
University of the Philippines Manila

College of Arts and Sciences

Department of Physical Sciences and Mathematics

Clinical Decision Support System for Lung

Cancer Diagnosis Using Convolutional Neural

Networks

A special problem in partial fulfillment

of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:

Fatima Naiza O. Asaad

June 2018

Permission is given for the following people to have access to this SP:

Available to the general public Yes

Available only after consultation with author/SP adviser No

Available only to those bound by confidentiality agreement No

ACCEPTANCE SHEET

The Special Problem entitled “Clinical Decision Support System for
Lung Cancer Diagnosis Using Convolutional Neural Networks” prepared and submit-
ted by Fatima Naiza O. Asaad in partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science has been examined and is recommended
for acceptance.

Marvin John C. Ignacio, M.Sc. (cand.)
Adviser

EXAMINERS:
Approved Disapproved

1. Gregorio B. Baes, Ph.D. (cand.)
2. Avegail D. Carpio, M.Sc.
3. Perlita E. Gasmen, M.Sc. (cand.)
4. Richard Bryann L. Chua, Ph.D. (cand.)
5. Ma. Sheila A. Magboo, M.Sc.
6. Vincent Peter C. Magboo, M.D., M.Sc.
7. Geoffrey A. Solano, Ph.D. (cand.)

Accepted and approved as partial fulfillment of the requirements for the degree
of Bachelor of Science in Computer Science.

Ma. Sheila A. Magboo, M.Sc. Marcelina B. Lirazan, Ph.D.
Unit Head Chair

Mathematical and Computing Sciences Unit Department of Physical Sciences
Department of Physical Sciences and Mathematics

and Mathematics

Leonardo R. Estacio Jr., Ph.D.
Dean

College of Arts and Sciences

i

Abstract

According to WHO, lung cancer is the leading cause of cancer-related deaths world-

wide. A study has found that early detection of lung cancer using a patient’s CT scans

has been effective in reducing the deaths caused by lung cancer. Through the use

of convolutional neural networks with CT scans as input, a clinical decision support

system for lung cancer diagnosis is developed to aid doctors that are non-radiologists

in classifying if a patient is positive or negative for lung cancer. The current model

used by the system needs to be further enhanced before being deployed for use by

doctors. If the model is improved, it could be helpful in providing second opinion on

detecting lung cancer in patients.

Keywords: lung cancer diagnosis, convolutional neural networks, deep learning, low-dose

computed tomography (LDCT) scan, clinical decision support system

Contents

Acceptance Sheet i

Abstract ii

List of Figures v

I. Introduction 1

A. Background of the Study . 1

B. Statement of the Problem . 6

C. Objectives of the Study . 6

C..1 General Objective . 6

C..2 Specific Objectives . 7

D. Significance of the Project . 8

E. Scope and Limitations . 9

F. Assumptions . 10

II. Review of Related Literature 11

III. Theoretical Framework 14

A. Lung Cancer . 14

B. Computed Tomography (CT) Scan 15

C. Clinical Decision Support System (CDSS) 16

D. Digital Imaging and Communications in Medicine (DICOM) . . . 17

E. Convolutional Neural Network (CNN) 17

F. Keras . 19

IV. Design and Implementation 20

A. Kaggle Data Science Bowl 2017 20

B. System Overview . 20

iii

C. Context Diagram . 22

D. Entity-Relationship Diagram . 22

E. Use Case Diagram . 23

F. Activity Diagram . 25

F..1 Doctor . 25

F..2 AI Expert . 25

G. Technical Architecture . 26

V. Results 28

VI. Discussions 35

VII. Conclusions 37

VIII. Recommendations 38

IX. Bibliography 39

X. Appendix 44

A. Source Code . 44

XI. Acknowledgement 55

iv

List of Figures

1 (a) Transverse unenhanced LDCT scan of a 63-year old man shows a

non-solid nodule in the upper lobe. (b) Transverse unenhanced LDCT

scan of a 66-year old woman shows a part-solid nodule in the lower

left lobe. (c) Transverse unenhanced LDCT scan of a 58-year old man

shows a solid nodule in the upper right lobe. 16

2 High-level general CNN architecture 18

3 System Overview . 21

4 Context Diagram . 22

5 Entity-Relationship Diagram . 23

6 Use Case Diagram . 24

7 Activity Diagram of Doctor . 25

8 Activity Diagram of AI Expert . 26

9 Performance of the Model . 28

10 Registration Page . 29

11 Login Page . 29

12 Prediction Page Seen by a Logged In Doctor 30

13 Prediction Page Updated with the Results of the Classification 30

14 Prediction Page Seen by a Logged In AI Expert 31

15 Prediction Page Updated with the Results of the Classification 31

16 Train Model Page . 32

17 Model Details Page . 33

18 Model Details Page (continued) . 33

19 List of Models Created by the AI Expert 34

v

I. Introduction

A. Background of the Study

Lung cancer is one of the leading cancers worldwide. According to the World Health

Organization (WHO), it is the leading cause of cancer-related deaths among both men

and women. Of the 8.8 million cancer-related deaths reported in 2015, lung cancer

accounted for approximately 1.69 million cases. This was more than the number of

cancer-related deaths from liver and colorectal cancer combined (approximately 1.59

million cases) [1]. In the Philippines, according to the Philippine Council for Health

Research and Development (PCHRD), it is the top cause of cancer-related deaths

among men and the third most common among women [2].

Early detection of cancer before it can cause symptoms is called cancer screening.

This is usually done to people at high risk of cancer, but do not show symptoms of

cancer [3]. For lung cancer, two common screening tests involve the use of chest X-ray

(CXR) and the use of low-dose computed tomography (LDCT) scan of the chest.

A United States-based clinical trial on lung cancer screening, called the National

Lung Screening Trial (NLST), was sponsored by the National Cancer Institute and

was conducted by the American College of Radiology Imaging Network and Lung

Screening Study Group. The trial enrolled 53,454 participants and they were re-

cruited between 2002 to 2004. The objecive of this trial was to compare the use of

LDCT scan of the chest against the standard CXR as lung cancer screening tests.

The study ended in 2010 and the findings were published in 2011. There were 247

deaths from lung cancer per 100,000 person-years in the LDCT group and 309 deaths

per 100,000 person-years in the CXR group, representing a relative reduction in lung

cancer mortality with LDCT screening of 20%. The NLST showed a reduction of

20% in lung cancer mortality in high-risk subjects scanned with LCDT, compared to

the control group that received CXR [4]. In December 2013, the United States Pre-

1

ventive Services Task Force (USPSTF), “an independent panel of experts in primary

care and prevention that systematically reviews the evidence of effectiveness and de-

velops recommendations for clinical preventive services”, changed its long-standing

recommendation regarding lung cancer screening. Before the trial, they believed that

there was insufficient evidence to recommend for or against screening for lung cancer.

Because of the findings of the NLST, the USPSTF now recommends annual screening

for lung cancer using LDCT scan for patients who meet all of the following criteria:

55 to 80 years old, have at least 30 pack-year smoking history, and are either still

smoking or have quit smoking within the past 15 years. The USPSTF also recom-

mends that the screening be discontinued once a person has not smoked for 15 years,

or develops a health problem that substantially limits life expectancy or the ability

or willingness to have curative lung surgery [5].

Clinical decision support systems (CDSSs) are software that aid doctors in clin-

ical decision-making tasks by providing case-specific advice to each patient. CDSSs

constitute a major topic in the application of the field of artificial intelligence (AI) in

medicine. AI is a thriving field that attempts to understand and build intelligent ma-

chines. These days, intelligent machines can now automate routine labor, understand

speech or images, and make diagnoses in medicine. An example of its application is

a system that can interpret medical images, such as a CXR or an LDCT scan. To

interpret a medical image means to detect a possible disease from this image. When

this system is given a medical image as input, it can mark conspicuous structures and

sections, and/or evaluate the conspicuous structures.

There are two main types of CDSSs: knowledge-based and nonknowledged-based

[6]. Knowledged-based CDSSs are based on the rule-based expert systems developed

back in the 1970s. These systems are computer programs that are capable of per-

forming at the level of a human expert in a narrow problem domain. Knowledge of

these systems are written as IF-THEN statements, called rules. These rules provide

2

some description of how to solve a problem. The IF-THEN structure of rules relates

given information or facts in the IF part to some action in the THEN part [7, p. 25].

On the other hand, nonknowledge-based CDSS use an approach to AI called

machine learning (ML) [6]. The approach is based on learning from past experiences

and/or recognizing patterns in an input data. Instead of gathering a large number of

information from human experts and writing rules to solve a problem based on this

information, the system is given a model with which it can use to evaluate examples,

and set of instructions to modify this model when it makes a m istake in its task.

Over time, this model would be able perform its task accurately [8, p. 4].

A disadvantage of conventional ML algorithms is manual feature extraction. In

ML terminology, a feature is defined as an individual measurable characteristic of a

phenomenon being observed. For example, for a system that is given a speech as

input and is tasked to recognize whether the speaker is a man, woman, or child,

one possible feature is an estimate of the size of the speaker’s vocal tract [9, p.

3]. Traditionally, ML researchers spent a large amount of time in manually deciding

which characteristics of a dataset can be used as indicators to label that data reliably.

This process of manual creation of exhaustive feature sets is called feature extraction.

These features are then provided to an ML algorithm. For many tasks, it is difficult

to know what features should be extracted. Suppose a system has a task of detecting

cars from images. Since cars have wheels, the presence of wheels might be considered

as a feature. However, it is difficult to describe what exactly a wheel looks like in terms

of pixel values. It has a simple geometric shape but an input image may have shadows

on the wheel, or they may be an object in the foreground that is obscuring part of

the wheel. These are just a few examples of complications that would make feature

extraction difficult for this task [9, p. 3]. Recent research in ML has attempted to

build models that can automate the process of feature extraction as well as resemble

the structures found in a human brain to simulate how humans learn. This body of

3

research is commonly referred to as deep learning.

Deep learning models are based on the biological neural networks, called artificial

neural networks (ANNs), that constitute the human brain. There are two main

properties of ANNs that follow the general idea of how the brain works. First, the

most basic information-processing unit of the network is the artificial neuron. These

are based on the biological neurons of the brain and are organized in layers. Like the

biological neurons, the artificial neurons pass on some, but not all, information they

receive though their connections to other artificial neurons. Second, biological neural

networks exhibit plasticity, that is, in response to a stimulation pattern, connections

between neurons leading to the “right answer” are strengthened while those leading

to the “wrong answer” are weakened. Neurons of an ANN can be trained to pass only

useful signals through layers just as the biological neurons of the human brain can be

trained to pass forward only the signals that use useful in achieving the larger goals

of the brain [10, p. 5].

The process of learning in a neural network is also called training. The connec-

tions among the neurons in the networks have weights. These weights signify the

correlation between a signal and the network’s outcome. A bigger weight signifies a

tighter correlation. The biases are scalar values added to the input to ensure that at

least a few nodes per layer are activated regardless of signal strength. Inputs through

these connections affect the network’s interpretation of data more than the inputs

from connections with smaller weights. Training the model is the process of continu-

ously readjusting the weights and biases of the network until a well-trained model is

achieved [10, p. 56]. The most common learning algorithm in neural networks is the

backpropagation algorithm.

The dataset used for training and evaluating the model, called training data, is

typically split into three sets: the training set, the validation set, and the test set.

The model is trained on the training set. The fitted model is then evaluated on the

4

validation set. Training the model on the training and validation set is continuously

done until a well-trained model is, hopefully, achieved. The final model is then

evaluated on the test set.

To quantify how close a neural network is to the ideal and well-trained model, a

metric based on the error observed in the network’s predictions is calculated. These

errors are aggregated over the entire dataset and averaged. The result is a number

that represents how close the neural network being trained is to its ideal network [10,

p. 71]. This value is called the training error because it is the error returned when

the model is executed on the training set. The errors returned when the model is

executed on the validation set and the test set are called the validation error and the

generalization error, respectively.

To make the networks train better and faster, certain values of the network can be

tuned. These are called hyperparameters [10, p. 78]. An example of a hyperparameter

is the learning rate. In layman’s terms, the learning rate is how quickly a network

abandons old beliefs for new ones. Another hyperparameter is the epoch. An epoch is

a single iteration over the entire training dataset. The number set as the value of the

epoch is the number of iterations that will be done over the dataset. The batch size

is another hyperparameter. This value is the number of training examples utilized in

one iteration.

An example of a class of neural network is the Convolutional Neural Network

(CNN). This network is often used in image recognition systems, including medical

images. A deep learning library called Keras can be used to develop a CNN model.

Lung cancer detection tools have been built before. It has been found that usage

of CNN is best for this classification problem. Song et al. [11] developed a lung cancer

detection system using different models to compare their performance: a deep neural

network-based (DNN; made up of numerous fully-connected layers) and a CNN-based

one. The CNN-based model attained the best performance: an accuracy of 84.15%,

5

a sensitivity of 83.96%, and a specificity of 84.32%. In contrast, the DNN performed

poorly in all three metrics compared to the CNN: 82.37%, 83.96%, and 81.35%.

For lung cancer detection using deep learning-based tools, the model is going

to look at the lung nodules (if present) in patient’s CT scans. If present, the size,

thickness, and shape of the nodule determines the probability of a patient having

lung cancer.

B. Statement of the Problem

Current deep learning-based CDSS for lung cancer screening lacks the feature that

allows an AI expert to train a new model. This allows researchers to experiment

with different sets of hyperparameters and network architectures to obtain a better

classification performance.

While lung cancer screening by LDCT scan has been found to reduce mortality

by 20%, the NLST also showed that LDCT scan has resulted in high false-positive

rates of around 25%. A false-positive result leads to unnecessary stress and anxiety

for patients and their families as well as additional follow-up imaging (which leads to

more exposure to radiation), and interventional treatment (which may be invasive)

[4].

C. Objectives of the Study

C..1 General Objective

To develop a deep learning-based clinical decision support system that can aid doctors

(non-radiologists) in determining whether or not a patient has lung cancer based on

the patient’s thoracic LDCT scans.

6

C..2 Specific Objectives

1. Allow a doctor (non-radiologist) to:

(a) Perform classification of CT scans (positive or negative for lung cancer)

i. Upload LDCT scans (DICOM format) of a patient.

ii. View the classification result (positive or negative for lung cancer)

generated by the system.

2. Allow an AI expert to:

(a) Perform classification of CT scans (positive or negative for lung cancer)

i. Upload LDCT scans (DICOM format) of a patient.

ii. View the classification result (positive or negative for lung cancer)

generated by the system.

(b) Create a new model.

i. Upload the training data to the system.

A. Upload LDCT scans (DICOM format).

B. Upload a CSV file where each row contains the filename of the CT

scan and a label of whether the scan is positive (1) or negative (0)

for lung cancer.

ii. Select pretrained network to use from a list of options (supported by

the Keras library).

iii. Set a value for the following hyperparameters:

A. Number of epochs

B. Batch size

C. Optimizer

D. Learning rate

7

iv. Train the neural network.

A. View the training accuracy and loss per epoch after the model is

created.

B. View the validation accuracy and loss per epoch after the model

is created.

C. View the test accuracy and loss after the model is created.

(c) View a list of the models created.

(d) View the specific details of a created model.

i. View the model’s training accuracy, training loss, validation accuracy,

validation loss, test accuracy, and test loss.

ii. View a graph that contains the accuracy (training and validation) of

every epoch while the model was being trained.

iii. View a graph that contains the loss (training and validation) of every

epoch while the model was being trained.

iv. View a visualization of the layers of the model.

D. Significance of the Project

The creation of a deep learning-based CDSS for lung cancer diagnosis can be used

to aid doctors that are non-radiologists in classification of CT scans of a patient as

positive or negative for lung cancer.

The CDSS is implemented as a web application where users can upload CT scans

of patients of DICOM file format. Because the DICOM file format includes metadata

about the patient, there is a privacy risk when uploading CT scans. However a web

application was chosen instead of a native application because the server is sure to

have access to a GPU. While a CPU can be used to train a model and perform

classification, a study has found that training with a GPU is more efficient than with

8

a CPU [12].

Allowing an AI expert to train new models will give him/her the capability to

experiment with different architectures and different sets of hyperparameters. Also,

because research in the deep learning field is currently thriving, when a better network

architecture is developed in the future, the system can make use of this architecture

(after it has been supported by the Keras library).

E. Scope and Limitations

The following are the scope and limitations of the system:

1. The system will only perform lung cancer detection: determining if the set of

images uploaded are positive or negative for lung cancer.

2. The training data used is limited to the thoracic LDCT scans found in the

Kaggle Data Science Bowl 2017 dataset.

3. The training data used was undersampled to avoid a class imbalance. The final

training data consists of 136,000 images: 95,200 for the training set, 20,400 for

the validation set, and 20,400 for the test set.

4. The training data is limited to thoracic LDCT scans of DICOM file format.

5. The input when performing prediction is assumed to be thoracic LDCT scans

of DICOM file format.

6. The dimension of the training and input data is 512 x 512.

7. Because the thoracic LDCT scans used as training data are from adult American

patients, the system is not guaranteed to be accurate when evaluated using

thoracic LDCT scans of a non-adult and/or non-American patients.

9

8. The input can only contain the possibility of lung cancer and no other abnor-

malities.

9. The system will handle the partitioning the training data into 3 sets (training

set, validation set, and test set) when creating a new model.

10. When creating a new model, the AI expert will provide the CT scans as well as

a CSV file that contains the label of each scan: 0=has lung cancer, 1=no lung

cancer.

F. Assumptions

The following are assumed for the effective run of the system:

1. The system is only used as an aid for lung cancer detection. The final diagnosis

will still be given by the radiologist.

2. The system is designated for use of doctors who are not specialized in diagnosing

diseases using medical imaging techniques (non-radiologists).

10

II. Review of Related Literature

Detection of lung cancer from results of imaging tests is a very active research topic

among machine learning researchers. A study by Mahale et al.[13] proposed a model

using SVM algorithm for feature selection and classification, and lung CT scans as

input. Modified Fuzzy Possibilistic C Means (MFPCM) was used for segmentation

and Gabor filter for De-noising the medical images. Different SVM kernels were

applied to the CT images (Linear, radial basis function (RBF), Polynomial). The

accuracy for the usage of RBF kernel is better as compared to other SVM kernels.

Another study by Trivedi et al.[14] used SVM classifiers for diagnosis of lung cancer

using CT scan images as input. The main objective of the authors is to improve the

accuracy rate for lung cancer diagnosis by designing a hybrid SVM.

Convolutional Neural Networks (CNNs) are widely used in the field of medical

image analysis for image representation and classification of medical images. This is

because of CNN’s ability to automatically extract the features needed by the algo-

rithm to perform its task. A study done by Abdolmanafi et al.[15] demonstrates this

capability by developing a fully automated tissue classification method that uses a

CNN as the feature extractor. In this study, the CNN is used to classify the coro-

nary artery layers from an input of optical coherence tomography (OCT) images of

pediatric patients.

Rao et al.[16] designed a CNN (CanNet) to classify tumors (positive or negative

for lung cancer) seen in lung cancer screening computed tomography (CT) scans. The

data used came from the Lung Image Database Consortium and Image Database Re-

source Initiative (LIDC-IDRI). The results showed that the classification accuracy of

CanNet is better compared to a traditional artificial neural network (ANN), with 50

neurons in the hidden layer, and also an existing CNN, LeNet, built for image clas-

sification. With CanNet, the authors could get up to 45% improvement in accuracy

compared to LeNet and about 14% compared to a tradiational ANN.

11

In a study by Song et al.[11], three types of deep neural networks (CNN, DNN,

and SAE) were used compare their performance on the classification of the benign

and malignant nodules. The dataset came from the LIDC-IDRI. The CNN achieved

the best performance: 84.15% accuracy, 83.96% sensitivity, and 84.32% specificity.

Li et al.[17] designed a deep convolutional neural network (DCNN) for the au-

tomated feature learning and nodule classification of thoracic CT scan images. The

dataset used was again from the LIDC-IDRI. In total, 62,492 region-of-interest (ROI)

samples (40,772 nodules and 21,720 nonnodules) were used.

CNNs can also aid in the reduction of the false-positive rates of lung cancer screen-

ing. A study by Dou et al.[18] proposed novel method of employing 3D CNNs for

false-positive reduction in automated pulmonary nodule detection from volumetric

CT scans. The proposed method was validated in the LUNA16 challenge held in

conjuction with ISBI 2016, where the authors achieved the highest competition per-

formance metric score in the false-positive reduction track. Experimental results

demonstrated the importance and effectiveness of integrating multi-level contextual

information into 3D CNN framework for automated pulmonary nodule detection in

volumetric CT data.

Rossetto et al.[19] presented an ensemble of Convolution Neural Networks using

multiple preprocessing methods to increase the accuracy of the automated labeling

of the scans. This was done by implementing ensembles of CNNs along with a vot-

ing system to get the consensus of the two networks. The initial results of the best

method show both a high accuracy (97.5%) and a low percentage of false-positives

(¡10%). A similar study that used DCNN for lung cancer detection, but with mi-

croscopic images as input, was done by Teramoto et al.[20] The DCNN used for the

classification consists of three convolutional layers, three pooling layers, and two fully

connected layers. It was trained using 76 cases of cancer cells by exfoliative or inter-

ventional cytology under bronchoscopy or CT-guided fine needle aspiration cytology.

12

Approximately 71% of the images were classified correctly.

Alakwaa et al.[21] demonstrated lung cancer detection and classification of CT

scans with unmarked nodules using a 3D CNN. The data came from the Kaggle Data

Science Bowl 2017 (KDSC17). Thresholding was used as the initial segmentation

approach to segment out the lung tissues from the rest of the CT scan. Then, a mod-

ified U-Net trained on the LUng Nodule Analysis 2016 (LUNA16) dataset (selected

data from the LIDC-IDRI) was used to first detect nodule candidates in the KDSC17

dataset. These candidates were fed into the 3D CNN for the actual classification of

the CT scans as positive or negative for lung cancer. A test set accuracy of 86.6%

was produced by the 3D CNN.

13

III. Theoretical Framework

A. Lung Cancer

Lung cancer, also called lung carcinoma, is defined as the uncontrolled growth of

abnormal cells in one or both lungs of the body [22, p. 4]. The two main types of

lung cancer are small-cell lung carcinoma and non-small-cell lung carcinoma. The

most common symptoms are coughing, coughing up blood, weight loss, shortness of

breath, and chest pains.

The only recommended screening test for lung cancer is low-dose computed (LDCT)

scan. Research has not found any benefits in using two other available screening tests:

sputum cytology and chest X-ray (CXR) [23].

The U.S. Preventive Services Task Force (USPSTF) recommends annual lung

cancer screening with LDCT for people who [5]:

• Have a smoking history of 30 pack years or more (heavy smoking), and

• Smoke now or have quit within the past 15 years, and

• Are between 55 and 80 years old.

Screening for lung cancer has at least three risks [23]:

1. A false-positive result - the screening test may suggest that person has lung

cancer even though cancer is not present. This can lead to additional follow-up

imagin tests and invasive treatment, such as surgery, that are not needed and

may have more risks.

2. Overdiagnosis - the screening test may find cases of cancer that may never

have caused a problem for the patient. Like the false-positive result, this can

lead to additional unnecessary treatment.

3. Can cause cancer - repeated LDCT tests can cause cancer in healthy people.

14

These risks are the reason why the USPSTF recommends lung cancer screening

to be done only for adults who do not show symptoms of lung cancer, but are at high

risk for developing it because of their smoking history and age.

The USPSTF also recommends that annual lung screening should stop when the

person being screened [5]:

• Has not smoked in 15 years, or

• Develops a health problem that substantially limits life expectancy or the ability

or willingness to have curative lung surgery

B. Computed Tomography (CT) Scan

A CT scan uses X-rays and a computer to produce detailed images of a structures

inside the body. A CT scan can be used for diagnosing conditions, guiding doctors in

deciding whether a patient is in need of further tests or treatments, and monitoring

conditions [24].

CT scans are more sensitive than the standard chest X-rays for identifying lung

cancer, including small (early stage, operable) lung cancers. The false-positive rates

with CT scans range from 5% to 40% [22, p. 42].

For lung cancer screening, the only recommended test is low-dose CT (LDCT)

scan. The difference between conventional CT scan and LDCT scan is the amount of

radiation a patient is exposed to. LDCT scan uses approximately 5 times less radia-

tion than the conventional CT scan. Depending on the size of the patient, an LDCT

scan typically delivers 1-4 millisieverts of radiation exposure, while a conventional CT

scan typically delivers between 5-20 millisieverts [25]

Figure 1 shows three examples of thoracic LDCT scans that contains nodules and

non-nodules.

15

Figure 1: (a) Transverse unenhanced LDCT scan of a 63-year old man shows a non-

solid nodule in the upper lobe. (b) Transverse unenhanced LDCT scan of a 66-year

old woman shows a part-solid nodule in the lower left lobe. (c) Transverse unenhanced

LDCT scan of a 58-year old man shows a solid nodule in the upper right lobe.

C. Clinical Decision Support System (CDSS)

A CDSS is a health information technology system designed for providing physicians

and other health professionals with clinical decision support (CDS) [26]. CDS in-

cludes computerized alerts and reminders, clinical guidelines, patient-data reports

and summaries, diagnostic support, among other tools [27].

16

D. Digital Imaging and Communications in Medicine (DI-

COM)

DICOM is a standard for handling, storing, printing, and transmitting information

in medical imaging. It includes a definition of a file format of patient data (such as

the output image of a CT scanner) as well as a network communications protocol for

communication between systems that support the file format [28].

E. Convolutional Neural Network (CNN)

CNNs are a specialized kind of neural network for processing data that has a known,

grid-like topology. This includes images because these are represented as a 2D grid of

pixels. CNNs employ an operation called convolution. The goal of a CNN is to learn

higher-order features in the data via convolutions.

CNNs have three major groups of layers, as shown in Figure 2:

1. Input layer

2. Feature-extraction (learning) layers

3. Classification layer

17

Figure 2: High-level general CNN architecture

The input layer is where we load and store the raw input data for processing in the

network. The input data specifies the width, height, and number of color channels.

The feature extraction layers, or the layers that enable the neural network to learn,

are composed of two repeating layers:

1. Convolution layers - the building blocks of CNN architectures. These layers

transform the input data by using a patch of locally connecting neurons from

the previous layer. They will then compute a dot product between the region

of the neurons in the input layer and the weights to which they are connected

in the output layer. The output generally has the same spatial dimensions, or

smaller. Sometimes though, the number of elements in the third dimension of

the input (depth) increases.

2. Pooling layers - commonly inserted between successive convolutional layers.

These layers reduce the data progressively over the network (known as down-

sampling). The most common downsampling operation is max pooling.

18

After several convolutional and pooling layers, the final reasoning in the network

is done via the classification layers. These layers are usually fully connected layers.

Just like in conventional neural networks, the neurons in these layers have connections

to all neurons in the previous layer. The class scores to be used as output of the

network are computed in these layers.

F. Keras

Keras a neural networks API capable of running on top of TensorFlow, CNTK, and

Theano. It allows for easy and fast prototyping and supports both convolutional

networks and recurrent networks, as well as combinations of the two. [29]

19

IV. Design and Implementation

A. Kaggle Data Science Bowl 2017

The dataset used for this study comes from the Kaggle Data Science Bowl 2017.

The dataset is composed of anonymized high-resolution lung scans from hundreds of

patients. This dataset was provided by the National Cancer Institute (NCI) of the

United States of America to create algorithms that could determine if a patient has

lung cancer based on his/her CT scans.

B. System Overview

The CDSS Lung Cancer Diagnosis detects and classifies patient’s thoracic LDCT

scans as either positive or negative for lung cancer based on the CNN model loaded

in the system.

The CDSS is split into two parts: the client and the server. Figure 3 shows a

high-level overview of the system.

20

Figure 3: System Overview

The server contains the classification and image storing processes while the client

is further divided into two types and the purpose depends on this type.

The two types of clients are:

1. Doctor Client (DC)

2. AI Expert Client (AEC)

The DC client is accessed though the Internet via a web browser. This is what

doctors use to interact with the system to classify slices of a patient’s thoracic LDCT

scans. The AEC is installed in a desktop computer. It is through this that the AI

expert can interact with the system to train and evaluate models.

21

C. Context Diagram

The system’s input and output requirements are defined by the context diagram

shown in Figure 4.

Figure 4: Context Diagram

The context diagram shows the general interaction of the users and the system.

The AI expert needs to input the training data, define the model architecture (set

training parameters like activiation functions, the layers, the number of neurons in a

layer, etc), and set the values of the hyperparameters. The output given to the AI

expert includes the diagnosis results of each case, training error, validation error, and

generalization error.

The doctor inputs thoracic LDCT scans of a single patient and the system returns

the diagnosis results.

D. Entity-Relationship Diagram

The figure below shows the entity-relationship diagram of the system’s database.

22

Figure 5: Entity-Relationship Diagram

The users table specify attributes about the user including his/her username and

role id. The roles table specify the allowed roles of a client.

The models table stores the filename in the server of the model as well as the

performance of the model: the training accuracy, training loss, validation accuracy,

validation loss, test accuracy, and test loss of a model. Included in this table as well

is a boolean that indicates whether the model is the system model.

The model metrics plots table stores the filename in the server of the graph of the

accuracy and loss of the model vs the epoch while it was being trained.

E. Use Case Diagram

The specific functionalities of the users are shown in the use case diagram in Figure

6.

23

Figure 6: Use Case Diagram

The doctor can upload slices of thoracic LDCT scans of a patient and view the

diagnosis results generated by the system.

The AI expert can choose to either perform prediction of a patient’s LDCT scans,

train a new CNN model, or view his/her created models. When creating a new model,

the training data needs to be uploaded. The system automatically partitions the data

into three sets (training, validation, and test). The AI expert then defines the model

architecture (convolutional base), sets the values of the hyperparameters, then trains

the model. After creating a new model, the system determines if the new model has a

better performance compared to the new model. If so, the system replaces the system

model with the new model. The next time a doctor uses the system to classify slices

24

of CT scans, the new model will be used.

F. Activity Diagram

F..1 Doctor

A doctor using a web browser supported by the system can request for a lung cancer

diagnosis of a patient using thoracic LDCT scans as input.

Figure 7: Activity Diagram of Doctor

F..2 AI Expert

The training dataset will be used by the AI Expert to produce a CNN model that

performs the kung cancer classification. If there is a better architecture, the AI Expert

can create a new model that uses a different architecture which can produce better

diagnosis results.

25

Figure 8: Activity Diagram of AI Expert

G. Technical Architecture

The minimum recommended requirements for the server machine include:

1. Intel R©Core-TM i5 CPU or higher

2. 8 GB of RAM or higher

3. An NVIDIA GPU card with Compute Capability of 3.0 or higher

4. Windows 7/8/8.1/10

The recommended web browsers that doctors can use to interact witht the system

are:

1. Google Chrome

2. Mozilla Firefox

26

3. Safari

4. Microsoft Edge

27

V. Results

The dataset was trained via transfer learning. A pretrained model trained on the

ImageNet database was utilized. Only the convolutional neural network of the pre-

trained model (called convolutional base) was used in this system. Because there are

1000 classes when classifying the images in the ImageNet database, the classifier of

the pretrained models was not used. A new set of fully-connected layers for classifiy-

ing the dataset into 2 results (positive or negative for lung cancer) was trained from

scratch.

The model was trained with 136,000 images. The training set contains 95,200

images while the validation and test set contains 20,400 images each. The VGG16

neural network architecture was used as the convolutional base of the model.

The model attained a test accuracy of 98.6716% and a test loss of 0.042265.

Figure 9: Performance of the Model

The web application starts with the registration page. A user can register either

as an AI expert or as a doctor.

28

Figure 10: Registration Page

Registered users can login to the web application via the login page shown below.

Figure 11: Login Page

If a doctor logs in, the doctor is redirected to the page that allows him/her to

perform prediction of lung cancer based on a patient’s CT scans.

29

Figure 12: Prediction Page Seen by a Logged In Doctor

After uploading the CT scans, the page is updated to show the results of the

classification (positive or negative for lung cancer).

Figure 13: Prediction Page Updated with the Results of the Classification

When an AI expert is logged in, the web application is redirected to the page that

allows him/her to perform prediction of lung cancer based on a patient’s CT scans.

30

Figure 14: Prediction Page Seen by a Logged In AI Expert

After uploading the CT scans, the page is updated to show the results of the

classification (positive or negative for lung cancer).

Figure 15: Prediction Page Updated with the Results of the Classification

The AI expert can train a new model via the train model page. This page allows

the AI expert to upload the training data as well as the labels of the training data

in CSV file format. The hyperparameters of the model can also be tweaked in this

31

page. The AI expert may specify the number of epochs, batch size, optimizer, and

learning rate of the optimizer. The AI expert can also select a convolutional neural

network to use from a list of pretrained convolutional neural networks.

Figure 16: Train Model Page

The training data is automatically partitioned by the system into 3 sets: the

training set, validation set, and the test set.

After the model is trained, the AI expert can view the details of the new model.

These include the performance of the model: the training loss and accuracy, validation

loss and accuracy, and test loss and accuracy. A graph of the accuracy and loss of

the model attained per epoch when the model was being trained can also be viewed.

An image that shows the layers of the model is also displayed.

32

Figure 17: Model Details Page

Figure 18: Model Details Page (continued)

33

The AI expert can also view the list of models he/she has created. The page also

displays whether the model is the model used by the system for prediction.

Figure 19: List of Models Created by the AI Expert

34

VI. Discussions

The system developed is a clinical decision support system for lung cancer diagno-

sis. It is a web application that allows users (doctors and AI experts) to upload

a patient’s CT scan that would then be classified as either positive or negative for

lung cancer. The system utilizes concepts in deep learning to develop a model that

can learn and classify the CT scans of a patient. Specifically, the model is com-

posed of convolutional neural networks (CNN) and fully-connected layers for learning

and classification. CNNs have been found to be best tools for image classification

problems.

The network architecture used was the VGG16 network architecture [30]. This was

the network architecture used by the team that won the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) on 2014. The ILSVRC is an annual competition

that evaluates algorithms for object detection and image classification at large scale.

In this competition, the algorithms are tasked at detecting and classifying images

(1000 classes).

The system model used a pretrained model with a VGG16 network architecture

as the convolutional base. Pretrained means the model contains weights learned from

a different dataset. In this case, the dataset is the ImageNet database. This concept

of using a pretrained model on a different dataset is called transfer learning. A study

has shown that using a pretrained model (e.g. trained on the ImageNet dataset) on a

medical image dataset has led to a good performance [31]. Because of this, a similar

idea was employed for the system developed for this study. The medical image dataset

used is the Kaggle Data Science Bowl 2017 dataset. It contains low-dose thoracic CT

scans of adult, American patients.

The model obtained a performance of 98.6716% test accuracy and a 0.042265 test

loss. This is significanly higher compared to the current state of the art models. One

possible explanation for this is on how the training data was split. Because the slices

35

are fed to the network individually, there is a chance that a slice from the CT scan

of a patient, will be put in the training set, another will be put in the validation set,

and another will be put in the test set. However, a single person’s CT scan slices will

have the same features. Because of this, there is a chance that the model has overfit

on the training data. While it has not seen the test set during training, it has seen

a slice of the same patient. This could be the reason why the model has obtained a

high performance, but does sometimes does poorly when performing prediction.

36

VII. Conclusions

The developed Clinical Decision Support System for Lung Cancer Diagnosis is a web

application that predicts whether or not a patient has lung cancer based on the

patient’s low-dose thoracic computer tomography (LDCT) scans. The system does

this by using a trained model made up of convolutional and fully-connected layers.

The Kaggle Data Science Bowl 2017 (KDSB 2017) dataset was used to train the

model.

The current system model was trained using the Keras library for approximately

8.5 hours. The dataset consists of 136,000 images (95,200 for the training set, 20,400

each for the test and validation set).

The system is a web application that was built using the Python programming

language, the Flask web framework, and the MySQL database.

Once logged in, a user is presented with a page that allows him/her to upload a

single patient’s CT scans and obtain a prediction of whether or not the patient has

lung cancer.

Besides classification, the system also allows an AI expert to train a new model.

He/she can specify values of certain hyperparamters such as the number of epochs,

batch size, the optimizer, and the learning rate of the optimizer. This gives an AI

expert the flexibility to experiment with different sets of data and hyperparameters

to obtain a model with better performance.

The current performance of the system model is much higher than the perfor-

mance of the current state of the art models found in recent research papers. The

system model’s prediction performance however does not seem to match the high

test accuracy reported. One of the possible reasons is that overfitting occured. As

such, further training needs to be done before the system can be deployed for use by

doctors.

37

VIII. Recommendations

There are implementations and processes that could be improved but the current ones

used were favored because of knowledge, time, and resource constraints.

It is highly suggested that a more complex preprocessing of the dataset is per-

formed on the training data. Because the presence of lung nodules is the indicator for

the possibility of lung cancer, it is best to first perform segmentation and feed only

the ROI of the CT scan to the model. It would be best to first work on a segmenter

using a different training data, such as the LUng Nodule Analysis 2016 dataset, be-

cause this provides the necessary data for segmentation. The trained segmentation

model can then be used with the Kaggle Data Science Bowl 2017 dataset.

The system’s model has a convolutional base made up of convolutional neural

networks (CNNs) that accept 2D images. Hence, the three-dimensionality of a pa-

tient’s CT scans is disregarded because each slice is fed to the network individually.

State of the art models for lung cancer detection use convolutional neural networks

that accept 3D input (4D tensors). These 3D CNNS have been found to have better

performance.

Currently the system saves every model trained. It would be an improvement if

the AI expert can also retrain a created model. This would significantly lessen the

disk space utilized by the system in the server.

A progress bar can be implemented to provide some visual feedback to the user

regarding how close the system is to finishing its task of training the model and/or

of classifying a patient’s CT scans.

The prediction page can be enhanced by showing a gallery of images and each

image’s classification as to whether or not it is positive or negative for lung cancer.

The retrain feature can be improved by allowing the AI expert to specify the

number of fully-connected layers of the classifier as well as the number of units per

fully-connected layer.

38

IX. Bibliography

[1] World Health Organization, “Cancer: Fact Sheet (February 2017).” http://

www.who.int/mediacentre/factsheets/fs297/en/. Accessed: 2017-11-24.

[2] Philippine Council for Health Research and Development, “Lung Cancer.”

http://www.pchrd.dost.gov.ph/index.php/news/library-health-news/

3540-lung-cancer. Accessed: 2017-10-10.

[3] Centers for Disease Control and Prevention, “Cancer Screening Tests.” https://

www.cdc.gov/cancer/dcpc/prevention/screening.htm. Accessed: 2017-11-

30.

[4] National Lung Screening Trial Research Team, D. R. Aberle, A. M. Adams, C. D.

Berg, W. C. Black, J. D. Clapp, R. M. Fagerstorm, I. F. Gareen, C. Gatsonis,

P. M. Marcus, and J. D. Sicks, “Reduced lung-cancer mortality with low-dose

computed tomographic screening.,” New England Journal of Medicine, vol. 365,

no. 5, pp. 395–409, 2011.

[5] U.S. Preventive Services Task Force, “Lung Cancer: Screening.”

https://www.uspreventiveservicestaskforce.org/Page/Document/

UpdateSummaryFinal/lung-cancer-screening. Accessed: 2017-11-30.

[6] E. S. Berner and T. J. L. Lande, “Overview of Clinical Decision Support Sys-

tems,” in Clinical Decision Support Systems: Theory and Practice, 3rd Edition

(E. S. Berner, ed.), ch. 1, pp. 1–17, Switzerland: Springer International Publish-

ing Switzerland, 2016.

[7] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 2nd Edi-

tion. Essex, England: Pearson Education Limited, 2002.

39

http://www.who.int/mediacentre/factsheets/fs297/en/
http://www.who.int/mediacentre/factsheets/fs297/en/
http://www.pchrd.dost.gov.ph/index.php/news/library-health-news/3540-lung-cancer
http://www.pchrd.dost.gov.ph/index.php/news/library-health-news/3540-lung-cancer
https://www.cdc.gov/cancer/dcpc/prevention/screening.htm
https://www.cdc.gov/cancer/dcpc/prevention/screening.htm
https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/lung-cancer-screening
https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/lung-cancer-screening

[8] N. Buduma and N. Locascio, Fundamentals of Deep Learning: Designing Next-

Generation Machine Intelligence Algorithms. California, United States of Amer-

ica: O’Reilly Media, Inc., 2017.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[10] J. Patterson and A. Gibson, Deep Learning: A Practitioner’s Approach. CA,

United States of America: OReilly Media, Inc., 2017.

[11] Q. Song, L. Zhao, X. Luo, and X. Dou, “Using Deep Learning for Classifica-

tion of Lung Nodules on Computed Tomography Images,” Journal of Healthcare

Engineering, vol. 2017, 2017. [Article ID 8314740, 7 pages].

[12] J. Lawrence, J. Malmsten, A. Rybka, D. A. Sabol, and K. Triplin, “Comparing

TensorFlow Deep Learning Performance Using CPUs, GPUs, Local PCs and

Cloud,” Proceedings of Student-Faculty Research Day, CSIS, Pace University,

2017.

[13] A. Mahale, C. Rawool, D. Tolani, D. Bathija, and K. Jewani, “SVM classifier

based CAD system for Lung Cancer Detection,” International Journal Of Engi-

neering And Computer Science, vol. 6, no. 5, pp. 21336–21342, 2017.

[14] A. Trivedi and P. Shukla, “Lung Cancer Diagnosis by Hybrid Support Vector

Machine,” International Conference on Smart Trends for Information Technol-

ogy and Computer Communications, pp. 177–187, 2016.

[15] A. Abdolmanafi, L. Duong, N. Dahdah, and F. Cheriet, “Deep feature learn-

ing for automatic tissue classification of coronary artery using optical coherence

tomography,” Biomedical Optics Express, vol. 8, no. 2, pp. 1203–1220, 2017.

40

http://www.deeplearningbook.org

[16] P. Rao, N. A. Pereira, and R. Srinivasan, “Convolutional neural networks for lung

cancer screening in computed tomography (CT) scans,” 2016 2nd International

Conference on Contemporary Computing and Informatics (IC3I), pp. 489–493,

2016.

[17] W. Li, P. Cao, D. Zao, and J. Wang, “Pulmonary Nodule Classification with

Deep Convolutional Neural Networks on Computed Tomography Images,” Com-

putational and Mathematical Methods in Medicine, vol. 2016, 2016. [Article ID

6215085, 7 pages].

[18] Q. Dou, H. Chen, L. Yu, J. Qin, and P.-A. Heng, “Multilevel Contextual 3D

CNNs for False Positive Reduction in Pulmonary Nodule Detection,” EEE Trans-

actions on Biomedical Engineering, vol. 64, no. 7, pp. 1558–1567, 2017.

[19] A. M. Rossetto and W. Zhou, “Deep Learning for Categorization of Lung Cancer

CT Images,” 2017 IEEE/ACM International Conference on Connected Health:

Applications, Systems and Engineering Technologies (CHASE), pp. 272–273,

2017.

[20] A. Teramoto, T. Tsukamoto, Y. Kiriyama, and H. Fujita, “Automated Classifi-

cation of Lung Cancer Types from Cytological Images Using Deep Convolutional

Neural Networks,” BioMed Research International, vol. 2017, 2017. [Article ID

4067832, 6 pages].

[21] W. Alakwaa, M. Nassef, and A. Badr, “Lung Cancer Detection and Classification

with 3D Convolutional Neural Network (3D-CNN),” International Journal of

Advanced Computer Science and Applications (IJACSA), vol. 8, no. 8, 2017.

[22] S. Falk and C. Williams, Lung Cancer: The Facts, 3rd Edition. New York,

United States of America: Oxford University Press, 2010.

41

[23] Centers for Disease Control and Prevention, “What Screening Tests Are There?.”

https://www.cdc.gov/cancer/lung/basic_info/screening.htm. Accessed:

2017-12-1.

[24] NHS Choices, “CT Scan.” https://www.nhs.uk/conditions/CT-scan/Pages/

Introduction.aspx. Accessed: 2017-10-25.

[25] Swedish Medical Center, “Low-Dose CT Scan for Lung

Cancer Screening .” https://www.swedish.org/services/

thoracic-surgery/our-services/lung-cancer-screening-program/

low-dose-ct-scan-for-lung-cancer-screening. Accessed: 2017-12-1.

[26] OpenClinical, “Clinical Decision Support Systems.” http://www.

openclinical.org/dss.html. Accessed: 2017-10-25.

[27] The Office of the National Coordinator for Health Information Tech-

nology, “Clinical Decision Support (CDS).” https://www.healthit.gov/

policy-researchers-implementers/clinical-decision-support-cds. Ac-

cessed: 2017-10-25.

[28] DICOM Library, “About DICOM.” https://www.dicomlibrary.com/dicom/.

Accessed: 2017-10-28.

[29] F. Chollet, “Keras.” https://github.com/fchollet/keras. Accessed: 2017-

11-26.

[30] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-

Scale Image Recognition,” International Conference on Learning Representations

2015, 2015.

[31] R. Paul, S. H. Hawkins, Y. Balagurunathan, M. B. Schabath, R. J. Gillies, L. O.

Hall, , and D. B. Goldgof, “Deep Feature Transfer Learning in Combination with

42

https://www.cdc.gov/cancer/lung/basic_info/screening.htm
https://www.nhs.uk/conditions/CT-scan/Pages/Introduction.aspx
https://www.nhs.uk/conditions/CT-scan/Pages/Introduction.aspx
https://www.swedish.org/services/thoracic-surgery/our-services/lung-cancer-screening-program/low-dose-ct-scan-for-lung-cancer-screening
https://www.swedish.org/services/thoracic-surgery/our-services/lung-cancer-screening-program/low-dose-ct-scan-for-lung-cancer-screening
https://www.swedish.org/services/thoracic-surgery/our-services/lung-cancer-screening-program/low-dose-ct-scan-for-lung-cancer-screening
http://www.openclinical.org/dss.html
http://www.openclinical.org/dss.html
https://www.healthit.gov/policy-researchers-implementers/clinical-decision-support-cds
https://www.healthit.gov/policy-researchers-implementers/clinical-decision-support-cds
https://www.dicomlibrary.com/dicom/
https://github.com/fchollet/keras

Traditional Features Predicts Survival Among Patients with Lung Adenocarci-

noma,” Tomography, vol. 2, no. 4, pp. 388–395, 2016.

43

X. Appendix

A. Source Code

launch.py

from app import create app, db
from app.models import User, Role, TrainedModel,

ModelMetricsPlot
from flask script import Manager, Server, Shell
from flask migrate import MigrateCommand, Migrate

app = create app(’development’)
manager = Manager(app)
migrate = Migrate(app, db)

def make context():
return dict(app=app, db=db, User=User, Role=Role,

TrainedModel=TrainedModel, ModelMetricsPlot=
ModelMetricsPlot)

if name == ’ main ’:
manager.add command(’db’, MigrateCommand)
manager.add command(’runserver’, Server(host=’localhost’,

port=5000, use debugger=True))
manager.add command(’shell’, Shell(make context=

make context))

manager.run()

config.py

import os

BASE DIR = os.path.abspath(os.path.dirname(file))
APP DIR = os.path.join(BASE DIR, ’app’)
STATIC DIR = os.path.join(APP DIR, ’static’)
MODEL DIR = os.path.join(BASE DIR, ’models’)
INFERENCE DIR = os.path.join(STATIC DIR, ’inference’)
DEEP LEARNING DIR = os.path.join(BASE DIR, ’

deep learning’)
MODEL METRICS GRAPH DIR = os.path.join(BASE DIR, ’

model metrics graphs’)

class Config:
TEMPLATES AUTO RELOAD = True

SQLALCHEMY DATABASE URI = ’mysql://sp admin:
sp admin@localhost/sp’

SECRET KEY = os.environ.get(’SECRET KEY’) or ’
pz9w1sec9tbhyjL08NwNDNIlsG9Cz7Pf’

SQLALCHEMY COMMIT ON TEARDOWN = True
SQLALCHEMY TRACK MODIFICATIONS = False

STATIC DIR = STATIC DIR
MODEL DIR = MODEL DIR
INFERENCE DIR = INFERENCE DIR

class DevelopmentConfig(Config):
DEBUG = True

class TestingConfig(Config):
pass

class ProductionConfig(Config):
pass

config = {
’development’: DevelopmentConfig,
’ testing ’: TestingConfig,
’production’: ProductionConfig,

’default ’: DevelopmentConfig
}

app/models.py

from app import db

from itsdangerous import TimedJSONWebSignatureSerializer as
Serializer

from flask login import AnonymousUserMixin, UserMixin

from werkzeug.security import check password hash,
generate password hash

import app

class Role(db.Model):
tablename = ’roles ’

id = db.Column(db.Integer, primary key=True)
name = db.Column(db.String(64), unique=True)

users = db.relationship(’User’, backref=’role ’, lazy=’
dynamic’)

def repr (self) :
return ’<Role %r>’ % self.name

class User(db.Model, UserMixin):
tablename = ’users’

id = db.Column(db.Integer, primary key=True)
username = db.Column(db.String(64), unique=True, index=

True, nullable=False)
password hash = db.Column(db.String(128))
role id = db.Column(db.Integer, db.ForeignKey(’roles.id’))
confirmed = db.Column(db.Boolean, default=False)

@property
def password(self) :

raise AttributeError(’password is not a readable
attribute ’)

@password.setter
def password(self, password):

self .password hash = generate password hash(password)

def verify password(self , password):
return check password hash(self.password hash,

password)

def generate confirmation token(self , expiration=3600):
s = Serializer (app.config [’ SECRET KEY’], expiration)
return s.dumps({’confirm’: self . id})

def confirm(self , token):
s = Serializer (app.config [’ SECRET KEY’])
try:

data = s.loads(token)
except:

return False

if data.get(’confirm’) != self . id :
return False

self .confirmed = True
db.session .add(self)
return True

def repr (self) :
return ’<User %r>’ % self.username

class TrainedModel(db.Model):
tablename = ’models’

id = db.Column(db.Integer, primary key=True)
name = db.Column(db.String(64), unique=True, index=True

, nullable=False)
train acc = db.Column(db.Float, nullable=False)
train loss = db.Column(db.Float, nullable=False)
validation acc = db.Column(db.Float, nullable=False)
validation loss = db.Column(db.Float, nullable=False)
test acc = db.Column(db.Float, nullable=True)
test loss = db.Column(db.Float, nullable=True)
Every model is associated with an AI expert
username = db.Column(db.String(64), db.ForeignKey(’users.

username’), nullable=False)
used by doctors = db.Column(db.Boolean(), default=False)
display in site = db.Column(db.Boolean(), default=False)

class ModelMetricsPlot(db.Model):
tablename = ’model metrics plots’

id = db.Column(db.Integer, primary key=True)
type = db.Column(db.String(20), nullable=False) # ’loss’ or

’acc’
filename = db.Column(db.String(100), nullable=False)

44

model name = db.Column(db.String(64), db.ForeignKey(’
models.name’))

def repr (self) :
return ’<graph of {} of model {}>’.format(self.type,

self .model name)

app/main/ init .py

from flask import Blueprint

main = Blueprint(’main’, name , static folder =’static ’)

from . import views, errors

app/main/errors.py

from flask import render template
from . import main

When writing error handlers inside a blueprint, if the
errorhandler decorator is used,

the handler will only be invoked for errors that originate in
the blueprint .

To install application−wide error handlers, the
app errorhandler must be used instead.

@main.app errorhandler(404)
def page not found(e):

return render template(’404.html’), 404

@main.app errorhandler(500)
def internal server error (e) :

return render template(’500.html’), 500

app/main/forms.py

from flask wtf import FlaskForm
from wtforms import BooleanField, DecimalField, FileField,

SelectField, StringField, SubmitField, PasswordField, \
validators , ValidationError

from ..models import User

class LoginForm(FlaskForm):
username = StringField(’Username’, [validators.

DataRequired(), validators.Length(min=1, max=64)])
password = PasswordField(’Password’, [validators.

DataRequired()])
remember me = BooleanField(’Keep me logged in’)
submit = SubmitField(’Log In’)

class RegistrationForm(FlaskForm):
TODO: Make email the unique identifier of a user rather

than a username.
TODO: Add email confirmation

email = StringField(’Email’, [validators .DataRequired(’
This field is required .’) ,

validators .Email(”Please
enter a valid email address.”) ,

validators .Length(min=1,
max=254)]) # max length was googled

role = SelectField(’Type of User’, [validators .
DataRequired(’This field is required .’)],

choices=[(’AI Expert’, ’AI Expert’), (’
Doctor’, ’Doctor’)])

username = StringField(’Username’, [validators.
DataRequired(’This field is required .’) ,

validators .Length(min
=1, max=64),

validators .Regexp(’ˆ[A
−Za−z][A−Za−z0
−9 .]∗$’, 0, ’
Usernames must
have only ’

’
letters
,

numbers
,

dots
,

’

’
or

underscores
’)
])

password = PasswordField(’Password’, [validators.
DataRequired(’This field is required .’) ,

validators .EqualTo(’
password2’,
message=’
Passwords must
match.’)])

password2 = PasswordField(’Confirm Password’, [validators.
DataRequired(’This field is required.’)])

submit = SubmitField(’Register’)

@staticmethod
def validate username(self , field) :

if User.query. filter by (username=field.data).first () :
raise ValidationError(’Username already in use.’)

class TrainingDataForm(FlaskForm):
training data = FileField(’Training Data’, [validators .

DataRequired()], render kw={’multiple’: True})
training data csv = FileField(’Training Data Labels (CSV

File):’)
validation data = FileField(’Validation Data’, [validators .

DataRequired()], render kw={’multiple’: True})
validation data csv = FileField(’Validation Data Labels (

CSV file):’)
learning rate = DecimalField(’Learning Rate’)
epoch = DecimalField(’Epoch’)
model name = StringField(’Model Name’, [validators.

DataRequired()])
role = SelectField(’Optimizer’, [validators .DataRequired(’

This field is required .’)],
choices=[(’Stochastic Gradient Descent’,

’Stochastic Gradient Descent’), (’
RMSprop’, ’RMSprop’),

(’Adam’, ’Adam’), (’AdaGrad’,
’AdaGrad’)])

submit = SubmitField(’Retrain’)

app/main/views.py

from deep learning. util import convert dicoms to pngs, predict,
retrain

from deep learning.model import get pretrained model

from flask import render template, redirect , url for , request,
flash , make response

from flask login import current user, login required ,
logout user , login user

from . import main
from .forms import LoginForm, RegistrationForm,

TrainingDataForm

from .. import db, login manager
from ..models import User, Role, TrainedModel,

ModelMetricsPlot
from .. util import allowed ct scan format, allowed label format,

\
AI EXPERT LINKS, DOCTOR LINKS,

SITE ADMIN LINKS, LinkIndex, set link active,
get link active, UserRoleID, \

get network architecture string , get optimizer string

from config import MODEL METRICS GRAPH DIR

import os

@login manager.user loader
def load user(user id) :

return User.query.get((int(user id)))

@main.route(’/’, methods=[’GET’, ’POST’])
def index():

if current user .username == ’Guest’:
return render template(’index.html’, title =’Home’)
return redirect (url for (’main.login’))

file urls = []

45

has uploaded data = False
benign ave = 0
malignant ave = 0

if request.method == ’POST’:
check if the POST request has the file part
if ’ files ’ not in request. files :

flash (’No file part’)
return redirect (request.url)

uploaded files = request. files . getlist (’ files ’)

NOTE: If user does not select file , browser also
submits an empty part without filename

if len(uploaded files) == 0:
flash (’No selected CT scans’)
return redirect (request.url)

if uploaded files :
NOTE: Check if files uploaded are allowed
all files okay = True

for file in uploaded files :
if not allowed ct scan format(file .filename):

all files okay = False
break

if not all files okay :
flash (’Uploaded non−dicom files’)
return redirect (request.url)

dicoms = list(uploaded files)
NOTE: mritopng only works with saved dicom

images so write the images to a folder (in the
app’s dir) first

converted pngs dir, time as version =
convert dicoms to pngs(dicoms)

NOTE: PREDICTION HERE!!
benign ave, malignant ave = predict(

converted pngs dir)
benign ave ∗= 100
malignant ave ∗= 100

NOTE: These lines are for rendering the CT scans
.

has uploaded data = True
old uploaded data = os. listdir (converted pngs dir)
uploaded data = [os.path.join(converted pngs dir,

png data) for png data in old uploaded data]

for index, uploaded img in enumerate(
uploaded data):

file urls .append(’/static/inference/’ +
time as version + ’ PNG/’ +
old uploaded data[index])

print(file urls)

path to go to = ’’
links = []
user role id = UserRoleID(current user.role id)
if user role id == UserRoleID.AI EXPERT:

path to go to = ’ai expert index.html’
links = list (AI EXPERT LINKS)

elif user role id == UserRoleID.DOCTOR:
path to go to = ’doctor index.html’
links = list (DOCTOR LINKS)

elif user role id == UserRoleID.SITE ADMIN:
path to go to = ’site admin index.html’
links = list (SITE ADMIN LINKS)
print (’ links :’, links)
set link active (links , LinkIndex.DASHBOARD)

return render template(path to go to, links=links, title
=’Predict’, user count=32, model count=7)

set link active (links , LinkIndex.PREDICT)

return render template(path to go to, title =’Predict’, links
=links,

has uploaded data=
has uploaded data, file urls=
file urls ,

benign ave=benign ave,
malignant ave=malignant ave)

@main.route(’/register/’, methods=[’GET’, ’POST’])
def register () :

form = RegistrationForm()
if form.validate on submit():

new user = User()
new user.username = form.username.data
new user.password = form.password.data
new user.role id = Role.query. filter by (name=form.role

.data).first() . id
db.session .add(new user)
print(new user.id)

flash (’You can now log in.’)
return redirect (url for (’main.login’))

return render template(’ register .html’, form=form, title=’
Register’)

@main.route(’/login/’, methods=[’GET’, ’POST’])
def login() :

form = LoginForm()
if form.validate on submit():

user = User.query.filter by (username=form.username.
data).first()

if user is not None and user.verify password(form.
password.data):

print(user. is authenticated)
print(user. is active)
print(user.is anonymous)
print(user.get id ())
login user (user, form.remember me.data)
return redirect (request.args.get(’next’) or url for

(’main.index’))
flash (’ Invalid username or password’)

return render template(’login .html’, form=form, title=’Log
In’)

@login required
@main.route(’/logout/’)
def logout() :

logout user()
flash(”You have been logged out.”)
return redirect (url for (’main.index’))

@main.route(’/my models/’, methods=[’GET’, ’POST’])
@login required
def my models():

links = list (AI EXPERT LINKS)
set link active (links , LinkIndex.MY MODELS)

username = current user.username
user models = TrainedModel.query.filter by(username=

username, display in site=1).all()
#user models = TrainedModel.query.filter by(username=

username).all()

return render template(’my models.html’, title=’My Models
’, user models=user models, links=links)

@main.route(’/train/’, methods=[’GET’, ’POST’])
@login required
def train() :

done training = False
graphs = []
about model = {}
model = None

if request.method == ’POST’:
check if the POST request has the file part
if ’dataset’ not in request. files :

flash (’No dataset was provided’)
if ’ dataset labels ’ not in request. files :

flash (’Please provide the labels of the dataset’)
return redirect (request.url)

dataset = request. files . getlist (’dataset’)

NOTE: If user does not select file , browser also
submits an empty part without filename

if len(dataset) == 0: # NOTE: Not sure if request.
files. getlist () returns a [] if it finds nothing so
I won’t use the pythonic ”if not uploaded files :”

if not dataset:
flash (’Dataset was not uploaded’)
return redirect (request.url)

else :
Check if files uploaded are allowed
all dataset scans okay = True
for file in dataset:

if not allowed ct scan format(file .filename):
all dataset scans okay = False
break

if not all dataset scans okay :
flash (’Uploaded a non−DICOM CT Scan’)
return redirect (request.url)

46

labels = request. files [’ dataset labels ’]
if not allowed label format(labels .filename):

flash (’The file containing the labels of the dataset
must be in CSV format.’)

return redirect (request.url)

epochs = request.form.get(’epochs’)
batch size = request.form.get(’batch size ’)
network architecture = request.form.get(’

network architecture’)
optimizer = request.form.get(’optimizer’)
learning rate = request.form.get(’ learning rate ’)

print (’dataset :’, len(dataset), ’scans ’, dataset)
print (’ labels :’, labels)
print (’epochs :’, epochs)
print (’batch size :’, batch size)
print (’network architecture :’, network architecture)
print (’optimizer :’, optimizer)
print (’ learning rate :’, learning rate)

Get model from models table
model name = TrainedModel.query.filter by(

used by doctors=1).first().name
model = get pretrained model(model name)
print(’model:’, model)

ai expert username = current user.username
model name, acc graph filename, loss graph filename,

layers image filename = retrain(
ai expert username, dataset, labels , epochs,
batch size , network architecture, optimizer,
learning rate)

done training = True

’’’
acc graph filename = ’NEW MODEL ACCURACY.png’
loss graph filename = ’NEW MODEL LOSS.png’
layers image filename = ’NEW LAYERS.png’
’’’

graphs.append({
’ src ’: os.path.join (’/ static /model metrics graphs’,

layers image filename),
’ fig title ’: ’Layers of the Model’,
’image alt ’: ’ visualization of the layers of the

model’,
})

graphs.append({
’ src ’: os.path.join (’/ static /model metrics graphs’,

acc graph filename),
’ fig title ’: ’Accuracy vs Epoch’,
’image alt ’: ’accuracy vs accuracy graph of the

model’,
})

graphs.append({
’ src ’: os.path.join (’/ static /model metrics graphs’,

loss graph filename),
’ fig title ’: ’Loss vs Epoch’,
’image alt ’: ’ loss vs epoch graph of the model’,

})

about model[’epochs’] = epochs
about model[’batch size ’] = batch size
about model[’network architecture’] =

get network architecture string(
network architecture)

about model[’optimizer’] = get optimizer string(
optimizer)

print (’done training’)

model = TrainedModel.query.filter by(name=
model name).first()

links = None
if UserRoleID(current user.role id) == UserRoleID.

AI EXPERT:
links = list (AI EXPERT LINKS)
set link active (links , LinkIndex.RETRAIN MODEL)

form = TrainingDataForm()
return render template(’train .html’, title =’Train Model’,

links=links, form=form, done training=done training,
graphs=graphs, about model=about model, model=
model)

@main.route(’/models/’)
@login required

def models():
links = list (SITE ADMIN LINKS)
set link active (links , LinkIndex.MODELS)

site models = None
link active = LinkIndex(get link active(links))
if link active == LinkIndex.MODELS:

site models = TrainedModel.query.filter by(
display in site =0).all ()

#site models = TrainedModel.query.all()
print (’ site models:’, site models)

return render template(’models.html’, title =’Models’, links
=links, models=site models)

@main.route(’/users/’, methods=[’GET’, ’POST’])
@login required
def users() :

links = list (SITE ADMIN LINKS)
set link active (links , LinkIndex.USERS)

site users = None
link active = LinkIndex(get link active(links))
if link active == LinkIndex.USERS:

site users = User.query.all()

return render template(’users.html’, title =’Users’, links=
links, users=site users)

@main.route(’/model/view/<int:id>/’)
@login required
def model(id):

graphs = []
the model = TrainedModel.query.filter by(id=id).first()
layers image filename = ModelMetricsPlot.query.filter by(

model name=the model.name, type=’layers’).first().
filename

acc graph filename = ModelMetricsPlot.query.filter by(
model name=the model.name, type=’acc’).first().
filename

loss graph filename = ModelMetricsPlot.query.filter by(
model name=the model.name, type=’loss’).first().
filename

print(layers image filename)
print(acc graph filename)
print(loss graph filename)

title = the model.name[:−3]
links = list (AI EXPERT LINKS)
set link active (links , LinkIndex.MY MODELS)

graphs.append({
’ src ’: os.path.join (’/ static /model metrics graphs’,

layers image filename),
’ fig title ’: ’Layers of the Model’,
’image alt ’: ’ visualization of the layers of the model’,

})

graphs.append({
’ src ’: os.path.join (’/ static /model metrics graphs’,

acc graph filename),
’ fig title ’: ’Accuracy vs Epoch’,
’image alt ’: ’accuracy vs accuracy graph of the model’,

})

graphs.append({
’ src ’: os.path.join (’/ static /model metrics graphs’,

loss graph filename),
’ fig title ’: ’Loss vs Epoch’,
’image alt ’: ’ loss vs epoch graph of the model’,

})

return render template(’model.html’, title =title , links=
links, graphs=graphs, model=the model)

@main.route(’/model/fine−tune/<int:id>/’)
@login required
def fine tune model(id):

title = ’Fine−Tune Model’
links = list (AI EXPERT LINKS)
set link active (links , LinkIndex.MY MODELS)
return render template(’fine tune model.html’, title =title ,

links=links)

app/static/style.css

a.model−view {

}

47

a.model−fine−tune {
color : #ffc107 !important;

}

a.model−evaluate {
color : green !important;

}

a.model−delete {
color : red !important;

}

body {
background: #f4f4f4;

}

@−moz−document url−prefix() {
fieldset { display: table−cell; }

}

.number{
width: 4em;

}

/∗ Navbar ∗/
.navbar {

margin−bottom: 10px;
border−radius: 0;

}

.navbar−nav > li > a, .navbar−brand {
/∗padding−top: 6px !important;∗/
padding−bottom: 0 !important;
height: 33px;

}

.navbar−default {
/∗background−color: #e74c3c;∗/
background−color: #7C1518;
border−color: #7C1518;

}

.navbar−default .navbar−brand {
color : #FBB542;

}

.navbar−default .navbar−brand:hover,

.navbar−default .navbar−brand:focus {
color : #fcd089;

}

.navbar−default .navbar−text {
color : #FBB542;

}

.navbar−default .navbar−nav > li > a {
color : #FBB542;

}

.navbar−default .navbar−nav > li > a:hover,

.navbar−default .navbar−nav > li > a:focus {
color : #fcd089;

}

.navbar−default .navbar−nav > .active > a,

.navbar−default .navbar−nav > .active > a:hover,

.navbar−default .navbar−nav > .active > a:focus {
color : #fcd089;
background−color: #c0392b;

}

.navbar−default .navbar−nav > .open > a,

.navbar−default .navbar−nav > .open > a:hover,

.navbar−default .navbar−nav > .open > a:focus {
color : #fcd089;
background−color: #c0392b;

}

.navbar−default .navbar−toggle {
border−color: #c0392b;

}

.navbar−default .navbar−toggle:hover,

.navbar−default .navbar−toggle:focus {
background−color: #c0392b;

}

.navbar−default .navbar−toggle .icon−bar {
background−color: #FBB542;

}

.navbar−default .navbar−collapse,

.navbar−default .navbar−form {
border−color: #FBB542;

}

.navbar−default .navbar−link {
color : #FBB542;

}

.navbar−default .navbar−link:hover {
color : #fcd089;

}

/∗ Custom ∗/
.main−color−bg {

/∗background−color: #e74c3c !important;∗/
background−color: #7C1518 !important;
border−color: #c0392b !important;
color : #FBB542 !important;

}

.dash−box {
text−align: center;

}

/∗ Header ∗/
#header {

background: #333333;
color : #FBB542;
padding−bottom: 10px;
margin−bottom: 15px;

}

#header .create {
padding−top: 20px;

}

/∗ Breadcrumb ∗/
.breadcrumb {

background: #cccccc;
color : #FBB542;

}

.breadcrumb a {
color : #333333;

}

/∗ Progress Bars ∗/
.progress−bar {

background: #333333;
color : # ffffff ;

}

/∗ Footer ∗/
#footer {

background−color: #f4f4f4;
color : #333333;
text−align: center;
padding: 30px;
margin−top: 30px;

}

@media (max−width: 767px) {
.navbar−default .navbar−nav .open .dropdown−menu > li

> a {
color : #ecf0f1;

}

.navbar−default .navbar−nav .open .dropdown−menu > li
> a:hover,

.navbar−default .navbar−nav .open .dropdown−menu > li
> a:focus {

color : #ffbbbc;
}

.navbar−default .navbar−nav .open .dropdown−menu > .
active > a,

.navbar−default .navbar−nav .open .dropdown−menu > .
active > a:hover,

.navbar−default .navbar−nav .open .dropdown−menu > .
active > a:focus {

color : #ffbbbc;
background−color: #c0392b;

}
}

/∗ CT SCANS GALLERY ∗/
div. gallery {

border: 1px solid #ccc;
}

48

div. gallery :hover {
border: 1px solid #777;

}

div. gallery img {
width: 100%;
height: auto;

}

div.desc {
padding: 15px;
text−align: center;

}

∗ {
box−sizing: border−box;

}

.responsive {
padding: 0 6px;
float : left ;
width: 24.99999%;

}

@media only screen and (max−width: 700px) {
.responsive {

width: 49.99999%;
margin: 6px 0;

}
}

@media only screen and (max−width: 500px) {
.responsive {

width: 100%;
}

}

. clearfix : after {
content: ””;
display: table ;
clear : both;

}

app/templates/ai expert index.html

{% extends ’dashboard.html’ %}
{% import ’bootstrap/wtf.html’ as wtf %}

{% block breadcrumb content %}
Dashboard > Predict

{% endblock %}

{% block panel title content %}
Predict

{% endblock %}

{% block panel body content %}
<div class=”col−md−6”>

<form method=”post” enctype=”multipart/form−data
”>

<div class=”form−group”>
<!−−Browse<input type=”file” name=”files”

multiple=”” style=”display: none;”>−−>
<input type=”file” class=”form−control−file”

name=”files” multiple=””>
</div>
<button type=”submit” class=”btn btn−primary”>

Upload CT Scans</button>

</form>
</div>
<div class=”col−md−6”>
</div>

{% endblock %}

{% block more panels area %}
{% if has uploaded data %}

<div class=”panel panel−default”>
<div class=”panel−heading main−color−bg”>

<h3 class=”panel−title”>Result</h3>
</div>
<div class=”panel−body”>

<table class=”table table−striped table−hover
”>

<tr>
<th class=”text−center”>Benign</th>
<th class=”text−center”>Malignant</

th>
</tr>
<tr>

<td class=”text−center”>{{ benign ave
}}%</td>

<td class=”text−center”>{{
malignant ave }}%</td>

</tr>
</table>

</div>
</div>

{% endif %}
{% endblock %}

app/templates/base.html

{% extends ’bootstrap/base.html’ %}

{% block styles %}
{{ super() }}
<link rel=”stylesheet” href=”{{ url for(’main.static ’,

filename=’style. css ’) }}”>
{% endblock %}

{% block title %} {{ title }} | Lung Cancer Detection {%
endblock %}

{% block navbar %}
<nav class=”navbar navbar−default”>

<div class=”container”>
<div class=”navbar−header”>

<button type=”button” class=”navbar−toggle
collapsed” data−toggle=”collapse” data−
target=”#navbar”

aria−expanded=”false” aria−controls=”
navbar”>

Toggle navigation

</button>
<a class=”navbar−brand” href=”{{ url for(’

main.index’) }}”>Lung Cancer Detection

</div>
<div id=”navbar” class=”collapse navbar−collapse

”>
{% if current user . is authenticated %}

<ul class=”nav navbar−nav navbar−right
”>

<a href=”{{ url for(’main.logout’)
}}”>Log Out

{% else %}

<ul class=”nav navbar−nav navbar−right
”>

<a href=”{{ url for(’main.register’)
}}”>Register

<a href=”{{ url for(’main.login’)
}}”>Log In

{% endif %}

</div>
</div>

</nav>
{% endblock %}

{% block content %}
{% block header content %}
{% endblock %}

<div class=”container”>
{% for message in get flashed messages() %}

<div class=”alert alert−warning”>
<button type=”button” class=”close” data−

dismiss=”alert”>x</button>
{{ message }}

</div>
{% endfor %}

</div>

{% block page content %}
{% endblock %}

<footer id=”footer”>
<p>Copyright Lung Cancer Detection © 2018</p

>
</footer>

{% endblock %}

{% block scripts %}
{{ super() }}
<!−− Menu Toggle Script −−>
<script>

49

$(”#menu−toggle”).click(function (e) {
e.preventDefault();
$(”#wrapper”).toggleClass(”toggled”);

});
</script>

{% endblock %}

app/templates/dashboard.html

{% extends ’base.html’ %}

{% block header content %}

<section id=”breadcrumb”>
<div class=”container”>

<ol class=”breadcrumb”>
<li class=”active”>
{% block breadcrumb content %}

Dashboard
{% endblock %}

</div>
</section>

{% endblock %}

{% block page content %}
<section id=”main”>

<div class=”container”>
<div class=”row”>

<div class=”col−md−2”> <!−− sidebar −−>
<div class=”list−group”>
{% for l in links %}
{% if l . is active %}

<a href=”{{ url for(l.href) }}”
class=”list−group−item

active main−color−bg
”><span class=”
glyphicon glyphicon−{{ l.
icon }}” aria−hidden=”
true”> {{ l.title
}}

{% else %}
<a href=”{{ url for(l.href) }}”

class=”list−group−item
”><span class=”
glyphicon glyphicon−{{ l.
icon }}” aria−hidden=”
true”> {{ l.title
}}

{% endif %}

{% endfor %}
{% block other links %}
{% endblock %}

</div>
</div>

<div class=”col−md−10”> <!−− main area
−−>

<div class=”panel panel−default”>
<div class=”panel−heading main−color

−bg”>
<h3 class=”panel−title”>
{% block panel title content %}
{% endblock %}

</h3>
</div>
<div class=”panel−body”>
{% block panel body content %}
{% endblock %}

</div>
</div>

{% block more panels area %}
{% endblock %}

</div>
</div>

</div>
</section>

{% endblock %}

app/templates/doctor index.html

{% extends ’dashboard.html’ %}
{% import ’bootstrap/wtf.html’ as wtf %}

{% block breadcrumb content %}
Dashboard > Predict

{% endblock %}

{% block panel title content %}
Predict

{% endblock %}

{% block panel body content %}
<div class=”col−md−6”>

<form method=”post” enctype=”multipart/form−data
”>

<div class=”form−group”>
<input type=”file” class=”form−control−file”

name=”files” multiple=””>
</div>
<button type=”submit” class=”btn btn−primary”>

Upload CT Scans</button>

</form>
</div>
<div class=”col−md−6”>
</div>

{% endblock %}

{% block more panels area %}
{% if has uploaded data %}

<div class=”panel panel−default”>
<div class=”panel−heading main−color−bg”>

<h3 class=”panel−title”>Result</h3>
</div>
<div class=”panel−body”>

<table class=”table table−striped table−hover
”>

<tr>
<th class=”text−center”>Positive</th

>
<th class=”text−center”>Negative</th

>
</tr>
<tr>

<td class=”text−center”>{{ benign ave
}}%</td>

<td class=”text−center”>{{
malignant ave }}%</td>

</tr>
</table>

</div>
</div>

{% endif %}
{% endblock %}

app/templates/index.html

{% extends ’base.html’ %}

{% block styles %}
{{ super() }}
<style>

.center {
display: block;
margin−left: auto;
margin−right: auto;
width: 50%;

}
</style>

{% endblock %}

{% block page content %}
<div class=”container”>

<div class=”row”>
<div class=”col−md−6” class=”text−center”>

<img src=”{{ url for(’main.static’, filename=’
upseal.png’) }}” alt=” official UP seal”
class=”center”>

</div>
<div class=”col−md−6” style=”padding−top: 100

px;”>
Hello

</div>
</div>

</div>
{% endblock %}

app/templates/login.html

{% extends ’base.html’ %}
{% import ’bootstrap/wtf.html’ as wtf %}

{% block page content %}
<div class=”container”>

50

<div class=”row”>

<div class=”col−md−4”>
</div>

<div class=”col−md−4”>
<div class=”page−header”>

<h1 align=”center”>Log In</h1>
</div>
{{ wtf.quick form(form) }}

</div>

<div class=”col−md−4”>
</div>

</div>
</div>

{% endblock %}

app/templates/logout.html

{% extends ’base.html’ %}

app/templates/model.html

{% extends ’dashboard.html’ %}
{% import ’bootstrap/wtf.html’ as wtf %}

{% block breadcrumb content %}
Dashboard > My Models > {{ title }}

{% endblock %}

{% block panel title content %}
Model: {{ title }}

{% endblock %}

{% block panel body content %}
<div class=”col−md−12 table−responsive”>

<table class=”table table−striped table−hover text−
center”>

<tr>
<th class=”text−center”>Train Accuracy</th>
<th class=”text−center”>Train Loss</th>
<th class=”text−center”>Validation Accuracy

</th>
<th class=”text−center”>Validation Loss</th>
{% if model.test acc %}<th class=”text−center

”>Test Accuracy</th>{% endif %}
{% if model. test loss %}<th class=”text−

center”>Test Loss</th>{% endif %}
</tr>
<tr><td>{{ model.train acc }}</td>
<td>{{ model.train loss }}</td>
<td>{{ model.validation acc }}</td>
{% if model.test acc %}
<td>{{ model.validation loss }}</td>
<td>{{ model.test acc }}</td

>
<td>{{ model.test loss }}</td

></tr>
{% else %}
<td>{{ model.validation loss }}</td></tr>
{% endif %}

</table>
</div>

{% endblock %}

{% block more panels area %}
<div class=”panel panel−default”>

<div class=”panel−heading main−color−bg”>
<h3 class=”panel−title”>Layers and Loss per

Epoch while Training the Model</h3>
</div>
<div class=”panel−body”>

<div class=”col−md−6”>
<h4 class=”text−center”>Fig 1. {{

graphs[1].fig title }}</h4>
<p><img src=’{{ graphs[1].src }}’ alt=’{{

graphs[1].image alt }}’ class=’img−
responsive center−block’></p>

</div>

<div class=”col−md−6”>
<h4 class=”text−center”>Fig 2. {{

graphs[2].fig title }}</h4>
<p><img src=’{{ graphs[2].src }}’ alt=’{{

graphs[2].image alt }}’ class=’img−
responsive center−block’></p>

</div>
</div>

</div>
<div class=”panel panel−default”>

<div class=”panel−heading main−color−bg”>
<h3 class=”panel−title”>Layers of the Model</h3

>
</div>
<div class=”panel−body”>

<h4 class=”text−center”>Fig 3. {{ graphs
[0].fig title }}</h4>

<p><img src=’{{ graphs[0].src }}’ alt=’{{ graphs
[0].image alt }}’ class=’img−responsive center
−block’></p>

</div>
</div>

{% endblock %}

app/templates/models.html

{% extends ’dashboard.html’ %}

{% block breadcrumb content %}
Dashboard > Models

{% endblock %}

{% block panel title content %}
List of Models

{% endblock %}

{% block panel body content %}
<div class=”col−md−12 table−responsive”>
{% if models %}

<table class=”table table−striped table−hover”>
<tr>

<th>ID</th>
<th>Username of AI Expert</th>
<th>Name</th>
<th>Train Accuracy</th>
<th>Train Loss</th>
<th>Validation Accuracy</th>
<th>Validation Loss</th>
<th>Test Accuracy</th>
<th>Test Loss</th>
<th>Used as system’s model?</th>

</tr>

{% for model in models %}
<tr>

<td>{{ model.id }}</td>
<td>{{ model.username }}</td>
<td>{{ model.name }}</td>
<td>{{ model.train acc }}</td>
<td>{{ model.train loss }}</td>
<td>{{ model.validation acc }}</td>
<td>{{ model.validation loss }}</td>
<td>{{ model.test acc }}</td>
<td>{{ model.test loss }}</td>
<td>{% if model.

used by doctors %} Yes {% else
%} No {% endif %}</
td>

</tr>
{% endfor %}

</table>
{% endif %}

</div>
{% endblock %}

app/templates/my models.html

{% extends ’dashboard.html’ %}
{% import ’bootstrap/wtf.html’ as wtf %}

{% block breadcrumb content %}
Dashboard > My Models

{% endblock %}

{% block panel title content %}
My Models

{% endblock %}

{% block panel body content %}
<div class=”col−md−12 table−responsive”>
{% if user models %}

<table class=”table table−striped table−hover text−
center”>

<tr>
<th class=”text−center”>ID</th>
<th class=”text−center”>Name</th>
<th class=”text−center”>System’s model?</th

>
<th class=”text−center”></th>
<th class=”text−center”></th>
<th class=”text−center”></th>

51

<th class=”text−center”></th>
</tr>

{% for model in user models %}
<tr class=”clickable−row” data−href=”{{ url for(’

main.model’, title=’About Model ’ + model.id
|string + ’: ’ + model.name, id=model.id)
}}”>

<td>{{ model.id }}</td>
<td>{{ model.name[:−3] }}</td>
<td>{% if model.used by doctors %}

Yes {% else %} No {% endif
%}</td>

</tr>
{% endfor %}

</table>
{% endif %}
</div>

</div>
</div>

{% endblock %}

{% block styles %}
{{ super() }}

<style>
tr . clickable−row {

cursor: pointer;
}
tr . clickable−row:hover td {

background−color: #007bff !important;
color : white;

}
</style>

{% endblock %}

{% block scripts %}
{{ super() }}

<script>
jQuery(document).ready(function($) {

$ (’. clickable−row’).click(function() {
window.location = $(this).data(’href ’) ;

});
});
</script>

{% endblock %}

{% block more panels area %}
{% endblock %}

app/templates/register.html

{% extends ’base.html’ %}
{% import ’bootstrap/wtf.html’ as wtf %}

{% block page content %}
<div class=”container”>

<div class=”row”>
<div class=”col−md−4”></div>

<div class=”col−md−4”>
<div class=”page−header”>

<h1 align=”center”>Register</h1>
</div>

{{ wtf.quick form(form) }}
</div>

<div class=”col−md−4”></div>
</div>

</div>
{% endblock %}

app/templates/train.html

{% extends ’dashboard.html’ %}
{% import ’bootstrap/wtf.html’ as wtf %}

{% block breadcrumb content %}
Dashboard > Train Model

{% endblock %}

{% block panel title content %}
{% if done training %}

Metrics of the New Model
{% else %}

Train Model
{% endif %}

{% endblock %}

{% block panel body content %}
{% if done training %}

<div class=”col−md−12 table−responsive”>
<table class=”table table−striped table−hover text

−center”>
<tr>

<th class=”text−center”>Train Accuracy
</th>

<th class=”text−center”>Train Loss</th>
<th class=”text−center”>Validation

Accuracy</th>
<th class=”text−center”>Validation Loss

</th>
{% if model.test acc %}

<th class=”text−center”>Test
Accuracy</th>{% endif %}

{% if model. test loss %}
<th class=”text−center”>Test Loss</

th>{% endif %}
</tr>
<tr>

<td>{{ model.train acc }}</td>
<td>{{ model.train loss }}</td>
<td>{{ model.validation acc }}</td>
{% if model.test acc %}

<td>{{ model.validation loss }}</td>
<td>{{ model.test acc }}</

strong></td>
<td>{{ model.test loss }}</

strong></td></tr>
{% else %}

<td>{{ model.validation loss }}</td
></tr>

{% endif %}
</table>

</div>
{% else %}

<div class=”col−md−6”>
<form method=’post’ enctype=’multipart/form−

data’>
<div class=”form−group”>

<label for=”dataset”>Dataset:</label>
<input type=”file” name=”dataset”

multiple=”” class=”form−control−file
”>

</div>

<div class=”form−group”>
<label for=”dataset labels”>Labels (CSV):

</label>
<input type=”file” name=”dataset labels”

class=”form−control−file”>
</div>

<p>Epochs: <input type
=”number” value=”1” name=”epochs”
step=”1” min=”1” max=”1000” class=”
number”></p>

<p>Batch Size: <input
type=”number” value=”10” name=”
batch size” min=”10” max=”100” class=”
number”></p>

<div class=”form−group”>
<label for=”exampleFormControlSelect1”>

Optimizer:</label>
<select class=”form−control” id=”

exampleFormControlSelect1” name=”
optimizer”>

<option value=”sgd” selected>
Stochastic Gradient Descent</
option>

<option value=”rmsprop”>RMSprop</
option>

<option value=”adam”>Adam</option
>

<option value=”adagrad”>AdaGrad</
option>

</select>
</div>

<p>Learning Rate: <input
type=”number” value=”0.01” name=”
learning rate” step=”0.01” class=”number
”></p>

<hr>

<h3>Convolutional Base</h3>

52

<div class=”form−group”>
<label for=”network architecture”>Network

Architecture:</label>
<select class=”form−control” id=”

exampleFormControlSelect1” name=”
network architecture”>

<option value=”vgg16” selected>
VGG16</option>

<option value=”vgg19”>VGG19</
option>

<option value=”xception”>Xception</
option>

<option value=”resnet50”>ResNet50</
option>

<option value=”inceptionv3”>
InceptionV3</option>

<option value=”inceptionresnetv2”>
InceptionResNetV2</option>

<option value=”densenet121”>
DenseNet121</option>

<option value=”densenet169”>
DenseNet169</option>

<option value=”densenet201”>
DenseNet201</option>

</select>
</div>

<hr>

<p>
<button type=”submit” class=”btn btn−

primary”>Train</button>
</p>

</form>
</div>
<div class=”col−md−6”>
</div>

{% endif %}
{% endblock %}

{% block more panels area %}
{% if done training %}

<div class=”panel panel−default”>
<div class=”panel−heading main−color−bg”>

<h3 class=”panel−title”>Layers and Loss per
Epoch while Training the Model</h3>

</div>
<div class=”panel−body”>

<div class=”col−md−6”>
<h4 class=”text−center”>Fig 1.

{{ graphs[1].fig title }}</
h4>

<p><img src=’{{ graphs[1].src }}’ alt=’{{
graphs[1].image alt }}’ class=’img−
responsive center−block’>

</p>
</div>

<div class=”col−md−6”>
<h4 class=”text−center”>Fig 2.

{{ graphs[2].fig title }}</
h4>

<p><img src=’{{ graphs[2].src }}’ alt=’{{
graphs[2].image alt }}’ class=’img−
responsive center−block’>

</p>
</div>

</div>
</div>
<div class=”panel panel−default”>

<div class=”panel−heading main−color−bg”>
<h3 class=”panel−title”>Layers of the Model

</h3>
</div>
<div class=”panel−body”>

<h4 class=”text−center”>Fig 3. {{
graphs[0].fig title }}</h4>

<p><img src=’{{ graphs[0].src }}’ alt=’{{
graphs[0].image alt }}’ class=’img−
responsive center−block’>

</p>
</div>

</div>
{% endif %}

{% endblock %}

app/util/ init .py

from enum import Enum

class LinkIndex(Enum):
PREDICT = 0
RETRAIN MODEL = 1
MY MODELS = 2
SYSTEM MODEL = 3
FINE TUNE MODEL = 4

DASHBOARD = 0
MODELS = 1
USERS = 2

class UserRoleID(Enum):
AI EXPERT = 1
DOCTOR = 2
SITE ADMIN = 3

AI EXPERT LINKS = [
{’ is active ’: False , ’href ’: ’main.index’, ’icon ’: ’search ’,

’ title ’: ’Predict’},
{’ is active ’: False , ’href ’: ’main.train ’, ’icon ’: ’

blackboard’, ’ title ’: ’Train Model’},
{’ is active ’: False , ’href ’: ’main.my models’, ’icon’: ’

folder−open’, ’ title ’: ’My Models’},
#{’is active ’: False , ’href ’: ’main.model’, ’icon ’: ’

pushpin’, ’ title ’: ’System Model’},
{’ is active ’: False , ’href ’: ’main.my models’, ’icon’: ’

wrench’, ’ title ’: ’Fine−tune Model’}
]

DOCTOR LINKS = [
{’ is active ’: False , ’href ’: ’main.index’, ’icon ’: ’search ’,

’ title ’: ’Predict’},
]

SITE ADMIN LINKS = [
{’ is active ’: True, ’href ’: ’main.index’, ’icon ’: ’

dashboard’, ’ title ’: ’Dashboard’},
{’ is active ’: False , ’href ’: ’main.models’, ’icon ’: ’ stats ’,

’ title ’: ’Models’},
{’ is active ’: False , ’href ’: ’main.users’, ’icon ’: ’user ’, ’

title ’: ’Users’}
]

def set link active (links , index to true) :
for index, link in enumerate(links):

if LinkIndex(index) == LinkIndex(index to true):
links [index][’ is active ’] = True

else :
links [index][’ is active ’] = False

def get link active (links) :
for index, link in enumerate(links):

if links [index][’ is active ’]:
return index

ALLOWED CT SCAN EXTENSIONS = set([’dcm’])
ALLOWED LABEL EXTENSIONS = set([’csv’])

def allowed ct scan format(filename):
return ’.’ in filename and filename. rsplit (’.’, 1) [1]. lower

() in ALLOWED CT SCAN EXTENSIONS

def allowed label format(filename):
return ’.’ in filename and filename. rsplit (’.’, 1) [1]. lower

() in ALLOWED LABEL EXTENSIONS

def get network architecture string (network architecture):
full name = ’’
if network architecture == ’vgg16’:

full name = ’VGG16’
elif network architecture == ’vgg19’:

full name = ’VGG19’
elif network architecture == ’xception’:

full name = ’Xception’
elif network architecture == ’resnet50’:

full name = ’ResNet50’
elif network architecture == ’inceptionv3’:

full name = ’InceptionV3’
elif network architecture == ’inceptionresnetv2’:

full name = ’InceptionResNetV2’
elif network architecture == ’densenet121’:

full name = ’DenseNet121’
elif network architecture == ’densenet169’:

full name = ’DenseNet169’

53

elif network architecture == ’densenet201’:
full name = ’DensetNet201’

return full name

def get optimizer string (optimizer):
full name = ’’
if optimizer == ’sgd’:

full name = ’Stochastic Gradient Descent’
elif optimizer == ’adam’:

full name = ’Adam’
elif optimizer == ’adagrad’:

full name = ’Adagrad’
elif optimizer == ’rmsprop’:

full name = ’RMSprop’

return full name

54

XI. Acknowledgement

I have been waiting for this moment since the first semester of my fourth year in

ComSci: writing the acknowledgment page of my SP. My SP days are by far, the

most stressful days of my life. Thus, I’d like to use this little corner of my document

to thank the people who were around to guide me and/or lift me up during these

trying times.

To the NTTC library, the place I frequently go to whenever I need to study during

the weekday, thank you for existing.

To my adviser, Sir Marvin John Ignacio, thank you for the guidance, for the crash

course in Deep Learning, and for convincing me to continue with my proposal after

I texted you that I didn’t want to go through with it as I felt I wasn’t ready yet.

Because of my poor time management skills, I texted you the same thing a few hours

before my defense. And again, you convinced me that I was ready to defend my SP.

I definitely wouldn’t be here without your guidance. Thank you sir!

To Ma’am Eden, thank you for always guiding us ComSci students. Thank you

for helping me with my subjects na nagkakaproblema pagdating sa grades or sa en-

rollment.

To my guidance counselor Ms. Elgie, thank you for listening to my problems

during the lowest point of my college life. I probably wouldn’t be in UP Manila

anymore had you not lent your ears when I needed someone impartial to listen.

To Paul and Ara, thank you for being there during those awful two semesters of

my college life. Thank you for being there after. Kahit na lagi niyo akong inaasar

noon kung may kaibigan na ba ako sa ComSci after ko mag-shift.

To my brother Amir, thank you for doing my share of the chores because I was

rarely at home. Thank you for always including me whenever you’re brewing coffee.

To Ate Carol and Kuya Bryant, thank you for the nights you accommodated us

for our all-nighters. Thank you for the snacks and drinks, for always asking us if

55

we’re comfortable, and for assuring us that we’re always welcome in your home. This

SP definitely would not be finished on time if not for your hospitality. Thank you po

nang sobra!

To JB, thank you for updating me sa mga nangyayari sa Physics at HI hahaha.

Thank you for always telling me na makakahabol din ako sa 2nd round ng defense.

I’m super grateful na nakilala kita nang husto sa huling taon ko sa ComSci.

To MM, thank you for listening to my rants. I’m sorry di ko laging nasasagot

ComSci-related questions mo dahil busy sa SP. Thank you for being encouraging all

the time. Nakakahawa ang enthusiasm mo sa life hahaha.

To the most important people in my ComSci life: Abe, Eddie, and Faye. Honestly,

where would I even be without you guys? Firstly, thank you for being my constants

during our SP days. Thank you for pushing me to finish my SP, for encouraging

me noong akala ko di na ako makakadefend tsaka noong 4th Physics exam ko haha.

Hinhintay ko ang Tagaytay, Bohol, Thailand, at Japan travels. I don’t think I’ll be

able to say everything I want to say to you guys here. Still, allow me to say my

thanks to you three individually.

To Abe, thank you for being so bright and cheerful all the time. Nakakahawa nang

sobra. Thank you for listening to my problems. Sana makilala ka naman ng mga

crush mo? Salamat sa paghatid sa akin pauwi kahit na dapat di ka na kumakaliwa

sa Pedro Gil kasi QC pa uwi mo haha. Next time sa south naman tayo tumambay.

Nakakasawa ang QC cyst

To Faye, thank you for pushing me to do all that I can whenever I’m struggling

with schoolwork. Thank you for listening whenever I share a too-personal problem.

Thank you for being patient with my mood swings. Sorry kung madalas tayo mag-

away? Salamat din sa paghatid sa amin everytime na kung saan-saan tayo napupunta.

Sana nasimot na lahat ng issue bago tayo grumaduate friend

To Eddie, thank you for being my MP groupmate sa karamihan ng MPs natin sa

56

ComSci. Thank you for listening whenever I feel like ranting. Thank you sa corny

jokes? Thank you sa Divisoria dates, sa random lakwatsa na napagdesisyunan habang

nasa gitna tayo ng paggawa ng SP kasi bigla tayong tinamad. Thank you sa pagyaya

sa akin mag-take ng Weight Training. Biro lang di ko natutuwa roon. Sana friends

pa tayo sa December

To my parents, I will also be thanking you both individually.

To Inah, thank you for being understanding because I was often late in going home.

Thank you for reminding to sleep early, eat healthy foods, and drink less unhealthy

drinks. Thank you for whipping up coffee when Amir and I needed it during our

sleepless nights. Thank you for the Lipovitan na magugulat na lang ako ay inaabot

niyo po sa akin every morning na may exam ako. Thank you for comforting me when

I cried early in the morning of my proposal.

To Mmah, first of all, thank you for buying me a new laptop. I selfishly asked for

one because I needed a more powerful machine for my SP. I could’ve requested access

to Pagaspas in the server room or even worked on a different SP topic altogether, but

I didn’t. I told you about how I needed a better laptop and you told me you’d buy

me one. It’s not even just the laptop. When I asked for something, you’d say yes

immediately. I missed you while you were still in Cotabato. Welcome home!

To the both of you, Inah and Mmah, thank you for all the sacrifices you’ve done

for me. I’m sorry it took me 6 years to graduate. I hope I still make you proud.

57

	Acceptance Sheet
	Abstract
	List of Figures
	Introduction
	Background of the Study
	Statement of the Problem
	Objectives of the Study
	General Objective
	Specific Objectives

	Significance of the Project
	Scope and Limitations
	Assumptions

	Review of Related Literature
	Theoretical Framework
	Lung Cancer
	Computed Tomography (CT) Scan
	Clinical Decision Support System (CDSS)
	Digital Imaging and Communications in Medicine (DICOM)
	Convolutional Neural Network (CNN)
	Keras

	Design and Implementation
	Kaggle Data Science Bowl 2017
	System Overview
	Context Diagram
	Entity-Relationship Diagram
	Use Case Diagram
	Activity Diagram
	Doctor
	AI Expert

	Technical Architecture

	Results
	Discussions
	Conclusions
	Recommendations
	Bibliography
	Appendix
	Source Code

	Acknowledgement

