData = db.execute (’SELECT id , filename ,longitude ,latitude ,month,day,
year ,sciName ,commonName FROM leaves WHERE id=7’, e.source.leaf_id);
f = Ti.Filesystem.getFile(Ti.Filesystem.applicationDataDirectory , leafData
.fieldByName (’filename ’)) ;
leafImage .setImage (f);
idCaptionLabel.setText ("ID: ” + e.source.leaf_id);
//db.close () ;
1)
leafRow .addEventListener (’dblclick ’, function (e){
//db = Ti.Database.open(’leafDB ") ;
var leafID = e.source.leaf_id;
leafData = db.execute (’SELECT id , filename ,longitude ,latitude ,month,day,
year ,sciName ,commonName FROM leaves WHERE id=7’, leaflD);
var filename = leafData.fieldByName (’filename ’);
f = Ti.Filesystem.getFile(Ti.Filesystem.applicationDataDirectory , leafData
.fieldByName (’filename ’)) ;
alertDialog = null;
alertDialog = Ti.Ul.createAlertDialog ({
title: ” Action”,
message: ”"What do you want to do?”,
buttonNames: [’ Delete’, ’Identify Sample’]
1)
alertDialog .show () ;
alertDialog.addEventListener (’click ’, function (e){
if (e.index==1){
if (Ti.Network.networkType == Ti.Network .NETWORKNONE) {
alertDialog = null;
alertDialog = Ti.Ul.createAlertDialog ({
title: "No Connectivity”,
message: "It looks like you don’t have
network connectivity. Connect to the
Internet so we can identify it.”,
buttonNames:[’I Understand ’]

1)

alertDialog .show () ;
else{

//identify plant

var activityIndicator = Ti.UI.
createActivityIndicator ({

46

color:
font:

message :
style:

’black 7,
{fontFamily: Helvetica Neue’,
115},

fontSize

’Processing your request...’,

Ti.UI. ActivityIndicatorStyle .DARK,

top:10,

left :10,
height : Ti.UI.SIZE,
width:Ti.UI.SIZE

5
$.gallery .add(activityIndicator);
activityIndicator .show () ;

var

1)
xhr .
xhr .

xhr = Titanium.Network.createHTTPClient ({
onload: function (e){
var response = this.responseText;
json = JSON.parse(response);
var choicesArray = new Array();
for(var i = 0; i < 5; i++){
choicesArray[i] = json.
choices[i].common +
”(” 4 json.choices[i].
scientific +) — 7 +
json.choices[i]. proby
+ "%
}
optionDialog = null;
optionDialog = Ti.UI.
createOptionDialog ({
options: choicesArray ,
destructive: O,
title ?”Which leaf is it
7»
1)
optionDialog.addEventListener (’
click >, function(e){
db.execute ('UPDATE leaves
SET sciName=? WHERE id
=7’, json.choices[e.
source.selectedIndex |.
scientific , leafID);
db.execute ('UPDATE leaves
SET commonName=7 WHERE
id=7?’, json.choices|[e
.source.selectedIndex
].common, leafID);
refreshGallery () ;
activityIndicator.hide();
1)
optionDialog.show () ;
open (’POST’, url);

send ({
thelmage: f,

imgFilename: filename ,

deviceID: devicelID
s
}
else if(e.index == 0){
alertDialog = null;
alertDialog = Ti.Ul.createAlertDialog ({
title: ”Confirm Action”,
message: " Are You Sure?”,
buttonNames:[’Yes’, 'No’]
1)
alertDialog.addEventListener (’click >, function(e){
if (e.index==0){
f.deleteFile () ;
db.execute ('DELETE FROM leaves WHERE id
=7?’,leafIlD);
refreshGallery () ;
leaflmage .setImage (null);
idCaptionLabel.setText (77);
s
alertDialog .show () ;
}

1)

//db.close ();
1)
leafList .add(leafRow) ;
leavesSet.next () ;

}
//db.close ();

if (set

== false){

mainView = Ti.Ul.createView ({
width:’100% ",
height:’100%"’

3

var noLeafLabel =

top:10,

47

Ti.Ul.createLabel ({

textAlign: ’center’,

font: {fontSize:20, fontWeight: bold’},
text: "No Leaves Captured Yet”

1)

leafList .add(noLeafLabel);

$.gallery .add(leafList);
$.gallery .add(leafImage);
$.gallery .add(idCaption) ;

firstLoad = false;
¥
/*function showMap () {
var Map = require (’ti.map’);
var win = Ti.Ul.createWindow () ;
var id;
//var plantViews [];
//edit this section
/*for (id=0;id <5;id++){
plantViews [id] = Map.createAnnotation ({
latitude: 5,
longitude: 10,
title: "SOME SCIENTIFIC NAME” ,
subtitle: "COMMON NAME” ,
pincolor: Map.ANNOTATION_GREEN,
myid: id
1)
}
var mapView = Map. createView ({
mapType: Map.NORMAL.TYPE,
region :{
latitude: 122.0,
longitude: 13.0,
latitudeDelta: 1,
longitudeDelta: 1,
IE
animate:true,
regionFit:true,
userLocation:true,
//annotations :[plantViews],
1)
win . add (mapView) ;
Fx/

// initialize SQLite database
db.execute (’CREATE TABLE IF NOT EXISTS leaves (id INTEGER PRIMARY KEY, filename TEXT, longitude
REAL, latitude REAL, month INTEGER, day INTEGER, year INTEGER, sciName TEXT, commonName TEXT)

//db.;cl)oyse();

//check for rear camera support

var cameras = Ti.Media.availableCameras;
var rearCameraExist = false;
for (var c¢=0; c< cameras.length; c++){
if (cameras|[c] == Ti.Media.CAMERAREAR) {
rearCameraExist = true;

}

if (!rearCameraExist){
var alertDialog = Ti.Ul.createAlertDialog ({
title: "No Connectivity”,
message: "It looks like this phone doesn’t have a rear camera. This app needs one
to run.”,
buttonNames:[’I\’1l Get A New Phone’]
1)
alertDialog .show () ;
alertDialog.addEventListener (’click ’,function (e){
if (e.index==0){
$.winl.close ();
var activity = Ti.Android.currentActivity ;
activity . finish ();

}
1)
}
populateLeafView () ;
Ti.App.addEventListener (’close’, function(e){
db.close () ;
var activity = Ti.Android.currentActivity ;

activity . finish ();

1)

$.index .open () ;

source-code/mobile/views /search.xml

<Alloy>
<Window id="search”>

48

<View id = ”downloadXML” height="10%" top="90%">
<Button width="100%" height = ”100%” title="Download Latest Database”
onClick="downloadDatabase” />

</View>

</Window>

</Alloy >
source—code/mobile/controllers/search.js

// Arguments passed into this controller can be accessed via the ‘$.args‘ object directly or:
var args = $.args;
var f;
var jsonLink = 7192.168.42.63:80/leafsnap/leafdb.json”;

var jsonfname ”leafdb . json”;

var leaflmage Ti.Ul.createlmageView ({
height: 100,
width: 100,
top: "70%",

1)
var JSONtext, JSONdata, json;

var 1ij;

var textBox = Ti.Ul.createSearchBar ({
showCancel: true,
top: O,
left: O,
width:”100%” ,
height:?10%”,
cancelButtonTitle: ” Clear”

1)

textBox.addEventListener (’return’, function(e){
clearTable () ;
textBox . hide () ;
textBox .show () ;
var searchAvailable = false;
var searchString = textBox.value;
var leaflmgURL, leafSci, leafCommon, leafRow;
var captionView , commonNameLabel, sciNameLabel, idLabel;
var alertDialog;
for (i in json){ //edit for XML
leaflImgURL = json [i].image;

leafSci = json[i].scientific;
leafCommon = json [i].common;
if (((searchString.toUpperCase()).indexOf(leafSci.toUpperCase()) >= 0) || (

searchString .toUpperCase()).indexOf (leafCommon.toUpperCase()) >= 0)){
leafRow = Ti.Ul.createView ({
width: ’100%’,
height: 100,
top: O,
left: O,
borderColor: ”black”,
borderWidth: 1,
focusable: true,
backgroundSelectedColor: "#BCED91” ,
leaf_img: leaflmgURL

1)

captionView = Ti.Ul.createView ({
left: 100,
top: O,
touchEnabled: false

1)

commonNameLabel = Ti.Ul.createLabel ({
font:{fontSize:15},

color: ”black”,

text: "COMMON NAME: ” + leafCommon,
top: 10,

left: 5,

touchEnabled: false

1)

sciNameLabel = Ti.Ul.createLabel ({
font: {fontSize:15},

color: ”black”,

text: "SCIENTIFIC NAME: ” + leafSci,
top: 30,

left: 5,

touchEnabled: false
1)
captionView .add (commonNameLabel) ;
captionView.add(sciNameLabel) ;
leafRow .add (captionView) ;
leafRow .addEventListener (’click >, function (e){
leaflmage .setImage (leaf_img) ;

1)
leafView .add (leafRow) ;
searchAvailable = true;

49

if (searchAvailable == false){

var noXMLLabel = Ti.UI.createLabel ({
top:10,
textAlign: ’center’,
font: {fontSize:20, fontWeight: ' bold’},
text: ”"No Results Found”

1)

leafView .add (noXMLLabel) ;

empty = false;

1)

textBox.addEventListener (’cancel’, function (e){
refreshTable () ;

s

$.search.add(textBox) ;

var leafView = Ti.Ul.createScrollView ({
layout: ”vertical”,
top: 710%”,
height: ”55%”,
width: 7100%”,
borderColor: ”black”,
borderWidth: 2,
borderRadius: 5

1)

function downloadDatabase () {
//download XML file
if (Ti.Network.networkType == Ti.Network .NETWORKNONE) {
var alertDialog = Ti.Ul.createAlertDialog ({
title: "No Connectivity”,

message: "It looks like you don’t have network connectivity. We’ 1l need
network connectivity to download the latest XML file.”,
buttonNames:[’I Understand ’]
1)
alertDialog .show () ;
else{
var xhr = Ti.Network.createHTTPClient ({
onload: function (){
f = Ti.Filesystem.getFile(Ti.Filesystem.applicationDataDirectory ,
jsonfname);
f.write(this.responseData);
alert (” Download done.”);
refreshTable () ;
1)
var activityIndicator = Ti.Ul.createActivityIndicator ({
color: ’black’,
font: {fontFamily:’Helvetica Neue’, fontSize:15},
message: 'Processing your request...’,
style: Ti.UI. ActivityIndicatorStyle .DARK,
top:0,
left:10,
height : Ti.UI.SIZE,
width:Ti.UI.SIZE
1)
activityIndicator .show () ;
xhr.open (’GET’, jsonLink);
xhr.send () ;
}

}

function clearTable (){
$.search.remove(leafView);
leafView = null;
leafView = Ti.Ul.createScrollView ({
layout: ”vertical”,
top: 710%”,
height: ”"55%”,
width: 7100%”,
borderColor: ”black”,
borderWidth: 2,
borderRadius: 5
1)
$.search.add(leafView);
s
function refreshTable (){
clearTable () ;
loadTable () ;

¥
function loadTable (){
var empty = true;
f = Ti.Filesystem.getFile(Ti.Filesystem.applicationDataDirectory , jsonfname);
if (f.exists () == true){
empty = false;

var leaflmgURL, leafSci, leafCommon, leafRow;
var captionView, commonNameLabel, sciNameLabel, idLabel;
var alertDialog;

50

JSONtext = f.read () .text;
JSONdata = JSON. parse (JSONtext) ;
json = JSONdata. leaf;

for (i in json){ //edit for XML

empty = false;

leaflImgURL = json[i].image;
leafSci = json[i].scientific;
leafCommon = json [i].common;

leafRow = Ti.Ul.createView ({
width: '100%’,
height: 100,
top: O,
left: O,
borderColor: ”black”,
borderWidth: 1,
focusable: true,
backgroundSelectedColor: "#BCED91” ,
leaf_img: leaflImgURL

1)

captionView = Ti.Ul.createView ({
left: 100,
top: O,
touchEnabled: false

1)

commonNameLabel = Ti.Ul.createLabel ({
font:{fontSize:10},
color: ”black”,
text: "COMMON NAME: ” 4 leafCommon,
top: 10,
left: O,
touchEnabled: false

1)

sciNameLabel = Ti.Ul.createLabel ({
font: {fontSize:10},

color: ”black”,

text: ”SCIENTIFIC NAME: ” + leafSci,
top: 30,

left: O,

touchEnabled: false
1)
captionView .add (commonNameLabel) ;
captionView .add(sciNameLabel) ;
leafRow .add (captionView) ;
leafRow .addEventListener (’click >, function (e){
leafImage .setlmage (leaf_img) ;

1)
leafView .add (leafRow) ;
}
else{
var noXMLLabel = Ti.UI.createLabel ({
top:10,
textAlign: ’center’,

font: {fontSize:20, fontWeight: ' bold’},
text: "No JSON File Found”

1)
leafView .add (noXMLLabel) ;
empty = false;

}
if (empty){
mainView = Ti.Ul.createView ({
width:’100% ",
height:’100%"’

1)
var noLeafLabel = Ti.Ul.createLabel ({
top:10,
textAlign: ’center’,
font: {fontSize:20, fontWeight: bold },
text: ”JSON File Empty”
1)
leafView .add(noLeafLabel);
}
¥
f = Ti.Filesystem.getFile(Ti.Filesystem.applicationDataDirectory , jsonfname);
var g = Ti.Filesystem.getFile(Ti.Filesystem.resourcesDirectory , jsonfname);

//var data = Ti.XML. parseString (f.read ().text);
if (f.exists () == false){

f.write(g.read());
¥

$.search.add(leafView);
refreshTable () ;
$.search.add(leafIlmage);

source—code/server/extractsingle.cpp
#include ”stdafx.h”

51

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#include <opencv/cv.h>

#include <numeric>

#include <iostream>

#include <fstream>

#include <boost/filesystem .hpp>
using namespace cv;

using namespace std;

using namespace boost:: filesystem;
RNG rng(12345);

#define PI 3.1416
#define IMGROWS 600
#define IMGCOLS 300
#define CURVATUREROWS 25

const double Epsilon = 1.0e—-08;
void observe_probs(const cv::Mat& probs)

{
std:: vector<double> t(probs.cols, 0.0);
for (int n = 0; n < probs.rows; ++n) {
const doublex gamma.n = probs.ptr<double>(n);
double s = 0.0;
for (int k = 0; k < probs.cols; ++k) {
s += gamma.n[k]; // \gamma_{n,k}
t[k] += gamman[k];
assert (std::abs(s — 1.0) < Epsilon);
3
double total = std::accumulate(t.begin(), t.end(), 0.0);
assert (std::abs(total — probs.rows) < Epsilon);
}

void observe_weights (const cv::Mat& weights)

{
cv:: MatConstlIterator_<double> first = weights.begin<double >();
cv:: MatConstlterator_<double> last = weights.end<double >();
double s = 0.0;
while (first ! last) { // loop over k
s += xfirst; // =first means \pi-{k}
++first ;
}
assert (std::abs(s — 1.0) < Epsilon);
¥
void observe_labels_and_-means(const cv::Mat& labels, const cv::Mat& means, int height,
String filename, String source)
{
const int dimension = 2;
cv::Mat rgb_image (height , width, CV_8UC3);
cv:: Matlterator_<cv:: Vec3b> rgb_first = rgb_image.begin<cv::Vec3b>();
cv:: Matlterator_<cv:: Vec3b> rgb_last = rgb_image.end<cv::Vec3b>();
cv:: MatConstlterator_<int> label_first = labels.begin<int >();
cv::Mat means_u8;
means.convertTo (means_u8, CV_.8UC1l, 255.0);
cv::Mat means_u8c3 = means_u8.reshape(dimension);
while (rgb_first != rgb_last) {
const cv::Vec3b& rgb = means_u8c3.ptr<cv::Vec3db>(xlabel_first) [0];
srgb_first = rgb;
++rgb_first;
++label_first ;
// Grayscale matrix
cv::Mat grayscaleMat (rgb_image.size (), CV_.8U);
//Convert BGR to Gray
cv::cvtColor(rgb_image, grayscaleMat, CVBGR2GRAY) ;
//Binary image
cv::Mat binaryMat (grayscaleMat.size (), grayscaleMat.type());
//Apply thresholding
cv::threshold (grayscaleMat , binaryMat, 100, 255, cv:: THRESH.BINARY) ;
bitwise_not (binaryMat, grayscaleMat) ;
//Show the results
Mat zeroRow (30, grayscaleMat.cols, CV_8UC1l, Scalar (0));
Mat zeroCol(grayscaleMat.rows + 60, 30, CV.8UC1l, Scalar(0));
//extend image
vconcat (grayscaleMat , zeroRow, grayscaleMat);
vconcat (zeroRow, grayscaleMat , grayscaleMat);
hconcat (grayscaleMat , zeroCol, grayscaleMat);
hconcat (zeroCol, grayscaleMat , grayscaleMat);
cv::imwrite (source + ”"\\EM\\” + filename + ” _em_result.jpg”, grayscaleMat);
}

52

int width,

int main(int argc, const char % argv|[])
{
Size imsize (IMGCOLS, IMGROWS) ;
path p(argv[1]);
int i, j, k, 1;
String filename = boost:: filesystem :: basename(p);
String source = p.parent_path().string();
ofstream myfile;
boost :: filesystem :: path dir (source + ”\\EM”);
if (boost::filesystem ::create_directory (dir)){
cout << ”Created EM directory” << ”\n\n”;

myfile.open(filename + ” _features”, ios::trunc);
if (extension (p.filename()) != 7.jpg”){

return —1;
else{

cv::Mat loadedimage = cv::imread(source + ”\\” + filename + ”.jpg”);
cv::Mat image;

cv::Mat brightlmage;

resize (loadedimage , image, imsize);

cv::imwrite(source + "\\EM\\” + filename + ” _resize.jpg”, image);
image.convertTo(brightlmage, —1, 0.5, 80);

cv::imwrite(source 4+ 7"\\EM\\” + filename + ” _bright.jpg”, brightlmage);
assert (brightImage.type () == CV_.8UC3);

const int image_rows = brightlmage.rows;

const int image_cols = brightlmage.cols;

vector <Mat> newMatrix;

cv::Mat hsvimage, newlmage;

vector <Mat> channels, newChannels;

cvtColor (brightIlmage , hsvimage, CV_BGR2HSV) ;

split (hsvimage, channels);

newChannels. push_back(channels [1]) ;

newChannels. push_back(channels [2]) ;

merge (newChannels, newlmage) ;

newlmage.convertTo (newlmage, CV_8UC1);

int dimension = 2;

cv::Mat reshaped_-image = newlmage.reshape(l, image_rows x image_cols);
assert (reshaped_image.type() == CV__8UC1);

assert (reshaped_image.rows image_rows * image_cols);

assert (reshaped_image.cols == dimension);

// create an input for the EM Algorithm
cv::Mat samples;
reshaped_image.convertTo (samples, CV_64FC1, 1.0 / 255.0);

assert (samples.type () == CV_64FC1);
assert (samples.rows == image_rows * image_cols);
assert (samples.cols == dimension);

const int cluster_num{ 2 };
cv ::EM model{ cluster_.num };

// prepare outputs
cv::Mat labels;

cv::Mat probs;

cv::Mat log_likelihoods;

// execute EM Algorithm

cout << ”Executing EM Algorithm for 7”7 << filename << ”7...”7 << endl;
model. train (samples, log_likelihoods , labels, probs);

assert (log_-likelihoods .type () == CV_64FC1);

assert (log_-likelihoods .rows == image_rows * image_cols);

assert (log-likelihoods .cols == 1);

assert (labels.type() == CV_325C1);

assert (labels .rows image_rows * image-cols);

assert (labels.cols == 1);

cout << ”Observing Probabilities” << endl;
assert (probs.type() == CV_64FC1);

assert (probs.rows image_-rows * image_cols);

assert (probs.cols == cluster_num) ;
observe_probs (probs);
cout << ”Observing Labels and Means” << endl;

const cv::Mat& means = model.get<cv::Mat>("means”) ;
assert (means.type() == CV_64FCl1);
assert (means.rows cluster_num) ;

assert (means.cols == dimension);

observe_labels_and_means (labels , means, image_rows, image_cols, filename, source);
cout << ”"Observing Weights” << endl;

const cv::Mat& weights = model.get<cv::Mat>(” weights”);

assert (weights.type () == CV_64FC1);

assert (weights.rows == H

assert (weights.cols == cluster_.num) ;

observe_weights (weights);

//Getting contours
vector<vector<Point>> contours;
vector<Vec4i> hierarchy ;

53

cv::Mat grayscalelmage = cv::imread(source + "\\EM\\” + filename + ”_em-_result.jpg
")

cv::Mat newgrayscalelmage = cv::imread(source + 7\\EM\\” + filename + ” _em_result.
irg”);
assert (grayscalelmage.type() == CV_8UC1);

cv::cvtColor(grayscalelmage , newgrayscaleImage , CV.BGR2GRAY) ;
Canny (grayscaleIlmage , newgrayscalelmage, 100, 1500, 3);
imwrite (source 4+ ”\\Canny\\” 4+ filename + ” _canny.jpg”, newgrayscalelmage);

Scalar colour;

cv::Mat cannyimage = newgrayscalelmage;

cv::Mat EMimage = cv::imread (source + ”"\\EM\\” + filename + ” _em_result.jpg”);
vector<Point> edge;

for (j = 0; j < cannyimage.rows; j++){
for (i = 0; i < cannyimage.cols; i++4){
if (cannyimage.at<uchar>(j, i) == 255){

edge.push_back (Point (i, j));
}
}
¥
float radius;
Mat cropped;

float whites = 0.0;

cv::Mat curvaturelmage;

Rect r;

Mat roi;

Mat mask;

int area, zerocounter;

bool set = false;

cout << ” Calculating areas...” << endl;

Mat colors (25, 1, CV.8UC1l, Scalar(0));
for (i = 0; i < edge.size(); i++){
j =03
zerocounter = 0;
for (radius = 5.0; radius < 30.0;){

//initialize region of interest

r.x = edge[i].x — radius;
r.y = edge[i].y — radius;
r.width = radius * 2;
r.height = radius * 2;

roi = Mat(EMimage, r);

mask = Mat(roi.size (), roi.type(), Scalar::all(0));

circle (mask, Point(radius, radius), radius, Scalar::all(255), —1);
cropped = roi & mask;

//calculate white points
whites = 0;
for (k = 0; k < cropped.rows; k++){
for (1 = 0; 1 < cropped.cols; I1++){
) =

if (cropped.at<uchar>(l, k = 255){
whites++4;
}
}
//get area
unsigned char area = uchar ((whites % 255) / (PI % radius * radius)
3
colors.at<uchar >(0, j) = area;
radius = radius 4+ 1;
J++s
if ((int)area == 0)
zerocounter = zerocounter + 1;
}
if (!set && zerocounter < CURVATUREROWS) {
curvaturelmage = colors;
set = true;
}
else if (set && zerocounter < CURVATUREROWS){
hconcat (curvaturelmage, colors, curvaturelmage);
}
}
imwrite (source + "\\EM\\” + filename + ” _curvature_image.jpg”, curvaturelmage);

int bins = 16;

float range[] = { 0, 256 };

const floatx histRange = { range };
vector<Mat> histograms;
vector<float> features;

Mat histogram;

int ch[] = { 0 };

for (i = 0; i < curvaturelmage.rows; i++){
stringstream ss;
ss << i

calcHist(&curvaturelmage .row (i), 1, 0, Mat(), histogram, 1, &bins, &
histRange , true, false);
for (j = 0; j < histogram.rows; j++){
features.push_back (histogram.at<float >(j, 0));
}

o4

int leafnumber = 0;
myfile << leafnumber << 7 ;
for (i = 0; i < features.size(); i++){

myfile << i + 1 << 7:” << features[i] << 7 7

»

myfile << ”\n”;

}

return O0;

source—code/server /keytosci.cpp

#include ”stdafx.h”
#include <numeric>
#include <iostream>
#include <fstream>
#include <string>
#include <map>
#include <sstream>
#include ”strtk.hpp”
using namespace std;

int main(int argc, const char % argv[]){
string leafSciname, leafindexstr, line;
fstream filename;
map<int , string> leafNumMap;
map<int , string >::iterator it;
int leafindex;
filename .open (” leafNumSciList.txt”, ios::in);
while (getline (filename, line)){
vector<string> vec;

strtk :: parse(line, 7:”, vec);
leafindexstr = vec[0];

leafindex = std::stoi(leafindexstr);
leafSciname = vec[1];

leafNumMap [leafindex] = leafSciname;

filename . close () ;

leafindexstr = argv|[1l];

leafindex = std::stoi(leafindexstr);
it = leafNumMap.begin () ;

it = leafNumMap. find (leafindex);
leafSciname = it —>second;

cout << leafSciname;

source—code/server /scitocomm.cpp

#include ”stdafx.h”
#include <numeric>
#include <iostream>
#include <fstream>
#include <string>
#include <map>
#include <sstream>
#include ”strtk.hpp”
using namespace std;

int main(int argc, const char *x argv[]){
string leafSciname, line, leafCommonname;
fstream filename;
map<string , string> leafSciMap;
map<string , string >::iterator it;
filename .open(” leafSciCommonList.txt”, ios::in);
while (getline (filename , line)){
vector<string> vec;

strtk :: parse(line, ”:”7, vec);

leafSciname = vec [0];

leafCommonname = vec [1];

leafSciMap [leafSciname] = leafCommonname;

filename . close ();

leafSciname = argv [1];

it = leafSciMap.begin () ;

it = leafSciMap . find (leafSciname);
leafCommonname = it —>second;

cout << leafCommonname;

source—code/training/extract.cpp

#include ”stdafx.h”

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>

#include <opencv/cv.h>

%)

#include <numeric>
#include <iostream>
#include <fstream >

#include <boost/filesystem .
using namespace cv;

using namespace std;

hpp>

using namespace boost:: filesystem;

RNG rng(12345);

#define PI 3.1416
#define IMGROWS 600
#define IMGCOLS 300
#define CURVATUREROWS 25

void observe_probs(const cv::Mat& probs)
std :: vector<double> t(probs.cols, 0.0);
for (int n = 0; n < probs.rows; ++4n) {
const doublex gamma.n = probs.ptr<double>(n);
double s = 0.0;
for (int k = 0; k < probs.cols; ++k) {
s += gammamn[k]; // \gamma_{n,k}
t[k] += gamma.n[k];
}
assert (std::abs(s — 1.0) < Epsilon);
double total = std::accumulate(t.begin(), t.end(), 0.0);
assert (std::abs(total — probs.rows) < Epsilon);
}
const double Epsilon = 1.0e—-08;
void observe_weights(const cv::Mat& weights)
{
cv:: MatConstlterator_<double> first = weights.begin<double >();
cv:: MatConstIterator_<double> last = weights.end<double >();
double s = 0.0;
while (first != last) { // loop over k
s += xfirst; // =first means \pi-{k}
++first ;
}
assert (std::abs(s — 1.0) < Epsilon);
}
void observe_labels_and_-means (const cv::Mat& labels, const cv::Mat& means, int height,

String filename, String source)

const int dimension = 2;
cv::Mat rgb_image (height , width

cv:: Matlterator_<cv:: Vec3b> rgb_first = rgb_image.begin<cv::Vec3b>();

, CV_8UC3);

cv:: Matlterator_<cv:: Vec3b> rgb_last = rgb_image.end<cv::Vec3b>();
cv:: MatConstlterator_.<int> label_first = labels.begin<int >();

cv::Mat means_u8;

means.convertTo (means_u8, CV_8UCl, 255.0);
cv::Mat means_u8c3 = means_u8.reshape(dimension);

while (rgb_first != rgb_last) {
const cv::Vec3b& rgb =
xrgb_first = rgb;
++rgb_first;
++label_first ;

// Grayscale matrix
cv::Mat grayscaleMat (rgb_-image.

//Convert BGR to Gray

means_u8c3.ptr<cv:: Vec3b>(xlabel_first) [0];

size (), CV.8U);

cv::cvtColor(rgb_image, grayscaleMat, CVBGR2GRAY) ;

//Binary image
cv::Mat binaryMat (grayscaleMat .

//Apply thresholding

size (), grayscaleMat.type());

cv::threshold (grayscaleMat , binaryMat, 100, 255, cv:: THRESHBINARY) ;
bitwise_not (binaryMat , grayscaleMat);

//Show the results

Mat zeroRow (30, grayscaleMat.cols, CV_8UC1, Scalar(0));
Mat zeroCol(grayscaleMat.rows + 60, 30, CV.8UC1l, Scalar(0));

//extend image

vconcat (grayscaleMat , zeroRow,
vconcat (zeroRow, grayscaleMat ,
hconcat (grayscaleMat , zeroCol,
hconcat (zeroCol, grayscaleMat ,

cv::imwrite (source + ”"\\EM\\” + filename + ”_em_result.jpg”,

int main(int argc, const char % argv|[])

String source = argv|[1l];

Size imsize (IMGCOLS, IMGROWS) ;

grayscaleMat) ;
grayscaleMat) ;
grayscaleMat) ;
grayscaleMat) ;

56

grayscaleMat) ;

int width,

path p (argv |
int i, j, k,

1]);
1

directory_iterator it{ p };

char choice =
ofstream myfi

PR

le;

boost :: filesystem :: path dir(source 4+ 7\\EM”);

while (touppe
if (b

else{

}

r(choice) != 'O’ || toupper(choice) != "A’){
oost :: filesystem :: exists (” features”)){
cout << "features.txt already exists. Do you want to overwite (o) or
append (a) \”features\”? [o/a]: 7;
cin >> choice;

if (toupper(choice) == ’0’){
myfile.open(” features”, ios::trunc);
break ;

}

else if (toupper(choice) == ’A’){
myfile.open(” features”, ios::app);
break ;

}

myfile.open(” features”);
break;

if (boost::filesystem ::create_directory (dir)){
cout << " Created EM directory” << ”\n\n”;

while (it != directory-iterator{}){
String filename = boost:: filesystem :: basename(*it);
cout << filename << extension(xit) << endl;
if (extension(xit) !'= ”.jpg”){
* it 443
continue;
}
else{

cv::Mat loadedimage = cv::imread(source + ”\\” + filename + ”.jpg”);
cv::Mat image;

cv::Mat brightlmage;

resize (loadedimage, image, imsize);

cv::imwrite(source 4+ 7"\\EM\\” + filename + ” _resize.jpg”, image);
image.convertTo (brightlmage, —1, 0.5, 80);

cv::imwrite(source 4+ 7"\\EM\\” 4+ filename + ” _bright.jpg”, brightlmage);
assert (brightImage.type() == CV.8UC3);

const int image_rows = brightlmage.rows;

const int image_cols = brightlmage.cols;

vector <Mat> newMatrix;

cv::Mat hsvimage, newlmage;

vector <Mat> channels, newChannels;

cvtColor (brightImage , hsvimage, CV_BGR2HSV) ;

split (hsvimage, channels);
newChannels. push_back(channels [1]
newChannels. push_back(channels [2]
merge (newChannels, newlmage) ;

)
).

5

newlmage.convertTo (newlmage, CV_8UC1);

int dimension = 2;

cv::Mat reshaped_-image = newlmage.reshape(l, image_rows * image_cols);
assert (reshaped_image.type() == CV.8UC1);

assert (reshaped_-image .rows image_-rows * image_cols);

assert (reshaped_image.cols == dimension);

// create an input for the EM Algorithm
cv::Mat samples;
reshaped_image.convertTo (samples, CV_64FC1, 1.0 / 255.0);

assert (samples.type() == CV_64FC1);
assert (samples.rows == image_-rows * image._cols);
assert (samples.cols == dimension);

const int cluster_num{ 2 };
cv::EM model{ cluster_.num };

// prepare outputs
cv::Mat labels;

cv::Mat probs;

cv::Mat log_-likelihoods;

// execute EM Algorithm

cout << " Executing EM Algorithm for ” << filename << 7...” << endl;
model. train (samples, log-likelihoods , labels, probs);

assert (log-likelihoods .type() == CV_64FC1);

assert (log-likelihoods .rows == image_-rows * image_cols);

assert (log-likelihoods .cols == 1);

assert (labels.type() == CV_.32SC1);

assert (labels.rows image_rows * image_cols);
assert (labels.cols == 1);
cout << ”Observing Probabilities” << endl;

57

assert (probs.type() == CV_64FC1);

assert (probs.rows image_-rows * image_cols);
assert (probs.cols == cluster_num) ;
observe_probs (probs);

cout << ” Observing Labels and Means” << endl;

const cv::Mat& means = model.get<cv::Mat>("means”) ;

assert (means.type () == CV_64FC1);

assert (means.rows == cluster_num);

assert (means. cols == dimension) ;

observe_labels_and_-means (labels , means, image_rows, image_cols, filename,
source) ;

cout << ”"Observing Weights” << endl;
const cv::Mat& weights = model.get<cv::Mat>(” weights”);

assert (weights.type() == CV_64FC1);
assert (weights.rows == 1);
assert (weights.cols == cluster_num) ;

observe_weights (weights);

// Getting contours

vector<vector<Point>> contours;

vector<Vec4i> hierarchy;

cv::Mat grayscalelmage = cv::imread(source + ”\\EM\\” + filename + ”
_em_result.jpg”);

cv::Mat newgrayscalelmage = cv::imread(source 4+ 7\\EM\\” + filename + ”
—_em_result.jpg”);

assert (grayscalelmage .type() == CV_.8UC1);

cv::cvtColor(grayscalelmage , newgrayscalelmage , CVBGR2GRAY) ;

Canny (grayscaleIlmage , newgrayscalelmage, 100, 1500, 3);

imwrite (source 4+ ”\\Canny\\” + filename + ” _canny.jpg”, newgrayscalelmage)

5

Scalar colour;

cv::Mat cannyimage = newgrayscalelmage;
cv::Mat EMimage = cv::imread (source + ”"\\EM\\” + filename + ” _em_result.
irg”);
vector<Point> edge;
for (j = 0; j < cannyimage.rows; j++){
for (i = 0; i < cannyimage.cols; i++){
if (cannyimage.at<uchar>(j, i) == 255){

edge.push_back (Point (i, j));
}
}

float radius;

Mat cropped;

float whites=0.0;
cv::Mat curvaturelmage;

Rect r;

Mat roi;

Mat mask;

int area, zerocounter;

bool set = false;

cout << ” Calculating areas...” << endl;

Mat colors (25,1,CV_8UC1, Scalar (0));

for (i = 0; i < edge.size(); i++){
i = 0
zerocounter
for (radius

0;
5.0; radius < 30.0;){

//initialize region of interest

r.x = edge[i].x — radius;

r.y = edge[i].y — radius;

r.width = radius * 2;

r.height = radius * 2;

roi = Mat(EMimage, r);

mask = Mat(roi.size (), roi.type(), Scalar::all(0));

circle (mask, Point(radius, radius), radius, Scalar::all
(255), —1);

cropped = roi & mask;

//calculate white points
whites = 0;
for (k = 0; k < cropped.rows; k++){
for (1 = 0; 1 < cropped.cols; 14++){
if (cropped.at<uchar>(l, k) == 255){
whites++;
}

}
¥

//get area

unsigned char area = uchar ((whites * 255) / (PI % radius
radius));
colors.at<uchar>(0, j) = area;
radius = radius + 1;
J++;
if ((int)area == 0)
zerocounter = zerocounter + 1;

}
if (!set && zerocounter < CURVATUREROWS) {

curvaturelmage = colors;

58

®

#include
#include
#include
#include
#include
#include
#include
#include

1, &bins,

set = true;
else if (set && zerocounter < CURVATUREROWS) {
hconcat (curvaturelmage, colors, curvaturelmage);
}
imwrite (source 4+ ”\\EM\\” + filename + ” _curvature_image.jpg”,
curvaturelmage) ;
int bins = 16;
float range[] = { 0, 256 };
const floatx histRange = { range };
vector <Mat> histograms;
vector<float> features;
Mat histogram;
int ch[] = { 0 };
for (i = 0; i < curvaturelmage.rows; i++){
stringstream ss;
ss << i
calcHist(&curvaturelmage.row (i), 1, 0, Mat(), histogram,
&histRange , true, false);
for (j = 0; j < histogram.rows; j++){
features.push_back(histogram.at<float >(j, 0));
}
int leafnumber;
cout << ”Please enter the number corresponding to 7 << filename << 7
refer to the list in leaflist.exe):”;
cin >> leafnumber;
myfile << leafnumber << 7 7;
for (i = 0; i < features.size(); i++){
myfile << i 4+ 1 << 7:” << features[i] << 7 7

}
myfile << 7\n”;
*it 44

}

return 0;

source—code/training /keytosci.cpp

”stdafx .h”
<numeric>
<iostream>
<fstream>
<string>
<map>
<sstream>
7strtk .hpp”

using namespace std;

int main(int argc,

const char x argv|

]
leafindexs

)1
tr

string leafSciname, , line ,

stringstream ss;

fstream filename, numListFile;

map<int , string> leafmap;

map<int , string >::iterator it;

int leafindex;

filename .open(” leafNumSciList.txt”, ios::

while (getline (filename, line)){
vector<string> vec;
strtk :: parse(line, 7:”, vec);
leafindexstr = vec[0];
leafindex = std::stoi(leafindexs
leafSciname = vec[1];

leafSciname

leafmap [leafindex]

temp;

in);

tr);

5

filename . close ();
int choice = 0;
do{
cout << " Leaf Keys and Scientfic Names Listing” << endl;
cout << ”[1] Add Entry” << endl;
cout << ”[2] Search Leaf” << endl;
cout << ”[3] List All” << endl;
cout << 7[4] Delete Entry” << endl;
cout << 7 [5] Exit” << endl;
cout << ” Choice: 7;
getline (cin, temp);
stringstream ss(temp);
ss >> choice;
switch (choice){
case 1:
cout << ”Enter the leaf’s scientific name: ”;
getline (cin, leafSciname);
cout << ”Enter the leaf’s number: 7;
getline (cin, leafindexstr);
leafindex = std::stoi(leafindexstr);

cout << leafindex;

59

Sjrg (

#include
#include
#include
#include
#include
#include
#include
#include

leafmap [leafindex] = leafSciname;

cout << 7 [INFO] Leaf added

successfully .”

<< endl << endl;

cond << endl << endl;

cond << endl;

successfully .” << endl << endl;

”? << endl << endl;

break;
case 2:
cout << 7 [SEARCH] Enter the leaf’s number: 7;
getline (cin, leafindexstr);
leafindex = std::stoi(leafindexstr);
it = leafmap.begin();
it = leafmap.find (leafindex);
if (it != leafmap.end()){
cout << leafindex << 7: 7 << it—>se
}
else
cout << " [ERROR] Leaf does not exist” << endl << endl;
break ;
case 3:
cout << ”"List of Leaves:” << endl;
for (it = leafmap.begin(); it != leafmap.end(); it++){
cout << it—>first << 7: 7 << it—>se
}
cout << endl;
break;
case 4:
cout << ” [DELETE] Enter the leaf’s name: ”;
getline (cin, leafindexstr);
it = leafmap.begin();
if (it != leafmap.end()){
ss << leafindexstr;
ss >> leafindex;
leafmap . erase (leafindex);
cout << 7 [INFO]Record deleted
}
else
cout << 7 [ERROR] Leaf does not exist
break ;
case 5:
break ;
default :
cout << " [ERROR]Invalid choice!” << endl << endl;
}
} while (choice != 5);
filename .open(” leafNumSciList.txt”, ios::out | ios::trunc);
numListFile.open(”leafNumList.txt”, ios::out | ios::trunc);
for (it = leafmap.begin(); it != leafmap.end(); it++){
filename << it—>first << 7:”7 << it—>second << ”"\n”;

numListFile << it—>first << 7\n”;

filename . close ();
numListFile. close () ;
return O0;

source—code/training/scitocomm.cpp

”stdafx .h”
<numeric>
<iostream >
<fstream>
<string>
<map>
<sstream>
”strtk .hpp”

using namespace std;

int main(int argc, const char *x argv[]){

string leafSciname , leafCommonname, line

fstream filename;

map<string , string> leafmap;

map<string , string >::iterator it;

int leafindex , lastindex;

char delim;

filename .open (” leafSciCommonList. txt”, i

while (getline (filename ,line)){
vector<string> vec;
strtk :: parse(line , ”:”, vec);
leafSciname = vec [0];
leafCommonname = vec [1];

, temp;

os ::i

leafmap [leafSciname] = leafCommonname;

b
filename . close ();
int choice = 0;
do{

cout << ”"Leaf Scientific And Common Names Listing”

cout << 7[1] Add Entry” << endl;

cout << 7 [2] Search Leaf” << endl;

cout << ”[3] List All” << endl;

cout << 7 [4] Delete Entry” << endl;

cout << 7 [5] Exit” << endl;
cout << ” Choice: 7;

60

<< endl;

getline (cin, temp);
stringstream ss(temp);
ss >> choice;

switch (choice){

case 1:
cout << ”Enter the leaf’s scientific name: ”;
getline (cin, leafSciname);
cout << ”Enter the leaf’s common name: 7;
getline (cin, leafCommonname) ;
leafmap [leafSciname] = leafCommonname;
cout << " [INFO]Leaf added successfully.” << endl << endl;
break ;
case 2:
cout << ”[SEARCH] Enter the leaf’s name: ”;
getline (cin, leafSciname);
it = leafmap.begin();
it = leafmap.find (leafSciname);
if (it != leafmap.end())
cout << leafSciname << ”7: ” << it—>second << endl << endl;
else
cout << " [ERROR] Leaf does not exist” << endl << endl;
break;
case 3:
cout << ”List of Leaves:” << endl;
for (it = leafmap.begin(); it != leafmap.end(); it++){
cout << it—>first << 7: 7 << it—>second << endl;
}
cout << endl;
break;
case 4:
cout << 7 [DELETE] Enter the leaf’s name: ”;
getline (cin, leafSciname);
it = leafmap.begin();
if (it != leafmap.end()){
leafmap . erase (leafSciname) ;
cout << " [INFO]Record deleted successfully.” << endl << endl;
}
else
cout << " [ERROR] Leaf does not exist” << endl << endl;
break;
case 5:
break ;
default :
cout << " [ERROR]Invalid choice!” << endl << endl;
}
} while (choice != 5);
filename .open (” leafSciCommonList.txt”, ios::out | ios::trunc);
for (it = leafmap.begin(); it != leafmap.end(); it++){
filename << it—>first << 7:” << it—>second << ”"\n”;

filename . close () ;
return O0;

61

XI. Acknowledgment

“Now unto Him that is able to keep you from falling, and to present you faultless before the presence of His glory
with exceeding joy, to the only wise God our Saviour, be glory and majesty, dominion and power, both now and
ever. Amen.” - Jude 24-25 (KJV)

Finally, after 4+1 years of labor, every course has been conquered and I am now going to graduate. This manuscript
is the mark of victory, signifying I have completed every requirement for B.S. Computer Science. Of course, I wouldn’t
have reached this point without falling not a few times, but in those times, I stand back up a nd push on and I couldn’t
have done it without God and the people who continuously support me. So let me take this time to thank each of
them one-by-one.

First to our Almighty God and our Saviour Jesus Christ, if it wasn’t for His grace and mercy. I couldn’t have
survived these years. I wouldn’t have even entered UP Manila if it wasn’t for Him! His grace carried me through the
endless waves of requirements, and if it wasn’t for Him, I would still be stuck doing my thesis (or possibly, one of
those machine problems). His grace is more than enough. His power magnified in my weakness. His joy in me despite
my pain. He’s done so much that no mouth can express, nor pen could ever tell (or keyboard could type). And I
could only bow down in reverent awe, worshiping and praising Him, for His love.

To my parents who was the instrument of God for providing my needs, encouraging me (and nagging me to finish
my thesis). If it wasn’t for them, I couldn’t have gotten a degree or even entered college. Although they were busy
in their work, they took time to check on the progress of my SP (even though I knew they couldn’t understand the
technical side of things).

To my sister for being very understanding and patiently enduring the noisy keyboard and mouse I have. Thank
you for lending me your phone when I needed to test my application.

To the Student Group coworkers of Christian Gospel Center (both past and present), if it wasn’t for your spiritual
nuturing, I could’ve lost faith and fell along the way. Your consistent encouragement and kind corrections were
instrumental to be who I am today. I thank God for all of you, being noble vessels in the house of God, that you
continue to minister, not only to me, but to all students, that we may all be molded into the likeness of Christ, to be
God-glorifying individuals and to be overcomers in these dark days. May the good Lord continue to bless you and
use you in your ministry.

To the brothers and sisters at Christian Gospel Center, thank you for your prayers and your endless support. Your
lives are an encouragement to me to continue on this pathway of faith. Your companionship in this walk has proven
to be invaluable and this proves that we are all co-pilgrims. I pray that we may all continue to walk this path until
we see Him and that I, too, may be an example to you and those following behind as you are examples to me. May
we continue to encourage one another in love and unity. The Lord remembers your prayers and may He richly reward
you.

To my SP advisers sir Co, Sir Bernie, and finally sir Marvin and to the project head sir Solano. Thank you sir
Solano for the topic, although the plan didn’t work out as planned, but I thank you for your patience (yes, it was
delayed for a year, at least on my part). Thank you sir Co for choosing me to be part of this project. Thank you sir
Bernie for helping me in my proposal and providing me the journals I needed. Thank you sir Marvin for guiding me
in my final manuscript and in the development of my project. Thanks also for giving us an introductory crash course
to Machine Learning and SVM, which some of us needed.

To the professors of U.P. Manila, thank you for the knowledge that you have imparted and the time. I know that
a lot of our subjects were petitioned, and we thank you for agreeing to be our instructor. The knowledge imparted
to me are invaluable as I plan on to pursue further studies. A special shoutout to Ate Eden, you may not be our
instructor, but the moral support you have shown to our batch has been invaluable.

To block 12, thank you guys for the acquaintanceship. I know I haven’t been to much of the activities, but, yeah,
thanks.

Special shoutout to the following peeps: Jason Chua, Benedict Tiu, Jerahmeel Chua, John Bengemin Uy, and
Aaron Uy. Thanks for being there for me. Thanks for the prayers, chats, jokes, encouragements, heart-to-hearts(?!),

meals together, time together, and whatever else.

Shoutout also to the freshie batch of 2014, to B, A, S, K, D and your equivalent hexadecimal thingys. Thanks for
the stress-reliever.

This marks the end of a chapter of my life, but also marks the beginning of a new one. May God continue to find
me faithful in His service as I start my career.

62

