UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

COMMUNITY DETECTION IN PHILIPPINE CONGRESS
LEGISLATORS

A special problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Kharl Gaebriel A. Agir
May 2018

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser | No

Available only to those bound by confidentiality agreement | No

ACCEPTANCE SHEET

The Special Problem entitled “Community Detection in Philippine Congress
Legislators” prepared and submitted by Kharl Gaebriel A. Agir in partial fulfillment
of the requirements for the degree of Bachelor of Science in Computer Science has
been examined and is recommended for acceptance.

Geoffrey A. Solano, Ph.D. (cand.)
Adviser

EXAMINERS:
Approved Disapproved

Gregorio B. Baes, Ph.D. (cand.)
Avegail D. Carpio, M.Sc.

Richard Bryann L. Chua, Ph.D. (cand.)
Perlita E. Gasmen, M.Sc. (cand.)
Marvin John C. Ignacio, M.Sc. (cand.)
Ma. Sheila A. Magboo, M.Sc.

Vincent Peter C. Maghoo, M.D., M.Sc.

NGt W

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Ma. Sheila A. Magboo, M.Sc. Marcelina B. Lirazan, Ph.D.
Unit Head Chair
Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Leonardo R. Estacio Jr., Ph.D.
Dean
College of Arts and Sciences

Abstract

A program that would detect communities of specific sizes in a network of legislators,
as well as compute different centralities of each network nodes, have always been a
sought for tool in the field of political science for the entities in that network play
vital roles in our government. The Philippine congress is consists of over 300 house
members and 58 standing committees, and it is crucial to look on how these entities
work together, with the consideration of their political involvements and relationship.
The data used contains political involvements of the 17th Congress of The Philippines.
Analyzing these data will result to an output that is not commonly obvious to people.
For the analysis, community detection by means of clique-finding algorithms is used.
Cluster or communities are extracted, as well as the centrality measures of each node,
to be able to see whose members have stronger connection towards others. The
software also produces a graph visualization of the network and export the results
as a PDF file. The software is using Java as its interface and R for some of its
funtionalities.

Keywords: Community Detection, Weighted Cliques, Centrality, Congress, Political In-

volvements

Contents

[Acceptance Sheet| i
[Abstractl ii
[List of Figures| \%
L. Introductionl 1
[A. Background of the Study| 0L 1

(B. Statement of the Problem|. 3

[C. Objectives of the Study| 3

[D. Significance of the Project| 4

[E. Scope and Limitations| 5

(. Assumptions|)

M Rewi FRel 13 l 6
UII. Theoretical Framework 11
[A. Community Detection|. 11

(B. Philippine Congress Structure] 12

[C. Graph Construction|, 12

[D. Centralityl 13

[D..1 Degree Centrality| 13

[D..2 Betweenness Centrality| 13

[D..3 Closeness Centrality] 14
................................. 14

(. Weighted Clique Problem|. 15

(G. 2-Approximation Algorithm for Finding a Clique with Minimum |
Weight of Vertices and Edges|. 16

il

V.

Design and Implementation|

[A. Data Specifications| oL

[B. System Design| o

[B..1 Context Diagram|

[B..2 Use Case Diagram|

[B..3 Flowchart Diagram|

[C. System Architecture|.o

Bibliography|

Appendix|

IXT.

Acknowledgement|

v

19
19
19
19
19
21
23
23

24

34

36

37

38

40
40

62

List of Figures

(1 Graphical Representation ot a Clique| 15
[2 Weighted Clique|. 15
[3 An example of a symmetric adjacency matrix| 18
{4 Context Diagram| L 19
(5 Use Case Diagram| 20
(6 Flowchart Diagram| 21
[7 Algorithm Flowchart| 22
B Main Menul 24
[9 File Choosing| 25
[0 Features 26
(11 Feature Selectionlo oL 26
(12 Specify Community Parameters| 27
(13 Sample Resultso oo 28
(14~ Node Centrality|, 29
(15 PDF Input File Name| 30
16 PDE Generated|o 31
L7 PDF Contentsl 32
[18 Graph Generated|o 33

I. Introduction

A. Background of the Study

Representatives or Congressmen/Congress-women are the legislators in the Philip-
pine Congress. They were elected by voters and can serve for a three-year term in
their respective legislative districts. In total, there are 238 representatives elected by
district and another 20%of the total number of the representatives elected through
the party-list system. On the other hand, twenty-four (24) Senators, the legislators
in the Senate, are elected at a nationwide election to a six-year term and cannot serve
for not more than two consecutive terms [IJ.

The Philippine Congress is the one responsible for formulating and enabling laws
to upheld the constitution in the country and amend or change the constitution itself.
This legislative body is opting to produce two main documents: bills and resolutions.

With over 290 house members, 58 standing committees, and 7,778 house bills
and resolutions, it is crucial to look on how these entities work together and their
relationship background. But with these numbers, it‘ll be exhausting and will took
some time to dig in especially during urgent times. In this kind of situations, a tool
that will easily generate a graph that uses legislators as its nodes, different political
involvement as their edges would be a great aid. A graph representation of this
data will easily provide an instant visualization of how these entities are plotted in
a network. Also, graph properties and characteristics can provide significant findings
in these network entities. In this study, community detection and node centrality
measures were used to analyze this data.

Centrality, in a technical sense, is the measure of how a certain node is connected
to other nodes in the graph and how it is positioned in the network. This type of
connection can be only readily seen by the use of graphs. Centrality concepts in

a network do not differentiate sending from receiveing relations but simply treat all

connections as symmetric. The most central positions in a network are those involving
many reciprocated ties to other networks. Network stars acquire power because they
are close to many system actors, in effect, by lying between positions that must use
them to transmit messages and goods. Thus, centrality prominence is useful for
analyzing positional power in symmetric exchange networks such as political network
structure. Centrality measure may prove useful for analyzing power and influence in
diverse situations.

In a network, not only the nodes and their immediate relationship with each
other is important but also much bigger perspective in viewing these entities, such
as the formation of groups and clusters. This is where community detection comes
in. Community detection, in graph theory, revolves around communities or clusters.
They are the group of vertices having higher probability of being connected to each
other than to members of other groups. [2]. Political researchers can use these
and related measures of network to test theories about how networks affect politics,
whether through coercion, agenda setting and interest, or identity changes inside the
network. Political analysts define social power and significance primarily on relational
terms. Significance and importance of a node in political network is an aspect of the
actual or potential interaction between two or more social actors. [3]

Community detection helps researchers understand the entirety of the network by
using the nodes individually, or by the presence of clusters and communities. Not
only that, network analysis, along with community detection, offers practical tools to
measure these information about the politicians and their distributions in any system
of politicians. It concerns relationships defined by ties among nodes. This analysis
examines the association among nodes in addition to the attributes of particular node
because relationships are not properties of nodes but a property of system of nodes.

Community detection can be done in a lot of ways. The traditional methods

focused on clustering and divisive algorithms. They use classification and partitioning

in order to bound nodes under certain characteristics. Since the network in this study
is already bounded by an underlying feature, it is appropriate to use clique-finding
algorithms, for the network under consideration have identical node charactertistics.
Cliques, in simple terms, are subgraphs whose vertices are all connected with each
other. With this definition, we can infer that clique-finding is exhaustive. As matter
of fact, weighted clique problems are considered NP-hard, which means that it can
be polynomially reduced [4Jand can be approximated under certain circumstances.
There is a lot of approximation algorithm that have immersed from this problem
but this discourse tackles specifically a 2-approximation algorithm for finding cliques
with minimum weights [4]. This algorithm uses row‘s subset of symmetric matrix
problem where it accounts the sum of the values in the subset of a matrix row given

a specific number of elements.

B. Statement of the Problem

As of now, a tool that will aid community detection in Philippine Congress Legisla-
tors is still absent. Tools that would show the various political involvements of the
legislators and their relationships would be useful to the people who works in the
field in order to understand how these involvements are related and also to see how
legislators that have worked together in the past or currently working together push

through their goals in relation to each other.

C. Objectives of the Study

This study opts to produce a tool that would take in data of Philippine legislators and
political involvement variables (Political party, authored/coauthored bills, etc.) from
all over the Philippines. The data is taken through a spreadsheet file that contains
the name of the legislator, along with the dataset related to these legislators that the

political researcher may wish to input. With these data, the tool would generate a

graph based on it with the legislators as nodes and their political relationship, based

on the dataset, as the edges and edge weights. The tool is able to:

1. Accept a desired data set of the political involvement of the legislators from the

user
2. Display all the communities with the size specified by the user
3. Let the user choose either exact algorithm or approximate algorithm

4. Compute the centrality of each nodes (Degree, Weighted Degree, Betweenness,

and Closeness)

5. Display a graph visualization of the political network formed, as well as the

communities detected by it.

6. Produce a PDF document containing the list of communities present and the

centrality table of legislators.

D. Significance of the Project

The tool can be used to visualize the political involvement of the Philippine legislators
with each other. It would help in studying the correlation of different political vari-
ables by producing an undirected graph that shows the relationship and connection
of each legislator with each other.

The output of this tools may then be useful to the public during election period.
They would have an easier way to observe how these legislators worked in the past
and consider the political background of each candidate by using the output results
as basis, thereby contributing to a better judgment in choosing a much suitable

candidate.

E. Scope and Limitations

The tool developed in this study is limited to the following constraints:

1. It can easily process data coming from the same congress only depending on

the data set used.

2. The additional data set that will be entered by the used must be from the same

set of subset of legislators as the current data set

3. For the approximation algorithm, the optimal communities are only guaranteed

if the data in the adjacency matrix follow the metric properties.

4. The data set must follow the data specifications of the tool, saved in .xls, .xlsx,

or .csv file extensions.

5. There no error checking on the data set that will be used as an input

F. Assumptions

The tool produced in this study works under the following assumptions:
1. The political researcher is knowledgeable in interpreting basic graph properties.

2. The machine to be used has a graphics-processing unit.

II. Review of Related Literature

Recent researches over the past years exposed the booming development of graph data
modelling and its application [5] thus analyzing and mining knowledge from graphs
can be considered significantly meaningful. One of its various applications can be
seen in studying and analyzing networks.

A network is a collection of entities that are interconnected with links. Networks
are often represented as graphs where entities take on vertices that are connected with
edges. They frequently associate with communities, defined as groups of nodes that
are densely connected as compared to nodes outside the community [6]. These nodes
are somewhat bounded by some common property. Communities in network are rep-
resented as subgraphs in graphs. To some extent, they can be considered as separate
entities with their own autonomy. It makes sense to evaluate them independently of
the graph as a whole.

Social communities can be defined in a very strict sense as a subgroup whose
members are all related to each other which can be considered as complete mutuality
[7]. In graph terms, this corresponds to a clique, a subset whose vertices are all
adjacent to each other. Moreover, a community where all of the entities are connected
to each other provides valued information and knowledge, and can now be represented
as cliques.

Although community structure may be applied to numerous real-world problems,
detecting them, especially a complete one, is one of the most challenging tasks.
Through time, various community detection algorithms are present in the field. This
applied to both disjoint and overlapping communities. One of it was about clique
finding method [7].

According to Fei Hao et al. [5], maximal clique enumeration problem is extensively
investigated in many fields. The problem to figure out the subgraph with maximum

cardinality is considered NP-hard, where there is no polynomial time solution present.

Their study that involved networks of collaborations between scientist used a formal
concept approach that uses equivalence relation between vertices. Their proposed
approach is to find bases that are common to maximal cliques. Subgraphs build upon
these based to form cliques. The result of their study suggested that this phenomenon
is quite important and promising for complex topological structures and other network
mining and analysis.

A paper written by Priyanka Saxena et al [§]. studied some of the proposed al-
gorithms that tried to solve the maximum clique problem. Their paper aimed to
review and compare famous clique finding algorithm defined to this day. According
to them, the clique problem resides with two well-studied problems: The maximum
clique problem where it is aimed to find a maximal clique with maximum cardinality
or weight and the maximal clique problem that is aimed to find a clique which is not
a subset of any other clique. Their study made use of backtracking search algorithm
which is the commonly used approach in optimizing the clique problem. Their study
showed that almost all of the proposed algorithm present to this day have exponential
time complexity, some of them even have no concrete time analysis. In other words,
the results of this study showed that even though many algorithms and various ap-
proaches have been proposed, still the problem lie the same i.e. to find a cliques in
the polynomial time.

In 2015, Rossi et. al [9] presented a parallel maximum clique algorithm for large
sparse graphs that is designed to exploit characteristics of social and information net-
works. The method exhibited a runtime that scales over real-world networks ranging
from thousand to million nodes. The algorithm they have used employed a branch-
and-bound strategy with novel and aggressive pruning techniques. The pruning tech-
niques included the combined use of core number of vertices along with an initial
heuristic solution to remove the vast majority of the search space. They demon-

strated the impact of the algorithm on applications using network analysis problems.

The same branch-and-bound approach was used also by Wood [10]. Instead of using
pruning techniques, Wood applied a vertex coloring heuristics to determine lower and
upper bounds for the size of a maximum clique.

Another branch-and-bound approach was presented by Palsetia et. al. [I1], where
they presented a clique guided community detection algorithm. Their algorithm was
divided into two phases. A heuristic branch-and-bound approach was used on the
first phase where they find disjoint cliques that will guide the community detections
that is the second phase.

Their papers showed that in order to apply an efficient algorithm to solve the max-
imum clique problem, different vertex properties must be considered as an algorithm
progresses.

Now, imagine the maximum clique problem reformed in a different way where
instead of the cardinality, edge weights are the ones being considered. There ex-
ists a well-known problem called the Minimum/Maximum Weighted Clique Prob-
lem(MWCP) that take this into considerations. The problem inputs a complete
weighted undirected graph where it is required to output a complete subgraph(clique)
of the graph of order m with the smallest /largest weight. The computational complex-
ity of WCP is determined by the reducibility of the aforementioned clique problem,
which is NP-complete in the strong sense [4].

The work of Chang and Wang [12] proposed an efficient algorithm, with runtime
O(n log(log n)), for finding a maximum weight clique and independent set problems
on permutation graphs. By taking advantage of the graph property, they were able
to solve a weighted clique problem using an efficient algorithm. This study implied
that for certain properties being exhibited by a graph, an efficient algorithm may be
used and derived.

According to Vassilevska, the k-clique problem is a cornerstone of NP-completeness

and parametrized complexity. When k is a fixed constant it is asymptoticall bounded

by a factor of k, but this algorithm relies heavily on a fast matrix multiplication[13].
However, Eremin et al. [4] suggested that if the vertex weights are nonnegative
and edge weights either satisfy the triangle inequality or are squared pairwise dis-
tances for some point configuration of Euclidean space, this natural cases admits a
2-approximation polynomial time algorithm. The proposed algorithm used the Rows
subset of symmetric matrix problem for the polynomial time reduction of the MWCP.
It was shown through the form of property verification.

With this wide variety of works that approximate and optimize the known clique
problem, different efforts in analyzing community structure and the study of commu-
nity detection will benefit greatly. The seek for link prediction, information diffusion,
or even detection of suspicious events in such communities within networks [6] will
be much easier.

A traditional view of significance in politics is that it comes from the possession
of important resources. The relative possession of resources is thought to provide
actors, such as people or organizations with means of coercion or influence over others.
This traditional view is highly limiting, since it tackles the ties that link the actors
together. These ties, whether material or social, determine an actor’s ability to
make connections between, or quickly spread resources to, other actors. An actor’s
relative position in a network formed by these ties thus provides another important
source of influce over other. In the work of Burton and Montgomery [14], they
explained the advantages of actor’s centrality positions along with their advantages
and demonstrated that network notions of power and significance that derive from
centrality can significantly inform the study of politics.

For example, in 2013, the Philippine government was swindled with almost P10
billion by the Priority Development Assessment Fund (PDAF) scam. The scandal
involved ghost projects and dummy non-government organizations being funded by

some politicians for their own gains. Multiple kickbacks and diverted portions in their

government-allocated funds are then misused by these recipients. The alleged culprits
in multiple instances of these scam are almost the same per ghost projects. With this,
we may infer that there must have been an underlying bounding connections between
these suspects [15].

On the other hand, linkages between government officials also serves as factors
when it comes to drafting house bills for example, under the Philippine Congress. By
analyzing these links and connections, we can see how legislators that have political
relationship with each other work alongside with each other and how they achieve a
common goal.

In instances like this, a tool designed for detecting communities in broad networks
would help in analyzing how legislators work with each other and toward their goal.
It would ease the public from observing the lawmakers work along with their various
political involvements. Lastly, this tool would be beneficial to researchers by providing

a more informed visualization of political relationship among legislators.

10

III. Theoretical Framework

A. Community Detection

Community is a collection of nodes that are more densely connected as compared
to the nodes outside the community. The nodes inside the community have some
common properties. There properties are shown by the edges between the nodes. A
community can be classified into two categories, disjoint and overlapping community.
The disjoint community refers to the arrangement where the nodes belong to only
one community while the overlapping community is known for its fuzzy assignments
of nodes that may overlap between two or more communities.

Detection of such community structure in a complex network is quite hard. Com-
munity detection algorithms are available for both disjoint and overlapping com-
munities. Partitioning algorithms for disjoint communities, and clique finding and
clustering algorithms for overlapping communities.

The motivation for studying communities in networks is to somehow visualize the
relationship of the entities that compose that community given a certain property or
condition. These visualizations may help understand in these node relationships and
see how these node work together along their characteristic similarities.

This motivation can be applied in the field of politics. Networks help to visu-
alize the entirety of a certain political society. Enabling the researchers witness the
branching connections of each nodes that represents a politician will immediately give
them a hunch on how this politician interacts with other politicians under different
bounding characteristics. With community detection in present, immediate conclu-
sions can now be drawn not just by individual nodes but also as a cluster and a more

connected group.

11

B. Philippine Congress Structure

The Philippine Legislature, or the Congress of the Philippines, is composed of leg-
islators that provides backbone in imposing different laws governed by the current
government administration. Congress is divided into two chambers or houses the
House of Representatives and the Senate.

Lawmakers in the House of Representatives are called Representatives or Con-
gressman/Congresswomen. They are given a three-year term if theyre elected by
voters in their respective legislative districts. There are a total of 212 legislative
districts in the Philippines along with their representatives. In addition, there are
Representatives elected through the party-list system who constitute not more than
20% of the total number of Representatives.

Lawmakers in the Senate are called Senators, who are elected at large or na-
tionwide by voters to a six-year term. Senators can server for not more than two
consecutive terms. This house has twenty-four (24) Senators.

Committees, or small groups of Representatives, headed by committee chairper-
sons, study proposed laws, called bills, and other measures relating to issued and

concerns of our society.

C. Graph Construction

The graph is constructed by using a spreadsheet file of legislators. Each legislator is
assigned as a node and an edge is drawn in between them if there exist a similarity
in their political involvement in the same column of the file. Each similarity between
the same involvement and legislator will add a unit in their edge weight. After the
data has been parsed, a graph is then produced, where the weight between the edges

is the total number of similarities the legislators have with the others.

12

D. Centrality

Centrality is the measure of which nodes are the most important in the network.
The centrality of a node in a network can take numerous forms. In this paper, three
different cetrality measures were discussed — degree, betweenness, and closeness.

D..1 Degree Centrality

Degree central nodes are nodes that have the most edges connecting to other nodes.
The node’s, let’s say node n, degree centrality is just the totality of number of edges,

x, connecting to it and other nodes.

Ca (ni) = Z% (1)

A variation of this measure is also present in this paper, the weighted degree

centrality. It is the total sum of the weights, w, of the edges connected to a node.

Ca (nz) = Zwij (2)

Higher degree centrality gives the node more access to other nodes in the network.
Degree centrality, in general, is just the number and strength of direct connections to

a node.

D..2 Betweenness Centrality

Another way to measure node centrality is by the use of betweenness centrality. A
node is central if their position in the network lies on the shortest path between

many other node. This measure assumes that the nodes prefer to make connections

13

by choosing one of the shortest pathways, and that they are equally likely to choose
any of the shortest pathways. If g is the number of nodes, g;, is the number of
pathways from node j and k, and g;;(n;) is the number of pathways containing node

i, then the centrality for node i is:

Cy l:”r') = E & ':”f)"lgj.t
i<k

The basic betweenness centrality measure assumes that nodes that fall on one of
the shortest pathways between other nodes have a network advantage because others

depend on them to information or resources.

D..3 Closeness Centrality

Closeness centrality considers the distance between actors. If a node has the highest
closeness centrality because they have the shortest mean pathway to the other node,
then by contrast, the longer the pathway to another nodes means that it has a lower
closeness centrality. If d(n;,n;) is the number of paths linking i and j, then the

closeness of node 1 is:

2

1
C.(n)= [E d(n.n)}

i

E. Cliques

In given a graph G= (V, E) where V and E are the set of vertices and the set of
edges connecting the vertices, respectively, a clique is defined as a complete subgraph
generated from G. It is a subgraph whose vertices are adjacent to each one of the
vertices in that subgraph. A clique of size k, where k is the number of vertices in

the clique, is called a k-clique. A clique of largest possible size is referred to as a

14

maximum clique. The figure below shows the graphical representation of a clique

with the largest size which is represented as the blue entities.

Graph G, with maximum clique C (blue
vertices)

Figure 1: Graphical Representation of a Clique

F. Weighted Clique Problem

Consider a complete simple weighted undirected graph G = (V, E, a , ¢) where a and
c are weight functions that take on integer values for vertices and edges on V and E

respectively.

Figure 2: Weighted Clique

15

The sum ZaU+Zce forveVandeek (3)

is called the total weight function of the graph G, thus the weight of the clique
formed by the vertices F, I, and E is equal to 13. The weighted clique problem is
defined as the problem of finding a complete subgraph (clique) of the graph G of order
m with the smallest/largest weight, given the complete weighted undirected graph G.
The computational complexity of the Weighted Clique Problem is determined by
the known combinatorial clique problem, which is NP-complete. The known clique
problem is just a question of the existence of a clique of order m given an undirected

graph G.

G. 2-Approximation Algorithm for Finding a Clique with

Minimum Weight of Vertices and Edges

The problem of finding a minimum weighted clique, with respect to the total weight of
its vertices and edges of fixed size in a complete undirected weighted graph is always
considered along with its subclasses. It is proven that finding a complete subgraph is
NP-hard. Not only that, the inapproximability of the problem is also proven for the
general case. Eremin et al. [4] suggested a 2-approximation efficient algorithm with
time complexity O(n?) for the cases when vertex weights are nonnegative and the
edge weights either satisfy the triangle inequality or are squared pairwise distances
for some point configuration of Euclidean space.

One of the possible motivations in the problem of grouping similar objects and
cluster analysis is the existence of identical elements that have equal values of a
measured feature in a fixed collection of significant features from a set of objects

under analysis. Sometimes, the data in these problems are given by a matrix of

16

pairwise comparison of object and their comparison criteria may be varied. This

approach gave importance to those entries of the input matrix where:

1. They satisfy the triangle inequality

2. They are combinations of the weights of pairwise compared objects and Eu-

clidean distances between them

3. They are combinations of the weights of pairwise compare objects and squared

Euclidean distances between them

4. They are arbitrary nonnegative values

This general analysis is then applied to a more specific problem which is the
weighted clique problem. The weighted clique problem utilizes an adjacency matrix
of a graph where each element of the matrix is edge weight between each node that
takes on non-negative values. Propositions presented proved that this problem is NP-
hard in strong sense. It is also proven that if there exist an approximation algorithm,
the solution to the problem will be bounded by a scalar multiple of the number of
edges on the k-sized clique.

The search for an approximation algorithm was tackled in the point of view of the
input matrix. As the definition said, a clique is a complete subgraph generated from
an underlying graph. This means that in the counterpart adjacency matrix of this
graph, a clique can be represented as a subset of this matrix. This is where the rows
subset of symmetric matrix problem comes in. The problem is defined by an input
weighted adjacency matrix, which is symmetric in nature, has nonnegative entries
except for the diagonal entries which take on the value of 0. Using this input, we
shall be able to find the sum of a row subset of this matrix with cardinality of m, a

positive integer, and bounded by a positive value D.

F(C):%ZZwijSD,forieCandjeC (4)

17

/011111222222\
102222222222
120222222222
122022222222
122202222222

wol12222022222:°
222222011112
222222101121
222222110211
222222112011
222222121101
\2 22222211110

Figure 3: An example of a symmetric adjacency matrix

The RSSM problem is then proven as a polynomial time equivalent to the Minimum-
Edge Weight Clique Problem in the form of property verification problem. An ap-
proximation algorithm is then presented for the RSSM problem. Step 1. For each j
=1, , n, find a set Bj that consist of indices of m smallest entries in the jth row of

the matrix W including j itself, Define

S(B;) = szj (5)

lEBj

Step 2. Denote by k* the value of j for which S(B;) takes the minimum value
S* =S(B*) =) wi (6)

Take C = B* as an approximate solution of RSSM. This algorithm is then proven
as an approximate solution for the RSSM with the approximation guarantee 2 in time
O(n?) and is asymptotically achievable.

They have showed that the general case of the problem is NP-hard and in-
approximable. Nevertheless, in some rather natural cases, the problem admits 2-

approximation polynomial time algorithms.

18

IV. Design and Implementation

A. Data Specifications

To find an exact or approximate maximum weighted clique or legislators, the re-

searcher inputs a file. The format of the file should strictly comply with the following;:
e The input file must be in a spreadsheet file
e The first column shall correspond the list of legislators.

e The subsequent columns must represent their labeled political involvements.

B. System Design

B..1 Context Diagram

Input data
Community Size .

>

ool for extracting
Folitical Researcher maximum

weighted cliques

i

Weighted communities
Mode centralities

Figure 4: Context Diagram

The succeeding illustrations show how the system is implemented. The input and
output requirements of the system is defined in the context diagram above. The
researcher inputs legislator data along with the size of the clique to be found. The

tool produces the maximum weighted clique as result.

B..2 Use Case Diagram

The researcher may choose to use an existing legislator data to be viewed as a graph

or input another type of legislator data, along with the desired size of the community

19

Folitical Analyst

Choose from existing
legislatar data

Input another type of
legislator data

Input the size of the
community to be found

Specify the number of
communities to be displayed

iew graph generated from
the existing data

Generate a graph
depending on the additional
information input

YWiew the centrality of each
nodes

View maximum weighted
cligue based on the graph
generated

Figure 5: Use Case Diagram

20

to be found and the number of communities to be displayed. The tool generates a
graph depending on this new data type. After the graph has been generated along
its adjacency matrix, the clique finding algorithm finds a maximum weighted k-clique
based on the generated graph and input data, and display the legislators that are

members of this clique.

B..3 Flowchart Diagram

Input new legislator
data

visting data or add new dafa

h

Y

Choose data type to Input the community
be used size
I Mew
data
Input the community v input
size

Choose between
exact or approximate
algorithm

h A

Choose between
exact or approximate
algorithm

h A

Display graph
generated fram the
data

Display graph
generated fram the
data

h 4

MNew data
chosen

Display maximum

weighted
clique generated

h 4

Y

h i

Display node
centralities

End

Figure 6: Flowchart Diagram

21

Start

Getthe community
size dictated and the
adjacency matrix

act Algorithm o
Approximate
Algorithm'?

Exact Approximate

List all the possible
connected vertex Find the klargest
combinations with the entries in each row

desired cardinality

| |

Compute the summation Compute the
of all the edge weights summation of the
between the vertices largest entries per row
The vertex combination The row with the largest
with the largest total edge total edge weight is the
weight is the maximum maximum weighted
weighted clique clique

Figure 7: Algorithm Flowchart

22

First step in using the tool is to choose between using an existing, built-in data
in the tool or input your own data type for the legislators, and enter the desired
size of the clique to be found. The data determines how well-connected each of the
legislator is to each other. After the data has been parsed, the tool generates a graph
that visualizes the connectedness of each entity with each other. Along this generated
graph is its adjacency matrix that is a tabular form of the node connections and the
weights of the edges that connect them to each other.

The output of this tool is based on the generated graph and matrix from the input
data. The tool finds the maximum weighted k-clique on the graph and compute for
the centrality of each nodes. The tool displays the communities of legislators. This
shows how much each legislator interact with each other under different circumstances
and factors. The results also show whose legislators work together and are bounded

by a common goal.

C. System Architecture

The tool uses R to construct the graph of legislators and it is integrated with Java
that will handle the user interface along with the other functionalities. The user
can run the program with an installed Java Runtime Environment, R program and

RServe() package, and CUDA toolkit, and can run on any operating system.

D. Technical Architecture

Specifications required for the software to run the exact algorithm smoothly includes
a graphics processing unit (GPU), preferably a NVIDIA GTX, if the approximate
algorithm will be chosen, it will run smoothly on a 4 GB RAM and a processor speed

of 2.40 ghz.

23

V. Results

As the tool runs, the user is presented with the main menu interface, where the
user can choose between starting the analysis or seek information about the tool by

clicking the "help” button.

Legislator Clique Finder

il egislatorf@ 2
Clique Finde

| Start
Help

Figure 8: Main Menu

24

|| Legislator Clique Finder - X
Open
Lookin: | [l Desktop v ¥ em-
g log0
&7 ﬁ "L Lubid
{ : Recent Items @ mybackground
ﬁ' . the_Philippines.svg @] Mon-Academic Goal Report
| i o, |
L« Lof_Representatives.svg x osul
*
\ L PP.550x550
o,ﬁ Desktop @ Results
S seal
Senate+Seal
Documents Q’ test
[test.ptx
! 3 Test_Set
B Viber
This PC
€ >
@ File name: Senate, xlsx
Netork ces of type: [al Fies “ Cancel

Figure 9: File Choosing

If the user chooses to add a file, the file chooser interface will immediately pop
and direct the user to add the legislator data file it wants.
The user may input any file following the data set format specified in this discourse

(Figure 9).

25

Feature Selection

Features

Political Party.17th.
Bloc.17th.

Palitical Party.16th.
Issuet

Issue?

Generate Selected

Figure 10: Features

After the file has been read and parsed, a list of legislator features specified in
the data set is shown and the user may choose which of the legislator features will be

used to create and evaluate the network of legislators.

Generate Selected

Figure 11: Feature Selection

The user may opt to use one, two, or all of the features in the feature list (Figure

26

11). An error of empty feature set is prompted if the user has not chosen any feature.

Set Community Information

Input desired community size:

Choose what algorithm to be used:
Approximate Algorithm w

Generate

Figure 12: Specify Community Parameters

A graph is generated using these feature parameters. An edge is drawn from
legislator node to another if there exist a similarity on their features and a unit is
added to their edge weight for every similarity thereof. With the graph represented as
an adjacency matrix inside the tool, the user is prompted to input the specifications
of communities he/she wants to show. An input parameter interface helps this action.

The text field is for the user to input the size of each maximum weighted commu-
nities to be displayed .

After specifying the input parameters, the user may choose between approximate
algorithm or exact algorithm to be used in community detection. The approximate
algorithm is much faster than the exact algorithm but the results of it may not be
optimal. In the exact algorithm, if a GPU device is present in the host, the user may

choose where it wants to run the exact algorithm, in the GPU device or the host’s

27

CPU. Clicking on the generate button yields the following results.

Communities are Based on: ~
Political.Party_17th.

Bloc.17th.

Political Party_16th.

Issuet

Issue?

Issue3

Community Total Count: 24

Community Count: 1
Community Weight: 19
1. Franklin Drilon

2. Bam Aguino

3. Francis Pangilinan
4. Alan Peter Cayetano

Camamunibe Conts 0

Show Graph Show Centrality Generate PDF Back

Figure 13: Sample Results

First, the list of the communities and the members under is displayed in a de-
scending order, from highest weight to lowest, which are also displayed beside each
community. The feature/s under consideration for each communities are also dis-
played. Then the user can choose either view the centralities of each nodes, generate
a PDF containing the list of communities and the centrality table, or display the

graph visualization generated from the input data file.

28

Centrality %

LEGISLATORS DEGREE CENTRALITY WEIGHTED DEGREE C... BETWEEMMESS CEMTR... (CLOSEMESS CENTRALITY
Sonny Angara 23 50 1.0 0.4304761904751905
Bam Aguino 21 43 0.92 0.3352380952380352
Mancy Binay 23 52 1.0 0.4304761904751905
Alan Peter Cayetano 23 54 1.0 0.4304761904751905
Leila de Lima 22 43 0.9583333333333334 0.3352380952380353
Franklin Drilon 22 43 0.9583333333333334 0.3352380952380353
1V Ejerdto 22 50 0.9583333333333334 0.3404761904751905
Francis Escudero 22 56 0.9583333333333334 0.3404761904751905
Win Gatchalian 22 54 0.9583333333333334 0.3404761904751905
Richard J. Gordan 23 56 1.0 0.4304761904751905
Gregorio Honasan 23 52 1.0 0.4304751904751305
Risa Hontiveros 20 33 0.8846153846153346 0.3404761904751905
Panfilo Lacson 22 56 0.9583333333333334 0.3404761904751905
Loren Legarda 22 54 0.9583333333333334 0.3404761904751905
Manny Pacquiao 22 54 0.9583333333333334 0.3404761904751905
Francis Pangilinan 20 43 0.8846153846153346 0.3404761904751905
Aquilino Pimentel IIT 23 54 1.0 0.4304761904751905
Grace Poe 23 56 1.0 0.4304761904751905
Ralph Recto 23 60 1.0 0.4304761904751905
Tito Sotto 21 54 0.92 0.3352380952380353

Back

Figure 14: Node Centrality

The node centralities (Degree, Weighted Degree, Betweenness, and Closeness Cen-
trality) is viewed as a table for easier comparison and reading. The table can be sorted

according to the desired centrality.

29

=
|

TS YT, VT
2. Sonny Angara

Input File name:

File Name|

Cancel

3 Richard J Gordon
4. Gregorio Honasan

Community Count: 24

Community Weight: 12

1. Cynthia Villar

2. Ralph Recto

3. Tito Sotto

4. Bam Aguino v

Show Graph Show Centrality Generate PDF Back

Figure 15: PDF Input File Name

If the user chooses to export the result as a PDF, he/she is prompted to enter a
desired file name for the PDF file. The file name generated includes the tag of the

tool appended in the beginning.

30

Results ?.

Ty WITAT
2. Sonny Angara

3. Richard J. Gordon
4. Gregorio Honasan

Community Count: 24

Community Weight: 12

1. Cynthia Villar

2. Ralph Recto

3. Tito Sotto

4. Bam Aguino v

Show Graph Show Centrality Generate PDF Back

Figure 16: PDF Generated

A notification pops up suggesting a successful file saving.

31

[LCF] File Mame Res... X

Legislator Clique Finder Result

Author: Winl0, Date: Fri May 25 23:25:29 C5T 2018

Figure 17: PDF Contents

The resulting PDF contains the logo of the software, the author name, and the
date and time of creation. After that page, the results of the software is listed as well

as the centrality table.

32

GraphStream

Figure 18: Graph Generated

The graph generated can be also viewed as the visual representation of the data
input. The colored entities are the top 5 communities present in the network. The
user can pan the graph by using the arrow keys and zoom using the page up/down

keys.

33

VI. Discussions

Legislator Clique Finder is a Java-based application that aims to perform community
detection in Philippine Congress Legislators by means of clique-finding algorithms.
The basis of the relationship of the members of the community is defined by the
similarities present in their different political involvment.

As the data input is placed, the user is given a chance to select the features he/she
wants to use to define the relationship of the legislator nodes. After that, the tool
generates a graph by building an edge and adding an edge weight for every similarity
in the feature that is present between the legislator nodes.

The application provides its users the power to dictate the size of each community
to be shown. Other than that, the application also allows the user to choose what
algorithm to be used in detecting the said communities, approximate algorithm or
the exact algorithm.

The approximate algorithm implemented by the application is the 2-approximation
algorithm proposed in [4] that uses the same approach for the RSSM problem and
guarantees an optimal result if the edge weights in the adjacency matrix generated
follows the metric property. Meanwhile, the exact algorithm uses an exhaustive yet
more effective approach by passing through all of the possible node combinations and
return the combination with the maximum weight between its nodes. The application
provides a GPU implementation for a much faster computation, given that a GPU
device is available in the host machine otherwise, a CPU implementation of the exact
algorithm is available.

These algorithms are applied and implemented by the tool to generate and detect
the number of desired communities by the user. The application produces three
outputs from user-defined specifications and data. The first one is the community list
where user-defined number of community is displayed along with its members, where

the first community has the largest weight between them. The larger the weight

34

between nodes in a community means more interaction and similarities happened
between them.

The application also provides the user a table of centralities of each nodes. The
degree centralities defines the number of direct connections of the nodes, the be-
tweenness centrality provides the information on how a node is being used as a bridge
between parties, and the closeness centrality defines how close a node is to a more
central node. These pieces of information may conclude a more concrete position of
each politician in a network.

These results can be exported and saved in a PDF file by choosing the option of
generating the PDF file and specifying a file name for the output file.

The GraphStream library of Java provides the visualization of the graph gener-
ated from the user input and parameters. It enables a different and convenient point
of understanding in viewing and visualizing the said data set by showing some com-
munity detected from the network and its ability to be panned and zoomed as well
as for its nodes to be moved and placed in a different manner.

There’s an absence of a community detection tool that focuses on political network
that uses clique-finding algorithms. The process of finding one happens to be exhaus-
tive and needs a chunk of the host memory, especially when a network has numerous
nodes. This application provides the initial step in building a wider understanding of

political networks and all of its components.

35

VII. Conclusions

Legislator Clique Finder is a stand-alone software produced in this study that aims
to provide political researchers and analysts a way to view the occurence of highly
interactive nodes that forms a community. These community detection can be done
using a choice of an algorithm provided and implemented in the software. Aside from
that, the software provides a simple graph property extraction by means of node
centralities that provides certain information on how each nodes works and interacts
in a political network.

This application provides the initiative in helping user visualize and map different
politician involvements for further understanding of relationship as well as discover
interactions, provided by an empirical data, that may be hidden from the public. It
also aims to provide assistance in visualizing and interpreting their gathered data,
and provide a conclusive result that may be used for researches or just provide new

insights and information regarding a political network.

36

VIII. Recommendations

The proponent suggests that the data set that will be used for further improvements
involves a wider variety of political involvements and relationships, such as voting
patterns in different congress sessions, for visible diversity of connections that are
not easily seen in public data. The data under consideration may be expanded to
different political aspects, such as foundations funded, or businesses handled by the
legislators, for the software may yield other results that may be useful in studying
political relationships.

In terms of network analysis, the proponents suggests researching on community
modularity for it measures the strength of network modules such as communities.
Additional implementations of clique-finding algorithms can be also added to simply
compare different approaches and results to community detection in Philippine legis-
lators. The proponent also suggests that the GPU implementation of algorithms be
maximized for the potential of this approach can be useful for faster output generation
and analysis.

Lastly, for the visualization aspect, the author recommends viewing the graph
visualization of individual communities, and not just as a part of the network, for

better component analysis and inspection.

37

IX. Bibliography

1]
2]

[10]

H. of Representatives, “Legislative information,”

F. Santo and D. Hric, “Community detection in networks: A user guide,” Physics

Reports, vol. 659, pp. 1-44, 2016.

D. Knoke, Political networks: the structural perspective, vol. 4. Cambridge Uni-

versity Press, 1994.

E. Gimadi, M. Khachay, and A. V. Kel’'manov, “2-approximation algorithm for
finding a clique with minimum weigh of vertices and edges,” Proceedings of the

Steklov Institute of Mathematics, pp. 87-97, 2014.

F.Hao, D. Park, and Z. Pei, “Exploiting the formation of maximal cliques in

social networks,” Symmetry, 2017.

M. Ahuja, J. Singh, and Neha, “Practical applications of community detection,”
International Journal of Advanced Research in Computer Science and Software

Engineering, 2016.

F. Santo, “Community detection in graphs,” Physics Reports, vol. 486, pp. 75—
174, 2016.

P. Saxena and D. Thakur, “Complexity analysis of clique problem,” International

Journal of Computer Science and Engineering.

R. Ross, D. F. Gleich, and A. H. Gebremedhin, “Parallel maximum clique algo-
rithms with applications to network analysis,” Society for Industrial and Applied

Mathematics, 2015.

D. Wood, “An algorithm for finding a maximum clique in a graph,” Operations

Research Letters, vol. 21, pp. 211-217, 1997.

38

[11] D. Palsetia, M. A. Patwary, W. Hendrix, A. Agrawal, and A. Choudhary, “Clique
guided community detection,” IEEE International Conference on Big Data,

2014.

[12] M. S. Chang and F. H. Wang, “Efficient algorithms for the maximum weight
clique and maximum weight independent set problems of permutation graphs,”

Information Processing letters, vol. 43, pp. 293-295, 1992.

[13] V. Vassilevska, “Efficient algorithms for clique problems,” Information Process-

ing Letters, vol. 109, no. 4, pp. 254-257, 2009.

[14] E. M. Hafner-Burton and A. H. Montgomery, “Centrality in politics: How net-

works confer power,” OpenSIUC, 2010.

[15] “What went before: The 10-b pork barrel scam,” Philippine Daily Inquirer, 2017.

39

X.

A.

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
public

Appendix

Source Code

CliqueFinder_GUI.java

javax .imageio.ImagelO;

javax.swing . x*;

javax .swing. filechooser .FileSystemView;
org.rosuda.REngine. REXPMismatchException;
org.rosuda.REngine. Rserve. RserveException;
org.graphstream . graph.x;
org.graphstream . graph.implementations . x;
java.io. File;

java.io.IOException;
java.net.URISyntaxException;
java.util.ArrayList;
java.awt.BorderLayout;
java.awt.CardLayout;

java.awt.Color;

java.awt.Component;

java.awt.Container;

java.awt.Dimension;

java.awt.Font;
java.awt.GridBagConstraints;
java.awt.GridBagLayout;
java.awt.GridLayout;

java.awt.Image;

java.awt.Insets;

java.awt. Toolkit ;

java.awt.event . x*;

class CliqueFinder_-GUI{

String R_Path_Parsed = ”7;

JFrame frame;

ArrayList<Integer> feature_column = new ArrayList<Integer >();
R_Integration . RSERVE r;

int [] selected;

JTable centrality_table;

JScrollPane scrollPane = new JScrollPane();
JList featureList;

boolean isSelected;

boolean isAvailDev;

JPanel feature_panel = new JPanel();

Graph g;

String [][] data;

String [] column_header = {”LEGISLATORS” , "DEGREE CENTRALITY” , "WEIGHTED DEGREE CENTRALITY
? , ”BETWEENNESS CENTRALITY” , ”CLOSENESS CENTRALITY” };

ArrayList<int[]> colors = new ArrayList<int[]>();
public CliqueFinder_.GUI() throws RserveException, REXPMismatchException {
int [] colorl = {232,16,16};
[l color2 = {181,232,16};
int [] color3 = {16,232,30};
[] color4a = {214,16,232};
[] colors5 = {232,113,16};

colors.add(colorl);
colors.add(color2);
colors.add(color3);
colors .add(color4);
colors.add(color5);

r = new R_Integration_.RSERVE () ;

isSelected = false;
Toolkit tk = Toolkit.getDefaultToolkit () ;
int window_size = tk.getScreenResolution () ;

int window_x = (int)(tk.getScreenSize().width * 0.50);
int window_.y = (int)(tk.getScreenSize().height * 0.70);
try {
UIManager.setLookAndFeel (UIManager.getSystemLookAndFeelClassName ()) ;
} catch (ClassNotFoundException | InstantiationException | IllegalAccessException
| UnsupportedLookAndFeelException e) {
e.printStackTrace () ;

}

//Containers and Layouts

Container box;

BorderLayout bor = new BorderLayout () ;

GridLayout grid = new GridLayout(2,0);

CardLayout card = new CardLayout () ;

GridBagLayout gb = new GridBagLayout () ;

GridBagConstraints gbc = new GridBagConstraints () ;

gbc.insets = new Insets(window.y /1000, window_x/100, 0, window_x/100);

//Icons and Labels

40

Image logo = null;
try {
logo = ImagelO.read(getClass ().getResource(”/Image/logo .PNG”)).
getScaledInstance (window_x/(6/5), window_.y/(2), Image.SCALESSMOOTH) ;
} catch (IOException e2) {
// TODO Auto—generated catch block
e2.printStackTrace () ;
}

Imagelcon icon = new Imagelcon(logo);
JLabel logoD = new JLabel(icon);

//logoD .setlcon (icon);

//logo.setSize (new Dimension(window_x #*,window_.y — 40));
//Frames

frame = new JFrame(” Legislator Clique Finder”);

JFrame feature_frame = new JFrame(” Choose the Features”);
JFrame centrality_frame = new JFrame(” Centralities”);

box = frame.getContentPane() ;

centrality_frame.setSize (new Dimension(window_x,window_y));
feature_frame.setSize (600, 500);

// TextFields and TextAreas

JTextField comm_field, size_field;

JTextArea result_field = new JTextArea();
JTextArea help_area = new JTextArea();
result_field .setSize (600, 500);

comm_field = new JTextField();

comm_field . setText (” Number of Communities”) ;
size_field = new JTextField () ;

size_field .setText (” Size per Community”);

help_-area.setText(” > Click Add file then choose the data set. \nMake sure that
the data set follows the data set format specified \n > Choose the features
you want to visualize (At least 1) \n > Specify the community size and number
of community to be displayed \n > Choose between Approximate and Exact
Algorithm \n > View Results and Graph”);

//Panels

JPanel panel = new JPanel();

JPanel setInfo_panel = new JPanel();
JPanel results_panel = new JPanel();
JPanel centrality_panel = new JPanel();

JPanel help_panel = new JPanel();
JPanel button_panel = new JPanel();

//Buttons

JButton generate_button = new JButton(” Generate”);

JButton generate-all, generate_selected , centrality_-button , showGraph_button,
back_-button;

JButton start_-button = new JButton(” Start”);

JButton help_button = new JButton (” Help”);
back_button = new JButton (” Back”);

generate_all = new JButton(” Generate All”);
generate_selected = new JButton(” Generate Selected”);
centrality_button = new JButton(”Show Centrality”);

showGraph_button = new JButton (” Show Graph”);

start_button.setPreferredSize (new Dimension(window_-x/3, window_y/6));

start_button.setFont (new Font(” Arial” ,Font.PLAIN, 16));

help_button.setPreferredSize (new Dimension(window_x/3, window_.y/6));

help_button.setFont (new Font(” Arial” ,Font.PLAIN, 16));

//ComboBox

String [] algo_-boxString = {” Approximate Algorithm”, ”Exact Algorithm (GPU)”, ”Exact
Algorithm (CPU) ” };

JComboBox algo_-box = new JComboBox(algo_-boxString);

JFileChooser jfc = new JFileChooser(FileSystemView.getFileSystemView ().
getHomeDirectory ()) ;

button_panel.setLayout(grid);

button_panel.setPreferredSize (new Dimension(window_x/3, window_y/3));
button_panel.add(start_button);

button_panel.add(help_button) ;

//results_panel.setLayout (bor);

results_panel.add(result_field);
results_panel.add(centrality_button);

results_panel.add(back_button);

//results_panel.add(button_panel, bor.PAGEEND) ;

feature_frame .add(generate_all);
feature_frame .add(generate_selected);

JPanel filler = new JPanel();

JPanel filler2 = new JPanel();

filler .setPreferredSize (new Dimension(window_x/3, window_y/5));
filler2 .setPreferredSize (new Dimension(window_x/3, window_.y/5));
filler .setBackground (Color.white);

filler2 .setBackground (Color. white) ;

41

//

setInfo_panel
setInfo_panel
setInfo_panel
setInfo_panel
setInfo_panel
setInfo_panel

setInfo_panel.

.setLayout (grid);

.add(comm_field) ;

.add(size_field);

.add(algo_-box);

.add (back_button) ;

.add(generate_button) ;

setSize (new Dimension(window_x — 100,window_y — 100));

panel.setSize (new Dimension(window_x,window_.y));
panel.setBackground (Color .WHITE) ;

panel.setLayout (new BorderLayout(10,10));

panel.setBorder (BorderFactory .createEmptyBorder (65,0,115,0));
panel.add(logoD, BorderLayout.PAGESTART) ;
panel.add(button_panel, BorderLayout.CENTER) ;

panel.add(filler2 ,

BorderLayout . LINE_.START) ;

panel.add(filler , BorderLayout.LINE_END) ;

gbc. gridx =
gbc. gridy =
gbc.ipadx =

L =]

5
5
5

panel.add(help_button , gbc);

frame .add (panel) ;

frame.setSize (new Dimension (window_x,window_y));
frame.setVisible (true);

frame.setResizable(false);
frame.setLocationRelativeTo (null);
frame.setDefaultCloseOperation (JFrame.EXIT_.ON_CLOSE) ;

help_-panel.setLayout (new BorderLayout());
help_-panel.add(help-area, BorderLayout.CENTER) ;

help_-panel.add(back_-button,

BorderLayout .PAGE.END) ;

help_button.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){

1)

frame.setContentPane (help_panel);
frame.revalidate () ;
frame.repaint () ;

start_button.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){

int returnValue = jfc.showOpenDialog(null);
if (returnValue == JFileChooser . APPROVE_OPTION) {
File selectedFile = jfc.getSelectedFile () ;
R_Path_Parsed = selectedFile.getAbsolutePath().replace
N\ 205
System.out.println (R_Path_Parsed);
try {
r.r_executeConnection (R_Path_Parsed) ;
} catch (RserveException | REXPMismatchException el) {
// TODO Auto—generated catch block
el.printStackTrace () ;

}
Image image = null;
try {

image = ImagelO.read(getClass().getResource(”/
Image/Features .PNG”)).getScaledInstance (
window_x /2, window_y/4 , Image.SCALESMOOTH) ;
} catch (IOException el) {
// TODO Auto—generated catch block
el.printStackTrace () ;
b
Imagelcon icon = new Imagelcon (image);
JLabel logo = new JLabel(icon);
JList jList = new JList(r.getFeatureList());
featureList = jList;
feature_panel.setPreferredSize (new Dimension(window_x,
window_y)) ;
feature_panel.setBackground (Color .WHITE) ;
feature_panel.setLayout (gb);

JScrollPane featureScroll = new JScrollPane(featureList);

JPanel featureButtons = new JPanel();

featureButtons.add(generate_selected);

featureButtons .setBackground (Color. white) ;

//featureButtons.add(back_button);

featureScroll.setPreferredSize (new Dimension(window_x/3,
window_y /3));

featureList.setFont (new Font(” Arial” ,Font.PLAIN, 16));

feature_panel.setBackground (Color. white);

gbc.gridx = 0;

gbc.gridy = 0;

feature_panel.add(logo, gbc);

gbc.gridx = 0;
gbc.gridy 1;

42

//gbc.gridheight = 3;
feature_panel.add(featureScroll , gbc);

gbc.gridx = 0;

gbc.gridy = 2;

//gbc.gridheight = 3;
feature_panel.add(featureButtons , gbc);
gbc.gridx = 0;

gbc.gridy = 3;
//feature_panel.add(back_button, gbc);

//feature_frame.setVisible (true);
//System.out.println (R_Path_Parsed);
frame.setTitle (" Feature Selection”);
//card .show (box, ”features”);
frame.setContentPane(feature_panel);
frame.revalidate () ;

s
generate_selected.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){

MWCP_Exact-GPU m = new MWCP_Exact_-GPU() ;

if (m.getNumOfGPUAvailable () <= 0){

JOptionPane.showMessageDialog(null, "GPU Absent!”, ”No GPU
Error”, JOptionPane . WARNING_MESSAGE) ;
isAvailDev = false;
}else{
JOptionPane.showMessageDialog(null , m. getNumOfGPUAvailable
() + 7 GPU Device/s Found!” , "GPU Present”,
JOptionPane . INFORMATION_MESSAGE) ;
isAvailDev = true;
}
if (featureList.isSelectionEmpty () == false){
selected = new int[featureList.getSelectedIndices().length
3
selected = featureList.getSelectedIndices ();
isSelected = true;
System.out.println(selected.length);
for (int s: selected){
System.out.println (” Feature index ” 4+ s);
frame.setTitle (" Set Community Information”);
frame .setContentPane(SetInfoPanel (window_x, window_y,
isAvailDev));
frame.revalidate () ;
frame.repaint () ;
}else{
JOptionPane.showMessageDialog(null, "You have not selected
a feature”, "Empty Feature Set”, JOptionPane.
WARNING_MESSAGE) ;
}

3

showGraph_button.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){
g.display () ;
}

3

back_button.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){

if (frame.getContentPane () .equals(setInfo_panel)){
//frame.removeAll () ;
frame.setContentPane(feature_panel);
frame.revalidate () ;
frame.repaint () ;

}else if(frame.getContentPane().equals(help_panel)){
//featureList.clearSelection ();
frame .setContentPane (panel);
frame.revalidate () ;
frame.repaint () ;

}else if(frame.getContentPane().equals(scrollPane)){
frame.setContentPane(setInfo_panel);
frame.revalidate () ;
frame.repaint () ;

}
}
1)
//panel
¥
public Graph constructGraph_Stream (ArrayList<Legislator> legist , int [][] ref_matrix){
Graph g = new SingleGraph(” Philippine Legislators Network”);
for (int legist_iter = 0; legist_iter < legist.size(); legist_iter++){

43

g.addNode(legist .get(legist_iter).getName());

for(int row_iter = 0; row_iter < ref_matrix.length; row_iter4++){
for(int col_iter = row_.iter; col_iter < ref_matrix[row_iter].length;
col_iter++){
if(ref_matrix [row_iter][col_iter] != 0){
try{

g.addEdge(legist.get(row_iter).getName() 4+ legist.get(
col_iter).getName(), legist.get(row_iter).getName() ,
legist .get(col_iter).getName());
}catch (EdgeRejectedException e){
e.printStackTrace () ;
}

}
¥
for (Node node: g){

node.addAttribute (” ui.label” ,node.getId());
}

g.addAttribute(” ui.antialias”);
return g;

}
public String toDisplayField (ArrayList<Legislator[]> result ,ArrayList<Integer> weights,
int number_of_community , int clique_size){
String display = 77
display = display + (” Communities are Based on: 7);

for (String s : r.getFeatureList ()){
display = display + 7?\n”+ s;

}

display = display + ”\n \n”;

display = display + (” Community Total Count: ” 4 result.size());

for(int iterator_.comm = 0; iterator_.comm < result.size(); iterator_.comm-+4+){
display = display + (”\n\nCommunity Count: ” + (iterator_comm + 1));
display = display + (”\nCommunity Weight: ” + weights.get(iterator_.comm));
for(int iterator_leg = 0; iterator_leg < result.get(iterator_.comm).length;

iterator_leg++){
display = display + (”\n” + (iterator_leg + 1) + ”. ” + result.get

(iterator_comm) [iterator_leg].getName());

}

return display;

}

public JPanel SetInfoPanel(int width, int height, boolean isAvailDevice){
JLabel community, clique , param, algo;

JPanel setPanel = new JPanel();
setPanel.setBackground (Color. white) ;
Image image = null;

JTextField community-text, clique_-text;

JComboBox algorithms;
JButton generate, back;
setPanel.setLayout(new BorderLayout(10,10));
setPanel.setBorder (BorderFactory.createEmptyBorder (100,10,150,10));
setPanel.setForeground (Color .WHITE) ;
try |
image = ImagelO.read (getClass().getResource(”/Image/CliqueParam .PNG”)).
getScaledInstance (width /2 ,height /4 , Image.SCALESMOOTH) ;
} catch (IOException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

}

Imagelcon icon = new Imagelcon (image);
param = new JLabel(icon);

JPanel infoPanel = new JPanel();
infoPanel.setBackground (Color. white) ;
JPanel buttonPanel = new JPanel();

buttonPanel.setBackground (Color. white) ;
JPanel fillerPanel = new JPanel();
fillerPanel .setBackground (Color. white);
JPanel fillerPanel2 = new JPanel();
fillerPanel2 .setBackground (Color.white) ;

fillerPanel.setPreferredSize (new Dimension(width/5, height/5));
fillerPanel2 .setPreferredSize (new Dimension(width/5, height/5));
infoPanel.setLayout (new BoxLayout(infoPanel, BoxLayout.Y_AXIS));

generate = new JButton(” Generate”);

back = new JButton (” Back”);

community = new JLabel(” Input desired number of community: ”);
community . setAlignmentX (Component . LEFT_ALIGNMENT) ;

clique = new JLabel(” Input desired community size: 7);

clique .setAlignmentX (Component . LEFT_ALIGNMENT) ;

algo = new JLabel(” Choose what algorithm to be used: 7);
algo .setAlignmentX (Component . LEFT_ALIGNMENT) ;
community_text = new JTextField();

clique_text = new JTextField();

infoPanel.setPreferredSize (new Dimension(width/3, height/5));

44

infoPanel.add(clique);
infoPanel.add(clique_text);
infoPanel.add(algo);

if (isAvailDevice){
String [] algo_-boxString = {” Approximate Algorithm”, ”Exact Algorithm (GPU)
”», "Exact Algorithm (CPU)” };
algorithms = new JComboBox(algo_boxString);

}else{
String [] algo_boxString = {” Approximate Algorithm”, ”Exact Algorithm (CPU)
5
s

;
algorithms = new JComboBox(algo_boxString) ;

}

infoPanel.add(algorithms) ;
buttonPanel.add(generate) ;

setPanel.add(param, BorderLayout.PAGESTART) ;
setPanel.add(infoPanel, BorderLayout.CENTER) ;
setPanel.add(fillerPanel , BorderLayout.LINE.START) ;
setPanel.add(fillerPanel2 , BorderLayout.LINE_END) ;
setPanel.add(buttonPanel, BorderLayout.PAGEZEND) ;

generate.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){
r.setCliqueSize (Integer.parselnt (clique_text .
getText ())) ;
if ((Integer.parselnt(clique_text.getText())) < r.
getLegislators () .size ()){
try {
r.r_execute (algorithms.
getSelectedItem () .toString (),
selected);
} catch (RserveException |
REXPMismatchException el) {
// TODO Auto—generated catch block
el.printStackTrace () ;
}
g = constructGraph_Stream (r.
toThrow_Legislator, r.toThrow_adj);
//g-display () ;
frame.setTitle (” Results”);
frame.setContentPane (ResultsPanel (width ,
height));
frame.revalidate () ;

}else{

JOptionPane.showMessageDialog(null, ”The
clique size entered is greater than
the number of nodes”, ”"Invalid Clique
Size”, JOptionPane. WARNING.MESSAGE) ;

¥

1)

back.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){
frame .setContentPane(feature_panel);
frame.revalidate () ;
frame.repaint () ;

1)

return setPanel;

JPanel ResultsPanel(int width, int height){
JPanel resultsPanel = new JPanel();
resultsPanel.setBackground (Color. white) ;
JButton graph, centrality , back;
JScrollPane scroller;
JTextArea resultField = new JTextArea();
Image image = null;
try |

image = ImagelO.read (getClass ().getResource(”/Image/Results .PNG”)).

getScaledInstance (width /2 ,height /4 , Image.SCALESMOOTH) ;

} catch (IOException e) {

// TODO Auto—generated catch block

e.printStackTrace () ;
}
Imagelcon icon = new Imagelcon (image);
JLabel logo = new JLabel(icon);
JPanel buttonPanel = new JPanel();
buttonPanel.setBackground (Color. white) ;
JPanel fillerPanel = new JPanel();
fillerPanel .setBackground (Color. white) ;
JPanel fillerPanel2 = new JPanel();
fillerPanel2.setBackground (Color. white);
fillerPanel.setPreferredSize (new Dimension(width/5, height/5));
fillerPanel2.setPreferredSize (new Dimension(width/5, height/5));
resultField .setEditable (false);

45

resultField .setText(toDisplayField(r.getResults () ,r.getResultWeights () ,r.
getNumberOfCommunities () ,r.getCliqueSize ()));
resultField .setFont (new Font(” Arial” ,Font.PLAIN, 14));

scroller = new JScrollPane(resultField);
graph = new JButton (” Show Graph”);
centrality = new JButton(”Show Centrality”);

back = new JButton (” Back”);
JButton pdf = new JButton (” Generate PDF”)

buttonPanel.add(graph);
buttonPanel.add(centrality);
buttonPanel.add (pdf);
buttonPanel.add(back);

resultsPanel.setLayout(new BorderLayout(10,10));
resultsPanel.setBorder (BorderFactory.createEmptyBorder (10,10,10,10));
resultsPanel.setPreferredSize (new Dimension(width, height));
resultsPanel.setForeground (Color .WHITE) ;

resultsPanel.add(logo, BorderLayout.PAGESTART) ;
resultsPanel.add(scroller , BorderLayout.CENTER) ;
resultsPanel.add(fillerPanel , BorderLayout.LINE_START) ;
resultsPanel.add(fillerPanel2 , BorderLayout.LINE_END) ;
resultsPanel.add(buttonPanel, BorderLayout.PAGEZEND) ;

graph.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){
//int CliqueCounter = 0;
int bound = 5;
if (r.getResults().size () < bound){
bound = r.getResults () .size ();

for (int CliqueCounter = 0; CliqueCounter < bound ; CliqueCounter

++
for (int nodeCounter = 0; nodeCounter < r.getResults().get(0).
length; nodeCounter++4){
Legislator[] 1 = r.getResults().get(CliqueCounter);
g.getNode(l[nodeCounter].getName()).addAttribute(” ui.style
?, 7 fill —color: rgb(” 4 colors.get(CliqueCounter) [0] +
”?,”+ colors.get(CliqueCounter) [1] 4+ ”7,”+ colors.get(
CliqueCounter) [2] 4+ 7); size: 20px;”);

for(int nodeCounter2 = nodeCounter + 1; nodeCounter2 < r.
getResults ().get (0).length; nodeCounter2++){

g.getNode (1l [nodeCounter].getName()).getEdgeBetween (1|
nodeCounter2].getName()).addAttribute(” ui.style”, ”
fill —color: rgb(” 4 colors.get(CliqueCounter) [0] +
7?,”4+ colors.get(CliqueCounter) [1] + 7,”4+ colors.get(
CliqueCounter) [2] + ”); shape: blob;”);

g.display () ;
3

pdf.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){

int [] dc = r.getDegCentrality () ;

double [] cc = r.getCloCentrality () ;

double [] bc = r.getBetCentrality () ;

int [] dwe = r.getDegWeighted () ;

data = new String[r.getLegislators () .size()][5];

for (int row_iter = 0; row._iter < r.getLegislators().size();

row_iter++4){
data[row_iter][0]
getName () ;

data[row_iter]|[1]
data[row_iter][2]
data[row_iter]|[3]
data[row_iter][4]

r.getLegislators ().get(row_iter).

Integer.toString (dc[row_iter]) ;
Integer.toString (dwc|[row_iter]) ;
Double. toString (cc[row_iter]) ;
Double. toString (bc[row_iter]) ;

}
String name = JOptionPane.showInputDialog(” Input File name: ”);
String fileName = ”[LCF] ” + name +” Results.pdf”;

ReportMaker r = new ReportMaker(fileName , System.getProperty (” user
.name”), column_header, data);

r. makeReport (resultField .getText());

JOptionPane.showMessageDialog (null , "PDF Generated!” ,” Success!” ,
JOptionPane . INFORMATION_MESSAGE) ;

3

centrality .addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){
frame.setContentPane (centralityPanel (width, height));
frame.revalidate () ;
frame.repaint () ;

46

3

back.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){
frame.setTitle (” Set Clique Information”);
frame.setContentPane(SetInfoPanel (width,
frame.revalidate () ;
frame.repaint () ;

}
3

return resultsPanel;

public JPanel centralityPanel(int width, int height){
JPanel centralityP = new JPanel();
centralityP .setBackground (Color. white) ;
JButton back_button = new JButton (” Back”);
centralityP .setLayout (new BorderLayout());

height , isAvailDev));

centralityP .setPreferredSize (new Dimension(width, height));

centralityP .setForeground (Color .WHITE) ;

Image image = null;
try {

image = ImagelO .read (getClass ().getResource(”/Image/Centrality .PNG”)).
getScaledInstance (width/2,height /4 , Image.SCALESMOOTH) ;

} catch (IOException el) {
// TODO Auto—generated catch block
el.printStackTrace () ;
¥
Imagelcon icon = new Imagelcon (image);
JLabel logo = new JLabel(icon);
JScrollPane scrollPane;
int [] dc = r.getDegCentrality () ;
double [] cc = r.getCloCentrality ();
double [] bc = r.getBetCentrality ();
int [] dwc = r.getDegWeighted () ;
data = new String[r.getLegislators ().size()][5];

for (int row_iter = 0; row_iter < r.getLegislators().size(); row_iter++){
data[row_iter |[0] = r.getLegislators().get(row_iter).getName();
data[row_iter |[1] = Integer.toString(dc[row_iter]);
data[row_iter |[2] = Integer.toString(dwc[row_iter]);
data[row_iter |[3] = Double.toString (cc[row_iter]);
data[row_iter |[4] = Double.toString (bc[row_iter]);

}

centrality_-table = new JTable(data, column_header){
/%
*
*
*
*/
private static final long serialVersionUID = —43591001090799797L;
public boolean isCellEditable(int row, int column){

return false;

}

}s

centrality_table.setAutoCreateRowSorter (true);

scrollPane = new JScrollPane(centrality_table);

centralityP .add(logo, BorderLayout.PAGESTART) ;
centralityP .add(scrollPane, BorderLayout.CENTER) ;
centralityP .add(back_button, BorderLayout.PAGEEND) ;
back_-button.addActionListener (new ActionListener (){
public void actionPerformed (ActionEvent e){
frame.setTitle (” Set Clique Information”);
frame.setContentPane (ResultsPanel (width ,
frame.revalidate () ;
frame.repaint () ;

})s

return centralityP ;

CliqueFinder_Main.java

import org.rosuda.REngine. REXPMismatchException;
import org.rosuda.REngine. Rserve. RserveException;
public class CliqueFinder_-Main {

height));

public static void main(String[] args) throws RserveException, REXPMismatchException{

System .out. println (” result="+R_Connector.checkLocalRserve ());

System .setProperty (" org.graphstream.ui.renderer”, ”org.graphstream.ui.j2dviewer.

J2DGraphRenderer”) ;

47

CliqueFinder-GUI g = new CliqueFinder_-GUI();
}

Graph_Construction.java

import java.util.ArrayList;

public class Graph_Construction {
public Graph_Construction (){

}

public int [][] construct_adjacency_-matrix (ArrayList<Legislator> legislators){
int [][] adj-matrix = new int[legislators.size()]|[legislators.size()];
for (int index.row = 0; index_.row < legislators.size(); index_row++){
for(int legislator_iterator = 0; legislator_iterator <
.size(); legislator_iterator+4++){
adj-matrix [index_row][legislator_iterator] = 0;
for (int index_col = 0; index_col < legislators.get(0).
getFeatures ().size(); index_col+4++4){
if ((legislators.get(index_-row).getFeature (
index_col).equals(legislators.get(
legislator_iterator).getFeature(index-col)))
&& (legislator_iterator != index-row)){

adj-matrix [index_-row |[legislator_iterator]
+=1;

legislators

}
}

return adj_matrix;

public int [][] construct_adjacency_-matrix_chosen (ArrayList<Legislator> legislators ,
ArrayList<Integer> feature_column){
int [][] adj-matrix = new int[legislators.size()][legislators.size()];
for (int index.row = 0; index_-row < legislators.size(); index_row++){
for(int legislator_iterator = index_-row; legislator_iterator <
.size(); legislator_iterator+4++){
adj-matrix [index_-row][legislator_iterator] 0;
for(int feature_iterator 0; feature-iterator < feature_column.
size (); feature_iterator++){

if (legislators.get(index_row).getFeature(feature_column
get (feature_iterator)).equals(legislators.get(
legislator_iterator).getFeature(feature_column

feature_iterator))) && (legislator_iterator !=
index_row)){

legislators

.get (

adj_matrix [index_row |[legislator_iterator] += 1;
adj-matrix [legislator_iterator][index_.row] += 1;
}

}
}
return adj-matrix;
}
public void printAdj(int [][] adj-matrix){

for(int index.row = 0; index_-row < adj-matrix.length; index_row++){

for (int index-col 0; index_-col < adj-matrix [1].length; index_col4++4){
System.out.print(” 7 4+ adj-matrix [index_-row][index_-col]);

System.out.print ("\n”);

}

public String graph_exp(int [][] adj-matrix){
StringBuilder sb = new StringBuilder ();
//int index_col = 0;
//int row_length = adj

for (int index_-row = 0; index_row < adj_matrix.length; index_row+4+){
for (int index_col = index_row; index_col < adj-matrix[1].length; index_col
++){
if ((adj-matrix [index_row][index_col] != 0)){
sb.append ((index_-row + 1) + ”,” 4+ (index-col + 1) + 7 ,”);
}

}
}

String expression = sb.toString();
return expression.substring (0,expression.length()—1);
}
}
Legislator.java

import java.util.ArrayList;

public class Legislator {

48

String name;
ArrayList<String> features = new ArrayList<String >();
public Legislator (){

public void setName(String i-name){
name = i_name;
}

public String getName(){
return name;
}

public void setFeature(ArrayList<String> i_-features){
features = i_-features;

public ArrayList<String> getFeatures(){
return features;

public String getFeature(int index){
return features.get(index);

MWCP _Approx_Algorithm.java

import java.util.Arrays;

import java.util.stream.IntStream;

import java.util.ArrayList;

//import org.apache.commons.lang3. ArrayUtils;

public class MWCP_Approx_Algorithm {
public MWCP_Approx_Algorithm () {

ArrayList<Integer> final_weights = new ArrayList<Integer >();
public ArrayList<Legislator[]> approx_algorithm (ArrayList<Legislator> legislators ,int [][]
adj_matrixl, int clique_size){
ArrayList<Legislator[]> results = new ArrayList<Legislator[]>();
ArrayList<int[]> keys = new ArrayList<int([]>();
ArrayList<Integer> sum_buffer = new ArrayList<Integer >();
ArrayList<Integer> max_int = new ArrayList<Integer >();
ArrayList<Integer> sum_int = new ArrayList<Integer >();
//ArrayList<Integer> keys_list = new ArrayList<Integer >();
//System.out.println ("Comm size: ” 4+ number_of_communities) ;

Integer [] sum_array = new Integer[adj-matrixl.length];
int [] key-array = new int[clique_size];
int [][] adj-buffer = new int[adj-matrixl.length][adj-matrixl.length];
for (int column = 0; column < adj-matrixl.length; column++4){
for (int row = 0; row < adj-matrixl[column].length; row++){
adj-buffer [row][column] = adj-matrixl [row][column];

}

//Sort each row in the adjacency matrix then get the desired number of vertices
System.out. println (” Adjacency Matrix Sorted”);

for (int clique_iterator = 0; clique_iterator < adj_matrixl [0].length;
clique_iterator++){
//adj_buffer = adj_matrix[clique_iterator];
Arrays.sort (adj-buffer [clique_iterator]) ;
int [] row_buffer = new int[clique_size];
for (int vertex_iterator = 0; vertex_iterator < clique_size;

vertex_iterator+4+){

row_buffer [vertex_iterator] = adj-buffer[clique_iterator ||
adj-buffer [0].length — vertex_iterator — 1];

}
keys.add(row_buffer);

}

System .out. println (” Adjacency Matrix Sorted”);
System.out. println (” Compute array sum Done!”);

//Get the sum of each array and store it on an arraylist for index reference, and
integer array for sorting
for (int sum_buffer_iterator = 0; sum_buffer_iterator < keys.size ();

sum_buffer_iterator+-+4){
sum_buffer.add(IntStream . of (keys.get(sum_buffer_iterator)).sum());
sum_array [sum_buffer_iterator] = IntStream.of(keys.get(sum_buffer_iterator

)) -sum () ;

//Sort the sum array
Arrays. parallelSort (sum-_array) ;

49

System.out.println (”Get all index of the communites done!”);
//Get the all index of the /number_of_.communities/ largest sum in the array
/*for (int sum_buffer_iterator = 0; sum_buffer_iterator < number_of_communities;
sum_buffer_iterator+-+4){
if (!(max_int.contains (getIndexOfAll(sum_array [sum_array.length —

sum_buffer_iterator — 1], sum_buffer).get (0)))){
max_int.addAll(getIndexOfAll (sum_array [sum_array.length —
sum_buffer_iterator — 1], sum_buffer));

yx/
System.out.println (” Test subject done!* max_int size: ” + max_int.size ());
System.out.println (”sum arr length: ” 4+ sum_array.length);

int sum_buffer_iterator 0;
while ((sum_buffer_iterator < sum_array.length)){
if (!(max_int.contains (getIlndexOfAll(sum_array [sum_array.length —

sum_buffer_iterator — 1], sum_buffer).get (0)))){
if (sum_array [sum_array.length — sum_buffer_iterator — 1] !=0){
//System .out.println (”Sum array value added: ” + sum_array
[sum_array.length — sum_buffer_iterator — 1]);
max_int.addAll(getIndexOfAll (sum_array [sum_array.length —
sum_buffer_iterator — 1], sum_buffer));

}

//System.out.println ("Sum buff: ” + sum_buffer_iterator);
sum_buffer_iterator+4+;

System.out.println (” Test subject done! max_-int size: 7 4+ max_int.size ());
//max_int = limitCommunities (max_int, number_of_communities) ;
//System.out.println (” Test subject done! max_int size: ” 4+ max_int.size ());
for(int sum_counter = 0; sum_counter < max._int.size (); sum_counter++){
Legislator [] max_legislators = new Legislator [clique_size];
ArrayList<Integer> indexes = new ArrayList<Integer >();
boolean hasZero = false;
key_array = keys.get(max_int.get(sum_counter));
for (int vertex_iterator = 0; vertex_-iterator < clique_size;
vertex_iterator+4+){
System.out.print (key_array [vertex_iterator] + 7 7);
if (key_array[vertex_iterator] == 0){
hasZero = true;

}

System.out.println (7”);
for(int vertex_iterator = 0; vertex_iterator < clique_size;
vertex_iterator++){
if (indexes.containsAll(getIndexOfAll(key_array [vertex_iterator],
intToList (adj-matrixl [max_int.get(sum_counter)]))) == false

indexes.addAll(getIndexOfAll (key_array [vertex_iterator], intToList
(adj-matrixl [max_int.get (sum_counter)])));
//System.out.print(adj-matrixl[sum_counter][vertex_iterator]);
}
}

indexes = limitCommunities(indexes, clique_size);
for(int index_iterator = 0; index_iterator < clique_.size; index_iterator
++){
//System.out.print (indexes.get(index_-iterator) + 7 7);
max-_legislators[index_iterator] = legislators.get(indexes.get(

index-iterator));

if (hasZero == false){
final_weights.add(sum_array [sum_array.length — sum_counter —1]);
results.add(max_legislators);

}

System.out.println (77);

//for(int leg_iter = 0; leg_iter < results.get(sum_counter).length;

leg_iter++){

//System.out.print(results.get(sum_counter)[leg_iter |.getName() +

» oo
;

//}

return results;

}

public ArrayList<Integer> getFinalWeights () {
return final_weights;
}

50

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import

public

publi

}

publi

}

public

static
static
static
static
static
static
static
static
static
static
static

jcuda .

¢ ArrayList<Integer> getIndexOfAll(int
ArrayList<Integer> indexes = new ArrayList<Integer >();

for (int
++){

if (int_-max

}
}

return

¢ ArrayList<Integer> intToList (int []

buffer_iterator

== s

0;

um_buffer.

int-max ,

buffer_iterator

indexes.add(buffer_iterator);

indexes;

list
terator <

int_arr){
new ArrayList<Integer >();
int_arr.length;

int_-list .add(int-arr[iterator]);

ArrayList<Integer> int_
for (int iterator = 0; i
}

return int_list;

number_of_communities) {
for (int
trim_iterator ——){

index_list .remove(trim_iterator —

}

return

jcuda.driver

jcuda.driver .
jcuda.driver.
jcuda.driver.
jcuda.driver.
jcuda.driver.
jcuda.driver.
jcuda.driver.
jcuda.driver.
.JCudaDriver.
.JCudaDriver.
jcuda.runtime.JCuda;

jcuda.driver
jcuda.driver

driver .x;

index_list;

trim_iterator =index_list.size ();

1)

ArrayList<Integer> sum_buffer){

< sum_buffer.

get (buffer_iterator)){

MWCP_Exact_GPU . java

.JCudaDriver.

JCudaDriver.
JCudaDriver.
JCudaDriver.
JCudaDriver.
JCudaDriver.
JCudaDriver .
JCudaDriver.
JCudaDriver.

cuCtxCreate;

cuCtxSynchronize;

cuDeviceGet ;
culnit;

cuLaunchKernel;

cuMemAlloc;
cuMemFree;
cuMemcpyDtoH ;
cuMemcpyHtoD ;

cuModuleGetFunction;

cuModuleLoad ;

static jcuda.driver.CUdevice_attribute .x;
static jcuda.driver.JCudaDriver.

io.ByteArrayOutputStream;

java.

java.io. File;
java.io.IOException;
java.io.InputStream;
java.math. Biglnteger;
java.util.ArrayList;
java.util.Comparator;
java.util.PriorityQueue;
jcuda . Pointer;

jcuda . Sizeof;
jcuda.driver.CUcontext;
jcuda.driver.CUdevice;
jcuda.driver.CUdeviceptr;
jcuda.driver.CUfunction;
jcuda.driver .CUmodule;
jcuda.driver.JCudaDriver;

* 5

class MWCP_Exact_-GPU {

private
private
private
private
private
static

Comparator<queueElement> com
PriorityQueue<queueElement> queue
ArrayList<Integer> final_weights =

static int
static int [][]
static int
static

static

adj_matrix;

clique_size;
int num_of_communities;
ArrayList<Legislator >
ArrayList<Integer> outputlndices

public MWCP_Exact_-GPU () {

public MWCP_Exact_-GPU(ArrayList<Legislator >
int num_of_communities) {
legislators ;
number_of_indices;

clique_size ,
this.legislators
number_of_indices
adj-matrix = adj-matrix;

this .
this .

number_of_indices;

legislators;

51

legislators ,

int [][]

size ()

iterator++){

ArrayList<Integer> limitCommunities (ArrayList<Integer> index_list ,

new ArrayList<Integer >();
new LegislatorComparator () ;
new PriorityQueue<queueElement >(com) ;
new ArrayList<Integer >();

adj-matrix ,

buffer_iterator

int

trim_iterator > number_of_communities;

int

this.clique-size = clique.size;

this.num_of_communities = num_of_communities;
¥
public static int[] setIndexArray(int n){
int [] index_array = new int[n];
for (int iter = 0; iter < n; iter++){
index_array [iter] = iter;

}

return index_array;
public static int getIndexLen (){

return legislators.size ();
}

public static int getCliqueSize () {
return clique_size;

public static int getCommNum () {
return num-_of_communities;

public static int computeSum(int [] indices){
int totalSum = O0;
for (int iter = 0; iter < indices.length — 1; iter+4+4){
totalSum += adj_matrix[indices[iter]][indices[iter +1]];

}

return totalSum;

public static int getNumOfGPUAvailable() {
JCudaDriver.setExceptionsEnabled (true);
culnit (0);
// Obtain the number of devices

int deviceCountArray[] = { 0 };
cuDeviceGetCount (deviceCountArray) ;
int deviceCount = deviceCountArray [0];

System.out.println (”Found ” + deviceCount + 7 devices.”);
return deviceCount;

}

public void runGPUAlgorithm () throws IOException {
// Enable exceptions and omit all subsequent error checks
JCudaDriver.setExceptionsEnabled (true);

// Initialize the driver and create a context for the first device
culnit (0);

CUdevice device = new CUdevice() ;

cuDeviceGet (device , 0);

CUcontext context = new CUcontext () ;

cuCtxCreate (context , 0, device);

// Create the PTX file by calling the NVCC

//String ptxFileName = preparePtxFile(”com.cu”);

byte ptxData[] = toByteArray(getClass () .getResourceAsStream(” /com.ptx”));
//String ptxFileName = preparePtxFile(” combination.cu”);

// Load the ptx file

CUmodule module = new CUmodule() ;
cuModuleLoadData(module, ptxData);
//cuModuleLoad (module, ptxFileName) ;

// Obtain a function pointer to the ”combination” algorithm function
CUfunction function = new CUfunction();

cuModuleGetFunction (function , module, ”combination”);

// Allocate the host input data

int [] index_array = setIndexArray (getIndexLen());
int numOfIndices = getIndexLen () ;

int cliqueSize = getCliqueSize () ;

int number_.comm = getCommNum () ;

int outputSize = 99000000;

int [] data_res = new int [getCommNum()];

System .out . primtln (7 sk sk koo oxoskokokoxskok”)

System.out.println (” Host input indices size: ” + numOfIndices);

//System.out.println (” Host input indices of base gene clusters: 7 +
indicesOfBaseGeneClusters.length);

System.out. println (” Host output size: ” 4+ outputSize);

System .out . prinmtln (7 sk ks skokkokskokkxkk”)

// Allocate the device input data, and copy the host input data to the device

52

public

CUdeviceptr
cuMemAlloc(dev_indices ,
cuMemcpyHtoD (dev_indices ,

CUdeviceptr
cuMemAlloc(dev_res ,
cuMemcpyHtoD (dev_res ,

// Allocate
CUdeviceptr
cuMemAlloc(dev_output ,

dev_indices = new CUdeviceptr () ;
numOfIndices * Sizeof .INT);
Pointer.to(index_array),
dev_res = new CUdeviceptr () ;

cliqueSize * Sizeof.INT);
Pointer.to(data_res), cliqueSize x

device output memory
dev_output = new CUdeviceptr () ;
outputSize x Sizeof .INT);

// Set up the kernel parameters: A pointer
the actual values

Pointer kernelParameters = Pointer.to(
Pointer.to(dev_indices),
Pointer.to(new int []{numOfIndices}),
Pointer.to(new int []{ cliqueSize}),
Pointer.to(dev_res),
Pointer.to(dev_output)

)

// Call the kernel function

int blockSizeX =
int gridSizeX = 1;

//int bl

//int gridSizeX =

1;

;
ockSizeX = 256;

cuLaunchKernel (function ,

gridSizeX ,
blockSizeX ,
0, null,
stream
kernelParameters ,

1,
1,

1,
1,

null // Kernel

cuCtxSynchronize () ;

// Allocate
output
cuMemcpyDtoH (Pointer .

int []

host output memory and copy the device
int [outputSize];

to(output), dev_output,

= new

numOfIndices =

outputSize =

Sizeof .INT);

Sizeof .INT) ;

to an array of pointers which point to

(int)Math. ceil ((double)numOfElements/blockSizeX);

// Grid dimension
// Block dimension
// Shared memory

size and

and extra parameters

output to the host

Sizeof .FLOAT) ;

// Print results
System.out.println (” Results: 7);
for (int i = 0; i < output.length; i+4+4) {
if (output[i] == 0 && output[i+1] == 0){
break;
}
if (i%cliqueSize == 0) {
//System.out.println ();
}
outputIndices.add(output[i]);
//System.out.print (output[i] + 7 ”);
}
//outputIndices = output;
// Clean up
cuMemFree(dev_indices) ;
cuMemFree(dev_output) ;
cuMemFree(dev_res) ;
ArrayList<Legislator[]> throwResults (){
//Legislator [] clique = new Legislator[getCliqueSize ()];

ArrayList<Legislator[] >
ArrayList<int [] >

for (int

}

for (int

index_arr = new ArrayList<int[]>();
iter < outputlndices.size();
int [] data-res = new int[getCliqueSize ()];
for (int iter2 = iter; iter2 <

data_res[iter2 — iter]

iter = 0;

}

index_arr.add(data_res);

//System.out.println (index_arr.get(iter /getCliqueSize())[0]

index_arr.get(iter/getCliqueSize())[1]);

queuelter = 0; queuelter < index_arr.size ();

queueElement data@Q = new queueElement(index_arr.

int curr_sum = dataQ.getSum () ;

//System.out.println (dataQ.getIndex () [0]
+ curr_sum) ;

+

/*if (queue.size () < getCommNum ()) {
queue . add (dataQ) ;
}elsed{

iter+getCliqueSize () ;
= outputlndices.get(iter2);
//System.out.print (outputIndices.get(iter2) + 7

result = new ArrayList<Legislator[]>();

iter+=getCliqueSize ()){

iter24++){
7) s

L0 4

queuelter++){
get (queuelter));

? 4+ dataQ.getIndex () [1] + 7x”

if (dataQ.getSum () > queue.peek () .getSum()){

System.out.println (” Head removed,

53

new Combination added”);

queue.remove () ;
queue .add (dataQ) ;

b/
if (dataQ.hasZero == false){
queue .add (dataQ) ;
}
}
for (queueElement q : queue){
//System.out.println (q.getIndex () [0] +” "+q.getIndex () [1]);
}
/*for (int iter = 0; iter < outputlndices.size() — 1; iter 4= getCliqueSize()){
int [] data-res = new int[getCliqueSize ()];
for(int iter2 = iter; iter2 < iter +getCliqueSize() — 1; iter24+4){
data_res[iter2 — iter]| = outputlndices.get(iter2);
System.out.print (data_res[iter2 — iter] + 7 7);
yx/
/*queueElement dataQ = new queueElement(data_res2);
int curr_sum = dataQ.getSum() ;
System.out.println (” Current sum: ” + curr_sum + 7 7);
if (queue.size () < getCommNum ()){
queue .add (dataQ) ;
}else{
if (dataQ.getSum () > queue.peek().getSum()){
System.out.println (”Head removed, new Combination added”);
for (int iterR = 0; iterR < queue.element ().getIndex ().
length; iterR+4++){
System .out.print (queue.element () .getIndex () [iterR]
» o
)
¥
queue.remove () ;
queue.add (dataQ) ;
}
b/
while (queue.isEmpty () == false){
Legislator [] leg_-list = new Legislator [queue.element().getIndex().length];
for (int iterR = 0; iterR < queue.element().getIndex().length; iterR++){
//System .out.print (queue.element () .getIndex () [iterR] + 7 ”);
leg_list [iterR] = legislators.get(queue.element().getIndex () [iterR
}
final_weights .add(queue.element () .getSum());
result.add(leg-list);
System.out.println (” 7);
queue.remove () ;
}

return result;

public ArrayList<Integer> getFinalWeights (){
return final_weights;

}
public int getSumOfCom(int [] dataArr){

int totalSum = O0;
for(int iterator = 0; iterator < dataArr.length — 1; iterator++){
totalSum += this.adj-matrix[dataArr[iterator]][dataArr[iterator +1]];
totalSum = totalSum + this.adj-matrix[dataArr [0]][dataArr[dataArr.length — 1]];
return totalSum;
}
public boolean hasZeroAdj(int [] dataArr){
for (int iterator = 0; iterator < dataArr.length — 1; iterator+-+4){
if (this.adj_matrix [dataArr[iterator |][dataArr[iterator +1]] == 0){
return true;
}
}
return false;
}

public class LegislatorComparator implements Comparator<queueElement>{
public int compare(queueElement x, queueElement y) {

// TODO Auto—generated method stub
return Integer.compare(x.getSum(), y.getSum());

o4

//return O;

class queueElement {
int [] index;
int sum;
boolean hasZero;

public queueElement(int [] index){
this.index = index;
this.sum = getSumOfCom (index) ;
this.hasZero = hasZeroAdj(index);

public int [] getIndex(){
return this.index;

public int getSum () {
return this.sum;

VL

The extension of the given file name is replaced with "ptx”.
If the file with the resulting name does not exist , it is
compiled from the given file using NVCC. The name of the
PTX file is returned.

@param cuFileName The name of the .CU file
@return The name of the PTX file
@throws IOException If an I/O error occurs

¥ K ¥ X ¥ X ¥ X ¥

private String preparePtxFile(String cuFileName) throws IOException {
int endIndex = cuFileName.lastIndexOf(’.");
if (endIndex == —1) {
endIndex = cuFileName.length () —1;
¥

String ptxFileName = cuFileName.substring (0, endIndex+1)4"ptx”;
File ptxFile = new File (ptxFileName) ;
if (ptxFile.exists()) {

return ptxFileName;

File cuFile = new File(cuFileName);
System.out. println (cuFile.getAbsolutePath());
if (!cuFile.exists()) {
throw new IOException(” Input file not found: ”"+4cuFileName) ;
}

String modelString = "—m” + System.getProperty (”sun.arch.data.model”);
String command = ”"nvcc 7 4+ modelString + ” —ptx 7 + cuFile.getPath() + ” —o
ptxFileName;

System .out.println (” Executing\n”+command) ;
Process process = Runtime.getRuntime () .exec(command) ;

String errorMessage = new String (toByteArray(process.getErrorStream()));
String outputMessage = new String(toByteArray(process.getIlnputStream()));

int exitValue = 0;
try {
exitValue = process.waitFor();

catch (InterruptedException e) {
Thread . currentThread () .interrupt () ;
throw new IOException (
?Interrupted while waiting for nvcc output”, e);

}

if (exitValue != 0) {
System.out. println (" nvcc process exitValue "+exitValue);
System.out.println (” errorMessage:\n”"+errorMessage) ;
System .out.println (" outputMessage:\n"+outputMessage) ;
throw new IOException (
?Could not create .ptx file: ”"+errorMessage);

}

System.out.println (” Finished creating PTX file”);
return ptxFileName;

}
VEE

Fully reads the given InputStream and returns it as a byte array

@return The byte array containing the data from the input stream

*
*

* @param inputStream The input stream to read
*

* @throws IOException If an I/O error occurs

%)

*/

private static byte|[] toByteArray(InputStream inputStream) throws IOException {
ByteArrayOutputStream baos = new ByteArrayOutputStream () ;
byte buffer [] = new byte[8192];
while (true) {

int read = inputStream.read(buffer);
if (read == —1)
break ;

baos.write (buffer, 0, read);

}
baos . write (0) ;
return baos.toByteArray () ;

}

¥
PriorityExact.java

import java.util.ArrayList;
import java.util.Comparator;
import java.util.PriorityQueue;
public class PriorityExact {
Comparator<queueElement> com = new LegislatorComparator () ;
int counter = 0;
PriorityQueue<queueElement> queue = new PriorityQueue<queueElement >(com) ;

ArrayList<Integer> final_weights = new ArrayList<Integer >();
//ArrayList<queueElement> test = new ArrayList<queueElement >();
private int [][] adj-matrix;

public PriorityExact(int [][] adj-matrix, int number_of_communities){
this.adj-matrix = adj-matrix ;
//queue. clear () ;
//this.queue = new PriorityQueue<queueElement >(com) ;
//this.test = new ArrayList<queueElement >();

public ArrayList<Legislator[]> exact_algorithm (ArrayList<Legislator> legislators ,int
adj_-matrixl, int clique_size, int number_of_communities) {
ArrayList<Legislator[]> results = new ArrayList<Legislator[]>();

(1]

System.out.println (” Matrix dim: ” + adj-matrix.length + 7 by 7 4+ adj_matrix[1].
length);

int [] data_res = new int[clique_size];

int [] testt = {1,2,3,4};

queueElement tester = new queueElement(testt);

performCombination(legislators , data_res, 0, legislators.size() — 1, O,
clique_size , number_of_communities) ;

»

System .out. println (” Queue size: + queue.size ());

System .out. println (” Queue entries: 7);
while (queue.isEmpty () == false){
Legislator [] leg-list = new Legislator [queue.element().getIndex().length];
for (int iterR = 0; iterR < queue.element().getIndex().length; iterR++){
//System.out.print (queue.element ().getIndex () [iterR] + 7 7);
leg_list [iterR] = legislators.get(queue.element ().getIndex () [iterR
1)

}

results.add(leg_-list);

final_weights .add(queue.element () .getSum());
System.out.println (” 7);

queue .remove () ;

}

return results;

¥ Ok K X ¥ X ¥

public ArrayList<Integer> getFinalWeights () {
return final_weights;

}
public void performCombination(ArrayList<Legislator> legislators ,int[] data_res, int
start_-index , int endIndex, int index, int clique-size , int num_com) {
if (index == clique.size){
counter—++;
queueElement data@Q = new queueElement(data-res);

56

System.out.println (” Combination ” + counter + ” solved!”);

int curr_sum = dataQ.getSum () ;

System.out.println (” Current sum:

/*if (queue.size () < num_com){
queue.add (dataQ) ;

Yelse{

” 4+ curr_sum + 7 7);

if (dataQ.getSum () > queue.peek().getSum()){

System.out.println (” Head removed, new Combination added”);

queue.remove () ;
queue.add (dataQ) ;

I/

if (dataQ.hasZero == false){
queue . add (dataQ) ;
}

return;
for (int curr_index = start_index; ((curr_-index <= endIndex) && ((endIndex —
curr_index 4+ 1) >= (clique_size — index))); curr_index++){
int [] data_-res2 = new int[clique_size];
for(int datalter = 0; datalter < data_res2.length; datalter++){
data_res2 [datalter| = data_res[datalter];
data_res2 [index] = legislators.indexOf(legislators.get(curr_index));
performCombination (legislators , data-res2, curr_-index + 1, endIndex,

+1, clique_size , num_com) ;

public int getSumOfCom(int [] dataArr){

int totalSum = 0;
for(int iterator = 0; iterator < dataArr.length — 1; iterator++){
totalSum 4= this.adj_matrix [dataArr[iterator]][dataArr[iterator +1]];

}

return totalSum;

}

public boolean hasZeroAdj(int [] dataArr){
for (int iterator = 0; iterator < dataArr.length — 1; iterator++4){
if (this.adj-matrix [dataArr[iterator |][dataArr[iterator +1]] == 0){
return true;
}

}

return false;

public class LegislatorComparator implements Comparator<queueElement>{

public int compare(queueElement x, queueElement y) {
// TODO Auto—generated method stub
return Integer.compare(x.getSum (), y.getSum¢());
//return 0;

class queueElement {
int [] index;
int sum;
boolean hasZero;

public queueElement(int [] index){
this.index = index;
this.sum = getSumOfCom (index) ;
this.hasZero = hasZeroAdj(index);

}

public int [] getIndex (){
return this.index;
}

public int getSum(){
return this.sum;
}

57

index

import
import
import
import
import
import

import
import

public

java.
java.
java.
java.
java.
java.

org .
org.

clas

R_Integration RSERVE.java

io.IOException;
util.ArrayList;
util.Arrays;

util. Collections;
util. List;

util .stream.IntStream;

rosuda . REngine . *;
rosuda .REngine. Rserve . *;

s R_Integration_.RSERVE {

ArrayList<Legislator > toThrow_-Legislator = new ArrayList<Legislator >();
ArrayList<Integer> result_-weights = new ArrayList<Integer >();

int
int
Str
Str

[1[] toThrow-_adj;

clique-size , number_of_communities;

ing [] featureList;
ing filePath;

ArrayList<Legislator[]> toThrow_community = new ArrayList<Legislator[]>();
ArrayList<Legislator> matrix_.L = new ArrayList<Legislator >();
RConnection c;
REXP eval_file;

int
int

[] degree_centrality;
[] degreeW_centrality ;

double [] closeness_centrality ;
double [] betweenness_centrality;

int

public R_Integration_.RSERVE () throws RserveException ,

public void r_executeConnection(String filePath) throws

try

number_of_devices;

¢ = new RConnection () ;

REXPMismatchException{

{

// make a new local connection on default port (6311)
int delimit = filePath.lastIndexOf (”.”7);

REXP x0 = c.eval(”library (’xlsx’)”);

REXP x_igraph = c.eval(”library (igraph)”);

if (filePath.substring (delimit ,

header = TRUE)”);

}else if(filePath.substring(delimit ,
eval_file = c.eval (”df <—read.xls(’”
}else if(filePath.substring(delimit ,
eval_file = c.eval(”df <—read.csv (’”

5

}

filePath .length ()).equals (7.
eval_file = c.eval(”df <—read.xlsx(’”

REXP exp-nrow = c.eval(”nrow(df)”);
REXP exp-ncol = c.eval(” ncol(df)”);
REXP exp-headers = c.eval(” colnames(df)”);

REXPMismatchException {

RserveException ,

x1sx”)){
+ filePath 4 ”’, sheetName = ’Sheetl’,

filePath .length ()).equals (”.x1s”)){

+ filePath + ”’, sheet = ’'Sheetl’”);

filePath .length ()).equals (”.csv”)){

featureList = exp_-headers.asStrings();

for (String header : featureList){
System .out.println (header);

}

int nrow = exp-nrow.aslInteger ();

int ncol = exp-ncol.aslnteger ();

//Parse the Spreadsheet file into an ArrayList of Legislators

for (int index_-row = 1; index_row <= nrow; index_row++){
Legislator legislator = new Legislator ();
ArrayList<String> features = new ArrayList<String >();
for (int index-col = 1; index_col <= ncol; index_col4++){

REXP exp-element = c.eval(”df[” + index_-row + 7,

if (index_-col == 1){

»

+ filePath + 77, header = TRUE, sep =

+ index_col + 7]7);

legislator .setName(exp_-element.asString ());

else{

features.add(exp-element.asString ());

}
}

legislator .setFeature(features);

matrix_L.add(legislator);

}

toThrow_Legislator = matrix_L;

} catch (REngineException e) {

}

pub

e.printStackTrace () ;

lic void r_execute(String Algo,
REXPMismatchException{

int []

feature_column) throws

Graph_Construction g = new Graph_Construction () ;
MWCP_Approx-Algorithm m = new MWCP_Approx_-Algorithm () ;
MWCP_Exact_-GPU egpu = new MWCP_Exact-GPU () ;

58

RserveException ,

s

7))

PriorityExact e}
ArrayList<Integer> feature_col = new ArrayList<Integer >();
for (int i : feature_column){

feature_col.add(i);

int [][] adj-matrix;
adj_matrix = g.construct_-adjacency_-matrix_chosen (matrix_-L, feature_col);
toThrow_adj = adj-matrix;
//g.printAdj(adj-matrix) ;
System.out.println (” Number of communities ” 4+ number_of_.communities) ;
System .out.println (” Algorithm Chosen: 7 4 Algo);
egpu = new MWCP_Exact_.GPU(matrix_.L , adj-matrix, clique_size , number_of_communities) ;
if (Algo.equals (” Approximate Algorithm”)){
toThrow_community = m.approx_algorithm (matrix_.L , adj-matrix, clique_size);

result_weights = m.getFinalWeights () ;
}else if(Algo.equals(” Exact Algorithm (GPU)”)){

try
egpu.runGPUAlgorithm () ;
toThrow_community = egpu.throwResults () ;
Collections.reverse (toThrow_community) ;
result_weights = egpu.getFinalWeights () ;
Collections .reverse (result_weights);

} catch (IOException el) {

// TODO Auto—generated catch block
el.printStackTrace () ;

}
}else if (Algo.equals(” Exact Algorithm (CPU)”)){
e = new PriorityExact(adj-matrix, number_of_communities) ;
toThrow_community = e.exact_algorithm (matrix_.L , adj-matrix, clique_size ,
number_of_communities) ;

Collections .reverse (toThrow_community) ;

result_weights = (e.getFinalWeights());
Collections .reverse (result_-weights);

}

REXP exp-name_graph = c.eval(”g <— graph(c(”+ g.graph_exp(adj-matrix) +7), n =" +
adj_matrix [0].length+ 7, directed = F)”);

REXP exp-degree = c.eval(” centr_degree(g, mode = ’all’, normalized = T)$res”);

REXP exp-closeness = c.eval(” centr_clo(g, mode = ’all’, normalized = T)$res”);

REXP exp_-betweenness = c.eval(” centr_betw (g, directed = F, normalized = T)S$res”);

degree_centrality = exp-degree.asIntegers ();

degreeW _centrality = computeWeightedCentrality (adj-matrix);

closeness_centrality = exp-closeness.asDoubles () ;

betweenness_centrality = exp_-betweenness.asDoubles () ;

public ArrayList<Integer> getResultWeights () {
return result_-weights;

public int[] computeWeightedCentrality (int [][] temp-adj){
int [] degreeW = new int[temp_adj.length];
for (int iter = 0; iter < temp-adj.length; iter++){
degreeW [iter] = IntStream.of(temp_adj[iter]) .sum();
}

return degreeW;

}

public ArrayList<Legislator> getLegislators (){
return toThrow_Legislator;
}

public int [][] getAdj(){
return toThrow_adj;

public ArrayList<Integer> addIntToList(String[] tolnt){
ArrayList<Integer> featurelndex = new ArrayList<Integer >();
for (String s : tolnt){
featurelndex .add(Integer.parselnt(s));

}

return featurelndex;

}

public String [] getFeatureList (){
return Arrays.copyOfRange(featureList , 1, featureList.length);
}

public void setNumberOfCommunities(int communityNumber) {
this.number_of_.communities = communityNumber;

public int getCliqueSize (){
return clique_size;

59

public int getNumberOfCommunities () {
return number_of_communities;

}

public void setCliqueSize(int cliqueSize){
clique_size = cliqueSize;

}

public ArrayList<Legislator[]> getResults (){
return toThrow_community ;

}

public void setFilePath(String filepath){
filePath = filepath;
//System.out.println (”End my misery”);

}

public int[] getDegCentrality (){
return degree_centrality;

}

public double[] getBetCentrality (){
return betweenness_centrality ;
}

public double[] getCloCentrality (){
return closeness_centrality ;
}

public int [] getDegWeighted () {
return degreeW_centrality ;
}

ReportMaker.java

import java.io.FileNotFoundException;
import java.io.FileOutputStream ;
import java.io.IOException;

import java.text.DecimalFormat;
import java.text.NumberFormat;

import java.util.ArrayList;

import java.util.Date;

import com.itextpdf.text.BadElementException;
import com.itextpdf.text.Document;
import com.itextpdf.text.DocumentException;
import com.itextpdf.text.Element;
import com.itextpdf.text.Font;
import com.itextpdf.text.FontFactory;
import com.itextpdf.text.Image;
import com.itextpdf.text.List;
import com.itextpdf.text.ListItem;
import com.itextpdf.text.Paragraph;
import com.itextpdf.text.Phrase;
import com.itextpdf.text.pdf.PdfPCell;
import com.itextpdf.text.pdf.PdfPTable;
import com.itextpdf.text.pdf.PdfWriter;
public class ReportMaker {

private String filename;

private String username;

private String[] headers;

private String [][] data_centrality;

public ReportMaker(String filename, String username, String][] headers, String [][]
data_centrality){
this.filename = filename;
this .username = username;
this.headers = headers;
this.data-centrality = data-centrality;

}

public void makeReport(String text){
Document report = new Document () ;
try |
PdfWriter. getInstance (report, new FileOutputStream (this.filename));
} catch (FileNotFoundException | DocumentException e)
// TODO Auto—generated catch block
e.printStackTrace () ;

report.open () ;
initializeMetadata (report);
addTitlePage (report ,text);
//addImages (report ,null);
report.close ();

}

private void initializeMetadata (Document pdf){

60

}

private

pdf.addTitle(” Legislator Clique Finder Results”);
pdf.addAuthor (this.username) ;
pdf.addCreator (this.username) ;

void
Font
Font
Font

try {

addTitlePage (Document pdf, String text){

largeFont = FontFactory.getFont(FontFactory . TIMES ROMAN, 16, Font.NORMAL) ;
mediumFont = FontFactory.getFont(FontFactory . TIMES ROMAN, 14, Font.NORMAL) ;
smallFont = FontFactory.getFont(FontFactory . TIMES ROMAN, 10, Font.NORMAL) ;
Paragraph preface = new Paragraph();

} catch

} catch

Image img = Image.getInstance (getClass ().getResource(”/Image/logo .PNG”));

float scaler = ((pdf.getPageSize().getWidth ()—pdf.leftMargin ()—pdf.
rightMargin()) / img.getWidth()) = 100;

img.scalePercent (scaler);

pdf.add(img) ;

(BadElementException | IOException el) {

// TODO Auto—generated catch block

el.printStackTrace () ;

(DocumentException e) {

// TODO Auto—generated catch block

e.printStackTrace () ;

addEmptyLine(preface , 2);

preface.add(new Paragraph(” Legislator Clique Finder Result”,largeFont));
addEmptyLine(preface, 1);

preface.add(new Paragraph(” Author: 7 4+ System.getProperty(” user.name”) + ”, Date: ” 4+ new
Date () ,smallFont));

Paragraph
addEmptyLine(details , 1);
details .add(text);

try {

preface.

} catch

}
pdf.newPage () ;

details = new Paragraph();

setAlignment (Element . ALIGN_.CENTER) ;
pdf.add(preface);

pdf.newPage () ;

pdf.add(details);

pdf.newPage () ;

NumberFormat format = new DecimalFormat("##.##”);
PdfPTable table = new PdfPTable(headers.length);

Paragraph title = new Paragraph();
title .add(new Paragraph(” Centrality Table” ,mediumFont));
addEmptyLine(title ,1);

for (String header : headers){
PdfPCell colHead = new PdfPCell(new Phrase(header ,smallFont));
colHead .setHorizontalAlignment (Element . ALIGN_.CENTER) ;
table.addCell (colHead) ;

table.setHeaderRows (1) ;

for (int row=0; row<data_centrality.length; row++){
table.addCell (new Phrase(data_centrality [row][0]))}
table.addCell (new Phrase(data_centrality [row][1]))}
table.addCell (new Phrase(data_centrality [row][2]))}
table.addCell (new Phrase(format.format (Double. parseDouble (
data_centrality [row][3]))));
table.addCell (new Phrase(format.format(Double.parseDouble (
data_centrality [row][4]))));
/*for (int col=0; col<data_centrality [row].length; col++){
table.addCell (new Phrase(format.format(data_centrality [row
]J[col]) ,smallFont));
b/
}

pdf.add(title);

pdf.add(table);

(DocumentException e) {

// TODO Auto—generated catch block
e.printStackTrace () ;

private void addEmptyLine(Paragraph paragraph, int number) {

for

}

(int

i

0;

i < number; i++)

paragraph .add (new Paragraph(” 7));

61

XI. Acknowledgement

Una sa lahat, gusto kong pasalamatan kung sinuman ang gumagabay sa itaas, pwede
na rin yung nasa baba. Gusto ko ring pasalamatan iyong gumabay sa akin dito sa
gitna, ang aking SP adviser, Mr. Geoff Solano. Sir, maraming salamat sa pagtitiwala
simula noong una pa lamang, at sa walang-sawang pagbibigay gabay at liwanag sa
pagtahak sa madalim at masukal na kagubatan ng SP. Maraming salamat sa hindi
pagsuko lalo na sa aming kakulitan at minsa’y ka-tigasan ng ulo. Hindi mapapantayan
ang pagmamahal na inyong ibinigay sa amin. Maraming salamat po, Sir. Nais ko ring
pasalamatan ang mga propesyonal na aking hiningang gabay, Mr. Jalton Taguibao
at Mr. Jeff Aborot. Maraming salamat po sa inyong tulong upang mabuo ang SP na
ito. Salamat rin sa panel na nagpursiging kilatisin at pagandahin ang SP na ito.

Pangalawa, nais ko ring pasalamatan ang mga sumusunod:

1. Aking mga magulang. Para sa bawat baong ibinigay upang makapag-cafe ako
upang matapos ang SP na ito. Sa walang-sawang paggabay sa landas ng buhay
at pag tanggap sa kung anuman ang aking paroroonan. Maraming salamat.

Para sa inyo ito.

2. Delwyn P. Mendoza. Para sa mga “gusto ko nang mamatay” moments. Para sa
panahong pinagtagpo tayo ng tadhana. Para sa bawat tasa ng kapeng itinaob
kasabay ang palpitation at anxiety attack. Rak. Lamonayan. Black. Gold

lining.

3. Bengemin S. Uy. Para sa mga “ito pa rin yung mali mo dati ah?” moments.
Para sa walang sawang pag-intindi sa mga kabaluktutan ng utak ko. Para sa

pag mentor at pagdebug ng magulo kong SP. Clutch sir.

4. Princess V. Florendo. Para sa mga “tara inom” moments. Maging milktea man
yan o alak. Para sa bawat “hassle pre” coding sessions at “tara cut.” Para sa

bawat tansang binulsa at boteng itinumba. Tagay:.

62

5. Bianca L. Silmaro. Para sa mga “pareho naman tayo pero bakit mali” moments.
Para sa mga pinagsaluhang “CUDA_ERROR” na linya. Para sa bawat NBA

finals na pinagpustahan. GPU pa more.

6. Adrian Sabado at Jed Reyes. Para sa mga nakatatandang walang-sawang nag-
pagalit sa aming mga nakababata. Sa pag pressure sa amin na gumraduate na

kaagad. Para sa mga naudlot na gala. Salamat, daddies.

7. David Dobrik. Sa pagkain ng oras ko sa mga panahong dapat nagcocode ako ng
SP, pinapanood ko lang lahat ng vlogs mo ng paulit-ulit. 420 Blaze it. Penge

merchs.

8. Doon sa kanta ng One Ok Rock na “The Beginning”. Ito yung anthem ko pag
alam kong oras na para patayin na naman ang sarili sa pagod, puyat, at gutom.

2 sems din ituu.

9. MCSU profs especially Ms. Hermie Monterde(Hi ma’am kelan na dinner ng
tech staff hihi), Ms. Therese Basco(Para sa bawat hugs noong proposal at
defense), Mr. Mong Llarenas(Sa bawat pangaasar, acads man yan o DPSM
week), Mr. Marvin John Ignacio(Para sa lahat. Alam mo na yan. Sobra.), Ms.
Perl Gasmen(Sa kwentuhan at balitaan ng love life hihi), Mr. Marbert John
Marasigan(G na Sir, Challenger na itu), at Mr. John Althom Mendoza(Miss

na kita, Sir. See you soon). Mahal q kau lahat.

Para sa mga kamay na kumapit, para sa mga bisig na yumakap, at para sa mga

balikat na nagpasandal. Maraming salamat. Atin ‘to, papasok ‘to.

A1D3300391.X.

63

	Acceptance Sheet
	Abstract
	List of Figures
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Theoretical Framework
	Community Detection
	Philippine Congress Structure
	Graph Construction
	Centrality
	Degree Centrality
	Betweenness Centrality
	Closeness Centrality

	Cliques
	Weighted Clique Problem
	2-Approximation Algorithm for Finding a Clique with Minimum Weight of Vertices and Edges

	Design and Implementation
	Data Specifications
	System Design
	Context Diagram
	Use Case Diagram
	Flowchart Diagram

	System Architecture
	Technical Architecture

	Results
	Discussions
	Conclusions
	Recommendations
	Bibliography
	Appendix
	Source Code

	Acknowledgement

