
UNIVERSITY OF THE PHILIPPINES MANILA
COLLEGE OF ARTS AND SCIENCES

DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS

Simulating the Rivest – Shamir – Adleman 
Algorithm by Creating a Messaging System

A Special Problem in partial fulfillment
of the requirements for the degree of

Bachelor of Science in Computer Science

Submitted by:



Jose Marciano C. Patino
April 2003

I. INTRODUCTION

A. BACKGROUND OF THE STUDY

Cryptography  is  the  science  of  making  a  message 

unintelligible to anyone but the intended recipient.  Cryptography 

has a long history.  One of the first persons to use cryptography 

was Aeneas Tacticus.  On his military manual (360 BC), there is a 

chapter  entitled  “On  Secret  Messages”.   In  this  chapter  he 

described  how  he  used  different  devices  to  create  secret 

messages [1].  

Another famous person to use the principles in cryptography 

was Julius Caesar.  Caesar did not trust his messengers, but he 

needed to send vital information to his generals in far places.  His 

solution was to code the message by substituting the letters of the 

message by another letter in with a pattern.  For example “a” was 

changed to  “g”,  “b” is  changed to  “h”  and so on.   In  effect  a 

message  “Use  the  infantry  to  attack”  would  read  as  “Ayk  znk 

otlgtzxe zu gzzgiq”.  The reader of the message must know that 

“a” = “g” to understand the message.  Caesar also foresaw the 

event in which the code would be compromised.  In effect he also 

thought of  a way to change the code quickly.   Using the same 

2



example, it  is seen the “a” is 6 letters away from “g”.   Caesar 

could change 6 to 3.  This would imply that “a” = “d”.  By using 

different  codes  for  different  messages  the  chances  of 

compromising the code was lessened.  This also implied, that in 

the  event  that  the  message  was  compromised  previous  or 

succeeding messages would not be compromised [2].

Coding  and  decoding  messages  were  often  compared  to 

locking and unlocking.  Hence the tools used to lock and unlock 

were called keys.  Just as a certain key will only fit a certain lock, a 

key in coding will  “lock” the message in  a certain way, and to 

“unlock” it one would have to know the key.  In relation to the 

example  above,  Caesar’s  ciphers  used  a  number  for  his  key. 

Although it tricked a lot of his enemies, the Caesar’s ciphers only 

had  26  keys,  which  meant  that  a  person  could  intercept  a 

message  and  use  all  26  keys  and  the  one  message,  which  is 

intelligible, can be concluded to be the real message.  This shows 

that the strength of coding and decoding (Cryptographic) system 

relies on the keys of the system [1].

Cryptography was priceless tool in the military.  Knowledge 

of the messages of the enemy would mean victory.  Cryptography 

was so valuable that during World War II, the allied forces spent a 

3



lot of money to break the axis code and vice versa.  Both sides 

used computers to create and break codes by creating a powerful 

key and by trying to gain information about the secret keys of the 

enemy.  Cryptography was in fact one of the first functions of the 

computer [2].

Today,  cryptography  is  used  to  create  privacy.   With  the 

growing use of the Internet (which is considered as an insecure 

medium) as a medium of communication,  it  is  crucial that vital 

information  must  be  kept  a  secret  during  transmission  of  vital 

information.   This  is  where  cryptography  is  applied  in  modern 

society other than the military [2].

The Rivest – Shamir – Adleman (RSA) Encryption Algorithm is 

one  of  the  most  popular  (if  not  the  most  popular)  encryption 

algorithms.  Systems like PGP and Open PGP use this encryption 

algorithm [3].

B. STATEMENT OF THE PROBLEM

UP Manila uses online systems.  These systems are usually 

protected by passwords.   Also,  the data of  these programs are 

transmitted on networks and are stored in databases in its original 

form.  These data are sometimes vital information that is not for 

everybody to see.  Although the systems provide secrecy to the 

4



layman, a trained hacker could easily break into these systems 

and  retrieve  data  from  the  database,  intercept  data  during 

transmission, or even falsify the information on the database.  One 

example  of  such  systems  is  the  Online  Student  Evaluation  of 

Teachers (OSET).  The project leader of OSET admits that a person 

with knowledge on PHP and MySQL, can break into the system.  He 

also admits that the data of the system should be protected from 

exposure.  Exposure of these data implies the breakdown of the 

systema.

C. OBJECTIVES OF THE STUDY

1. To simulate the encryption and decryption of a text file using 

the Rivest – Shamir – Adleman (RSA) Algorithm

2. To simulate the key generation of the RSA Algorithm.

3. To simulate a message transmission over an insecure medium 

by  sending  data  to  a  server  where  the  data  is  exposed  to 

anybody able to access the server.

4. To simulate an attack by intercepting a cipher and attempt to 

decrypt the cipher by brute force.

5. To create an application that could be imported by PHP scripts 

that encrypts and decrypts text files.

a Conversation with Herbert Eumague, project learder of OSET, on the limitations of OSET.

5



D. SIGNIFICANCE OF THE STUDY

Since UP Manila uses automated systems, which do not use 

encryption,  it  could  be  easily  be  broken.   With  the  study,  the 

systems could be modified to encrypt its data before it is stored or 

transmitted.  With data encryption, information is made accessible 

to  and only  to  the intended person.   It  would  also  protect  the 

system from data interception, unauthorized retrieval of data, or 

even falsification of data.  As most of the online systems in UP 

Manila  are  created  using  PHP,  the  study  will  also  produce  an 

application that could be imported by PHP scripts that encrypts 

and decrypts text files.

The study will  also serve as a guide when creating future 

online  systems that contain vital  information,  by protecting the 

information through encryption.  

E. SCOPE AND LIMITATIONS

The scope of the study will be on the encryption, decryption, 

key generation, and transmission using the RSA algorithm.  The 

data  to  be  transmitted  over  the  medium  is  limited  to  text 

messages.   Text  messages  will  have  variable  length  will  be 

6



composed of characters with an ASCII equivalent.  Other aspects 

of the RSA algorithm such as digital signing will not be included.

7



II.  REVIEW OF RELATED LITERATURE

There  are  a  lot  of  studies  about  cryptography.   An  area  in 

cryptography  that  is  prevalent  among  studies  is  the  cryptanalysis. 

Cryptanalysis is the study on the strength of an encryption algorithm 

and its components.  Cryptanalysis’ main goal is to break a cipher or 

deduce the key from the available tools such as a pair of cipher and 

plaintext, language statistics, etc [4].

In a study by Kilma et al. [3], an attack on two of the most used 

cryptosystem, Pretty Good Privacy (PGP) and Open PGP (an open source 

version of PGP), has been successful.  These two systems use Rivest – 

Shamir – Adleman (RSA) algorithm and Digital Signature Algorithm (DSA) 

to encrypt its files.  These two systems produce strong ciphers but the 

point of attack was not on the cipher.  The private key file (which was 

encrypted)  was  modified,  then  a  signed  message  intercepted.   The 

researchers were able to deduce the private key from the changes in the 

statistics, thus compromising the security of the files.  With the results, 

it was then proposed that Open PGP and PGP needed revisions.

In another study Ooi  et al.  [5], a cryptanalysis was done on S - 

Data Encryption  Standard (DES).   The first  form of  attack  was  brute 

force, it was then seen that a brute force attack would be feasible if S-

8



DES had a key length of 56 bits or less.  Although brute force is the most 

primitive form of attack it is becoming more feasible with the increase of 

computational  power.   Another  from of  attack  that  was  used  is  the 

differential cryptanalysis.  In this differential cryptanalysis involves the 

analysis of  the effect of the plaintext pair  difference on the  resulting 

cipher  difference.  The  most  common  difference  utilized  is  the  fixed 

XORed value of the plaintext pairs. By exploiting these differences, the 

partial subkey used in the cipher algorithm can be guessed. This guess 

is done statistically by using a counting procedure for each key in which 

the key with  the highest  count  is  assumed to be the most  probable 

partial subkey.  This resulted to 8 bits of an actual 10 bits of the S-DES 

key.   The  whole  key  could  be  obtained  by  trying  the  remaining  22 

possibilities, which is considered feasible.  Another attack was used on 

S-DES  was  the  linear  cryptanalysis.   The  main  idea  behind  linear 

cryptanalysis  is  to  obtain  an approximation  to  the  block  cipher  as  a 

whole  using  a  linear  expression.   The  goal  is  to  find  the  linear 

expression, which holds with the highest/biggest linear probability bias. 

It was found out that with the increase of plaintext, the rate of success 

of approximation also increased.

Although  the  main  objective  of  cryptanalysis  is  break  a 

cryptosystem,  it  does not  weaken the system but  on the  contrary  it 

strengthens the system.  Since the attacks are becoming visible with 

9



cryptanalysis,  designers  of  cryptosystems  design  their  systems  with 

response to the attacks stated in the cryptanalysis.

Studies  in  cryptography  also  include  new  means  of  encrypting 

data.  In a study by Schmidt [6], it states that block sizes should be 128 

bits to create a secure cipher but common computers today only have 

32-bits of register (64 for high end computers).  The proponent of this 

study developed a code,  which encrypted a 256-bit  block of  data by 

dividing it into block of 32-bits then encrypting these smaller blocks with 

sixteen 32-bit independent keys.  The block is then rebuilt to produce a 

256-bit block and a 516-bit key.  This block cipher scheme was resistant 

to  deferential  cryptanalysis.   The  proponent  recommends  a  linear 

cryptanalysis of this scheme.

 III. THEORETICAL AND CONCEPTUAL FRAMEWORK

Cryptography

Cryptography comes form the Greek word “kryptos” and “logos”, 

which  when  combined  means  hidden  word.   The  basic  idea  of 

cryptography  is  to  make  the  message  unintelligible  to  anyone  else 

except the intended reader.  During encryption, keys are used to assist 

in creating the cipher.  These keys are also used to decrypt the cipher to 

plaintext form.  In the cryptosystem of Julius Caesar, he used integers as 

the keys.  The integer represented the fixed distance between a letter 

10



and its  replacement.   The use of  keys is  one of  the most  important 

principles of cryptography [2].

Assumptions

It is assumed that M is the plaintext, C is the cipher, (K, L) is the 

public  and  private  key  pair,  e(x,  K)  is  the  encryption  process  (or 

function), and d(x, L) is the decryption process (or function).  Therefore, 

e(M, K) = C and d(C, L) = M and d(e(M, K), L) = M [1].

Symmetric Key Encryption Scheme

Encryption is classified by the use of keys into two, the symmetric 

key encryption and the asymmetric  key encryption.   Symmetric  keys 

encryption uses keys in both encryption and decryption.  The symmetric 

key encryption is simple to do, but it is very vulnerable to attacks.  One 

way to break a symmetric key encryption is to randomly select a key 

then use it to decrypt a message.  Repeat this process until the cipher is 

intelligible.  Although this technique will require a lot of man-hours, this 

simple task could be given to an intelligent agent (computer with AI) and 

the time to break the system will be much less.  Another disadvantage 

of using a symmetric key encryption is the fact that it requires a single 

key,  which  would  imply  that  this  key  must  be  transmitted  over  a 

11



medium.  This would again be a point of attack.  The attacker could wait 

for the key to be transmitted and intercept it [2].

An  example  of  a  symmetric  key  encryption  is  the  Linear 

Transformation.  In this encryption technique, the message is separated 

into  blocks  and  then  represented  into  matrices.   To  encrypt  the 

message, these matrices are multiplied (matrix multiplication) to a non-

singular  matrix.   To  decrypt  the  message  the  cipher  matrices  are 

multiplied to the inverse of the non-singular matrix.  In this scheme the 

key is the non-singular matrix.

To illustrate the linear transformation, a non-singular key is chosen 

say, 









1522

133
.  

Its inverse would be 








−
0124.00913.0

0539.00622.0
.  

If a message GOOD is to be sent, it is first written as,

GOOD = 7, 15, 15, 4

It is then converted to a matrix









415

157

 Then the key and the matrix of the message are multiplied,









=
















390379

97216

415

157

1522

133

12



The matrix produced is the cipher.  

To decrypt the message the cipher is multiplied to the inverse of 

the key.









=















−
415

157

390379

97216

0124.00913.0

0539.00622.0

The product is converted to its plain text form, which is GOOD [1].

Another  example  of  the  symmetric  key  algorithm  is  the  Data 

Encryption Standard (DES).  The basic idea of DES is to transform a 64-

bit block to another 64-bit block with the use of a 56-bit key by means of 

permutation and substitution.  A variant of DES is Triple DES.  In this 

scheme a message is encrypted three times using DES with 3 different 

key.  This makes the key longer thus making it harder to attack.

To illustrate the DES, suppose a message in hexadecimal is to be 

sent  say,  “0123456789ABCDEF”,  and  the  key  to  be  used  is 

“133457799BBCDFF1”.  Both the key and the message is converted to 

binary.  Then the message undergoes series of permutation, substitution 

and XOR’s with the key.  It produces the cipher “85E813540F0AB405” 

To decrypt the cipher, both the key and cipher are converted to binary 

then it goes through the series of permutation, substitution and XOR’s 

with the key in reverse order.  Then the message is again converted 

back to hexadecimal, which is “0123456789ABCDEF” [7].

13



Asymmetric Key Encryption Scheme

The other classification according to the use of keys is asymmetric 

key  encryption  (sometimes  called  the  public-key  encryption).   This 

scheme uses two keys, one key for encryption called the public key, and 

the other key for decryption called the private key.  The idea is that 

public  keys  are  available  of  any  one  to  use  and  the  corresponding 

private key is kept secret by the receiver.  For example User A wishes to 

send a message to User B.  User A will  use User B’s public  key and 

encrypts  the  message.   Upon  receiving  the  cipher,  User  B  uses  his 

private key to decrypt the message.  This scheme is made possible by 

trap-door functions, which are complex.  Since these trap-door functions 

are complex, its keys are also complex; this implies that a brute force 

attack on the cryptosystem will be long even for a computer.  Since the 

private  keys  are  not  transmitted through  a  medium,  it  could  not  be 

intercepted.  Asymmetric key encryption, however, are not truly safe. 

Trap-door  functions  still  have  inverses  but  it  is  hard  to  perform  at 

present time.  Therefore trap-door functions today may not be trapdoor 

functions in the future [2].

An  example  of  asymmetric  key  encryption  is  Elliptic  Curve 

Encryption.  The general form of an elliptic curve is  baxxxyy ++=+ 232 . 

The elliptic curve has a special property that when 2 points in the graph 

it produces a point in the graph. In this scheme the public and private 

14



keys are generated from an elliptic curve where a and b are non zero 

real numbers.  The strength of the elliptic curve encryption is due to the 

fact that factoring is not an easy process [8].

To illustrate the Elliptic Curve Encryption, first a Galois finite field 

GF is chosen on an elliptical curve P (x) with a point P lying in GF. Zp 

denotes the order of P. GF, P (x), P and Zp is made public.  To generate 

the  keys,  a  random  number  k  Î  Zp-1  is  generated  then  Q=kP  is 

computed.  Point Q is then made Public.  k is made private or secret key. 

To encrypt a message, suppose Alice sends a message m to Bob. Alice 

look up Bob’s Public Key: Q.  Then the message m is represented as a 

pair of the field elements (m1, m2), m1 Î GF, m2 Î GF.  Then a random 

integer a is selected, such that a Î Zp-1.  Then the point (x1, y1) = aP is 

computed.  Then  the  point  (x2,  y2)  =  aQ  is  computed.   The  field 

elements m1, m2 with x2, and y2 with some algorithm is combined to 

give two field elements c1 and c2.  After which, the data me = (x1, y1, 

c1, c2) is transmitted to Bob.  To decrypt the cipher Bob computes the 

point (x2, y2) = k (x1, y1), using it’s private key k.  Then m1 and m2 are 

decrypted from me [9].

Another  asymmetric  key  encryption  is  the  Knapsack  Algorithm. 

This encryption scheme, used the knapsack problem, which states that, 

given a set of positive integer {a1, a2, .. ai, t} is there a subset J },...1{ n⊆

15



such that  ta
Ji

i =∑
∈

?  During  1978,  the knapsack encryption  algorithm 

was considered to be secure.  Today however, this scheme has been 

broken and considered insecure [10].

To illustrate the Knapsack Algorithm, a public key given is ax  n-

tuple  A = (a1,a2,...,an) of distinct positive integers, as well as another 

positive integer k. The question is then which integers ai sum to equal k. 

To encrypt the message SECRET, its I first converted to binary.

S E C R E T
  101001

1  
  100010

1   
  100001

1   
  101001

0   
  100010

1   
  101010

0   

     Since each letter corresponds to a binary number with 7 digits, n = 7 

is set.  First a private key made up of n numbers is picked such that the 

ai’s are in increasing order, say (1,2,5,11,32,87,141).  Next two more 

numbers:  m such that it is greater than the sum of all  ai and w which 

must have no common factors with m are picked say w = 901 and m = 

1234.  These are used to establish our public key by the equation ai = w 

* ai mod m, where ai is any single member in the public key and ai is the 

corresponding member in the private key.  This gives the public key of A 

= (901,568,803,39,450,645,1173).   Next  the  public  key is  applied  to 

each letter. Encrypting just the letter S gives:

B = 1 x (901) + 0 x (568) + 1 x (803) + 0 x (39) + 0 x (450) + 1 x (645) 

+ 1 x (1173) = 3522

16



     Then  the number 3522 is sent to the receiver, he can decrypt that 

using his private key and the equation  B = B * w^(-1) mod m, where 

w^(-1) is the multiplicative inverse of w. This gives B = 3522 * (901)^(-

1) mod 1234 = 3522 * 1171 mod 1234 = 234.  The combination of  A 

that  will  yield  234 is  to  be  searched.  This  is  easily  done since  each 

member of  A is larger than all of the members to the right of it added 

together. In this example we get 141+87+5+1 or 1010011 which is the 

same as the S.  This solution can always be found without the key by 

trying all of the subsets of A, but if there are hundreds and hundreds of 

the  numbers  ai,  then  the  problem  quickly  becomes  unmanageable 

without the key [11].

Another asymmetric key encryption is the RSA (Rivest – Shamir – 

Adleman) Algorithm.  It is often considered a defacto standard.  In this 

scheme  the  public  and  private  keys  are  generated  from  2  prime 

numbers.  Like the elliptical curve scheme, the strength of RSA lies on 

the fact that factoring is difficult.  

Although Elliptical Curve Algorithm has smaller keys, RSA is faster 

during signing and decryption.  RSA is also significantly faster during key 

exchange.  Elliptical Curve Algorithm is not yet supported by companies 

since it is a new technology and has not been tested sufficiently [12].

17



Encryption could also be classified by the ciphers it produces into 

two,  the  two-way  encryption  and  the  one-way  encryption.   Two-way 

encryption produces ciphers that could be decrypted to plaintext.  One-

way encryption, on the other hand, produces ciphers that could not or 

would be too hard to decrypt.  This kind of encryption used in databases 

that don’t need to be decrypted.  An example would be a database of 

username and passwords.  It would be too dangerous to keep passwords 

in plaintext.  With the use of one-way encryption, the passwords in the 

database could not be decrypted, but could be verified by encrypting 

the password sent by the user and checking it against the database [2].

Attacks on a Cryptosystem

A  person  (or  an  intelligent  agent)  that  is  trying  to  break  a 

cryptosystem is called an attacker.  It is assumed that the attacker has 

full knowledge of the encryption and decryption function.  He may also 

have  pair  of  cipher  and  plaintext,  public  keys,  language  statistics, 

knowledge of the context.

The attacks are classified by the tools of the attacker.  The first is 

the cipher only attack.  In this attack (as the name would suggest), the 

attacker has a cipher and tries to deduce the plaintext from the cipher.

18



The second classification  is  the known-plaintext  attack.   In  this 

attack, the attacker has a cipher and its corresponding plaintext (may 

be full or partial).  The attacker would then try to deduce the encryption 

and decryption function and keys from the cipher-plaintext pair through 

statistics.

The  third  classification  is  the  chosen  plaintext  attack.   The 

attacker may have gotten the encryption function, which implies that he 

has an unlimited number of cipher and plaintext pairs.   He could also 

create  ciphers  from  nonsense  messages  to  check  the  statistics  of 

language  statistics.   From  the  unlimited  cipher-plaintext  pair,  the 

language statistics the attacker tries to deduce the decryption function 

and the keys [4].

Digital Signatures

An  attacker  may  disguise  himself  as  a  trusted  person  in  the 

cryptosystem.   He  could  then  ask  for  vital  information  from  other 

persons in the cryptosystem.  This led to the problem of authenticity of a 

message (or request) for vital information.  Digital signatures are the 

personal mark of a person in the cryptosystem.  They are the electronic 

equivalent of seals and signatures.  With a digital signature, it could be 

verified that a message indeed came from the sender [1].

19



Rivest – Shamir – Adleman (RSA) Algorithm

 RSA is a two-way, asymmetric key encryption scheme. It could 

also be used for digital signatures.  It is first generates primes (p and q) 

and uses it to produce n (n = pq).  Then a random number d less than n 

such that the gcf(d, (p-1)(q-1)) = 1, then compute e such that ed mod 

(p-1)(q – 1) = 1.  The public key is set to be the pair (e, n) and the 

private  key  is  d.   The  characters  of  the  message are  given  integral 

values, then the integers are concatenated to produce a large integer 

then it is divided into equal size blocks.  The blocks (Mi) are encrypted 

such that Mi
e mod n= Ci  (where Mi and Ci  are of equal block sizes).   The 

cipher  would  be the concatenation  of  Ci’s.   To decrypt,  the cipher is 

divided into the same block size.  The blocks (C i) are decrypted such 

that Ci
d mod n= Mi  (where Ci and Mi  are of equal block sizes).  Then, the 

block of Mi’s are concatenated and is reverted to plaintext.  (For the 

Mathematical Proof of RSA see Appendix 1) To digitally sign a message, 

it  is  encrypted using the private key and could be verified using the 

public key.  Since the private key and public key is a unique pair, it could 

be said that the personal mark (which could not be forged with out a 

private key) is left on the message [1].

RSA Example

20



In a simple example, let p = 47 and q = 59, then n = 2773.  d is 

then calculated to be 157 and e = 17.  Then let A = 01 , B = 02.. Z = 26 

and SPACE = 00, the message “ITS ALL GREEK TO ME” would be read as 

0920190001121200071805051100201500130500.   The  message  is 

then divided into blocks (4 in this case) M1 = 0920.  Then we encrypt the 

message C1 =92017 mod 2773 = 948.  Continuing the process on all the 

blocks  the  cipher  message  would  be 

094823401084144266323900778077402191655.  To decrypt the cipher 

it is again divided into blocks and using the private key, M1=948157 mod 

2773 = 920.   Continuing on all  blocks  of  the cipher the message is 

returned  to  0920190001121200071805051100201500130500  then  by 

using the look up table we get “ITS ALL GREEK TO ME” [1].

The  strength  of  the  RSA  algorithm is  the  fact  that  factoring  a 

number to a prime components is hard.  It is even more difficult to factor 

a number if it came from the multiplication of 2 prime numbers.  It even 

becomes more difficult if the two prime numbers are large [12].

21



Definition of Terms

Encryption – the act or process of making a text unintelligible.

Decryption – the act or process of making an encrypted message 

intelligible.

Plaintext – the message in its original form.

Cipher – the message after encryption

Keys – objects (most  of  the time numerical  in  nature) that  will 

assist in the encryption and decryption

One way functions – a function that has no inverse or an inverse 

that is impossible to solve.

One-way  encryption  –  uses  one-way  functions  to  generate  the 

ciphers, in effect the ciphers cannot be decrypted.

Salt – plaintext used in a one-way encryption.

Public-key – Keys that is shared with everyone. Used to encrypt 

messages.

Private-key – Keys that is kept secret.  Used to decrypt messages.

Symmetric  Keys  –  Keys  that  are  used  for  both  encrypting  and 

decrypting messages.

Attack – an attempt to break the cryptosystem.

Successful attack – when the attacker gains knowledge of the keys 

or could obtain the plaintext from a cipher.

22



IV. DESIGN AND IMPLEMENTATION

The context diagram of the system is shown in Figure 1.  It has 

system has five main processes as seen in  the Top Level  Data Flow 

Diagram (see Figure 2), 1) Create new records, 2) Logging to server, 3) 

Sending  of  a  message,  4)  Receiving  messages  and  5)  Intercept 

message.   It  also  as  3  databases  (stores),  1)  Private  keys,  2)  User 

information and 3) Messages database.

23

Simulation the RSA 
Algorithm by 

creating a 
messaging system

User

Attacker

Private keys User information Message Database

User Information

Figure 1 Context Diagram, Simulating the RSA Algorithm 
by Creating a Messaging System

Private Key

Private Key

Plaintext Message

Probable Plaintext 
Message

Plaintext Message

User 
Information

User 
Information

Cipher 
MessageCipher 

Message



The Entity Relationship Diagram of the system is seen in Figure 3. 

The databases are located in different sides.  The private key database 

contains the username and his corresponding private key.  It is located 

on the client-side.  The user information contains information about the 

user  such  as  user  number,  user  name,  hashed  password  and  his 

24

Log Out 
Signal

Private Key

User

1.0 
Create 
new 

record

2.0 
Logging 
into the 
system

4.0
Receiving 
messages

3.0
Sending 
message

Private keys User information Message Database

Attacker
5.0

Intercept 
message

User 
information

Confirmation

Private Key + 
User number

Possible 
Plaintext

Cipher

User 
information 
+ hashed 
password + 
public key

User name + 
public keys

User 
information

Confirmation

Hashed 
Password

Public Key
CipherCipher

Plaintext

Plaintext

Log Out 
Signal

Public Key

Figure 2 Top Level Data Flow Diagram, Simulation the 
RSA Algorithm by creating a Messaging system



corresponding  public  key.   It  is  located  on  the  server-side.   The 

messages  database  contains  the  cipher,  its  sender  and its  recipient. 

This store is located on the server side.

The first process a user will encounter is create new records.  This 

process is used to produce keys and records for the new user.  First the 

user gives a username and password.  The user name is then check if it 

is already in use.  If the user name is unique then a unique user number 

is  generated.  Then  password  is  hashed  so  that  it  is  not  stored  or 

25

Cipher

User

Attacker

Sends / 
Receive
s

Message

Intercep
ts

Ha
s

Private key

User no

User 
name

Hashed 
password

Public 
Key

User 
no

Private 
Key

Message 
no

Sender Recipient

Figure 3 Entity Relationship Diagram, Simulating the 
RSA Algorithm by Creating a Messaging System

1

1

1

M

M

1



transmitted in its raw form.  The keys are then generated.  The private 

key is stored in the private keys database and the rest is stored on the 

User information database.  The process then sends a confirmation to 

the user. (See Figures 4 and 5)

26

1.1
Check 

existence of 
username

1.2
Hash 

password

1.3
Generate 

Keys

Private keys

User information

Private Key + 
User numberUser 

number

User 
information

User 
information 
+ user 
number

User 
number + 
user name 
+ hashed 
password

User 
information 
+ hashed 
password + 
public key

Confirmation

Public Key

Figure 4 Subexplosion of process, “Create New Records”, 
Simulating the RSA Algorithm by Creating a 
Messaging System

Private Key

1.1.1
Generate 

prime 
numbers

1.1.2
Compute e & d

1.1.3
Assign Keys

User information Private Keys

Confirmation

Restart Signal

User 
information 
+ hashed 
password + 
public key

User 
number + 
user name + 
hashed 
password

User number + 
user name + 
hashed password 
+ prime numbers

User number + 
user name + 
hashed password 
+ potential keys

Private Key

Figure 5 Subexplosion of process, “Generate Keys”, 
Simulating the RSA Algorithm by Creating a Messaging 
System



The logging to server controls the users using the database.  It 

makes sure that the users are part of the system.  First the user is asked 

for his user name and password.  The process verifies the existence of 

the user name.  Then the password is hashed and checked against the 

hashed password stored on the database.  Once verified, the process 

sends a confirmation to the user and signals the system that the user is 

logged on.  If a user wishes to log out, the user sends a log out signal 

and the systems signals that the user has logged out.  (See Figure 6)

The sending a message process is the encryption process.  After a 

message is requested to be sent the plaintext is changer to a numerical 

27

2.1
Verify 

username

2.2
Hash 

password

2.3
Check 

Password

User information

User information

User 
number + 
password

User 
number + 

hashed 
password

Hashed 
password

Confirmation

2.4
Log out

Log out signal Log out signal

User number

Figure 6 Subexplosion of process, “Logging into the 
System”, Simulating the RSA Algorithm by Creating a 
Messaging System



value with a use of a look up table of ASCII.  The plaintext equivalent is 

encrypted with the use of the public key of the recipient.  The cipher is 

then stored on the message database. (See Figure 7)

The receiving messages process is the decryption process.  The 

process fetches all messages for the user.  It then decrypts the cipher to 

obtain the plaintext equivalent.  The plaintext equivalent is converted 

back to its original form with the use of the ASCII look-up table.  This is 

shown in Figure 8.

28

Plaintext
4.1

Change 
plaintext 

equivalent to 
plaintext

4.2
Decrypt 
cipher

Private keys

Message Database
Cipher

Private key

Plaintext 
equivalent

Figure 8 Subexplosion of process, “Receiving Message”, 
Simulating the RSA Algorithm by Creating a 
Messaging System

3.1
Change 

plaintext to 
integer

3.2
Encrypt 
plaintext 

equivalent

User information

Message Database
Cipher

Public key

Plaintext 
equivalentPlaintext

Figure 7 Subexplosion of process, “Sending Message”, 
Simulating the RSA Algorithm by Creating a 
Messaging System



The intercept a message is not a real part of the system.  This 

process  simulates  the  attack  by  taking  a  cipher  form  the  message 

database and decipher it by brute force even with the absence of the 

proper private key as shown in Figure 9.

There are three excutables that could be imported by PHP.  The 

first is the Key Generator.  It generates a public and private key pair and 

saves them in 2 separate files.   (See Figure 10).   The second is  the 

Encryptor.  With a text file and the public key file, it creates a cipher file. 

(See Figure 11)  The third is the Decryptor.  With the cipher file and a 

public key file it recreates the text file. (See Figure 12).

29

5.2
Downlaod 
message 

from 
Server

5.1
Brute 
force 

decryptio
n

Public Key

Cipher

Cipher

Possible 
Plaintext

Figure 9 Subexplosion of process, “Intercept Message”, 
Simulating the RSA Algorithm by Creating a 
Messaging System

6.0
Generate 

Keys

User Public and Private Keys

Figure 10 Data Flow Diagram of the Key Generator 
executable, Simulating the RSA Algorithm by Creating a 
Messaging System

7.0
Change 

plaintext to 
integer

8.0
Encrypt 
plaintext 

equivalent

Cipher
Plaintext 

equivalentText file
User 

Figure 11 Data Flow Diagram of the Encryptor executable, 
Simulating the RSA Algorithm by Creating a Messaging 
System

Public Key



Data Definition

User Information
Name Type Description
User no Integer System generated 

number that uniquely 
identifies a user.

User name Text Name that uniquely 
identifies the user.

Hashed Password Text Password after it has 
gone through hashing

Public Key Integer Key used to encrypt 
messages

Messages
Name Type Description
Message no Integer Number that uniquely 

identifies a message
Sender Integer The user number of 

the user who sent the 
message

Recipient Integer The user number to 
which the message is 
sent.

Cipher Integer Encrypted text

30

9.0
Decrypt 
cipher

10.0
Change to 

equivalent to 
plaintext

Plaintext
Plaintext 

equivalentCipher
User 

Private Key

Figure 12 Data Flow Diagram of the Decryptor executable, 
Simulating the RSA Algorithm by Creating a Messaging 
System



Private keys
Name Type Description
User no Integer Number that identifies 

uniquely a user.
Private Key Integer Key used during 

decryption

TECHNICAL ARCHITECTURE

The  will  use  a  client-server  architecture.   The  server  and  the 

medium are assumed to be insecure, but the client is assumed to be 

secure.  For this reason, vital information is not transmitted or stored in 

the server in its raw form.  The private key store is located in the client 

side because the private keys are needed to be kept secret.  This also 

implies that the key generation is done in the client side.  The password 

is another vital information that is needed to be kept secret, however it 

is needed to be stored in the server.  Therefore it is first hashed before it 

is transmitted and stored on the server.  This implies that the hashing 

process  is  done  on  the  client  side.   Messages  may  contain  vital 

information that is needed to be kept secret.  Messages are encrypted 

and then sent to the server.  It is stored in the server if it could not be 

delivered (recipient is not logged).  The encryption is also done in the 

client  side.   The decryption  process  must  be done in  the client-side; 

otherwise the message would have been transmitted to client from the 

server in its raw form, which would have defeated the purpose of the 

encryption.

31



V. RESULTS

A. Server Application

The system has three main components.  The first of  the 

components is the Server Application.  The server is needed for 

the other 2 components to run.  It handles the storing and request 

for retrieval of non-vital or encrypted information.

B. Client Application

The second component is the Client Application.  The client 

requests the server for data and then processes it.  It also stores 

vital or non-encrypted information.

Connection Screen

This screen asks the user for the IP Address of the server as 

illustrated in Figure 13.  It would then try to connect to the server. 

If  no  connection  is  found  an  error  message  is  shown.   If  a 

connection is found, it screen transfers to the login screen.

32



 

Login Screen

This  screen  asks  for  the  user  name  and  password  (See 

Figure 14).   Once the Enter button is pressed, first hashes the 

password. It then requests the server for user information (which 

includes the hashed password) and it  checks if  the password is 

correct.  If no user with the specified user name was found, or the 

password was incorrect it will show an error message.  Once the 

user name and password are verified, the component shows the 

Main Screen.  The exit button is for the User to end the program. 

The New User button will show the New User Screen.

33

Figure 13 Connection  Screen  of  the  Client  Application, 
Simulating  the  RSA  Algorithm  by  Creating  a 
Messaging System



 

New User Screen

This screen shows allows to user to create a new user in the 

system as shown in Figure 15.  Once the Enter Button is pressed, 

it requests the server to check if the user name exists; if it exists, 

it will show an error message.  If the user name does not exist, 

then it hashes the password, creates the public and private keys 

and stores the private key in the client side while the user name, 

hashed password and public key will be stored in the server.  It 

then returns the user to the Log in screen.  The cancel  button 

returns the user to the log in screen without any operations.

34

Figure 14 Login  Screen  of  the  Client  Application, 
Simulating  the  RSA  Algorithm  by  Creating  a 
Messaging System



 

Main Screen

The main screen allows the user to send messages as seen 

in Figure 16.  The combo box lists the all the users in the system. 

The text area is where the user types his message.  Once the send 

button is pressed, it requests the server for the public key of the 

recipient of the message.  It then encrypts it using the public key 

of the recipient and stores the message in the server.  The Reset 

button erases the message in the text area without  sending it. 

The  Receive  messages  button  shows  the  Receive  messages 

screen.  The Log out button takes the user to the Log in screen 

where he can log in again or exit the program.

35

Figure 15 New  User  Screen  of  the  Client  Application, 

Simulating  the  RSA  Algorithm  by  Creating  a 
Messaging System



 

 

Read Messages Screen

This  screen  retrieves  a  message  from  the  server  and 

decrypts it with the private key of the user (See Figure 17).  The 

“read  next”  button  reloads  the  screen  to  retrieve  the  next 

message.  If no new messages was found on the server The “read 

next” becomes the “back” button that allows the user to go back 

to the main screen.

36

Figure 16 Main Screen of the Client Application, Simulating 
the RSA Algorithm by Creating a Messaging System



 

 

C. Attacker Component

This  component simulates an attacker to the system.  Its 

main intention is read encrypted messages with out the proper 

private key.   This  component assumes that the messages is 

encrypted using the RSA Algorithm, the component can retrieve 

the public keys of the user and the cipher of the messages.

Connection Screen

This screen allows the attacker to connect to the server (See 

Figure 18).  If no connection was found, an error message appears. 

If  a  connection  was  found,  the  attacker  is  taken  to  the  main 

screen.

37

Figure 17 Read  New  Messages  Screen  of  the  Client 
Application,  Simulating  the  RSA  Algorithm  by 
Creating a Messaging System



 

Main Screen

The main screen shown in Figure 19 (left side) allows 

the  attacker  to  randomly  get  a  message and its  corresponding 

information.   If  the  message  has  been  read  then  it  has  been 

deleted  from  the  server  and  therefore  cannot  be  attacked  as 

shown  on  Figure  19  (right  side).  The  exit  button  allows  the 

attacker to exit the component.

 

  

 

38

Figure 18 Connection  Screen  of  the  Attacker  Component, 
Simulating  the  RSA  Algorithm  by  Creating  a 
Messaging System

Figure 19 Main Screen of the Attacker Component, Simulating 
the RSA Algorithm by Creating a Messaging System



Read Messages Screen

On loading the screen, it first tries to deduce the private key 

of  the recipient  through his  public  key by brute force.   Then it 

decrypts cipher using the deduced private key and a block size of 

one (the real block size is 6).  Then it is saved to a file.  It then 

continues to decrypt the cipher while increasing the block size. 

This is done until the message is decrypted using the block size of 

ten.   The  “read  next”  button  opens  the  file  of  the  probable 

plaintext with a corresponding increase in block size.  The “read 

previous” button opens the file of the probable plaintext with a 

corresponding decrease in block size (See Figure 20).

 

 

39

Figure 20 Read  Messages  Screen  of  the  Attacker 
Component,  Simulating  the  RSA  Algorithm  by 
Creating a Messaging System



D. Executables

There are three executables, Key Generator, Encryptor, 

Decryptor.  All of these executables can be runned on a command 

line.

Key Generator

This command creates a pair of public and private keys.  It 

also saves it in different files as specified by the user (See Figure 

21).

 

40

Figure 21 Using  the  Key  Generator  in  a  command  line, 
Simulating  the  RSA  Algorithm  by  Creating  a 
Messaging System



Encryptor

This command creates a cipher from a text file and a public key 

file.  It then saves the cipher file as specified by the user. (See Figure 

22).

 

Decryptor

This command recreates the text from the corresponding private 

key and cipher file.  It then saves the text file as specified by the user 

(See Figure 23).

41

Figure 22 Using  the Encryptor  in  a  command line,  Simulating 
the RSA Algorithm by Creating a Messaging System



 

42

Figure 23 Using the Decryptor in a command line, Simulating the RSA Algorithm by 
Creating a Messaging System



VI. DISCUSSION

The simulation showed how the RSA algorithm encrypts, decrypts, 

and generates its keys.  The length of the keys determines the speed of 

the  encryption  and  decryption  processes.   It  also  determines  the 

strength of the encryption.   As the key sizes increases, the speed of 

encryption  and  decryption  becomes  slower,  but  the  strength  of  the 

cipher increases.

The computational time of the key generation is )( 4nO  where n is 

the size of the key [12].  For simulation purposes the length of the keys 

was only 20-bits.  However commercially available cryptosystems using 

the RSA Algorithm use keys with length of at least 768-bits.

Both the encryption and decryption have a computational time of 

)( 3nO where n is the size of the key [12].  Likewise, both encryption and 

decryption is involved in raising a number to a power then getting the 

modulo with another number.  To handle the large numbers a property 

of modulo was used.  It states that if A, B, C are integers then 

CCBCACAB mod)mod)(mod(mod =

This implied that if an integer was multiplied to itself and its modulo was 

taken and multiplied to itself again for a number of times, then it would 

43



have the  same effect  as  raising a  number  to  a  power  then take its 

modulo (For the proof of the property see Appendix 2).

 

The  simulation  shows  how  a  message  can  be  transmitted, 

securely.  Since the system uses RSA algorithm (which is an asymmetric 

key encryption), public keys are stored in the server and private keys 

are kept secret.  This eliminates the need for sharing secret keys [2]. 

However the connection between public key and private key is hidden 

with  a  trap-door  function.   Trap-door  functions  are  mathematical 

functions  are  significantly  easier  to  compute  in  one  direction  (the 

forward  direction)  than  the  inverse  direction  (opposite  direction). 

However the opposite direction can be computed with the knowledge of 

some value (trap-door value).  This means that the private key may be 

deduced  with  the  use  of  the  public  key,  by  obtaining  this  trap-door 

value.  With the increase of computational power the trap-door value 

may be easier to obtain [12].

To simulate the interception of a cipher, the attacker component 

randomly  retrieves  a  cipher  form  the  server,  along  with  its 

corresponding information.  To simulate the attack, it is assumed that 

the attacker has a cipher; the public key used to encrypt the cipher and 

the knowledge that the encryption algorithm used is RSA.  Armed with 

these  assumptions  the  private  key  needed  to  decrypt  the  cipher  is 

44



deduced by brute force.  Without the knowledge of the block size used 

to encrypt the message, the attacker decrypts the data again and again 

using block sizes from one to ten.

To deduce the private key, the attacker must be able to find the 

prime factors of the public key (trap-door values).  The attack uses a 

crude way of finding the prime factors of a number.  This is done by 

checking  if  n  was  divisible  by  the  a  number,  then  incrementing  the 

number until a factor is found.  Since the key sizes were small, brute 

force was enough to get the prime factors.  The strength of RSA lies on 

the fact that factoring is hard.  The two best factoring algorithms are 

Number Field Sieve and Multiple Polynomial Quadratic Seive, which has 

a  computational  time  of  )(
3
2

3
1

)ln(ln)(ln9.1 nneO  and  )(
2
1

2
1

)ln(ln)(ln nneO  

respectively.   Both  of  these  algorithms  has  an  exponential  time 

complexity.  However key generation has a polynomial time complexity 

[12].  Hence, it is faster to produce keys than to break keys.  Therefore it 

would be impractical to break a key without good factoring algorithms 

as keys could be changed easily.

Using the processes in the simulation, three Java programs that 

can run on a command line (or dos) are produced.  The first generates a 

public  key,  a  private  key  and  creates  two  files  to  store  each  key 

45



separately.  The second program encryptes a text file using a public key 

file.   The  third  program decryptes  a  cipher  using  a  private  key  file. 

These three programs could be imported by PHP with the use of the 

exec() and the passthru() functions.  .

46



VII. CONCLUSION

A system “Simulating of the Rivest – Shamir – Adleman Algorithm 

by  Creating  a  Messaging  System”  was  created  with  the  following 

functionalities:

1) simulates  the  encryption  and  decryption  processes  of  the 

algorithm.

2) simulates the key generation of the algorithm.

3) shows  the  secure  transmission  of  data  over  an  insecure 

medium by sending data to a server where the data is exposed 

to anybody able to access the server.

4) simulates  an attack by intercepting  a cipher and attempt to 

decrypt it by brute force.

The  study  also  produced  three java  executables  programs that 

could be runned from command lines (or dos).  These executables can 

be imported by PHP and other scripting languages through their  dos 

shell commands.

47



VIII. RECOMMENDATIONS

As it was seen a 20-bit key offered some protection, but not total 

protection.  It is recommended for future studies on RSA to have larger 

key sizes (768-bits).

The study also only showed a brute force attack.  However there 

are many kinds of attacks.  It is recommended for future studies to have 

other kinds of attacks.

Although RSA is one of the most used algorithms, it is not used 

exclusively.  Different encryption algorithms are used in combination to 

produce a stronger cipher than algorithms used exclusively.  One such 

combination is the RSA-DES.  It is recommended for future studies to 

include combination of algorithms.

The  study  was  limited  to  the  encryption,  decryption,  key 

generation,  and  transmission.   It  did  not  include  digital  signing  and 

verification.   It  is  recommended  for  future  studies  to  include  other 

aspects of RSA algorithm.

48



IX. BIBLIOGRAPHY

[1]  Welsh,  Dominic.  Codes  and  Cryptography.  Oxford:  Clarendon 
Press, 1988.

[2] Data Encryption Page, [http://www.anusjseth.com/crypto/basics.html]

[3] Klima, Vlastimil., Rosa, Tomas. “Attack on Private Signature Keys of 
the  OpenPGP  Format,  PGP(TM)  Programs  and  Other  Applications 
Compatible with OpenPGP”,

Cryptology  ePrint  Archive:  Report  2002/076, 
[http://eprint.iarc.org/2002/076] 

[4]  Pfleeger,  Charles. Security in Computing.  New Jersey:  Prentice-
Hall, 1989.

[5]  Ooi,  K.S.,  Vito,  Brain  Chin.  “Cryptanalysis  of  S-DES”,  Cryptology 
ePrint Archive. [http://eprint.iacr.org/2002/045/] 

[6] Schmidt, Dieter. “ABC - A Block Cipher”, Cryptology ePrint Archive. 
[http://eprint.iacr.org/2002/062/]

[7] May, Mike. DES – Example, 
[http://www.adeptscience.co.uk/products 
/mathsim/maple/powertools/cryptography/HTML/DES-Example.html]

[8] Elliptic Curve Cryptography, [http://world.std.com/~dpj/elliptic.html]

[9] Gathani, Arnit. “Implementation of Elliptical Curve Cryptography in 
an Embedded System”, 
[http://www.cs.rit.edu/~ang6829/cryptography/paper.pdf]

[10] Encryption Algorithms, 
[http://www.mycrypto.net/encryption/crypto_algorithms.html]

[11] History of Cryptography, [http://www-
cse.stanford.edu/classes/sophomore-college/projects-
97/cryptography/history.html]

[12] RSA Laboratories Cryptography FAQs Section Index, 
[http://www.rsasecurity.com/rsalabs/faq/sections.html] 

49



Appendix 1
Proof of RSA

To show that an encrypted message with the use a public key can be 

decrypted with its corresponding private key mathematically, the proof 

is as follows: If 

nMC e mod= , 

then

nCM d mod= .

By the substituting C with Me mod n

nnMM de mod)mod(=

By the definition of mod 

nsnMM de mod)( −=

where s is a non-negative integer.  By the binomial expansion,

( ) nsnMM
d

i

iided
i mod)(

0

)( 




 −= ∑

=

−

In rewriting,

( ) nsnMMM
d

i

iided
i

ed mod)(
1

)( 




 −+= ∑

=

−

By the properties of mod

( )∑
=

− −+=
d

i

iideed nsnMnMM
1

)( mod)(mod .

Since a mod n = 0 if a is divisible by n and iide snM )()( −−  is divisible by n,

nMM ed mod= .

Since ed mod(p-1)(q-1)= 1,

50



(1) nMM qpt mod1)1)(1( +−−= .

By Euler-Fermat identity that states for any prime number p and any 

positive integer M,

1mod1 =− pM p .

Therefore,

11 +=− rpM p .

where r is some non-negative integer.  By raising both sides by t(q-1) 

then multiplying M,

MrpM qtqtp )1(1)1(4)1( )1( −+−− += .

By the binomial expansion, 

( ) 





= ∑

−

=

−+−−
)1(

0

)1(1)1)(1( )(
qt

i

iqt
i

qpt rpMM .

In rewriting,

( ) 





+= ∑

−

=

−+−−
)1(

0

)1(1)1)(1( )(1
qt

i

iqt
i

qpt rpMM

taking the mod p of both sides and using the definition of mod

pMpM qpt modmod)1)(1( =−− .

By the definition of mod,

jpMhpM qpt −=−+−− 1)1)(1(

where h and j are non-negative integers and h > j.  In rewriting,

MpjhM qpt =−−+−− )(1)1)(1(

Since (h-j) is a non negative integer and by the definition of mod,

MpM qpt =−− mod)1)(1(

51



By the same arguments,

MqM qpt =−− mod)1)(1( .

By the Lemma that states, for any pair of positive integers (x, u), if xu 

mod p = x and        xu mod q = x then xu mod pq = x,

MpqM qpt =+−− mod1)1)(1( .

Since n = pq,

MnM qpt =+−− mod1)1)(1(

Substituting this to (1),

MM = .

Its  is  now seen that  for  a public  key (e,  n)  and a private key d the 

message M could be encrypted using the public key and be decrypted 

using the corresponding private key.

52



Appendix 2

Proof of AB mod C = (A mod C)(B mod C) mod C

Let A, B, C be integers then, 

CCBCA mod)mod)(mod(

using the property of modulus we can rewrite the statement as 

CjCBkCA mod))(( −−

where j, c are positive integers.  By performing the multiplication we get

CkjCjACkBCAB mod)( 2+−−

then we can cancel the addends which are divisible by C.  We arrive at 

the expression

CABmod .

53



Appendix 3

Code of Server application

import java.io.*;
import java.net.*;
public class Server_Connection
{

public static void main(String args[])
{

Thread t;
int port = 9001;
try
{

ServerSocket SS = new ServerSocket(port);
System.out.println("Server Started");
System.out.println(SS.getLocalSocketAddress());
while (true)
{

Socket s = SS.accept();
System.out.println("Connected Server");
Server_Connection_Thread SCT = new 

Server_Connection_Thread(s);
t = new Thread(SCT);
t.start();

}
}
catch(Exception e)
{}

}
}

import java.io.*;
import java.net.*;

public class Server_Connection_Thread implements Runnable
{

private Socket s;
private InputStream sis; 
private OutputStream sos; 
private ObjectInputStream sois;
private ObjectOutputStream soos;

Server_Connection_Thread(Socket a)
{

try
{

s = a;
sis = a.getInputStream();
sois = new ObjectInputStream(sis);
sos = a.getOutputStream();
soos = new ObjectOutputStream(sos);
System.out.println("New Thread Created");

}
catch(Exception e){System.out.print(e);}

}

public void Check_If_Key_Exists()
{

boolean found = false;
try
{

int n = sois.readInt();
File users = new File("User_Information.db");
FileInputStream fis = new FileInputStream(users);
ObjectInputStream ois = new ObjectInputStream(fis);

54



boolean check = true;
while(check && !found)
{

try
{

User_Info temp = (User_Info) ois.readObject();
if (temp.Public_Key.n == n)
{

found = true;
}

}
catch(Exception e){check = false;}

}
ois.close();
fis.close();
soos.writeBoolean(found);
soos.flush();

}
catch(Exception e){}

}

public User_Info Find_User(String name)
{

boolean found = false;
User_Info ui = new User_Info();
try
{

File no_users = new File("Number_of_Users.num");
File user_infomration = new File("User_Information.db");
FileInputStream fis = new FileInputStream(no_users);
ObjectInputStream ois = new ObjectInputStream(fis);
int num = ois.readInt();
ois.close();
fis.close();
fis = new FileInputStream(user_infomration);
ois = new ObjectInputStream(fis);
int x = 0;
while ((x != num) && !found)
{

ui = (User_Info) ois.readObject();
if (ui.User_Name.compareTo(name) == 0)
{

found = true;
}
x++;

}
ois.close();
fis.close();

}
catch(Exception e){}
if (!found)
{

ui = new User_Info(0, " ", " ", null);
}
return ui;

}

public void Request_User_Info()
{

try
{

String name = (String) sois.readObject();
System.out.println("User Info of: "+ name+" has been requested");
User_Info ui = Find_User(name);
soos.writeObject(ui);
soos.flush();

}
catch(Exception e){}

}

55



public void Save_User_Info()
{

try
{

User_Info ui = (User_Info) sois.readObject();
System.out.print("User Number: "+ ui.User_Number);
System.out.print(" Username: "+ui.User_Name+" Password: ");
System.out.print(ui.Hashed_Password+" Public Key: ");
System.out.println(ui.Public_Key.d+ ", "+ui.Public_Key.n);
User_Info p1 = Find_User(ui.User_Name);
if (p1.User_Number == 0)
{

File old_no_users = new File("Number_of_Users.num");
File new_no_users = new File("temp1.jmp");
FileInputStream fis = new FileInputStream(old_no_users);
ObjectInputStream ois = new ObjectInputStream(fis);
FileOutputStream fos = new FileOutputStream(new_no_users);
ObjectOutputStream oos = new ObjectOutputStream(fos);
ui.User_Number = ois.readInt() + 1;
oos.writeInt(ui.User_Number);
oos.close();
fos.close();
ois.close();
fis.close();
old_no_users.delete();
new_no_users.renameTo(new File("Number_of_Users.num"));
File oldFile = new File("User_Information.db");
File newFile = new File("Temp2.jmp");
fis = new FileInputStream(oldFile);
ois = new ObjectInputStream(fis);
fos = new FileOutputStream(newFile);
oos = new ObjectOutputStream(fos);
for (int counter = 1; counter != ui.User_Number; counter++)
{

User_Info tempnode = (User_Info) ois.readObject();
oos.writeObject(tempnode);

}
oos.writeObject(ui);
oos.close();
ois.close();
fis.close();
fos.close();
oldFile.delete();
newFile.renameTo(new File("User_Information.db"));
soos.writeBoolean(true);
soos.flush();

}
else
{

soos.writeBoolean(false);
soos.flush();

}
}
catch(Exception e){System.out.println(e);}

}

public void Save_Message()
{

try
{

Message_Info mi = (Message_Info)sois.readObject();
File oldnm = new File("Number_of_Messages.num");
File newnm = new File("temp3.jmp");
FileInputStream fis = new FileInputStream(oldnm);
ObjectInputStream ois = new ObjectInputStream(fis);
FileOutputStream fos = new FileOutputStream(newnm);
ObjectOutputStream oos = new ObjectOutputStream(fos);
mi.Message_Number = ois.readInt() +1;
oos.writeInt(mi.Message_Number);
oos.close();
ois.close();

56



fis.close();
fos.close();
oldnm.delete();
newnm.renameTo(new File("Number_of_Messages.num"));
System.out.println("Message Number: "+mi.Message_Number);
File oldFile = new File("Messages.db");
File newFile = new File ("temp5.jmp");
File archive = new File ("archive.jmp");
FileOutputStream fos2 = new FileOutputStream(archive);
ObjectOutputStream oos2 = new ObjectOutputStream(fos2);
fis = new FileInputStream(oldFile);
fos = new FileOutputStream(newFile);
ois = new ObjectInputStream(fis);
oos = new ObjectOutputStream(fos);
boolean check = true;
while(check)
{

try
{

Message_Info tempnode = (Message_Info) 
ois.readObject();

oos.writeObject(tempnode);
oos2.writeObject(tempnode);

}
catch(Exception e){check = false;}

}
oos.writeObject(mi);
oos2.writeObject(mi);
oos2.close();
fos2.close();
oos.close();
ois.close();
fis.close();
fos.close();
oldFile.delete();
newFile.renameTo(new File("Messages.db"));
File unsent_message = new File(String.valueOf(mi.Message_Number)

+".mes");
fos = new FileOutputStream(unsent_message);
PrintStream ps = new PrintStream(fos);
char c = 'a';
check = true;
while(check)
{

try
{

c = sois.readChar();
System.out.print(c);
ps.print(c);

}
catch(Exception e){check = false;}

}
ps.close();
fos.close();

}
catch(Exception e)
{

System.out.println(e);
System.out.print(e.getMessage());
System.out.print(e.getLocalizedMessage());

}
}

public void Request_Message()
{

try
{

Message_Info mi = new Message_Info();
int reciever = sois.readInt();
File messages = new File("Messages.db");
File newMes = new File("temp6.jmp");

57



FileInputStream fis = new FileInputStream(messages);
ObjectInputStream ois = new ObjectInputStream(fis);
FileOutputStream fos = new FileOutputStream(newMes);
ObjectOutputStream oos = new ObjectOutputStream(fos);
boolean check = true, found = false;
while(check && !found)
{

try
{

Message_Info temp = (Message_Info) ois.readObject();
if(temp.Reciever == reciever)
{

mi = temp;
found = true;

}
else
{

oos.writeObject(temp);
}

}
catch(Exception e){check = false;}

}
check = true;
while(check)
{

try
{

Message_Info temp = (Message_Info) ois.readObject();
oos.writeObject(temp);

}
catch(Exception e){check = false;}

}
ois.close();
fis.close();
oos.close();
fos.close();
soos.writeBoolean(found);
soos.flush();
if (found)
{

soos.writeObject(mi);
soos.flush();
char[] c = new char[1];
File mes = new File(String.valueOf(mi.Message_Number)

+".mes");
FileReader fr = new FileReader(mes);
BufferedReader br = new BufferedReader(fr);
while(br.read(c, 0, 1) != -1)
{

soos.writeChar(c[0]);
soos.flush();

}
br.close();
fr.close();
mes.delete();
messages.delete();
newMes.renameTo(new File("Messages.db"));

}
else
{

newMes.delete();
}

}
catch(Exception e){System.out.println(e);}

}

public void Request_All_Users()
{

try
{

File num = new File("Number_of_Users.num");

58



FileInputStream fis = new FileInputStream(num);
ObjectInputStream ois = new ObjectInputStream(fis);
int x = ois.readInt();
ois.close();
fis.close();
soos.writeInt(x);
soos.flush();
File users = new File("User_Information.db");
fis = new FileInputStream(users);
ois = new ObjectInputStream(fis);
for(int y = 0; y != x; y++)
{

User_Info temp = (User_Info) ois.readObject();
soos.writeObject(temp);
soos.flush();

}
ois.close();
fis.close();

}
catch(Exception e){}

}

public void get_Archive()
{

try
{

File num = new File("Number_of_Messages.num");
FileInputStream fis = new FileInputStream(num);
ObjectInputStream ois = new ObjectInputStream(fis);
int x = ois.readInt();
ois.close();
fis.close();
soos.writeInt(x);
soos.flush();
File mes = new File("Archive.jmp");
fis = new FileInputStream(mes);
ois = new ObjectInputStream(fis);
for(int y = 0; y!= x; y++)
{

Message_Info mi = (Message_Info) ois.readObject();
soos.writeObject(mi);
soos.flush();

}
ois.close();
fis.close();

}
catch(Exception e){}

}

public void get_Message_from_no()
{

try
{

int message_no = sois.readInt();
File message = new File(String.valueOf(message_no)+".mes");
FileReader fr = new FileReader(message);
BufferedReader br = new BufferedReader(fr);
char[] c = new char[1];
soos.writeBoolean(true);
while(br.read(c, 0, 1) != -1)
{

soos.writeChar(c[0]);
soos.flush();

}
br.close();
fr.close();

}
catch(Exception e)
{

try

59



{
soos.writeBoolean(false);
soos.flush();

}
catch(Exception ex){}

}
}

public void Get_User_Name()
{

try
{

int x = sois.readInt();
boolean check = true, found = false;
String name = " ";
File users = new File("User_Information.db");
FileInputStream fis = new FileInputStream(users);
ObjectInputStream ois = new ObjectInputStream(fis);
while(check && !found)
{

try
{

User_Info ui = (User_Info) ois.readObject();
if (x  == ui.User_Number)
{

name = ui.User_Name;
found = true;

}
}
catch(Exception e){check = false;}

}
ois.close();
fis.close();
soos.writeObject(name);
soos.flush();

}
catch(Exception e){}

}

public void run()
{

try
{

System.out.println("Connected");
int command = sois.readInt();
switch(command)
{

case 0:
{

System.out.println(sois.readUTF() +" Connected");
break;

}
case 1: 
{

System.out.println("Save User Info");
boolean bool = true;
while(bool)
{

Check_If_Key_Exists();
bool = sois.readBoolean();

}
Save_User_Info();
break;

}
case 2:
{

System.out.println("Request Message");
Request_Message();
break;

60



}
case 3:
{

Request_User_Info();
break;

}
case 4:
{

System.out.println("Request all Users Information");
Request_All_Users();
break;

}
case 5:
{

System.out.println("Save Message");
Save_Message();
break;

}
case 6:
{

System.out.println("Get User Name");
Get_User_Name();
break;

}
case 7:
{

System.out.println("Getting archive");
Request_All_Users();
get_Archive();
break;

}
case 8:
{

get_Message_from_no();
break;

}
}
sois.close();
soos.close();
sis.close();
sos.close();
s.close();
System.out.println("Connection Ended");

}
catch(Exception e){}

}
}

import java.io.*;
public class Key implements Serializable
{

public int d, n;
public boolean type;
public Key (String a, int x, int y)
{

type = (a == "public"); // TRUE = PUBLIC, FALSE = PRIVATE
d = x;
n = y;

}
}

import java.io.*;
public class Message_Info implements Serializable
{

int Message_Number;
int Sender;
int Reciever;
Message_Info(){}
Message_Info(int a, int b, int c)
{

61



Message_Number = a;
Sender = b;
Reciever = c;

}
}

import java.io.*;
import java.lang.*;
public class User_Info implements Serializable
{

int User_Number;
String User_Name;
String Hashed_Password;
Key Public_Key;
User_Info(int a, String b, String c, Key d)
{

User_Name = b;
Hashed_Password = c;
Public_Key = d;
User_Number = a;

}
User_Info(){}

}

62



Appendix 4
Code of the Client Application

import java.io.*;
public class Key implements Serializable
{

public int d, n;
public boolean type;
public Key (String a, int x, int y)
{

type = (a == "public"); // TRUE = PUBLIC, FALSE = PRIVATE
d = x;
n = y;

}
}

import java.io.*;
public class Message_Info implements Serializable
{

int Message_Number;
int Sender;
int Reciever;
Message_Info(){}
Message_Info(int a, int b, int c)
{

Message_Number = a;
Sender = b;
Reciever = c;

}
}

import java.io.*;
import java.lang.*;
public class User_Info implements Serializable
{

int User_Number;
String User_Name;
String Hashed_Password;
Key Public_Key;
User_Info(int a, String b, String c, Key d)
{

User_Name = b;
Hashed_Password = c;
Public_Key = d;
User_Number = a;

}
User_Info(){}

}

import javax.swing.UIManager;
import java.awt.*;

public class Connection_Screen
{
  private boolean packFrame = false;

  //Construct the application
  public Connection_Screen()
  {
    Connection_Frame frame = new Connection_Frame();
    //Validate frames that have preset sizes
    //Pack frames that have useful preferred size info, e.g. from their layout
    if (packFrame)
    {
      frame.pack();
    }
    else
    {
      frame.validate();
    }

63



    //Center the window
    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
    Dimension frameSize = frame.getSize();
    if (frameSize.height > screenSize.height)
    {
      frameSize.height = screenSize.height;
    }
    if (frameSize.width > screenSize.width)
    {
      frameSize.width = screenSize.width;
    }
    frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - 
frameSize.height) / 2);
    frame.setVisible(true);
  }
  //Main method
  public static void main(String[] args)
  {
    try
    {
      UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
    }
    catch(Exception e)
    {
      e.printStackTrace();
    }
    new Connection_Screen();
  }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.lang.*;
import java.net.*;
import java.io.*;
public class Connection_Frame extends JFrame
{
  private JPanel contentPane;
  private JButton Button_Connect = new JButton();
  private JTextField TextField_IPAddress = new JTextField();
  private JLabel Label_IPAddress = new JLabel();

  //Construct the frame
  public Connection_Frame()
  {
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
    try
    {
      jbInit();
    }
    catch(Exception e)
    {
      e.printStackTrace();
    }
  }
  //Component initialization
  private void jbInit() throws Exception
  {
    //setIconImage(Toolkit.getDefaultToolkit().createImage(Connection_Frame.class.getResour
ce("[Your Icon]")));
    contentPane = (JPanel) this.getContentPane();
    Button_Connect.setBounds(new Rectangle(128, 123, 145, 35));
    Button_Connect.setText("Connect");
    Button_Connect.addActionListener(new java.awt.event.ActionListener()
    {
    public void actionPerformed(ActionEvent e)
    {
    Button_Connect_actionPerformed(e);
    }
    });

64



    contentPane.setLayout(null);
    this.setSize(new Dimension(406, 217));
    this.setTitle("RSA Simulation");
    contentPane.setBorder(BorderFactory.createRaisedBevelBorder());
    TextField_IPAddress.setText("localhost");
    TextField_IPAddress.setBounds(new Rectangle(15, 77, 375, 22));
    Label_IPAddress.setText("Enter IP Address of the Server Computer");
    Label_IPAddress.setBounds(new Rectangle(85, 34, 228, 24));
    contentPane.add(TextField_IPAddress, null);
    contentPane.add(Label_IPAddress, null);
    contentPane.add(Button_Connect, null);
  }
  //Overridden so we can exit when window is closed
  protected void processWindowEvent(WindowEvent e)
  {
    super.processWindowEvent(e);
    if (e.getID() == WindowEvent.WINDOW_CLOSING)
    {

System.exit(0);
    }
  }
  public void Button_Connect_actionPerformed(ActionEvent e)
  {
  try
  {

  String[] str = new String[1];
  str[0] = TextField_IPAddress.getText();
  Socket s = new Socket(str[0], 9001);
  OutputStream os = s.getOutputStream();
  ObjectOutputStream oos = new ObjectOutputStream(os);
  InputStream is = s.getInputStream();
  ObjectInputStream ois = new ObjectInputStream(is);
  String utf = s.getInetAddress().getCanonicalHostName();
  oos.writeInt(0);
  oos.flush();
  oos.writeUTF(utf);
  oos.flush();
  oos.close();
  ois.close();
  os.close();
  is.close();
  s.close();
  Login_Screen.main(str);
  this.dispose();
  }
  catch(Exception ex)
  {
  JOptionPane.showMessageDialog(null, "No Connection of that address");
  TextField_IPAddress.setText("localhost");
  }
  }
}

import javax.swing.UIManager;
import java.awt.*;
import java.lang.*;
public class Login_Screen
{
  private boolean packFrame = false;

  //Construct the application
  public Login_Screen(String IPAddress)
  {
    Login_Frame frame = new Login_Frame(IPAddress);
    //Validate frames that have preset sizes
    //Pack frames that have useful preferred size info, e.g. from their layout
    if (packFrame)
    {
      frame.pack();
    }
    else

65



    {
      frame.validate();
    }
    //Center the window
    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
    Dimension frameSize = frame.getSize();
    if (frameSize.height > screenSize.height)
    {
      frameSize.height = screenSize.height;
    }
    if (frameSize.width > screenSize.width)
    {
      frameSize.width = screenSize.width;
    }
    frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - 
frameSize.height) / 2);
    frame.setVisible(true);
  }
  //Main method
  public static void main(String[] args)
  {
    try
    {
      UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
    }
    catch(Exception e)
    {
      e.printStackTrace();
    }
    new Login_Screen(args[0]);
  }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.net.*;
import java.io.*;

public class Login_Frame extends JFrame
{
  private JPanel contentPane;
  private JLabel Label_Login = new JLabel();
  private JLabel Label_Username = new JLabel();
  private JLabel Label_Password = new JLabel();
  private JPanel Panel1 = new JPanel();
  private JButton Button_Exit = new JButton();
  private JButton Button_Enter = new JButton();
  private JButton Button_NewUser = new JButton();
  private JTextField TextField_Username = new JTextField();
  private JPasswordField PasswordField_Password = new JPasswordField();
  private String IPAddress;
  //Construct the frame
  public Login_Frame(String str)
  {
  IPAddress = str;
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
    try
    {
      jbInit();
    }
    catch(Exception e)
    {
      e.printStackTrace();
    }
  }
  //Component initialization
  private void jbInit() throws Exception
  {

66



    //setIconImage(Toolkit.getDefaultToolkit().createImage(Login_Framw.class.getResource("[
Your Icon]")));
    contentPane = (JPanel) this.getContentPane();
    Label_Login.setText("Login");
    Label_Login.setBounds(new Rectangle(180, 26, 36, 17));
    contentPane.setLayout(null);
    this.setSize(new Dimension(379, 300));
    this.setTitle("RSA Simulation Client Side");
    Label_Username.setText("User Name");
    Label_Username.setBounds(new Rectangle(23, 65, 70, 16));
    Label_Password.setText("Password");
    Label_Password.setBounds(new Rectangle(25, 102, 70, 25));
    Panel1.setBorder(BorderFactory.createEtchedBorder());
    Panel1.setBounds(new Rectangle(21, 199, 328, 57));
    Panel1.setLayout(null);
    Button_Exit.setBounds(new Rectangle(219, 154, 99, 26));
    Button_Exit.setText("Exit");
    Button_Exit.addActionListener(new java.awt.event.ActionListener()
    {
      public void actionPerformed(ActionEvent e)
      {
        Button_Exit_actionPerformed(e);
      }
    });
    Button_Enter.setBounds(new Rectangle(69, 153, 99, 26));
    Button_Enter.setText("Enter");
    Button_Enter.addActionListener(new java.awt.event.ActionListener()
    {
    public void actionPerformed(ActionEvent e)
    {
    Button_Enter_actionPerformed(e);
    }
    });
    Button_NewUser.setBounds(new Rectangle(110, 13, 101, 28));
    Button_NewUser.setText("New User");
    Button_NewUser.addActionListener(new java.awt.event.ActionListener()
    {
      public void actionPerformed(ActionEvent e)
      {
        Button_NewUser_actionPerformed(e);
      }
    });
    TextField_Username.setBounds(new Rectangle(118, 64, 204, 25));
    PasswordField_Password.setBounds(new Rectangle(118, 102, 205, 25));
    contentPane.add(Label_Login, null);
    contentPane.add(Button_Exit, null);
    contentPane.add(Button_Enter, null);
    contentPane.add(Label_Username, null);
    contentPane.add(Label_Password, null);
    contentPane.add(Panel1, null);
    Panel1.add(Button_NewUser, null);
    contentPane.add(PasswordField_Password, null);
    contentPane.add(TextField_Username, null);
  }
  //Overridden so we can exit when window is closed
  protected void processWindowEvent(WindowEvent e)
  {
    super.processWindowEvent(e);
    if (e.getID() == WindowEvent.WINDOW_CLOSING)
    {
      System.exit(0);
    }
  }

  void Button_Exit_actionPerformed(ActionEvent e)
  {
    System.exit(0);
  }

  void Button_NewUser_actionPerformed(ActionEvent e)
  {

67



  String[] str = new String[1];
  str[0] = IPAddress;
  NewUser_Screen.main(str);
  this.dispose();
  }
  
  void Button_Enter_actionPerformed(ActionEvent e)
  {
  String Username = TextField_Username.getText();
  String Password = new String(PasswordField_Password.getPassword());
  if ((Username.compareTo("") == 0) || (Password.compareTo("") == 0))
  {
  JOptionPane.showMessageDialog(null, "Please fill the fields correctly");
  System.out.print("Error");
  }
  else
  {
  try
  {
  String Hashed = Math_Functions.hash_function(Password);
  Socket s = new Socket(IPAddress, 9001);
  System.out.println("Connected");
  OutputStream os = s.getOutputStream();
  InputStream is = s.getInputStream();
  ObjectOutputStream oos = new ObjectOutputStream(os);
  ObjectInputStream ois = new ObjectInputStream(is);
  oos.writeInt(3);

oos.flush();
  oos.writeObject(Username);
  oos.flush();
  User_Info ui = (User_Info) ois.readObject();
  if (ui.Hashed_Password.compareTo(Hashed) == 0)
  {
  String[] str = new String[2];
  str[0] = String.valueOf(ui.User_Number);
  str[1] = IPAddress;
  Main_Screen.main(str);
  this.dispose();
  
  }
  else
  {
  JOptionPane.showMessageDialog(null, "Incorrect Password\n 
or \nDoes Not Exist");
  System.out.print("Incorrect");
  }
  oos.close();
  os.close();
  ois.close();
  is.close();
  s.close();
  
  }
  catch(Exception el){System.out.print(el);}
  }
  
  }
}

import javax.swing.UIManager;
import java.awt.*;

public class Main_Screen
{
  private boolean packFrame = false;

  //Construct the application
  public Main_Screen(int i, String str) 
  {
    Main_Frame frame = new Main_Frame(i, str);

68



    //Validate frames that have preset sizes
    //Pack frames that have useful preferred size info, e.g. from their layout
    if (packFrame) 
    {
      frame.pack();
    }
    else 
    {
      frame.validate();
    }
    //Center the window
    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
    Dimension frameSize = frame.getSize();
    if (frameSize.height > screenSize.height) 
    {
      frameSize.height = screenSize.height;
    }
    if (frameSize.width > screenSize.width) 
    {
      frameSize.width = screenSize.width;
    }
    frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - 
frameSize.height) / 2);
    frame.setVisible(true);
  }
  //Main method
  public static void main(String[] args)
  {
    Integer x = new Integer(args[0]);
    
    try
    {
      UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
    }
    catch(Exception e) 
    {
      e.printStackTrace();
    }
    new Main_Screen(x.intValue(), args[1]);
  }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import java.io.*;
import java.net.*;

public class Main_Frame extends JFrame
{
  private JPanel contentPane;
  private JComboBox ComboBox_Reciever = new JComboBox();
  private JLabel Label_Send_Message = new JLabel();
  private TitledBorder titledBorder1;
  private JButton Button_Send = new JButton();
  private JButton Button_Reset = new JButton();
  private JButton Button_Exit = new JButton();
  private JButton Button_ReceiveMessages = new JButton();
  private JScrollPane ScrollPane = new JScrollPane();
  private JEditorPane EditorPane_Message = new JEditorPane();
  private int SenderNumber;
  private String IPAddress;
  //Construct the frame
  public Main_Frame(int x, String str)
  {
  SenderNumber = x;
  IPAddress = str;
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
    try

69



    {
      jbInit();
    }
    catch(Exception e)
    {
      e.printStackTrace();
    }
  }
  //Component initialization
  private void Fill_Combo_Box()
  {
  try
  {
  Socket s = new Socket(IPAddress, 9001);
  OutputStream os = s.getOutputStream();
  ObjectOutputStream oos = new ObjectOutputStream(os);
  InputStream is= s.getInputStream();
  ObjectInputStream ois = new ObjectInputStream(is);
  oos.writeInt(4);
  oos.flush();
  int x = ois.readInt();
  for(int y = 0; y != x; y++)
  {
  User_Info ui = (User_Info) ois.readObject();
  if (SenderNumber != ui.User_Number)
  {
  ComboBox_Reciever.addItem(ui.User_Name);
  }
  }
  oos.close();
  ois.close();
  os.close();
  is.close();
  }
  catch(Exception ex) {}
  }
  
  
  private void jbInit() throws Exception
  {
    //setIconImage(Toolkit.getDefaultToolkit().createImage(Main_Frame.class.getResource("[Y
our Icon]")));
    contentPane = (JPanel) this.getContentPane();
    titledBorder1 = new TitledBorder("");
    contentPane.setLayout(null);
    this.setSize(new Dimension(501, 417));
    this.setTitle("RSA Simulation");
    ComboBox_Reciever.setBorder(BorderFactory.createLoweredBevelBorder());
    ComboBox_Reciever.setBounds(new Rectangle(131, 35, 341, 23));
    Label_Send_Message.setText("Send message to:");
    Label_Send_Message.setBounds(new Rectangle(20, 36, 104, 22));
    contentPane.setBorder(BorderFactory.createRaisedBevelBorder());
    Button_Send.setBounds(new Rectangle(26, 299, 92, 29));
    Button_Send.setText("Send");
    Button_Send.addActionListener(new java.awt.event.ActionListener()
    {
    public void actionPerformed(ActionEvent e)
    {
    Button_Send_actionPerformed(e);
    }
    });
    Button_Reset.setBounds(new Rectangle(129, 300, 89, 30));
    Button_Reset.setText("Reset");
    Button_Reset.addActionListener(new java.awt.event.ActionListener()
    {
    public void actionPerformed(ActionEvent e)
    {
    Button_Reset_actionPerformed(e);
    }
    });
    Button_Exit.setBounds(new Rectangle(386, 334, 85, 33));

70



    Button_Exit.setText("Log Out");
    Button_Exit.addActionListener(new java.awt.event.ActionListener()
    {
      public void actionPerformed(ActionEvent e)
      {
        Button_Exit_actionPerformed(e);
      }
    });
    Button_ReceiveMessages.setBounds(new Rectangle(26, 342, 193, 27));
    Button_ReceiveMessages.setText("Recieve Messeages");
    Button_ReceiveMessages.addActionListener(new java.awt.event.ActionListener()
    {
    public void actionPerformed(ActionEvent e)
    {
    Button_ReceiveMessages_actionPerformed(e);
    }
    });
    ScrollPane.setBounds(new Rectangle(23, 86, 451, 194));
    contentPane.add(ComboBox_Reciever, null);
    contentPane.add(Label_Send_Message, null);
    contentPane.add(Button_Send, null);
    contentPane.add(Button_Reset, null);
    contentPane.add(Button_ReceiveMessages, null);
    contentPane.add(Button_Exit, null);
    contentPane.add(ScrollPane, null);
    ScrollPane.getViewport().add(EditorPane_Message, null);
    Fill_Combo_Box();
  }
  //Overridden so we can exit when window is closed
  protected void processWindowEvent(WindowEvent e)
  {
    super.processWindowEvent(e);
    if (e.getID() == WindowEvent.WINDOW_CLOSING)
    {
      System.exit(0);
    }
  }

  void Button_Exit_actionPerformed(ActionEvent e)
  {
  String[] str = new String[1];
  str[0] = IPAddress;
  Login_Screen.main(str);
    this.dispose();
  }
  void Button_Reset_actionPerformed(ActionEvent e)
  {
  EditorPane_Message.setText("");
  }
  
  void Button_Send_actionPerformed(ActionEvent e)
  {
  try
  {
  String reciever = (String)ComboBox_Reciever.getSelectedItem();
  String body = EditorPane_Message.getText();
  File PTFile = new File("plaintext.txt");
  FileOutputStream fos = new FileOutputStream(PTFile);
  PrintStream ps = new PrintStream(fos);
  ps.print(body);
  ps.close();
  fos.close();
  Socket s = new Socket(IPAddress, 9001);
  System.out.println("connected");
  OutputStream os = s.getOutputStream();
  ObjectOutputStream oos = new ObjectOutputStream(os);
  InputStream is = s.getInputStream();
  ObjectInputStream ois = new ObjectInputStream(is);
  oos.writeInt(3);
  oos.flush();
  oos.writeObject(reciever);

71



  oos.flush();
  User_Info ui = (User_Info) ois.readObject();
  oos.close();
  os.close();
  ois.close();
  is.close();
  s.close();
  Message_Info mi = new Message_Info(0, SenderNumber, ui.User_Number);
  RSA_Functions.Encryptor(ui.Public_Key, "plaintext.txt", "cipher.jmp");
  File cipher = new File("cipher.jmp");

FileReader fr = new FileReader(cipher);
BufferedReader br = new BufferedReader(fr);

  //encryption and sending
  boolean check = true;

char[] c = new char[1];
s = new Socket(IPAddress, 9001);
os = s.getOutputStream();
oos = new ObjectOutputStream(os);
is = s.getInputStream();
ois = new ObjectInputStream(is);
oos.writeInt(5);
oos.flush();

oos.writeObject(mi);
oos.flush();
while (br.read(c, 0, 1) != -1)
{

oos.writeChar(c[0]);
oos.flush();

}
br.close();
fr.close();
ois.close();
is.close();
oos.close();
os.close();
s.close();
EditorPane_Message.setText("");

  }
  catch(Exception ex){System.out.println(ex);}
  }
  void Button_ReceiveMessages_actionPerformed(ActionEvent e)
  {
  String[] str = new String[2];
  str[0] = String.valueOf(SenderNumber);
  str[1] = IPAddress;
  Read_Messages_Screen.main(str);
  this.dispose();
  }
}

import javax.swing.UIManager;
import java.awt.*;

public class NewUser_Screen 
{
  private boolean packFrame = false;

  //Construct the application
  public NewUser_Screen(String str) 
  {
    NewUser_Frame frame = new NewUser_Frame(str);
    //Validate frames that have preset sizes
    //Pack frames that have useful preferred size info, e.g. from their layout
    if (packFrame) 
    {
      frame.pack();
    }
    else {

72



      frame.validate();
    }
    //Center the window
    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
    Dimension frameSize = frame.getSize();
    if (frameSize.height > screenSize.height) 
    {
      frameSize.height = screenSize.height;
    }
    if (frameSize.width > screenSize.width) 
    {
      frameSize.width = screenSize.width;
    }
    frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - 
frameSize.height) / 2);
    frame.setVisible(true);
  }
  //Main method
  public static void main(String[] args) 
  {
    try 
    {
      UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
    }
    catch(Exception e) 
    {
      e.printStackTrace();
    }
    new NewUser_Screen(args[0]);
  }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.net.*;
import java.io.*;

public class NewUser_Frame extends JFrame
{
  private JPanel contentPane;
  private JLabel Label_NewUser = new JLabel();
  private JTextField TextField_Username = new JTextField();
  private JPasswordField PasswordField_Password = new JPasswordField();
  private JPasswordField PasswordField_Verify = new JPasswordField();
  private JButton Button_Enter = new JButton();
  private JButton Button_Cancel = new JButton();
  private JLabel Label_Username = new JLabel();
  private JLabel Label_Password = new JLabel();
  private JLabel Label_VerifyPassword = new JLabel();
  private String IPAddress;
  //Construct the frame
  public NewUser_Frame(String str)
  {
  IPAddress = str;
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
    try 
    {
      jbInit();
    }
    catch(Exception e)
    {
      e.printStackTrace();
    }
  }
  //Component initialization
  private void jbInit() throws Exception
  {
    //setIconImage(Toolkit.getDefaultToolkit().createImage(NewUser_Screen.class.getResource
("[Your Icon]")));
    contentPane = (JPanel) this.getContentPane();

73



    Label_NewUser.setText("New User");
    Label_NewUser.setBounds(new Rectangle(166, 18, 60, 28));
    contentPane.setBorder(BorderFactory.createRaisedBevelBorder());
    contentPane.setLayout(null);
    this.setSize(new Dimension(420, 323));
    this.setTitle("New User");
    TextField_Username.setBounds(new Rectangle(150, 59, 206, 24));
    PasswordField_Password.setBounds(new Rectangle(151, 111, 206, 25));
    PasswordField_Verify.setBounds(new Rectangle(154, 162, 203, 27));
    Button_Enter.setBounds(new Rectangle(61, 217, 107, 32));
    Button_Enter.setText("Enter");
    Button_Enter.addActionListener(new java.awt.event.ActionListener()
    {
    public void actionPerformed(ActionEvent e)
    {
    Button_Enter_actionPerformed(e);
    }
    });
    Button_Cancel.setBounds(new Rectangle(233, 218, 105, 31));
    Button_Cancel.setText("Cancel");
    Button_Cancel.addActionListener(new java.awt.event.ActionListener()
    {
      public void actionPerformed(ActionEvent e)
      {
        Button_Cancel_actionPerformed(e);
      }
    });
    Label_Username.setText("User Name");
    Label_Username.setBounds(new Rectangle(37, 60, 75, 23));
    Label_Password.setText("Password");
    Label_Password.setBounds(new Rectangle(38, 110, 78, 23));
    Label_VerifyPassword.setText("Verify Password");
    Label_VerifyPassword.setBounds(new Rectangle(40, 156, 97, 26));
    contentPane.add(TextField_Username, null);
    contentPane.add(PasswordField_Password, null);
    contentPane.add(Button_Enter, null);
    contentPane.add(Button_Cancel, null);
    contentPane.add(PasswordField_Verify, null);
    contentPane.add(Label_VerifyPassword, null);
    contentPane.add(Label_Password, null);
    contentPane.add(Label_Username, null);
    contentPane.add(Label_NewUser, null);
  }
  //Overridden so we can exit when window is closed
  protected void processWindowEvent(WindowEvent e)
  {
    super.processWindowEvent(e);
    if (e.getID() == WindowEvent.WINDOW_CLOSING)
    {
      System.exit(0);
    }
  }

  void Button_Enter_actionPerformed(ActionEvent e)
  {
  boolean b = false;
  String Username = TextField_Username.getText();
  String Password = new String(PasswordField_Password.getPassword());
  String Verify = new String(PasswordField_Verify.getPassword());
  if (Username.compareTo("") == 0 || Password.compareTo("") == 0)
  {
  b = true;
  }
  if (Verify.compareTo(Password) != 0)
  {
  b = true;
  }
  if (!b)
  {
  try
  {

74



  String Hashed = Math_Functions.hash_function(Password);
  Socket s = new Socket(IPAddress, 9001);
  OutputStream os = s.getOutputStream();
  ObjectOutputStream oos = new ObjectOutputStream(os);
  InputStream is = s.getInputStream();
  ObjectInputStream ois = new ObjectInputStream(is);
  b = true;
  Key[] k = new Key[2];
  oos.writeInt(1);
  oos.flush();
  while(b)
  {
  k = RSA_Functions.Pair_Key_generator();
  oos.writeInt(k[0].n);
  oos.flush();
  b = ois.readBoolean();  
  oos.writeBoolean(b);
  oos.flush();
  }
  User_Info ui = new User_Info(0, Username, Hashed, k[0]);
  oos.writeObject(ui);
  oos.flush();
  b = ois.readBoolean();
  oos.close();
  ois.close();
  is.close();
  os.close();
  s.close();
  if (b)
  {
  File PKFile = new File(Username+".pri");
  FileOutputStream fos = new FileOutputStream(PKFile);
  oos = new ObjectOutputStream(fos);
  oos.writeObject(k[1]);
  oos.close();
  fos.close();
  JOptionPane.showMessageDialog(null, "New User Created");
  System.out.println("New User Created");
  String[] str = new String[1];
  str[0] = IPAddress;
  Login_Screen.main(str);
  this.dispose();
  }
  else
  {
  JOptionPane.showMessageDialog(null, "User already exists");
  System.out.println("Error! User already Exists");
  TextField_Username.setText("");
  PasswordField_Password.setText("");
  PasswordField_Verify.setText("");
  }
  }
  catch(Exception ex){System.out.println(ex);}
  }
  else
  {
  JOptionPane.showMessageDialog(null, "Please fill in fields correctly");
  System.out.println("Error! Fill in fields correctly");
  TextField_Username.setText("");
  PasswordField_Password.setText("");
  PasswordField_Verify.setText("");
  }
  }
  
  
  void Button_Cancel_actionPerformed(ActionEvent e)
  {
  String[] str = new String[1];
  str[0] = IPAddress;
  Login_Screen.main(str);
  this.dispose();

75



  }
}

import javax.swing.UIManager;
import java.awt.*;

public class Read_Messages_Screen
{
  private boolean packFrame = false;

  //Construct the application
  public Read_Messages_Screen(int i, String str)
  {
    Read_Messages_Frame frame = new Read_Messages_Frame(i, str);
    //Validate frames that have preset sizes
    //Pack frames that have useful preferred size info, e.g. from their layout
    if (packFrame)
    {
      frame.pack();
    }
    else
    {
      frame.validate();
    }
    //Center the window
    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
    Dimension frameSize = frame.getSize();
    if (frameSize.height > screenSize.height)
    {
      frameSize.height = screenSize.height;
    }
    if (frameSize.width > screenSize.width)
    {
      frameSize.width = screenSize.width;
    }
    frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - 
frameSize.height) / 2);
    frame.setVisible(true);
  }
  //Main method
  public static void main(String[] args)
  {
  Integer x = new Integer(args[0]);
    try
    {
      UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
    }
    catch(Exception e)
    {
      e.printStackTrace();
    }
    new Read_Messages_Screen(x.intValue(), args[1]);
  }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;
import java.io.*;
import java.net.*;

public class Read_Messages_Frame extends JFrame
{
  private JPanel contentPane;
  private JLabel Label_MessageFrom = new JLabel();
  private JTextArea TextArea_Sender = new JTextArea();
  private JButton Button_ReadNext = new JButton();
  private TitledBorder titledBorder1;
  private JScrollPane ScrollPane = new JScrollPane();

76



  private JTextPane TextPane_Message = new JTextPane();
  private int UserNumber;
  private boolean bool;
  private String IPAddress;
  //Construct the frame
  public Read_Messages_Frame(int x, String str)
  {
  UserNumber = x;
  IPAddress = str;
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
    try
    {
      jbInit();
    }
    catch(Exception e)
    {
      e.printStackTrace();
    }
  }
  //Component initialization
  private void Get_Message()
  {
  boolean found = false;

//get Username
try
{

  Socket s = new Socket(IPAddress, 9001);
  OutputStream os = s.getOutputStream();
  InputStream is = s.getInputStream();
  ObjectOutputStream soos = new ObjectOutputStream(os);
  ObjectInputStream sois = new ObjectInputStream(is);

soos.writeInt(6);
  soos.flush();
  soos.writeInt(UserNumber);
  soos.flush();

  String UserName = (String) sois.readObject();
  soos.close();
  sois.close();
  is.close();
  os.close();
  //get message
  s = new Socket(IPAddress, 9001);
  os = s.getOutputStream();
  is = s.getInputStream();
  soos = new ObjectOutputStream(os);
  sois = new ObjectInputStream(is);
  soos.writeInt(2);
  soos.flush();
  soos.writeInt(UserNumber);
  soos.flush();
  found = sois.readBoolean();
  if (found)
  {
  Message_Info mi = (Message_Info) sois.readObject();
  File PKFile = new File(UserName+".pri");
  FileInputStream fis = new FileInputStream(PKFile);

ObjectInputStream ois = new ObjectInputStream(fis);
Key Private_Key = (Key) ois.readObject();
ois.close();
fis.close();
File cipher = new File("temp_cipher.jmp");
FileOutputStream fos = new FileOutputStream(cipher);
PrintStream ps = new PrintStream(fos);
boolean check = true;
char[] c = new char[1];
while(check)
{

try
{

c[0] = sois.readChar();
ps.print(c[0]);

77



}
catch(Exception e){check = false;}

}
ps.close();
sois.close();
soos.close();
is.close();
os.close();
fos.close();
s.close();
RSA_Functions.Decryptor(Private_Key, "temp_cipher.jmp", 

"decipher.jmp");
File decipher = new File ("decipher.jmp");
FileReader fr = new FileReader(decipher);
BufferedReader br = new BufferedReader(fr);
String text = "";
while(br.read(c, 0, 1) != -1)
{

text = text + new String(c);
}
TextPane_Message.setText(text);
br.close();
fr.close();
//get Sender's name
s = new Socket(IPAddress, 9001);
os = s.getOutputStream();
is = s.getInputStream();
soos = new ObjectOutputStream(os);
sois  = new ObjectInputStream(is);
soos.writeInt(6);

  soos.flush();
  soos.writeInt(mi.Sender);
  soos.flush();

  String SenderName = (String) sois.readObject();
  TextArea_Sender.setText(SenderName);
  TextArea_Sender.setEditable(false);
  TextPane_Message.setEditable(false);
  soos.close();
  sois.close();
  os.close();
  is.close();
  bool = true;

}
else
{

TextPane_Message.setText("No New Messages");
TextPane_Message.setEditable(false);
TextArea_Sender.setText("No New Messages");
TextArea_Sender.setEditable(false);
bool = false;

  }
}
catch(Exception e){}

  }
  
  private void jbInit() throws Exception
  {
    //setIconImage(Toolkit.getDefaultToolkit().createImage(Read_Messages_Frame.class.getRes
ource("[Your Icon]")));
    contentPane = (JPanel) this.getContentPane();
    titledBorder1 = new TitledBorder("");
    Label_MessageFrom.setText("Message from");
    Label_MessageFrom.setBounds(new Rectangle(32, 31, 89, 24));
    contentPane.setLayout(null);
    this.setSize(new Dimension(502, 337));
    this.setTitle("Message");
    TextArea_Sender.setBorder(BorderFactory.createEtchedBorder());
    TextArea_Sender.setBounds(new Rectangle(130, 31, 332, 23));
    Button_ReadNext.setBounds(new Rectangle(26, 249, 108, 31));
    Button_ReadNext.setText("Read Next");
    Button_ReadNext.addActionListener(new java.awt.event.ActionListener()

78



    {
    public void actionPerformed(ActionEvent e)
    {
    Button_ReadNext_actionPerformed(e);
    }
    });
    ScrollPane.setBounds(new Rectangle(28, 68, 446, 164));
    contentPane.add(Label_MessageFrom, null);
    contentPane.add(TextArea_Sender, null);
    contentPane.add(Button_ReadNext, null);
    contentPane.add(ScrollPane, null);
    ScrollPane.getViewport().add(TextPane_Message, null);
    Get_Message();
    if (!bool)
    {
    Button_ReadNext.setText("Back");
    }
   }
  
  //Overridden so we can exit when window is closed
  protected void processWindowEvent(WindowEvent e)
  {
    super.processWindowEvent(e);
    if (e.getID() == WindowEvent.WINDOW_CLOSING)
    {
      String[] str = new String[2];
  str[0] = String.valueOf(UserNumber);
  str[1] = IPAddress;
  Main_Screen.main(str);
  this.dispose();
    }
  }
  public void Button_ReadNext_actionPerformed(ActionEvent e)
  {
  if (bool)
  {
  String[] str = new String[2];
  str[0] = String.valueOf(UserNumber);
  str[1] = IPAddress;
  Read_Messages_Screen.main(str);
  this.dispose();
  }
  else
  {
  String[] str = new String[2];
  str[0] = String.valueOf(UserNumber);
  str[1] = IPAddress;
  Main_Screen.main(str);
  this.dispose();
  }
  }
  
}

import java.math.*;
public class Math_Functions
{

public static String hash_function(String password)
{

char[] c = password.toCharArray();
String str = "", rev= "";
int length = password.length();
for(int x = 0; x != length; x++)
{

str = str+String.valueOf((int)c[x]);
rev = rev+String.valueOf((int)c[length-x-1]);

}
BigInteger a = new BigInteger(str);
BigInteger b = new BigInteger(rev);
b = b.and(a);
return b.toString();

79



}

public static int power_mod(int base, int power, int mod)
{

int x = 0;
long p = 1;
for (x = 0; x != power; x++)
{

p = p*base;
p = p%mod;

}
Integer y = new Integer(String.valueOf(p));
return y.intValue();

}

public static boolean check_if_prime(int x)
{

/*if (x == 2)
{

return true;
}
else
{

return (power_mod(2,x,x) == 2);
}*/
BigInteger b = new BigInteger(String.valueOf(x));
return b.isProbablePrime(10000);

}

public static int gcf(int x, int y)
{

int z = 0;
if (x<y)
{

z = x;
x = y;
y = z;

}
while (y != 0)
{

z = x%y;
x = y;
y = z;

}
return x;

}

public static int random_number(int x) // random number generator from 1 to x;
{

int y;
y = (int) Math.round(Math.random() * x)+1;
return y;

}

public static int prime_generator(int n)
{

int x = 0;
boolean check = false;
while (!check)
{

x = random_number(n);
check = check_if_prime(x);

}
return x;

}

public static String pad(String a, int x)
{

int y;
for(y = a.length(); y < x; y++)
{

80



a = "0"+a;
}
return a;

}
}

import java.io.*;
import java.lang.*;
public class RSA_Functions
{

public static Key[] Pair_Key_generator()
{

boolean check = false;
int p=0, q=0, n=0, x=0;
Key[] pair;
pair = new Key[2];
//public key generator
while (!check)
{

p = Math_Functions.prime_generator(1000);
q = Math_Functions.prime_generator(1000);
n = p*q;
if (n > 1000) check = true;

}
boolean bool = false;
while(!bool)
{

check = false;
while(!check)
{

x = Math_Functions.random_number(n);
if (x != 1)
{

check = (Math_Functions.gcf(x, (p-1)*(q-1))==1);
}

}
pair[0] = new Key("public",x,n);
//private key generator
x = 1;
check = false;
while(!check)
{

x++;
check = ((x*pair[0].d) % ((p-1)*(q-1)) == 1);

}
if ((x < (p-1)*(q-1))  && (pair[0].d < 10000))bool = true;

}
pair[1] = new Key("private",x,n);
return pair;

}

public static void Encryptor(Key pub, String src_file, String dest_file)
{

try
{

File source = new File(src_file);
File temp = new File("temp.jmp");
File dest = new File(dest_file);
int i = 0, counter = 0, y = 0;
Integer x;
String str = "";
//read from source, write to temp
BufferedReader br = new BufferedReader(new FileReader(source));
FileOutputStream out = new FileOutputStream(temp);
PrintStream p = new PrintStream(out);
char[] c = new char[1];
while(br.read(c, 0, 1) != -1)
{

i = (int) c[0];
str = String.valueOf(i);

81



str = Math_Functions.pad(str, 6);
p.print(str);
System.out.print(str);
counter++;

}
p.close();
br.close();
out.close();
System.out.println("\n -------------------\n");
//read from temp write to dest
br = new BufferedReader(new FileReader(temp));
out = new FileOutputStream(dest);
p = new PrintStream(out);
c = new char[6];
while(br.read(c, 0, 6) != -1)
{

x = new Integer(String.valueOf(c));
i = x.intValue();
i = Math_Functions.power_mod(i, pub.d, pub.n);

 str = String.valueOf(i);
str = Math_Functions.pad(str, 6);
p.print(str);
System.out.print(str);

}
p.close();
br.close();
temp.delete();

}
catch(Exception e)
{}

}

public static void Decryptor (Key pri, String src_file, String dest_file)
{

try 
{

Math_Functions a = new Math_Functions();
File source = new File(src_file);
File temp = new File("temp.jmp");
File dest = new File(dest_file);
FileReader fr = new FileReader(source);
BufferedReader br = new BufferedReader(fr);
FileOutputStream out = new FileOutputStream(temp);
PrintStream p = new PrintStream(out);
char[] c = new char[6];
String str="";
char z= 'a';
Integer x;
int i =0;
while(br.read(c, 0, 6) != -1)
{

x = new Integer(String.valueOf(c));
i = x.intValue();
i = Math_Functions.power_mod(i, pri.d, pri.n);
str = String.valueOf(i);
str = Math_Functions.pad(str, 6);
p.print(str);
System.out.print(str);

}
p.close();
br.close();
fr.close();
fr = new FileReader(temp);
br = new BufferedReader(fr);
out = new FileOutputStream(dest);
p = new PrintStream(out);
c = new char[6];
System.out.println(" ");
while(br.read(c,0,6) != -1)
{

x = new Integer(String.valueOf(c).trim());

82



i = x.intValue();
    z = (char) i;

p.print(z);
System.out.print(z);

}
p.close();
out.close();
br.close();
fr.close();

}
catch(Exception e)
{System.out.print(e);}

}
}

83



Appendix 5
Code of the Attacker Component

import java.io.*;
public class Key implements Serializable
{

public int d, n;
public boolean type;
public Key (String a, int x, int y)
{

type = (a == "public"); // TRUE = PUBLIC, FALSE = PRIVATE
d = x;
n = y;

}
}

import java.io.*;
public class Message_Info implements Serializable
{

int Message_Number;
int Sender;
int Reciever;
Message_Info(){}
Message_Info(int a, int b, int c)
{

Message_Number = a;
Sender = b;
Reciever = c;

}
}

import java.io.*;
import java.lang.*;
public class User_Info implements Serializable
{

int User_Number;
String User_Name;
String Hashed_Password;
Key Public_Key;
User_Info(int a, String b, String c, Key d)
{

User_Name = b;
Hashed_Password = c;
Public_Key = d;
User_Number = a;

}
User_Info(){}

}

import javax.swing.UIManager;
import java.awt.*;

public class Attacker_Connection_Screen 
{
  private boolean packFrame = false;

  //Construct the application
  public Attacker_Connection_Screen() 
  {
    Attacker_Connection_Frame frame = new Attacker_Connection_Frame();
    //Validate frames that have preset sizes
    //Pack frames that have useful preferred size info, e.g. from their layout
    if (packFrame) 
    {
      frame.pack();
    }
    else 

84



    {
      frame.validate();
    }
    //Center the window
    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
    Dimension frameSize = frame.getSize();
    if (frameSize.height > screenSize.height) 
    {
      frameSize.height = screenSize.height;
    }
    if (frameSize.width > screenSize.width) 
    {
      frameSize.width = screenSize.width;
    }
    frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - 
frameSize.height) / 2);
    frame.setVisible(true);
  }
  //Main method
  public static void main(String[] args) 
  {
    try 
    {
      UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
    }
    catch(Exception e) 
    {
      e.printStackTrace();
    }
    new Attacker_Connection_Screen();
  }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.net.*;
import java.io.*;

public class Attacker_Connection_Frame extends JFrame 
{
  private JPanel contentPane;
  private JButton Button_Connect = new JButton();
  private JLabel Label_IPAddress_of_Server = new JLabel();
  private JTextField TextField_IPAddress = new JTextField();

  //Construct the frame
  public Attacker_Connection_Frame() 
  {
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
    try 
    {
      jbInit();
    }
    catch(Exception e) 
    {
      e.printStackTrace();
    }
  }
  //Component initialization
  private void jbInit() throws Exception 
  {
    //setIconImage(Toolkit.getDefaultToolkit().createImage(Attacker_Connection_Frame.class.
getResource("[Your Icon]")));
    contentPane = (JPanel) this.getContentPane();
    Button_Connect.setBounds(new Rectangle(136, 130, 127, 39));
    Button_Connect.setText("Connect");
    Button_Connect.addActionListener(new java.awt.event.ActionListener()
    {
      public void actionPerformed(ActionEvent e) 
      {

85



        Button_Connect_actionPerformed(e);
      }
    });
    contentPane.setLayout(null);
    this.setSize(new Dimension(400, 229));
    this.setTitle("RSA Attacker");
    Label_IPAddress_of_Server.setText("Enter IP Address of the Server Computer");
    Label_IPAddress_of_Server.setBounds(new Rectangle(90, 33, 229, 23));
    TextField_IPAddress.setText("localhost");
    TextField_IPAddress.setBounds(new Rectangle(34, 80, 329, 24));
    contentPane.setBorder(BorderFactory.createRaisedBevelBorder());
    contentPane.add(TextField_IPAddress, null);
    contentPane.add(Button_Connect, null);
    contentPane.add(Label_IPAddress_of_Server, null);
  }
  //Overridden so we can exit when window is closed
  protected void processWindowEvent(WindowEvent e) 
  {
    super.processWindowEvent(e);
    if (e.getID() == WindowEvent.WINDOW_CLOSING) 
    {
      System.exit(0);
    }
  }

  void Button_Connect_actionPerformed(ActionEvent e) 
  {
  try
  {

  String str = TextField_IPAddress.getText();
  Socket s = new Socket(str, 9001);
  OutputStream os = s.getOutputStream();
  ObjectOutputStream oos = new ObjectOutputStream(os);
  InputStream is = s.getInputStream();
  ObjectInputStream ois = new ObjectInputStream(is);
  String utf = s.getInetAddress().getCanonicalHostName();
  oos.writeInt(0);
  oos.flush();
  oos.writeUTF(utf);
  oos.flush();
  oos.close();
  ois.close();
  os.close();
  is.close();
  s.close();
  User_Info[] ui = new User_Info[1];
  ui[0] = new User_Info(0,"","",null);
  Message_Info[] mi = new Message_Info[1];
  mi[0] = new Message_Info(0,0,0);
  Attacker_Main_Screen.main(str, ui, mi, 0);

  this.dispose();
  }
  catch(Exception ex)
  {
  JOptionPane.showMessageDialog(null, "No Connection of that address");
  TextField_IPAddress.setText("localhost");
  }
  }
}

import javax.swing.UIManager;
import java.awt.*;

public class Attacker_Main_Screen 
{
  private boolean packFrame = false;

  //Construct the application

86



  public Attacker_Main_Screen(String IP, User_Info[] ui, Message_Info[] mi, int m) 
  {
    Attacker_Main_Frame frame = new Attacker_Main_Frame(IP, ui, mi, m);
    //Validate frames that have preset sizes
    //Pack frames that have useful preferred size info, e.g. from their layout
    if (packFrame) 
    {
      frame.pack();
    }
    else 
    {
      frame.validate();
    }
    //Center the window
    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
    Dimension frameSize = frame.getSize();
    if (frameSize.height > screenSize.height) 
    {
      frameSize.height = screenSize.height;
    }
    if (frameSize.width > screenSize.width) 
    {
      frameSize.width = screenSize.width;
    }
    frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - 
frameSize.height) / 2);
    frame.setVisible(true);
  }
  //Main method
  public static void main(String args, User_Info[] uis, Message_Info[] mis, int i) 
  {
    try 
    {
      UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
    }
    catch(Exception e) 
    {
      e.printStackTrace();
    }
    new Attacker_Main_Screen(args, uis, mis, i);
  }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.net.*;
import java.io.*;
import java.math.*;

public class Attacker_Main_Frame extends JFrame
{
  private JPanel contentPane;
  private JButton Button_Decrypt = new JButton();
  private JButton Button_Exit = new JButton();
  private User_Info[] uis;
  private Message_Info[] mis;
  private String IPAddress;
  private JTextArea TextArea_Instructions = new JTextArea();
  private int m;
  //Construct the frame
  public Attacker_Main_Frame(String IP, User_Info[] ui, Message_Info[] mi, int n)
  {
  IPAddress = IP;
  uis = ui;
  mis = mi;
  m = n;
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
    try
    {
      jbInit();

87



    }
    catch(Exception e)
    {
      e.printStackTrace();
    }
  }

  private void get_UIs_MIs()
  {
  try
  {
  Socket s = new Socket(IPAddress, 9001);
  OutputStream os = s.getOutputStream();
  ObjectOutputStream oos = new ObjectOutputStream(os);
  InputStream is = s.getInputStream();
  ObjectInputStream ois = new ObjectInputStream(is);
  oos.writeInt(7);
  oos.flush();
  int x = ois.readInt();
  System.out.println(x);
  uis = new User_Info[x];
  for(int y = 0; y != x; y++)
  {
  uis[y] = (User_Info) ois.readObject();
  }
  x = ois.readInt();
  System.out.println(x);
  m = x;
  mis = new Message_Info[x];
  for(int y = 0; y != x; y++)
  {
  mis[y] = (Message_Info) ois.readObject();
  }
  oos.close();
  ois.close();
  os.close();
  is.close();
  s.close();
  }
  catch(Exception e){}
  }
  //Component initialization
  private void jbInit() throws Exception
  {
    //setIconImage(Toolkit.getDefaultToolkit().createImage(Attacker_Main_Frame.class.getRes
ource("[Your Icon]")));
    contentPane = (JPanel) this.getContentPane();
    contentPane.setLayout(null);
    this.setSize(new Dimension(400, 215));
    this.setTitle("RSA Attacker");
    contentPane.setBorder(BorderFactory.createRaisedBevelBorder());
    Button_Decrypt.setBounds(new Rectangle(62, 127, 115, 33));
    Button_Decrypt.setText("Get Message");
    Button_Decrypt.addActionListener(new java.awt.event.ActionListener()
    {
      public void actionPerformed(ActionEvent e)
      {
        Button_Decrypt_actionPerformed(e);
      }
    });
    Button_Exit.setBounds(new Rectangle(229, 126, 114, 32));
    Button_Exit.setText("Exit");
    Button_Exit.addActionListener(new java.awt.event.ActionListener()
    {
      public void actionPerformed(ActionEvent e)
      {
        Button_Exit_actionPerformed(e);
      }
    });
    TextArea_Instructions.setToolTipText("");
    TextArea_Instructions.setBounds(new Rectangle(80, 50, 252, 40));

88



    TextArea_Instructions.setText("Press Get message to randomly get a \n   message and try 
to decrypt it");
    TextArea_Instructions.setEditable(false);
    contentPane.add(Button_Exit, null);
    contentPane.add(Button_Decrypt, null);
    contentPane.add(TextArea_Instructions, null);
    if (mis[0].Message_Number == 0)
    {
      get_UIs_MIs();
    }
  }
  //Overridden so we can exit when window is closed
  protected void processWindowEvent(WindowEvent e)
  {
    super.processWindowEvent(e);
    if (e.getID() == WindowEvent.WINDOW_CLOSING)
    {
      System.exit(0);
    }
  }

  void Button_Decrypt_actionPerformed(ActionEvent e)
  {
  int y;
  System.out.println(m);

y = (int) Math.round(Math.random() * (m-1))+1;
System.out.println(y);

  Attacker_Read_Messages_Screen.main(IPAddress, uis, mis, y, m);
this.dispose();

  }

  void Button_Exit_actionPerformed(ActionEvent e)
  {
  System.exit(0);
  }
}

import javax.swing.UIManager;
import java.awt.*;

public class Attacker_Read_Messages_Screen 
{
  private boolean packFrame = false;

  //Construct the application
  public Attacker_Read_Messages_Screen(String IP, User_Info[] ui, Message_Info[] mi, int 
mes_no, int x)
  {
    Attacker_Read_Messages_Frame frame = new Attacker_Read_Messages_Frame(IP, ui, mi, 
mes_no, x);
    //Validate frames that have preset sizes
    //Pack frames that have useful preferred size info, e.g. from their layout
    if (packFrame) 
    {
      frame.pack();
    }
    else 
    {
      frame.validate();
    }
    //Center the window
    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
    Dimension frameSize = frame.getSize();
    if (frameSize.height > screenSize.height) 
    {
      frameSize.height = screenSize.height;
    }
    if (frameSize.width > screenSize.width) 
    {
      frameSize.width = screenSize.width;
    }

89



    frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - 
frameSize.height) / 2);
    frame.setVisible(true);
  }
  //Main method
  public static void main(String IP, User_Info[] ui, Message_Info[] mi, int mes_no, int i) 
  {
    try 
    {
      UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
    }
    catch(Exception e) 
    {
      e.printStackTrace();
    }
    new Attacker_Read_Messages_Screen(IP, ui, mi, mes_no, i);
  }
}

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.io.*;
import java.net.*;

public class Attacker_Read_Messages_Frame extends JFrame 
{
  private JPanel contentPane;
  private JScrollPane ScrollPane1 = new JScrollPane();
  private JTextArea TextArea_Message = new JTextArea();
  private JButton Button_ReadNext = new JButton();
  private JButton Button_ReadPrevious = new JButton();
  private JLabel Label_Sender = new JLabel();
  private JLabel Label_To = new JLabel();
  private JLabel Label_Receipient = new JLabel();
  private User_Info[] uis;
  private Message_Info[] mis;
  private String IPAddress;
  private int Message_No;
  private boolean File_Exists;
  private int block_size;
  private Key pri;
  private int jmp;
  //Construct the frame
  public Attacker_Read_Messages_Frame(String IP, User_Info[] ui, Message_Info[] mi, int 
mes_no, int j) 
  {
  IPAddress = IP;
  uis = ui;
  mis = mi;
  Message_No = mes_no;
  block_size = 1;
  jmp = j;
    enableEvents(AWTEvent.WINDOW_EVENT_MASK);
    try 
    {
      jbInit();
    }
    catch(Exception e) 
    {
      e.printStackTrace();
    }
  }
  //Component initialization
  private void get_File()
  {
  try
  {
  Socket s = new Socket(IPAddress, 9001);
  OutputStream os = s.getOutputStream();
  ObjectOutputStream soos = new ObjectOutputStream(os);

90



  InputStream is = s.getInputStream();
  ObjectInputStream sois = new ObjectInputStream(is);
  soos.writeInt(8);
  soos.flush();
  soos.writeInt(Message_No);
  soos.flush();
  File_Exists = sois.readBoolean();
  if(File_Exists)
  {
  File cipher = new File("cipher.mes");
  FileOutputStream fos = new FileOutputStream(cipher);
  PrintStream ps = new PrintStream(fos);
  boolean check = true;
  char c = 'a';
  while(check)
  {
  try
  {
  c = sois.readChar();
  ps.print(c);
  }
  catch(Exception e){check = false;}
  }
  ps.close();
  fos.close();
  }
  sois.close();
  soos.close();
  os.close();
  is.close();
  s.close();
  }
  catch(Exception e){}
  }
  
  
  private void Initialize_Message()
  {
  if(File_Exists)
  {
  try
  {
  pri = Attack.Crack_Key(uis[mis[Message_No-1].Reciever-1].Public_Key);
  for(int x = 1 ; x != 11; x++)
  {
  Attack.Decryptor(pri, "cipher.mes", String.valueOf(x)+".txt", 
x);
  File PLFile = new File("1.txt");
  FileReader fr = new FileReader(PLFile);
  BufferedReader br = new BufferedReader(fr);
  char[] c = new char[1];
  String text = "";
  while(br.read(c, 0,1) != -1)
  {
  text = text + String.valueOf(c);
  }
  TextArea_Message.setText(text);
  TextArea_Message.setEditable(false);
  br.close();
  fr.close();
  System.out.println("");
  }
  }
  catch(Exception e){}
  }
  else
  {
  JOptionPane.showMessageDialog(null, "File was delete in the server");
  TextArea_Message.setText("File was deleted in the server");
  Button_ReadNext.setText("Back");
  Button_ReadPrevious.setEnabled(false);

91



  Button_ReadPrevious.setVisible(false);
  TextArea_Message.setEditable(false);
  }
  }
  
  private void jbInit() throws Exception  
  {
    //setIconImage(Toolkit.getDefaultToolkit().createImage(Attacker_Read_Messages_Frame.cla
ss.getResource("[Your Icon]")));
    contentPane = (JPanel) this.getContentPane();
    contentPane.setBorder(BorderFactory.createRaisedBevelBorder());
    contentPane.setLayout(null);
    this.setSize(new Dimension(400, 363));
    this.setTitle("RSA Attacker");
    ScrollPane1.setBorder(BorderFactory.createLoweredBevelBorder());
    ScrollPane1.setBounds(new Rectangle(36, 83, 324, 167));
    Button_ReadNext.setBounds(new Rectangle(67, 268, 110, 33));
    Button_ReadNext.setText("Read Next");
    Button_ReadNext.addActionListener(new java.awt.event.ActionListener() 
    {
      public void actionPerformed(ActionEvent e) 
      {
        Button_ReadNext_actionPerformed(e);
      }
    });
    Button_ReadPrevious.setBounds(new Rectangle(220, 267, 119, 32));
    Button_ReadPrevious.setText("Read Previous");
    Button_ReadPrevious.addActionListener(new java.awt.event.ActionListener()
    {
    public void actionPerformed(ActionEvent e)
    {
    Button_ReadPrevious_actionPerformed(e);
    }
    });
    Label_Sender.setText("<Sender>");
    Label_Sender.setBounds(new Rectangle(61, 40, 86, 19));
    Label_To.setText("to");
    Label_To.setBounds(new Rectangle(181, 39, 18, 20));
    Label_Receipient.setText("<Receipient>");
    Label_Receipient.setBounds(new Rectangle(241, 38, 84, 20));
    contentPane.add(ScrollPane1, null);
    ScrollPane1.getViewport().add(TextArea_Message, null);
    contentPane.add(Button_ReadNext, null);
    contentPane.add(Label_To, null);
    contentPane.add(Label_Sender, null);
    contentPane.add(Label_Receipient, null);
    contentPane.add(Button_ReadPrevious, null);
    Label_Sender.setText(uis[mis[Message_No-1].Sender-1].User_Name);
  Label_Receipient.setText(uis[mis[Message_No-1].Reciever-1].User_Name);
  get_File();
  Initialize_Message();
  }
  //Overridden so we can exit when window is closed
  protected void processWindowEvent(WindowEvent e) 
  {
    super.processWindowEvent(e);
    if (e.getID() == WindowEvent.WINDOW_CLOSING) 
    {
    Attacker_Main_Screen.main(IPAddress, uis, mis, jmp);
  this.dispose();
    }
  }

  void Button_ReadNext_actionPerformed(ActionEvent e) 
  {
  if(File_Exists)
  {
  try
  {
  TextArea_Message.setEditable(true);
  block_size++;

92



  //Attack.Decryptor(pri, "cipher.mes", "plaintext.txt", block_size);
  File PLFile = new File(String.valueOf(block_size)+".txt");
  FileReader fr = new FileReader(PLFile);
  BufferedReader br = new BufferedReader(fr);
  char[] c = new char[1];
  String text = "";
  while(br.read(c, 0,1) != -1)
  {
  text = text + String.valueOf(c);
  }
  TextArea_Message.setText(text);
  br.close();
  fr.close();
  if (block_size == 10)
  {

  Button_ReadNext.setText("Back");
  File_Exists = false;
  }
  TextArea_Message.setEditable(false);
  }
  catch(Exception ex){}
  }
  else
  {
  Attacker_Main_Screen.main(IPAddress, uis, mis,jmp);
  this.dispose();
  }
  }
  
  void Button_ReadPrevious_actionPerformed(ActionEvent e) 
  {
  if(block_size == 1)
  {
  JOptionPane.showMessageDialog(null, "Cannot lower block size anymore");
  }
  else
  {
  try
  {
  TextArea_Message.setEditable(true);
  if (block_size == 10)
  {
  File_Exists = true;
  this.Button_ReadNext.setText("Read Next");
  }
  block_size--;
  //Attack.Decryptor(pri, "cipher.mes", "plaintext.txt", block_size);
  File PLFile = new File(String.valueOf(block_size)+".txt");
  FileReader fr = new FileReader(PLFile);
  BufferedReader br = new BufferedReader(fr);
  char[] c = new char[1];
  String text = "";
  while(br.read(c, 0,1) != -1)
  {
  text = text + String.valueOf(c);

  }
  TextArea_Message.setText(text);
  br.close();
  fr.close();
  TextArea_Message.setEditable(false);
  }
  catch(Exception ex){}
  }
  }
}

import java.io.*;

public class Attack
{

public static int[] get_PQ(int n)

93



{
int[] PQ =  new int[2];
boolean found = false;
for(int x = 2; (x != n && !found); x++)
{

if (n % x == 0)
{

found = true;
PQ[0] = x;

}
System.out.println(x);

}
PQ[1] = n / PQ[0];
return PQ;

}

public static int gcf(int x, int y)
{

int z = 0;
if (x<y)
{

z = x;
x = y;
y = z;

}
while (y != 0)
{

z = x%y;
x = y;
y = z;

}
return x;

}

public static int power_mod(int base, int power, int mod)
{

int x = 0;
long p = 1;
for (x = 0; x != power; x++)
{

p = (p*base)%mod;
}
Integer y = new Integer(String.valueOf(p));
return y.intValue();

}

public static void Decryptor (Key pri, String src_file, String dest_file, int block)
{

try 
{

File source = new File(src_file);
File dest = new File(dest_file);
BufferedReader br = new BufferedReader(new FileReader(source));
FileOutputStream out = new FileOutputStream(dest);
PrintStream p = new PrintStream(out);
char[] c = new char[block];
String str="";
char z= 'a';
Integer x;
int i =0;
while(br.read(c, 0, block) != -1)
{

x = new Integer(String.valueOf(c));
i = x.intValue();
i = power_mod(i, pri.d, pri.n);
str = String.valueOf(i);
z = (char) i;
p.print(z);
System.out.print(z);

}
p.close();

94



out.close();
br.close();

}
catch(Exception e){System.out.println(e);}

}
public static Key Crack_Key(Key pub)
{

int[] PQ = get_PQ(pub.n);
int x = 1;
boolean check = false;
while(!check)
{

x++;
check = ((x*pub.d) % ((PQ[0]-1)*(PQ[1]-1)) == 1);
System.out.println("("+x+ ", "+pub.n+")");

}
Key pri = new Key("private", x, pub.n);
return pri;

}

public void run()
{

try
{

File users = new File ("User_Information.db");
FileInputStream fis = new FileInputStream(users);
ObjectInputStream ois = new ObjectInputStream(fis);
ois.readObject();
User_Info ui = (User_Info)ois.readObject();
ois.close();
fis.close();
int[] PQ = get_PQ(ui.Public_Key.n);
int x = 1;
boolean check = false;
while(!check)
{

x++;
check = ((x*ui.Public_Key.d) % ((PQ[0]-1)*(PQ[1]-1)) == 1);
System.out.println("("+x+ ", "+ui.Public_Key.n+")");

}
Key PK = new Key("private", x, ui.Public_Key.n);
Decryptor(PK, "1.mes", "test.txt", 6);

}
catch(Exception e){System.out.println(e);}

}
}

95



Appendix 6

Code of the Java programs to be imported by scripting 
languages

import java.io.*;
public class Key implements Serializable
{

public int d, n;
public boolean type;
public Key (String a, int x, int y)
{

type = (a == "public"); // TRUE = PUBLIC, FALSE = PRIVATE
d = x;
n = y;

}
}

import java.io.*;
public class KeyGenerator
{

public static void main(String args[])
{

if (args.length == 2)
{

try
{

File PubKey = new File(args[0]);
File PriKey = new File(args[1]);
Key[] k = RSA_Functions.Pair_Key_generator();
FileOutputStream fos = new FileOutputStream(PubKey);
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(k[0]);
oos.close();
fos.close();
fos = new FileOutputStream(PriKey);
oos = new ObjectOutputStream(fos);
oos.writeObject(k[1]);
oos.close();
fos.close();
System.out.println("Public Key: ("+k[0].d+", "+k[0].n+")");
System.out.println("Private Key: ("+k[1].d+","+k[1].n+")");
System.out.println("Key Generation Successful");

}
catch(Exception e){System.out.println("Error in creating keys");}

}
else
{

System.out.println("Too few or too many parameters");
}

}
}

import java.io.*;
public class Encryptor
{

public static void main(String args[])
{

if (args.length == 3)
{

try
{

File PKFile = new File(args[0]);
FileInputStream fis = new FileInputStream(PKFile);
ObjectInputStream ois = new ObjectInputStream(fis);
Key pub = (Key) ois.readObject();
ois.close();
fis.close();
RSA_Functions.Encryptor(pub, args[1], args[2]);

96



}
catch(Exception e){System.out.println("Error in Encrypting");}

}
else
{

System.out.println("Too few or too many parameters");
}

}
}

import java.io.*;
public class Decryptor
{

public static void main(String args[])
{

if (args.length == 3)
{

try
{

File PKFile = new File(args[0]);
FileInputStream fis = new FileInputStream(PKFile);
ObjectInputStream ois = new ObjectInputStream(fis);
Key pri = (Key) ois.readObject();
ois.close();
fis.close();
RSA_Functions.Decryptor(pri, args[1], args[2]);

}
catch(Exception e){System.out.println("Error in Decrypting");}

}
else
{

System.out.println("Too few or too many parameters");
}

}
}

import java.math.*;
public class Math_Functions
{

public static String hash_function(String password)
{

char[] c = password.toCharArray();
String str = "", rev= "";
int length = password.length();
for(int x = 0; x != length; x++)
{

str = str+String.valueOf((int)c[x]);
rev = rev+String.valueOf((int)c[length-x-1]);

}
BigInteger a = new BigInteger(str);
BigInteger b = new BigInteger(rev);
b = b.and(a);
return b.toString();

}

public static int power_mod(int base, int power, int mod)
{

int x = 0;
long p = 1;
for (x = 0; x != power; x++)
{

p = p*base;
p = p%mod;

}
Integer y = new Integer(String.valueOf(p));
return y.intValue();

}

public static boolean check_if_prime(int x)
{

/*if (x == 2)

97



{
return true;

}
else
{

return (power_mod(2,x,x) == 2);
}*/
BigInteger b = new BigInteger(String.valueOf(x));
return b.isProbablePrime(10000);

}

public static int gcf(int x, int y)
{

int z = 0;
if (x<y)
{

z = x;
x = y;
y = z;

}
while (y != 0)
{

z = x%y;
x = y;
y = z;

}
return x;

}

public static int random_number(int x) // random number generator from 1 to x;
{

int y;
y = (int) Math.round(Math.random() * x)+1;
return y;

}

public static int prime_generator(int n)
{

int x = 0;
boolean check = false;
while (!check)
{

x = random_number(n);
check = check_if_prime(x);

}
return x;

}

public static String pad(String a, int x)
{

int y;
for(y = a.length(); y < x; y++)
{

a = "0"+a;
}
return a;

}
}

import java.io.*;
import java.lang.*;
public class RSA_Functions
{

public static Key[] Pair_Key_generator()
{

boolean check = false;
int p=0, q=0, n=0, x=0;
Key[] pair;
pair = new Key[2];
//public key generator
while (!check)

98



{
p = Math_Functions.prime_generator(1000);
q = Math_Functions.prime_generator(1000);
n = p*q;
if (n > 1000) check = true;

}
boolean bool = false;
while(!bool)
{

check = false;
while(!check)
{

x = Math_Functions.random_number(n);
if (x != 1)
{

check = (Math_Functions.gcf(x, (p-1)*(q-1))==1);
}

}
pair[0] = new Key("public",x,n);
//private key generator
x = 1;
check = false;
while(!check)
{

x++;
check = ((x*pair[0].d) % ((p-1)*(q-1)) == 1);

}
if ((x < (p-1)*(q-1))  && (pair[0].d < 10000))bool = true;

}
pair[1] = new Key("private",x,n);
return pair;

}

public static void Encryptor(Key pub, String src_file, String dest_file)
{

try
{

File source = new File(src_file);
File temp = new File("temp.jmp");
File dest = new File(dest_file);
int i = 0, counter = 0, y = 0;
Integer x;
String str = "";
//read from source, write to temp
BufferedReader br = new BufferedReader(new FileReader(source));
FileOutputStream out = new FileOutputStream(temp);
PrintStream p = new PrintStream(out);
char[] c = new char[1];
while(br.read(c, 0, 1) != -1)
{

System.out.print(c);
i = (int) c[0];
str = String.valueOf(i);
str = Math_Functions.pad(str, 6);
p.print(str);
counter++;

}
p.close();
br.close();
out.close();
System.out.println("\n -------------------\n");
//read from temp write to dest
br = new BufferedReader(new FileReader(temp));
out = new FileOutputStream(dest);
p = new PrintStream(out);
c = new char[6];
while(br.read(c, 0, 6) != -1)
{

x = new Integer(String.valueOf(c));
i = x.intValue();

99



i = Math_Functions.power_mod(i, pub.d, pub.n);
 str = String.valueOf(i);

str = Math_Functions.pad(str, 6);
p.print(str);
System.out.print(str);

}
p.close();
br.close();
temp.delete();

}
catch(Exception e)
{}

}

public static void Decryptor (Key pri, String src_file, String dest_file)
{

try 
{

Math_Functions a = new Math_Functions();
File source = new File(src_file);
File temp = new File("temp.jmp");
File dest = new File(dest_file);
FileReader fr = new FileReader(source);
BufferedReader br = new BufferedReader(fr);
FileOutputStream out = new FileOutputStream(temp);
PrintStream p = new PrintStream(out);
char[] c = new char[6];
String str="";
char z= 'a';
Integer x;
int i =0;
while(br.read(c, 0, 6) != -1)
{

x = new Integer(String.valueOf(c));
i = x.intValue();
i = Math_Functions.power_mod(i, pri.d, pri.n);
str = String.valueOf(i);
str = Math_Functions.pad(str, 6);
p.print(str);
System.out.print(str);

}
p.close();
br.close();
fr.close();
fr = new FileReader(temp);
br = new BufferedReader(fr);
out = new FileOutputStream(dest);
p = new PrintStream(out);
c = new char[6];
System.out.println(" ");
while(br.read(c,0,6) != -1)
{

x = new Integer(String.valueOf(c).trim());
i = x.intValue();

    z = (char) i;
p.print(z);
System.out.print(z);

}
p.close();
out.close();
br.close();
fr.close();

}
catch(Exception e)
{System.out.print(e);}

}
}

100


	A. Server Application
	B. Client Application
	C. Attacker Component
	D. Executables

