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Abstract

As genomic data become more widely available, the need for powerful computing

resources to process the large volume of data becomes more critical. As a result,

researchers are now gearing towards cloud computing. However, there is loss of

direct control by the researchers upon their data as they outsource computations,

leaving the donors of genomic data vulnerable to exploitation. Homomorphic

encryption has become a technique of interest in providing genomic privacy in

outsourced computation as it preserves the utility of data in mathematical opera-

tions. It is a cryptographic technique that allows the encryption of data and then

carrying out computation without decryption. This study proposes a scheme that

uses fully homomorphic encryption, using Simple Arithmetic Encrypted Library

(SEAL), developed by Microsoft Research.

Keywords: homomorphic encryption, genome-wide association studies, genomic privacy
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I. Introduction

A. Background of the Study

The causal relationship between genetic variations across individuals within a

species and the phenotypic differences observed among them is of fundamental bi-

ological interest. Since 2005, genome-wide association studies (GWAS) have shown

to a significance that susceptibility of individuals to some diseases are associated

to certain sequences—i.e. of bases adenine (A), cytosine (C), thymine (T), and

guanine (G)—found in their DNA. Many of these studies have revealed correlation

to previously unsuspected genes and thus have helped formulate new hypotheses

for investigation about disease mechanisms and corresponding treatment targets.

[1, 2, 3, 4]

In particular, GWAS investigate the relationship between genetic variations

and disease susceptibility through tests of genetic association such as the χ2 test

[1]. Additionally, because of patterns of correlation in DNA sequences, as quanti-

fied by linkage disequilibrium, a subset of these many SNPs can be used to show

that one or more variants explain part of the genetic risk for a disease [5, 3].

The selection of the samples to be used in the study can affect the accuracy

of the results of the study. For this reason, quality control procedures, usually

through the computation of and consequent decision-making based on quality

control metrics such as minor allele frequency, Hardy-Weinberg equilibrium, and

heterozygosity rate, are conducted. [6, 7, 8]

The modern unit of genetic variation is the Single Nucleotide Polymorphism

(SNP). SNPs are single base pair changes in the DNA sequence. In GWAS, SNPs

are used as markers of a genomic region. They are, by far, the most abundant

form of genetic variation in the human genome; the others range from insertions,

deletions, and rearrangements. That is, most all the differences between the DNA

sequences of any two people occur as SNPs. SNPs can have functional conse-

quences, causing amino acid changes, changes to mRNA transcript stability, and
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changes to transcription factor binding affinity.

GWAS are feasible because millions of human DNA sequence variations have

now been cataloged. New technologies that can assay over one million variants

rapidly and accurately have been developed as well. It is due to these high-

throughput sequencing technologies that more genetic data are becoming available

for study. [1, 2, 3, 4]

Researchers are now gearing towards cloud computing, utilizing a more power-

ful outsourced computing resource which should accommodate the great volume

of data now readily accessible. A very important consideration, however, is the

loss of direct control by the researchers upon their data as they outsource com-

putations. In reality, while this should accelerate the processing of data greatly,

it leaves these very sensitive genomic data, and consequently its donors, vulnera-

ble to exploitation. [9] Studies have shown that removal of the donors’ personal

information does not solve the critical problem of privacy, as the genomic data

themselves can be used to infer a person’s identity. [10, 11]

B. Statement of the Problem

Genome-wide association studies investigate associations between genetic vari-

ations across individuals and the phenotypic differences observed among them.

These studies involve conducting tests of association which consist of operations

on genetic variation data, usually in the form of SNPs.

An important consideration in conducting GWAS, and in genomics as a whole,

is that the genome of an individual is highly sensitive data. A malicious entity

with knowledge of such can infer an individual’s tendency to manifest a geneti-

cally associated trait, like his/her disease susceptibility. The entity might then

use these inferred information to discriminate against or exploit the individual.

Furthermore, given the hereditary nature of genetic material, knowledge of an

individual’s genome additionally reveals sensitive information about his family,

hence similarly exposing them to these kinds of threats.
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In this regard, research institutions must handle the important task of keeping

their subjects’ genomes secure. In the absence of this assurance, the progress of

research is impeded by the distrust the institution might receive from prospective

subjects, and by the difficulty by which it meets its legal obligations. In other

words, the security framework of a genomic research institution is a very important

factor that affects the progress of its activities. The same can be said for genomic

research as an entire field of study. [12]

Advances in genomic research can largely be attributed to efficient use of com-

puting resources. As genomic data become more widely available, the demand

for outsourced, possibly unsafe but more practical, computing power is ever in-

creasing. As a result, the need for genomic data security becomes more critical.

[9]

Schemes based on cryptographic techniques can possibly solve the problem of

genomic data privacy in GWAS. However, the need to decrypt the data in order

for meaningful computation to take place is found in most of these techniques and

poses a threat to the privacy of research subjects. In this regard, homomorphic

encryption has become a technique of interest as it preserves the utility of data

in mathematical operations. It is a cryptographic technique that allows the en-

cryption of data and then carrying out computation without decryption. By this

property, it presents a viable option for security in outsourced computation.

C. Objectives of the Study

This research will create a GWAS computing tool that uses homomorphic encryp-

tion to perform private computations on genomic data. These computations are

to be performed by a server hosted in a cloud environment. The tool will allow

the user to do the following:

1. encode and encrypt SNP data, then upload it to the cloud environment

2. perform the following GWAS computations with the uploaded encrypted
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SNP data:

(a) χ2 test statistic

(b) allelic odds ratio

(c) linkage disequilibrium

(d) minor allele frequency

(e) Hardy-Weinberg equilibrium

(f) heterozygosity rate

3. download, decrypt and display the computation results

D. Significance of the Project

In conjunction with policy-based privacy preservation measures, cryptographic so-

lutions, such as that which is detailed in this study, can be used to protect sensitive

genomic data and the processing thereof from malicious entities, especially in a

research environment that is continuously becoming more borderless due to the

rise of cloud-based research.

Specifically, the use of homomorphic encryption can potentially be more rel-

evant and practical in GWAS, as it allows a meaningful encryption of genomic

data (i.e. the encrypted form of data are still useful in computation). A large

volume of necessarily private arithmetic operations are involved in conducting

genome-wide association studies. With the use of such a technique, researchers

can securely outsource computation to a possibly unsafe computing resource such

as a cloud, all while maximizing its computational capacity. This can be viewed

in comparison to other cryptographic techniques that render the data inoperable

until decryption.

E. Scope and Limitations

1. The tool will take only Single Nucleotide Polymorphisms (SNPs) as input.
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2. The tool will output only the results of the user-selected genomic computation—

i.e. intermediate computations and interpretation of results will not be pro-

vided.

3. This project will use Simple Encrypted Arithmetic Library (SEAL) devel-

oped by Microsoft Research, to perform homomorphic encryption and oper-

ations.

F. Assumptions

1. The SNPs are biallelic.

2. The input datasets are in text files.

3. The input datasets follow the format used in the iDASH Privacy & Security

Workshop 2015 Secure Genome Analysis Competition.
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II. Review of Related Literature

From the time the human genome was first fully sequenced in 2001, genome se-

quencing costs have significantly declined, from 300 million to a thousand dollars a

genome. A completely sequenced genome contains about three billion base pairs.

Obtaining data of such a magnitude involves the mapping of a large number of

short DNA sequences, called reads, to a reference genome to order these reads

correctly. Sequencing thus requires a large amount of resources, including time,

storage space, and computational power.

But upon the advance of next-generation sequencing (NGS) technology, avail-

able platforms have now become more affordable and efficient, yielding consid-

erably higher throughput. Such an improvement in procuring genomic data has

helped the fields of healthcare (e.g. genome-based personalized medicine), re-

search (e.g. genome-wide association studies), consumer services (e.g. ancestry

determination), and forensics (e.g. criminal investigations). Most existing lit-

erature proposing methods or protocols on protecting genomic information arise

as a response to these rapidly advancing genome sequencing technologies, and

therefore, wider availability of genomic data.

However, the nature of genomic data opens a security issue for donors (i.e.

individuals who have their genome sequenced). An individual is uniquely identified

by his/her genome. In fact, it has been shown that even with only a small subset

of the genome, 30-80 SNPs out of millions, it is possible to infer the identity of

an individual, and estimate his/her disease risk [13]. Consequently, by the nature

of genomic data, one might infer information about the individual’s family [14].

Thus, the malicious use of these data exposes the individuals, and even their close

kin, to possible exploitation by discrimination due to their genomic predisposition.

Numerous works identify approaches that illustrate how such threats to privacy

can be realized. Even when the data are anonymized or de-identified (i.e. explicit

identifiers are removed), identity information can still be inferred as the data

themselves are an individual’s identity code. The standard anonymization/de-
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identification approach to privacy is no longer deemed applicable to genomic data

[10]. An approach to re-identification using inferred phenotypes from public data

and a list of known associations between genotype and phenotypic traits [11] can

be used by malicious entities, and can become more practical as the list of asso-

ciations grow with further study [15]. Furthermore, the threat of re-identifying

anonymized genotype data is compounded by the size of online genotype repos-

itories now available [16]. Aggregated pools of genomic data, including GWAS

statistics, can also leak private information. For GWAS, specifically, the presence

of a participant in a case group can be inferred using statistical methods from the

group’s aggregated genomic data [17, 18, 16, 19]. The use of genomic data-sharing

beacons also present privacy risks for genomic data donors. These beacons are

web servers that answer allele-presence queries—i.e. whether the beacon contains

a certain allele in a specified location. It is shown by Shringarpure and Bustamante

[20] that through statistical methods, the presence of an individual’s genome in a

beacon can be inferred with significant power by performing multiple queries. The

number of queries necessary depends on the number of individuals in the beacon,

given the desired statistical power.

Besides anonymization and other policy-based solutions, other methods aimed

at protecting genomic data include cryptography-based approaches, differential

privacy, and computation partitioning.

Cassa et al. [21] present a scheme that cryptographically protects and anonymizes

an individual’s sequence data when it is transmitted between a biorepository and

an external sequencing facility using a shared secret key that is derived from a

subset of the individual’s genetic sequence. This preselected subset of SNPs are

naturally known to both parties and consists of highly polymorphic SNPs to ensure

high entropy for the generated secret key to be used in the symmetric encryption

of the sequenced data. The main advantage of this approach is that it does not

require transmission of patient identifiers and passwords to and from sequencing

facilities, and a public key infrastructure.
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Most cryptographic schemes work under the assumption that the adversary has

limited computational resources. When this condition is not true, such schemes

are left vulnerable to brute-force attacks—i.e. the adversary permutes across

all possible keys. GenoGuard, a scheme based on honey encryption designed

by Huang et al. [22], was proposed to especially protect genomic data against

brute-force attacks efficiently. A notable property of honey encryption is that

when a ciphertext is decrypted with an incorrect key, the result is a plausible-

looking plaintext. Additionally, GenoGuard is designed to protect the data against

attackers who have side information regarding the target individual.

We also note here that the above works, unlike the proceeding ones, focus less

on providing mechanisms for secure computation on genomic data and more on

its secure and privacy-preserving outsourced storage.

Ayday et al. [23] and Barman et al. [24] present privacy-preserving disease

susceptibility testing using genomic data, a task that involves weighted averaging

across SNPs.

Ayday et al. [23] propose a privacy-preserving disease susceptibility test using

homomorphic encryption and proxy re-encryption. It details an architecture be-

tween a patient, a medical unit, and a storage and processing unit (SPU). Proxy

re-encryption is a mechanism through which a patient’s secret key can be ran-

domly divided into two shares in such a way that using one of the two shares

of the secret key partially decrypts the data, and subsequently using the other

share recovers the original message entirely. This mechanism is used to divide the

process of retrieving the patient’s SNPs into two steps of authorization: one from

the SPU and the other from the patient. However, if only computations are neces-

sary, the SPU sends encrypted SNPs to the medical unit who will compute disease

susceptibility locally using homomorphic operations and send back the encrypted

result to the SPU for decryption.

Barman et al. [24] propose countermeasures for two types of attacks on generic

system model architecture between a medical center, a data center, and a patient
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used in most literature: a test inference attack and an active SNP retrieval attack.

A test inference attack can be performed by a data center trying to infer the

nature of an ongoing disease susceptibility test for a patient. The disclosure of

such information can tell an adversary what disease a patient is being tested for.

This attack is mitigated by padding the request for SNPs made by the medical

center with dummy SNPs which are not going to be factored in the susceptibility

computation. A passive SNP retrieval attack can be performed by a medical center

trying to infer a patient’s SNPs by manipulating the SNP weights for a test in such

a way that will disclose the exact value of a SNP. This can be done by setting all

but one SNP weights to zero. The proposed solution prevents this attack by using

a protocol which requires the medical center to convince the data center that the

test is not a SNP retrieval attack by sending a subset of the SNP weights to be

used, and allowing the data center to homomorphically compute upon this subset

and send the encryption of the remaining requested SNPs to the medical center.

The medical center will then likewise homomorphically compute upon them and

combine the two partial results for decryption.

Zhao et al. [25] present a cryptographic approach that supports the search

of genomic signatures associated with a certain disease using the computational

power of a commercial cloud. To protect the data against attackers, the scheme

proposes site-wise encryption—i.e. encoded genome sequences are encrypted be-

fore they are uploaded to commercial clouds. It uses the Advanced Encryption

Standard (AES), which uses a symmetric key that can be used both for encryp-

tion and decryption. To perform the query, the user must also encrypt the query

signature using the same key before it is similarly uploaded to the cloud, where

simple string matching can be done. To thwart the threat of an attacker who

observes queries and their corresponding frequencies, a modification of the scheme

that introduces a random bit string in encryption both of the reference and query

records is also presented. However, we note that both these approaches are specif-

ically tailored for signature matching and are not useful in other tasks such as

9



GWAS.

In genomic research, genome-wide association studies (GWAS) investigate as-

sociations between genetic variations among individuals and the traits they man-

ifest. The following works present approaches to privacy-preserving GWAS.

Simmons et al. [26], Yu et al. [27], and Tramer et al. [28] use the concept of

differential privacy, a form of data perturbation, in genome-wide association stud-

ies (GWAS). The main advantage of differential privacy is that formal guarantees

of privacy can be made based on mathematics while making minimal assump-

tions. Intuitively, this kind of privacy guarantees that an analysis performed on

any dataset is statistically indistinguishable from the same analysis performed on

any dataset that differs in any individual’s disease status. It entails selecting a

privacy budget, denoted by ε, which controls the level of privacy guaranteed to the

participants in the study. The closer ε is to zero, the more privacy is guaranteed.

Simmons et al. use phenotypic differential privacy as a formal definition of

privacy regarding private information about individuals (e.g. disease status). In

the selection of SNPs that are highly associated with a disease, the EIGENSTRAT

statistic is used. The phenotypically differentially private statistic is estimated

for all SNPs, using a technique based on the Laplacian perturbation mechanism,

which draws noise from the Laplace distribution. The highest-scoring SNPs are

then returned.

Yu et al. compute differentially private genotypic and allelic χ2 test statistics

and similarly returns the results for only a subset of the SNPs. It uses the expo-

nential perturbation mechanism under the motivation that the return of relevant

SNPs based merely on their rankings, as the case is in the Laplacian pertur-

bation mechanism, reveals to the attacker that the released SNPs have higher

scores than all the other SNPs regardless of the exact values of the computed

statistics. The exponential perturbation mechanism, in selecting the SNPs to be

released, instead randomly samples across all SNPs whose respective probabilities

are weighted based on an exponential function of their scores.
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Tramer et al. propose a relaxation of differential privacy to reconcile between

utility and privacy in genomic data. In the context of protection against mem-

bership disclosure, a re-identification attack where the results of a computation

significantly increases an adversary’s belief that an entity belongs to a dataset,

differential privacy threat models usually make the assumption that for entities

about which the adversary has no certain membership knowledge, the adversary

has an arbitrary prior belief that the entity belongs to the dataset. The scheme

proposed by Tramer et al. relaxes this assumption as it is very unrealistic for

an adversary to have high confidence about its belief for all entities a priori. It

focuses on the protection of these entities whose priors are unknown—i.e. those

whose memberships are highly uncertain,—as guaranteeing privacy for entities for

which the adversary has a membership belief with high confidence will require the

most perturbation, which consequently degrades data utility. To achieve this, the

privacy budget is computed with the relaxed adversarial model in consideration.

This approach similarly uses the exponential perturbation mechanism.

For approaches using differential privacy, we note that the large number of

queries performed in the process, each with its own privacy budget, yield less

accurate results. Similarly, the results in the above works show that, as expected,

the differentially private results are more accurate—i.e. have higher utility—as

ε increases—i.e. as privacy decreases,—as privacy in this context may denote

introduction of small noise to the output to achieve indistinguishability.

The interest in using outsourced computational power is evident in GWAS as

they involve arithmetic operations over large amounts of data (i.e. many SNPs for

many individuals). The proceeding works tackle privacy-preserving outsourcing

of GWAS using different approaches.

Zhang et al. [29] and Kamm et al. [10] use secure multi-party computation in

their respective works. Both use the mechanism of secret sharing, which ensures

that each computing party gets a subset of the data that leaks no information on

its own, but is meaningful when the data are pooled back together. Kamm et al.
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use (n, t)-threshold linear secret sharing, where each private value is divided into

n secret shares to be distributed among n computational parties, such that the

combination of t or less shares leak no private information, but the joint use of more

than t shares reveals the value exactly. Using such a scheme, linear combinations

of secret-shared values can be performed by a computational party on its own, and

multiplications of secret-shared values requires communication to occur between

all parties. Results from Zhang et al. show a practical execution time that is

linear in the number of SNPs and that optimizations to the division operation can

prove to be useful as it contributes almost the entire runtime. Kamm et al. find

similar challenges in the efficiency of floating point operations, and additionally,

in performing comparisons and the maximization of the use of parallel executions.

The most significant benefits are regarding the privacy provisions of the approach,

which give additional guarantees of security for the data donors even when the

research projects discontinue operations, since the data are split among other

parties. It also provides a way to conduct analysis that fosters collaboration

between independent parties as they do not have to release their data: for example,

medical institutions with their patient records, and biobanks with their genotype

data. Computational efficiency is the biggest drawback to such an approach, as

the nature of secure multi-party computation entails a dependency upon network

communication, and additionally, making such communication secure.

Works by Wang et al. [30], Lauter et al. [31], Lu et al. [32], Kim and

Lauter [33], and Zhang et al. [34] use homomorphic encryption in GWAS. Fully

homomorphic encryption (FHE) enables meaningful computation on data without

knowledge of the secret decryption key. In these works, all genomic data in the

form of SNPs are encoded and encrypted locally before they are uploaded to

the cloud which then conducts computations using homomorphic operations and

returns encrypted results.

In the implementation of FHE schemes, some amount of noise is introduced

into the ciphertext. These tend to grow during homomorphic operations. At a
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certain point when the noise becomes too large, the ciphertext can no longer be

decrypted even with the correct key. An encryption scheme is said to be some-

what homomorphic if it can evaluate a limited number of operations before the

noise grows large enough to cause this kind of error. A leveled homomorphic

encryption scheme allows for the selection of parameters to enable correct homo-

morphic computations. This means that for a specific function to be evaluated,

these parameters need to be selected in such a way that the scheme can perform

the evaluations correctly. Leveled homomorphic encryption fundamentally does

what a fully homomorphic scheme can, and can prove to be practical through the

optimization of the parameters.

Wang et al. implemented homomorphic computation of exact logistic regres-

sion in a framework called HEALER. Exact logistic regression is a method deemed

more robust than standard statistical techniques in computing for p-values with

respect to disease association of very rare variants from a limited sample. In doing

so, Wang et al. used the BGV scheme for fully homomorphic encryption. Results

show that HEALER requires very small storage space for every single encrypted

value, in comparison to other approaches using homomorphic encryption, and that

in contrast with methods that use the concept of differential privacy, it produces

more accurate results. The main limitation of the HEALER framework, however,

is that it only considers p-value evaluation.

Lauter et al. implemented the Pearson Goodness-of-Fit test, the D′ and r2

measures of linkage disequilibrium, the Estimation Maximization algorithm for

haplotyping, and the Cochran-Armitage Test for Trend using an implementation

of the leveled homomorphic encryption scheme proposed by López-Alt and Naehrig

[35]. The parameters of the scheme are the degree n, modulus q, and distributions

χkey and χerr. As such, the scheme operates in the ring of polynomials with integer

coefficients and degree less than n. The integer modulus q is used to reduce the

coefficients of the polynomials into the set {−b q
2
c, ..., b q

2
c} and the distributions

are used to generate polynomials with small coefficients. In selecting parameters
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using such a scheme, particularly n and q, security, correctness, and efficiency are

taken into consideration. As long as appropriate parameters are selected, results

show that the computations will evaluate correctly. Performance assessment shows

that construction and encryption of genotype and phenotype tables run linearly in

the size of the data set. On the other hand, execution of the statistical algorithms

using homomorphic operations on the encrypted tables is independent of the size

of the data set and is instead dependent on the parameters set for the encryption

scheme.

Lu et al. supported the evaluation of the D′ measure of linkage disequilib-

rium, Hardy-Weinberg equilibrium, and the χ2 test statistic also using the BGV

scheme in their approach. Worthy of particular note in their work is the packing

technique they used to represent vectors of integers, which condenses the sequence

of homomorphic additions and multiplications involved in the computation of a

scalar product into a single homomorphic multiplication. The use of this packing

technique effectively decreased runtime, as shown by a comparison to the work of

Lauter et al. [31].

Kim and Lauter presented evaluation of algorithms for secure computation of

minor allele frequency, the χ2 test statistic for GWAS, Hamming distance, and Edit

distance between genome sequences across two implementations of homomorphic

encryption: the BGV scheme and the YASHE scheme. Both schemes take the

parameters n as the polynomial degree, q as the ciphertext coefficient modulus,

both used similarly as in the work of Lauter et al., and t as the plaintext coefficient

modulus. A trade-off between security and performance was observed. YASHE

scheme requires larger parameter values to ensure correctness, as opposed to the

BGV scheme, and therefore is slower when evaluating deep circuits such as in

computing Hamming and Edit distances. However, for relatively lightweight tasks

such as computation of minor allele frequency and χ2 test statistic, YASHE is

more efficient, in terms of runtime, since the BGV scheme uses costly modulus-

switching operations even for simple homomorphic operations such as addition,
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and ciphertext size.

Zhang et al. [34] propose a method that also uses the BGV scheme for fully

outsourcing the computation of the χ2 test statistic for GWAS—that is, it also

outsources the execution of division operations, a feature not found in most works

that use homomorphic encryption, as currently existing FHE schemes usually do

not support homomorphic divisions. They propose two methods for secure out-

sourced divisions, namely, secure errorless division protocol and secure approxi-

mation division protocol. Results show that the approximation protocol provides

a good trade-off in terms of complexity and accuracy. Specifically, the errorless

protocol requires 10, 20, and 5 times in complexity in key generation, encryption,

and execution of computation, respectively, compared to the approximation pro-

tocol, and its resulting ciphertext is about eight times as large. Still, however, the

work remarks that this trade-off is the main limitation to their proposed solution,

as accuracy of results depends on parameters of the encryption scheme, for which

larger values lead to decrease in efficiency.

Some libraries that implement homomorphic encryption are now publicly avail-

able. HELib [36], developed by IBM Research, is one such library that implements

the BGV scheme in C++ atop the GNU Multiple Precision Arithmetic Library

(GMP) and the Number Theory Library (NTL). It implements ciphertext pack-

ing techniques and single instruction multiple data (SIMD) optimizations. Simple

Encrypted Arithmetic Library (SEAL) [37], developed by Microsoft Research, on

the other hand, is an implementation of the FV scheme [38] also implemented in

C++. It has been made publicly available for bionformatics, genomics, and other

research purposes. The library, as part of its optimization mechanism, similarly

supports an SIMD mechanism, and in addition, implements a parameter chooser

for the leveled homomorphic encryption scheme and data encoders specifically

designed to accommodate research data used in bioinformatics and genomics.
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III. Theoretical Framework

A. Genome-wide association studies (GWAS)

Genome-wide association studies (GWAS) investigate associations between genetic

variations across individuals within a species and the phenotypic differences ob-

served among them. The field has evolved over the last ten years into a powerful

tool for investigating the genetic architecture of human disease. GWAS in human

genetics aim to identify genetic risk factors for common, complex diseases and

rare Mendelian diseases. These studies, which provide insight on the biological

underpinnings of disease susceptibility, are useful in developing new prevention

and treatment strategies.

One of the early successes of GWAS was the identification of the Complement

Factor H gene as a major risk factor for age-related macular degeneration (AMD).

Understanding the biological basis of genetic effects, such as that demonstrated

in that study, plays an important role in developing new pharmacologic therapies.

Accordingly, one of the most successful applications of GWAS has been in the area

of pharmacology. Pharmacogenetics has the goal of identifying DNA sequence

variations that are associated with drug metabolism and efficacy. This has given

rise to the field of personalized medicine that aims to tailor healthcare to individual

patients based on their genetic background and other biological features. [1]

In achieving such results, tests of genetic association are conducted and are

afterwards replicated to be validated. Tests of genetic association are usually per-

formed separately for each individual genetic marker, usually in the form of Single

Nucleotide Polymorphisms (SNPs), which are single-nucleotide substitutions at a

genetic locus. Each SNP with major (more abundantly occurring) allele A and

a minor (less abundantly occurring) allele B can be represented as a contingency

table of counts of disease status by either genotype count (e.g. AA, AB, or BB)

or allele count (e.g. A or B). Under the null hypothesis of no association with the

disease, the relative allele or genotype frequencies are expected to be the same
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in case and control groups. A test of association is thus given by a simple χ2

test for independence of the rows and columns of the contingency table, with the

corresponding degrees of freedom, depending on whether allele or genotype counts

are used.

The success of a genetic association study depends on genotyping a causal

polymorphism, either directly or indirectly. Direct genotyping occurs when an

actual causal polymorphism is typed. Indirect genotyping occurs when genetic

markers that are highly correlated with the causal polymorphism are typed. Cor-

relation, or non-random association, between alleles at two or more genetic loci

is referred to as linkage disequilibrium (LD). [4] The LD structure of the human

genome was investigated in the HapMap project, and the outcome was a list of

SNPs that captured most of the common genomic variation in a number of human

populations. [2]

The selection of the samples to be used in the study is of utmost importance

and can affect the accuracy of the results and the statistical power of the method

from which they result. Hence, various quality control procedures are employed

which can tag individual samples or genetic loci for further examination, or for

exclusion altogether from the study. [6, 7, 8]

The discovery of hundreds of thousands of single-nucleotide variants, facilitated

by the accelerated sequencing of the human genome, the quantification of the

correlation of genetic markers, and the ability to accurately genotype numerous

markers in an automated and affordable manner made GWAS a reality. [2] As

a result, various research institutions now conduct GWAS and find success in

locating genetic variations related to diseases. There are now well over 2000 loci

that are significantly and robustly associated with one or more complex traits.

The number of loci identified per complex trait varies substantially, from a handful

for psychiatric diseases like schizophrenia to a hundred or more for inflammatory

bowel disease, including Crohn disease, and ulcerative colitis, and stature. [3, 2]

17



B. χ2 test statistic

Dichotomous case/control traits are generally analyzed using contingency table

methods. The most ubiquitous form used in GWAS is the χ2 test. The test

examines and measures the deviation from the null hypothesis that there is no

association between phenotype and genotype classes. Allelic association tests,

such as the χ2 test, examine the association between one allele of the SNP and

the phenotype. [1, 4]

The test uses information from the 2×2 allelic contingency table which contains

frequency data from M subjects on the alleles of interest, say A and B. N case
A and

N case
B are the counts of A and B alleles, respectively, found in the case group.

N control
A and N control

B are the corresponding allele counts for the control group.

Allele Type Total

A B

Case N case
A N case

B N case = N case
A +N case

B

Control N control
A N control

B N control = N control
A +N control

B

Total NA = N case
A +N control

A NB = N case
B +N control

B 2M

Table 1: Allelic contingency table

In Table 1, the frequency quantities can be further computed from the genotype

data as

N case
A = 2N case

AA +N case
AB ,

N case
B = 2N case

BB +N case
AB ,

N control
A = 2N control

AA +N control
AB , and

N control
B = 2N control

BB +N control
AB .
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The χ2 test statistic [32] can then be written as

2M(N case
B (N control

A +N control
B )−N control

B (N case
A +N case

B ))2

N caseN controlNANB

The χ2 test with one degree of freedom is used to evaluate the significance of

the result. Such can be done by finding the p-value associated with the computed

statistic using a χ2 p-value calculator. This p-value is the probability of observing

a test statistic equal to or greater than the computed test statistic, under the

assumption that the null hypothesis of no association is true. This means that

lower p-values indicate that if there is, in fact, no association between the allele and

the phenotype, the chance of observing the computed result is extremely small.

Results of statistical tests are generally called significant and the null hypothesis

is rejected if the p-value falls below a predefined level of siginificance, which is

nearly always set to 0.05; in which case, 5% of the time, the null hypothesis is

rejected when it is true and we detect a false positive. [1]

C. Allelic odds ratio

The odds ratio is used as a measure of effect size in GWAS. [1] The effect of a

locus on the probability of getting the disease can be estimated through the odds

ratio associated with the SNP. [39] To illustrate, an odds ratio of one indicates no

genetic effect. An odds ratio greater than one indicates that the allele is associated

to the trait, and an odds ratio less than one implies that the allele affects the trait

negatively.

The allelic odds ratio describes the association between disease and allele by

comparing the odds of disease in an individual carrying allele A to the odds of

disease in an individual carrying allele B. In other words, the odds ratio is the

probability of having the disease given one allele divided by the probability of
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having the disease given the other allele, as also expressed below. [4]

N case
A N control

B

N control
A N case

B

D. Minor allele frequency

Minor allele frequency (MAF) refers to the frequency at which the less abundant

allele occurs in a population. [1] It can be expressed as

min(NA, NB)

NA +NB

In GWAS, the SNPs selected for investigation are filtered based on minor allele

frequency because statistical power is extremely low for rare SNPs—i.e SNPs with

very low MAF. The threshold chosen for the MAF depends on the size of the

study and the effect sizes expected. SNPs with MAF too low to yield reasonable

statistical power (e.g. below 0.01) may be removed from the analysis to lighten

computational burden. Association signals seen at these rare SNPs are less robust

because they are driven by the genotypes of only a few individuals. [8, 6] In a study

by Tabangin et al. [40], common SNPs (with MAF < 0.25) exhibited significantly

fewer false positives for association than expected by chance, while rare SNPs

exhibited more false positives and variability in its number than common SNPs.

E. Hardy-Weinberg equilibrium

In the absence of migration, mutation, natural selection, and assortative mating,

genotype frequencies at any locus are a simple function of allele frequencies. This

phenomenon is termed Hardy-Weinberg equilibrium (HWE). [41] Under the as-

sumption of HWE, allele and genotype frequencies can be estimated from one

generation to the next. [8]

If A and B are the alleles associated to the locus of interest, let NAA, NAB, NBB

be the observed counts for the genotypes AA, AB, and BB, respectively. Further-
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more, let

pAA =
NAA

M
, pAB =

NAB

M
, pBB =

NBB

M

denote the corresponding genotype frequencies. Under the assumption of HWE,

the allele frequencies are independent. Hence, the following hold.

pAA = p2A, pAB = 2pApB, pBB = p2B

Deviations from this assumption is usually measured in GWAS using a χ2 test,

where the expected counts for the genotypes AA, AB, and BB are given by

EAA = Mp2A, EAB = 2MpApB, EBB = Mp2B

Deviations of a population from Hardy-Weinberg equilibrium can indicate in-

breeding, population stratification, and genotyping errors. Deviation from HWE

may be the strongest and most straightforward hint that genotyping may need

to be repeated and double-checked. [42] It is not clear how much from these

deviations can be attributed to genotyping errors and how much are due to true

genotypic frequency deviations from HWE, but examination of plots indicates that

most of the extreme deviations are due to poor genotyping. [7]

However, in samples of affected individuals, these deviations can also provide

evidence for association. [41, 42] As such, it would be counter-productive to remove

these deviating loci from further investigation. It has been consistently noted that

SNPs severely out of HWE should therefore not be eliminated from the analysis,

but flagged for further analysis after the association analyses are performed. It

is also beneficial to examine HWE in controls separately, as controls should more

closely follow the assumptions that lead to HWE than cases, since some true

associations are expected to be out of HWE. [8]
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F. Linkage disequilibrium

Linkage disequilibrium is the nonrandom association of alleles at different loci.

It is generated as a consequence of a number of genetic factors and results in

the shared ancestry of genetic material. This means that alleles may seem to

be inherited together more often rather than expected by chance. [4] GWAS is

based on the premise that a marker allele in linkage disequilibrium with the causal

variant should likewise show an association with the trait of interest—that is, to

say, a subset of SNPs gives information about most of them. [5, 3]

Linkage disequilibrium between alleles at two loci has been defined in many

ways, but all definitions depend on the quantity

DAB = pAB − pApB

where pAB is the frequency of individuals carrying the alleles A and B at two

specified loci, and pA and pB are the respective frequencies of those alleles observed

in the population. [43] One such definition is Lewontin’s D′ measure of linkage

disequilibrium. D′ is defined as the ratio of DAB and its largest possible value

Dmax determined by

Dmax =


min{pApb, papB} , D > 0

min{pApB, papb} , D < 0

A D′ value of zero indicates complete linkage equilibrium, which implies statis-

tical independence between the two markers. [1] This condition bears similarities

to Hardy-Weinberg equilibrium in implying statistical independence. The essential

feature of HWE is that HWE is established in one generation of random mating.

Any initial deviation from HWE disappears immediately. LE differs from HWE,

however, because it is not established in one generation of random mating but by

many.

Closely linked SNPs tend to be in strong linkage disequilibrium with one an-
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other. This is also assumed to be true for alleles that increase the risk of complex

inherited diseases. This idea, combined with the development of efficient meth-

ods for surveying large numbers of SNPs, has led to the many recent GWAS that

have detected SNPs that are significantly associated with breast cancer, colorectal

cancer, type 2 diabetes and heart disease, among other diseases. [43]

G. Heterozygosity rate

Heterozygosity rate is the proportion of heterozygous genotypes for a given indi-

vidual. [6, 7]

As a quality control procedure, the distribution of mean heterozygosity, exclud-

ing the sex chromosomes, across all individuals should be inspected to identify

individuals with an excessive or reduced proportion of heterozygote genotypes.

This deviation may be indicative of DNA sample contamination or inbreeding,

respectively. [6] Similarly, a study by Pluzhnikov et al. [44] shows that unusual

patterns of outlier heterozygosity rates across SNPs can be useful clues about un-

derlying data-quality problems. Due to the increased success rate and accuracy of

modern high-throughput genotyping methodologies, exclusion based on heterozy-

gosity lead to only a small proportion of individuals being excluded from further

analysis. In doing so, outliers in autosomal heterozygosity can be identified and

excluded. [7]

H. Homomorphic encryption (HE)

Homomorphic encryption refers to a class of encryption schemes that allow com-

putation on ciphertexts that will decrypt to the result of computing on the original

plaintexts. Formally, it is defined as follows: Let M denote the set of the plain-

texts and C denote the set of ciphertexts. An encryption scheme is said to be

homomorphic if for any given public-private key pair k, s the encryption function
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E and the decryption function D satisfies

∀m1,m2 ∈M, D(E(m1)
⊙
C

E(m2)) = m1
⊙
M

m2

for some operators
⊙
M in M and

⊙
C in C. [45]

A scheme is additively homomorphic if we consider an addition operator
⊙
M.

A scheme is multiplicatively homomorphic if we consider a multiplication operator.

Furthermore, a scheme is said to be partially homomorphic if it is either additively

or multiplicatively homomorphic, but not both. It is said to be fully homomorphic

if it is both additively and multiplicatively homomorphic. [46]

I. Simple Encrypted Arithmetic Library (SEAL)

Simple Encrypted Arithmetic Library (SEAL) v2.0 [37] by Microsoft Research is

a homomorphic encryption solution made publicly available for bioinformatics,

genomics, and other research purposes. SEAL is written in C++, but comes

with a C# wrapper library called SEALNET. It is an implementation of the

Fan-Vercauteren (FV) scheme [38], a leveled homomorphic encryption scheme,

and consists of key generation, encryption, decryption, homomorphic addition,

and homomorphic multiplication algorithms. The scheme operates in the ring of

polynomials with integer coefficients of a degree less than n. Hence, all elements

of this ring can be expressed in the form
∑n−1

i=0 aix
i where ai ∈ Z.

SEAL implements this polynomial data structure in a class called BigPoly,

which can represent big polynomials with large coefficients, and additionally ab-

stracts an array of BigPoly objects in a class called BigPolyArray. In the fol-

lowing discussion, when we say polynomial, we mean by it a polynomial that is a

member of the ring discussed above. In the FV scheme, a plaintext is a polyno-

mial, an instance of the BigPoly class, and a freshly encrypted ciphertext is an

array of two polynomials, represented by an instance of the BigPolyArray class.

The secret key is a BigPoly, and the public key is a BigPolyArray of size two.
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The implementation also comes with encoder classes that enable the trans-

formation of data like integers and real numbers into plaintext polynomials. A

mechanism for decoding the plaintext polynomials into the original data is like-

wise implemented. The selection of the encoding scheme to be used depends on

the type of data to be represented—e.g binary data, integers, real numbers with

fractional parts. SEAL also provides a mechanism that packs several pieces of

data in a single message, and uses the Single Instruction Multiple Data (SIMD)

paradigm to operate on these messages, as implemented in one of its encoding

classes, called PolyCRTBuilder. The use of such an approach yields reduced mes-

sage sizes, encoding, encryption, and decryption times, as opposed to encoding

the data individually.

Selecting secure parameters for homomorphic encryption is a complicated task,

as one must also take into consideration the correctness and efficiency of the com-

putation results. In this regard, SEAL also implements a mechanism for auto-

matic parameter selection in its ChooserEvaluator class. The mechanism takes

into account the estimated size of the input, referring to bounds in the lengths

of plaintext polynomials, the magnitudes of its coefficients, and the homomorphic

operations that are to be performed. The selected parameters will then serve as in-

put into the generate(encryption parameters) function of the KeyGenerator

class which will yield the public-private key pair to be used in initializing the

Encryptor and Decryptor classes, which contain the encrypt(plaintext) and

decrypt(ciphertext) methods, respectively.

To homomorphically perform mathematical operations on encrypted data using

SEAL, the add(encrypted data, encrypted data) and multiply(encrypted data,

encrypted data) functions of the Evaluator class can be used. SEAL also al-

lows homomorphic operations between plaintexts and ciphertexts to enable more

efficient computation, as already publicly available data—i.e. those that no longer

need be made private—do not have to be encrypted anymore to be utilized in

computation with ciphertexts. This kind of computation is supported by SEAL’s
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add plain(encrypted data, plain data) and multiply plain(encrypted data,

plain data) functions.
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IV. Design and Implementation

A. Use cases and cryptographic architecture

The user will select a desired genomic computation among those supported by

the tool, which can be either of the following: χ2 test statistic, allelic odds ratio,

linkage disequilibrium, minor allele frequency, Hardy-Weinberg equilibrium, and

heterozygosity rate.

Figure 1: Use case diagram

The user will then load the SNP data contained in text files for encoding and
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encryption. For the χ2 test statistic and allelic odds ratio computations, two input

files will be required, one for each the case and the control groups. The rest of the

computations will require only one input file.

After the input files have been loaded, the tool will perform the necessary data

encoding, encrypting, and uploading into the remote server. The server will then

homomorphically operate upon the uploaded ciphertexts and return the results

of the computation still in encrypted form. The tool will accordingly download,

decrypt, and display the results of the computations. Only the statistics initially

specified—that is, no intermediate results—will be displayed to the user.

Figure 2: Cryptographic architecture

B. SNP data

The input text files to be accepted by the tool follows the format used in the

iDASH Privacy & Security Workshop 2015 Secure Genome Analysis Competition.

The first line in the file contains the identifiers for each of the genotype samples

contained in the file. The proceeding lines are all of SNP data, and each SNP is

represented by two lines. The first contains the RSID of the SNP, which uniquely

identifies the SNP locus. The second enumerates the genotype occurrences for

each sample. There are, in this line, as many genotypes as there are identifiers in

the first line of the file, and each of the genotypes enumerated correspond to the

identifiers in the order they were given.
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Figure 3: Sample text file containing SNP data in iDASH format

C. Data encoding

When an input text file is loaded into the tool, the SNP data contained in it is

encoded into plaintext polynomials, based on the scheme proposed by Lu et al.

[32], as follows. Assuming a biallelic locus of, say, alleles A and B, each SNP is

represented by four plaintext polynomials, ρAA
fw , ρAA

bw , ρAB
fw , and ρAB

bw . ρAA
fw and ρAB

fw

are called forward-packed polynomials; ρAA
bw and ρAB

bw are called backward-packed

polynomials. Each of these polynomials are of degree M − 1, where M is the

number of genotype samples given.

The forward-packed polynomials can be expressed as ρXfw =
∑M

i=1 aix
i−1, X ∈

{AA,AB} where ai is the frequency of the allele A at the ith genotype, if the ith

genotype is equal to X. It is zero otherwise. The backward-packed polynomials

can be expressed as ρXbw =
∑M

i=1 aix
M−i, X ∈ {AA,AB}, where the ais are defined

similarly as above.
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To illustrate, take a biallelic locus associated with the alleles A and G. The

genotype data AA, AG, AG, AA, GG are encoded as follows:

ρAA
fw = 2x0 + 0x1 + 0x2 + 2x3 + 0x4, ρAA

bw = 0x0 + 2x1 + 0x2 + 0x3 + 2x4,

ρAG
fw = 0x0 + 1x1 + 1x2 + 0x3 + 0x4, ρAG

bw = 0x0 + 0x1 + 1x2 + 1x3 + 0x4.

The case-control membership statuses of the subjects are also encoded in a

polynomial of degree M − 1. This polynomial is defined as γcase =
∑M

i=1 aix
M−i,

where ai is one if the ith subject is in the case group and zero if he/she is in the

control group. Here, we note that the construction of γcase is similar to that of a

backward-packed polynomial. Hence, in the proceeding discussions, we also use it

as such. For example, if five subjects have the statuses {case, case, case, control,

control}, then the corresponding γcase will be 0x0 + 0x1 + 1x2 + 1x3 + 1x4.

These polynomial encodings of SNP data are then encrypted and uploaded

into the remote server where the proceeding computations are performed homo-

morphically.

D. Scalar product computation

The encoding specified in subsection C. is used to facilitate the computation of a

scalar product of two vectors, say ~u and ~v. First, we define the notation ρ~ufw and

ρ~ubw. The polynomial ρ~ufw is
∑n

i=1 uix
i−1, where n is the length of ~u and ui is its ith

element. Without loss of generality, the polynomial ρ~ubw is defined as
∑n

i=1 uix
n−i.

We show that the scalar product of two vectors ~u and ~v is given by the coefficient

of the middle term of the product ρ~ufwρ
~v
bw. That is, if ~u and ~v are each of length
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n, then the middle term is the nth term.

ρ~ufwρ
~v
bw = (u1x

0 + u2x
1 + ...+ unx

n−1)(vnx
0 + vn−1x

1 + ...+ v1x
n−1)

=
n−1∑
k=0

(
k+1∑
i=1

uivn−k+i−1

)
xk +

2n−2∑
k=n

(
n∑

i=k−n+2

uivn−k+i−1

)
xk

= (u1vn)x0 + (u1vn−1 + u2vn)x1 + ...+

(
n∑

i=1

uivi

)
xn−1 + ...

+ (un−1v1 + unv2)x
2n−1 + (unv1)x

2n−2

In the implementation of the tool, this mechanism is used to arrive at the

frequency of an allele/genotype that coincides with particular conditions. To il-

lustrate, the number of homozygous genotypes for the reference allele is the co-

efficient of the middle term of the polynomial that results from multiplying ρAA
fw

with γcase. In the case that no restricting condition is used, the desired frequency

can be computed by multiplying the forward packed polynomial to a polynomial

of equal degree whose coefficients are all equal to one. Hence, the total number

of homozygous genotypes for the reference allele across both the case and control

groups is the coefficient of the middle term of the polynomial that results from

multiplying ρAA
fw with the polynomial of coefficients equal to one.

E. Single locus allelic contingency table construction

The computation of the χ2 test statistic, allelic odds ratio, minor allele frequency,

and Hardy-Weinberg equilibrium all involve frequency data from an allelic contin-

gency table. Such a contingency table can be constructed with the knowledge of

the size of the entire case-control group—i.e. the number of subjects, we denote

by M—and the three frequencies N case
A , NA, and N case derived from the genomic

data. Hence, it is sufficient to know these four frequencies from the genomic data

in order to compute the mentioned statistics. We note that the quantities M

and N case are known to the client, as this is merely the total number of genotype

samples given in both the case and control input files and the number of genotype
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samples in the case input file, respectively.

Let ai(ρ) be the ith coefficient of the polynomial ρ, and Pn be the polynomial

of degree n− 1 with all coefficients equal to 1. Using the encoding scheme above,

the frequencies N case
A and NA can be computed as follows

N case
A = aM((ρAA

fw + ρAB
fw )(γcase)),

NA = aM((ρAA
fw + ρAB

fw )(PM)),

In the above procedure, after the necessary homomorphic multiplications are

performed upon the polynomials, they are returned to the client for decryption

and construction of the allelic contingency table using the frequencies given by

the middle coefficients of the decrypted polynomials. The remaining cells in the

table are given by the following:

N case
B = 2N case −N case

A

N control
A = NA −N case

A

NB = 2M −NA

N control = M −N case

N control
B = NB −N case

B = N control −N control
A

F. Computation of statistics

After the construction of the allelic contingency table, the χ2 test statistic, allelic

odds ratio, and minor allele frequency can be computed directly using their re-

spective formulas, as given in Table 2. Hardy-Weinberg equilibrium computation

additionally requires the genotype frequencies NAA, NAB, and NBB. NAA and
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NAB can be computed remotely and similarly returned to the client as

2NAA = aM((ρAA
fw )(PM))

NAB = aM((ρAB
fw )(PM)).

NBB is then given by M −NAA −NAB.

Statistic Formula

χ2 test statistic
2M(Ncase

B (Ncontrol
A +Ncontrol

B )−Ncontrol
B (Ncase

A +Ncase
B ))2

NcaseNcontrolNANB

Allelic odds ratio
Ncase

A Ncontrol
B

Ncontrol
A Ncase

B

Minor allele frequency min(NA,NB)
NA+NB

Hardy-Weinberg equilibrium
∑

X∈{AA,AB,BB}
(NX−EX)2

EX

Table 2: Formulas for allelic case-control contingency table-based statistics

For two biallelic loci, the first with reference allele A and alternate allele a, and

the second with reference allele B and alternate allele b, linkage disequilibrium is

defined as

D′ =
D

Dmax

, where

D = pAB − pApB, and

Dmax =


min{pA(1− pB), (1− pA)pB} , D > 0

min{pApB, (1− pA)(1− pB)} , D < 0

.

The quantities necessary to complete this computation are the proportions

pAB, pA, and pB. These can be computed as

pAB =
2NAABB +NAaBB +NAABb

2M

pA =
2NAA +NAa −NAaBb

2M

pB =
2NBB +NBb −NAaBb

2M
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.

These required computations can be further broken down in terms of the quan-

tities NAABB, NAaBB, NAABb, NAaBb, 2NAA + NAa, and 2NBB + NBb. These, in

turn, can be computed homomorphically as

4NAABB = aM((ρAA
fw )(ρBB

bw ))

2NAaBB = aM((ρAa
fw)(ρBB

bw ))

2NAABb = aM((ρAA
fw )(ρBb

bw))

NAaBb = aM((ρAa
fw)(ρBb

bw))

2NAA +NAa = aM((ρAA
fw + ρAa

fw)(PM))

2NBB +NBb = aM((ρBB
fw + ρBb

fw)(PM))

The tool developed in this study outputs the linkage disequililbrium of the loci

pairs consisting of the first SNP in the input file and each of the proceeding SNPs

given.

The total heterozygosity across N SNPs for several individuals can be com-

puted homomorphically as

ρHR =
N∑
i=1

ρAa
fw

The heterozygosity rate of the ith individual is given by

ai(ρHR)

N

.

G. System Architecture

The two crucial modules used by the tool are the server, which is responsible for

performing computations on encrypted genomic data, and the client application,

responsible for user interaction, encoding, encrypting, and decrypting data.

All communication between the client and the server is implemented using
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Windows Sockets. The user interface of the client application was developed using

Windows Forms in Visual C++, under the .NET Framework. All encryption

functionalities used were implemented in SEAL.

H. Technical Architecture

The server runs on a Windows 10 machine with the following specifications:

1. Processor: Intel Core i7-4510u @ 2.60GHz

2. Memory: 8GB

3. Operating System: 64-bit

The client runs on a Windows 10 machine with the following specifications:

1. Processor: Intel Core i7-6500U @ 2.50GHz

2. Memory: 8GB

3. Operating System: 64-bit
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V. Results

The tool initially displays a choice of six statistics: χ2 test statistic, allelic odds

ratio, linkage disequilibrium, minor allele frequency, Hardy-Weinberg equilibrium,

and heterozygosity rate.

Figure 4: Home Screen

For the choice of χ2 test statistic and allelic odds ratio, the user is prompted

to pick exactly two text files.

Figure 5: Picking two files

For linkage disequilibrium, minor allele frequency, Hardy-Weinberg equilib-

rium, and heterozygosity rate, only a single file is required from the user.
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Figure 6: Picking one file

For either case, when the user clicks on the Browse button, a file picker dialog

will appear.

Figure 7: File picker dialog

Clicking on the Cancel button directs the user back to the home screen. Click-

ing on the Proceed button will commence the computation, i.e. encoding, en-

cryption, uploading, decrypting, and display of results. Figures 8, 9, 10, 11, 12,

and 13 show the respective results screens for each of the statistics which contain

a table of two columns, one for the SNP identifier and another for the statis-

tic computed. On each of these screens, clicking the Home button redirects the

user to the home screen. Additionally, four running time metrics are provided in
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the following format: time elapsed/average encryption time/average decryption

time/average remote time

Figure 8: χ2 test statistic results

Figure 9: AOR results
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Figure 10: Hardy-Weinberg equilibrium results

Figure 11: Minor allele frequency results
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Figure 12: Linkage disequilibrium results

Figure 13: Heterozygosity rate results
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VI. Discussions

A. SNP class

To encapsulate the SNP data read from input files together with related encoding

methods, the Snp class was implemented.

#inc lude ” s tda fx . h”

#inc lude ”Snp . h”

us ing namespace std ;

Snp : : Snp ( ) {

th i s−>homo = vector<int >() ;

th i s−>hete ro = vector<int >() ;

th i s−>phenotypes = vector<int >() ;

}

Snp : : Snp ( s t r i n g r s id , s t r i n g genotypes , vector<int> phenotypes ) {

vector<char> a l l e l e s ;

i f ( genotypes . f i nd ( s t a t i c c a s t <char>(Snp : : a l l e l e : :A) ) != s t r i n g : : npos ) a l l e l e s .

push back ( s t a t i c c a s t <char>(Snp : : a l l e l e : :A) ) ;

i f ( genotypes . f i nd ( s t a t i c c a s t <char>(Snp : : a l l e l e : :C) ) != s t r i n g : : npos ) a l l e l e s .

push back ( s t a t i c c a s t <char>(Snp : : a l l e l e : :C) ) ;

i f ( genotypes . f i nd ( s t a t i c c a s t <char>(Snp : : a l l e l e : :T) ) != s t r i n g : : npos ) a l l e l e s .

push back ( s t a t i c c a s t <char>(Snp : : a l l e l e : :T) ) ;

i f ( genotypes . f i nd ( s t a t i c c a s t <char>(Snp : : a l l e l e : :G) ) != s t r i n g : : npos ) a l l e l e s .

push back ( s t a t i c c a s t <char>(Snp : : a l l e l e : :G) ) ;

s o r t ( a l l e l e s . begin ( ) , a l l e l e s . end ( ) ) ;

s t r i n g homo = s t r i n g (2 , a l l e l e s [ 0 ] ) ;

s t r i n g hetero1 = s t r i n g (1 , a l l e l e s [ 0 ] ) ;

hetero1 += a l l e l e s [ 1 ] ;

s t r i n g hetero2 = s t r i n g (1 , a l l e l e s [ 1 ] ) ;

hetero2 += a l l e l e s [ 0 ] ;

s t r i ng s t r eam s s = s t r ing s t r eam ( genotypes ) ;

s t r i n g basepa i r ;

whi l e ( g e t l i n e ( ss , basepa i r , ’ ’ ) ) {

i f ( ba sepa i r == homo) {

th i s−>homo . push back (2 ) ;

th i s−>hete ro . push back (0 ) ;

}

e l s e i f ( ba sepa i r == hetero1 | | basepa i r == hetero2 ) {
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th i s−>homo . push back (0 ) ;

th i s−>hete ro . push back (1 ) ;

}

e l s e {

th i s−>homo . push back (0 ) ;

th i s−>hete ro . push back (0 ) ;

}

}

th i s−>r s i d = r s i d ;

th i s−>a l l e l e 1 = (Snp : : a l l e l e ) a l l e l e s [ 0 ] ;

th i s−>a l l e l e 2 = (Snp : : a l l e l e ) a l l e l e s [ 1 ] ;

th i s−>phenotypes = phenotypes ;

}

Snp : : ˜ Snp ( ) {}

s t r i n g Snp : : getRsid ( ) {

r e turn th i s−>r s i d ;

}

i n t Snp : : g e tS i z e ( ) {

r e turn ( i n t ) th i s−>phenotypes . s i z e ( ) ;

}

Snp : : a l l e l e Snp : : g e tA l l e l e 1 ( ) {

r e turn th i s−>a l l e l e 1 ;

}

Snp : : a l l e l e Snp : : g e tA l l e l e 2 ( ) {

r e turn th i s−>a l l e l e 2 ;

}

s t r i n g Snp : : getHomoPolyFw ( ) {

s t r i ng s t r eam s s ;

i n t degree = ( i n t ) th i s−>homo . s i z e ( ) − 1 ;

f o r ( s i z e t c t r = 0 ; c t r <= degree ; c t r++) {

i f ( c t r > 0) s s << ” ” ;

s s << homo [ degree − c t r ] << ”xˆ” << degree − c t r ;

i f ( c t r < degree ) s s << ” +” ;

}

r e turn s s . s t r ( ) ;

}
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s t r i n g Snp : : getHomoPolyBw ( ) {

s t r i ng s t r eam s s ;

i n t degree = s t a t i c c a s t <int >( th i s−>homo . s i z e ( ) ) − 1 ;

f o r ( i n t c t r = 0 ; c t r <= degree ; c t r++) {

i f ( c t r > 0) s s << ” ” ;

s s << homo [ c t r ] << ”xˆ” << degree − c t r ;

i f ( c t r < degree ) s s << ” +” ;

}

r e turn s s . s t r ( ) ;

}

s t r i n g Snp : : getHeteroPolyFw ( ) {

s t r i ng s t r eam s s ;

i n t degree = s t a t i c c a s t <int >( th i s−>hete ro . s i z e ( ) ) − 1 ;

f o r ( i n t c t r = 0 ; c t r <= degree ; c t r++) {

i f ( c t r > 0) s s << ” ” ;

s s << hete ro [ degree − c t r ] << ”xˆ” << degree − c t r ;

i f ( c t r < degree ) s s << ” +” ;

}

r e turn s s . s t r ( ) ;

}

s t r i n g Snp : : getHeteroPolyBw ( ) {

s t r i ng s t r eam s s ;

i n t degree = s t a t i c c a s t <int >( th i s−>hete ro . s i z e ( ) ) − 1 ;

f o r ( i n t c t r = 0 ; c t r <= degree ; c t r++) {

i f ( c t r > 0) s s << ” ” ;

s s << hete ro [ c t r ] << ”xˆ” << degree − c t r ;

i f ( c t r < degree ) s s << ” +” ;

}

r e turn s s . s t r ( ) ;

}

s t r i n g Snp : : getPhenotypePolyBw ( ) {

s t r i ng s t r eam s s ;

i n t degree = s t a t i c c a s t <int >( th i s−>phenotypes . s i z e ( ) ) − 1 ;

f o r ( i n t c t r = 0 ; c t r <= degree ; c t r++) {

i f ( c t r > 0) s s << ” ” ;

s s << phenotypes [ c t r ] << ”xˆ” << degree − c t r ;

i f ( c t r < degree ) s s << ” +” ;

}

r e turn s s . s t r ( ) ;

}
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void Snp : : add (Snp snp ) {

i f ( th i s−>r s i d == snp . getRsid ( ) && th i s−>a l l e l e 1 == snp . g e tA l l e l e 1 ( ) && th i s−>

a l l e l e 2 == snp . g e tA l l e l e 2 ( ) ) {

th i s−>homo . i n s e r t ( th i s−>homo . end ( ) , snp . homo . begin ( ) , snp . homo . end ( ) ) ;

th i s−>hete ro . i n s e r t ( th i s−>hete ro . end ( ) , snp . hete ro . begin ( ) , snp . hete ro . end ( ) )

;

th i s−>phenotypes . i n s e r t ( th i s−>phenotypes . end ( ) , snp . phenotypes . begin ( ) , snp .

phenotypes . end ( ) ) ;

}

}

After construction of an instance of the class, calls to the member functions

getHomoPolyFw(), getHomoPolyBw(), getHeteroPolyFw(), getHeteroPolyBw(),

getPhenotypePolyFw(), and getPhenotypePolyBw() will generate the forward

and backward packed polynomials described in the previous chapter that corre-

spond to the SNP represented by the instance.

B. Encryption

The polynomials constructed above will then be encrypted using SEAL. Selec-

tion of encryption parameters are based on the size of the input and the type of

computation to be done. In SEAL, these parameters are the polynomial mod-

ulus poly mod, the coefficient modulus coeff mod, and the plaintext modulus

plain mod. The coeff mod can be appropriately selected by one of SEAL’s meth-

ods based on the poly mod. The tool is then left to select the poly mod and

plain mod.

In Table 3 we show the poly mod and plain mod selected for the computation

of statistics based on a single locus contingency table (i.e. χ2 test statistic, al-

lelic odds ratio, Hardy-Weinberg equilibrium, and minor allele frequency), linkage

disequilibrium, and heterozygosity rate.
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Statistic type poly mod plain mod

Single locus allelic contingency 1x2
(log2 M+2)

+ 1 2(log2 M+2)

Linkage disequilibrium 1x2
(log2 M+3)

+ 1 2(log2 M+4)

Heterozygosity rate 1x2
(log2 M+2)

+ 1 2(log2 M+1)

Table 3: Encryption parameters

In general, after these parameters are selected, key generation and encryption

can be done using the following code.

//Key gene ra t i on

KeyGenerator generato r ( parms ) ;

genera to r . generate ( ) ;

BigPolyArray pub l i c key = generato r . pub l i c key ( ) ;

BigPoly s e c r e t k e y = genera tor . s e c r e t k e y ( ) ;

//Encrypting va lue s

Encryptor encryptor ( parms , pub l i c key ) ;

encryptor . encrypt ( snp . getHomoPolyFw ( ) ) ;

encryptor . encrypt ( snp . getHeteroPolyFw ( ) ) ;

encryptor . encrypt ( snp . getHomoPolyBw ( ) ) ;

encryptor . encrypt ( snp . getHeteroPolyBw ( ) ) ;

C. Remote computation

After required ciphertexts are created, they are sent to the server through Windows

Sockets. The server performs homomorphic computation upon these using its

Evaluator class, which uses the same set of parameters detailed in Table 3.

In the following discussion, we use the following variables to denote certain

data described in Table 4.
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Variable Description

homoPolyFw encrypted forward packed polynomial of the homozygous genotype

homoPolyBw encrypted backward packed polynomial of the homozygous genotype

heteroPolyFw encrypted forward packed polynomial of the heterozygous genotype

heteroPolyBw encrypted backward packed polynomial of the heterozygous genotype

onePoly the plaintext polynomial PM

Table 4: Variables and descriptions

The procedures detailed below involve the homomorphic operations required

in the computation of each of the statistics and are all performed by the remote

server.

C..1 Single locus allelic contingency table

For statistics based on a single locus contingency table, i.e. χ2 test statistic, al-

lelic odds ratio, minor allele frequency, and Hardy-Weinberg equilibrium a similar

sequence of homomorphic operations is followed. Specifically, for the first three

statistics, we have the following code.

BigPolyArray encryptedsum = eva luato r . add (homoPolyFw , heteroPolyFw ) ;

BigPolyArray encryptedacase = eva lua to r . mul t ip ly ( encryptedsum , phenotypeBw ) ;

BigPolyArray encrypteda = eva luato r . mu l t i p l y p l a i n ( encryptedsum , onePoly ) ;

The ciphertexts encryptedacase and encrypteda are returned to the client

for the corresponding computation of the requested statistic using the formulas

given in the previous chapter. These ciphertexts correspond to the polynomials

whose middle coefficients are N case
A and NA, respectively.

For Hardy-Weinberg equililbrium, two additional ciphertexts are sent back to

the client, encryptedaa and encryptedab, computed as follows. These likewise

correspond to the polynomial whose middle coefficients are the frequencies NAA

and NAB.

BigPolyArray encryptedaa = eva lua to r . mu l t i p l y p l a i n (homoPolyFw , onePoly ) ;

BigPolyArray encryptedab = eva lua to r . mu l t i p l y p l a i n ( heterPolyFw , onePoly ) ;
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C..2 Linkage disequilibrium

In the remote computation of linkage disequilibrium, we have the following code.

In the notation used, the number indicated in the variable name refers to a unique

locus.

BigPolyArray homohomo = eva lua to r . mul t ip ly (homoPolyFw1 , homoPolyBw2) ;

BigPolyArray heterohomo = eva lua to r . mul t ip ly ( heteroPolyFw1 , homoPolyBw2) ;

BigPolyArray homohetero = eva lua to r . mul t ip ly (homoPolyFw1 , heteroPolyBw2 ) ;

BigPolyArray he t e rohe t e ro eva lua to r . mul t ip ly ( heteroPolyFw1 , heteroPolyBw2 ) ;

BigPolyArray encryptedsum1 = eva lua to r . add (homoPolyFw1 , heteroPolyFw1 ) ;

BigPolyArray a = eva luato r . mu l t i p l y p l a i n ( encryptedsum1 , onePoly ) ;

BigPolyArray encryptedsum2 = eva lua to r . add (homoPolyFw2 , heteroPolyFw2 ) ;

BigPolyArray b eva lua to r . mu l t i p l y p l a i n ( encryptedsum2 , onePoly ) ;

The ciphertexts homohomo, heterohomo, homohetero, heterohetero, a, and

b are returned to the client. These are the encryptions of the polynomials whose

middle coefficients are 4NAABB, 2NAaBB, 2NAABb, NAaBb, 2NAA+NAa, and 2NBB+

NBb, the necessary frequencies in the computation of linkage disequilibrium.

C..3 Heterozygosity rate

In the computation of heterozygosity rate, only a sequence of addition on forward

packed polynomials are necessary.

BigPolyArray sum = c i ph e r t e x t s [ 0 ] ;

c i ph e r t e x t s . e r a s e ( c i ph e r t e x t s . begin ( ) ) ;

f o r ( BigPolyArray c i ph e r t e x t : c i ph e r t e x t s ) {

sum = eva lua to r . add (sum , c i ph e r t ex t ) ;

}

The ciphertext sum is returned to the client. The ith coefficient of the de-

cryption of this ciphertext is the number of heterozygous genotypes of the ith

individual. To output the heterozygosity rate, this quantity is divided by the

total number of SNPs included in the computation.
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D. Decryption

When the client application receives all ciphertexts expected from the requested

computation, it decrypts, does a few arithmetic operations based on the sufficient

statistics, and displays only the end result on the user interface. The following

code is used to decrypt ciphertexts.

Decryptor decryptor ( parms , s e c r e t k e y ) ;

BigPoly decrypted = decryptor . decrypt ( c i ph e r t ex t ) ;

To access the coefficients of the decrypted polynomial, the syntax used is sim-

ilar to that of accessing the element an array. For example, when the frequency

of interest is the middle—i.e. the Mth—coefficient of the polynomial decrypted,

it is accessed using the following code.

decrypted [ th i s−>snp . g e tS i z e ( ) ] . to doub le ( ) ) ;

E. GUI and multithreading

Both the user interface and multithreading feature were implemented in the .NET

Framework. Because the native C++ threading library <thread> is not supported

in .NET, particular effort was made into interfacing between the native C++

classes that implement the homomorphic computations and the managed classes

(i.e. those constructed under .NET) for the user interface.

Specifically, a new managed class, SnpString, was introduced to represent a

SNP only using objects in C++ .NET that can be accepted as parameters to

a .NET Thread. When an input file is read, the SNPs contained in it are first

represented as a SnpString. Then, the contents of each SnpString is used as a

parameter to a ParametrizedThreadStart. In that thread, a Snp is constructed

only then to be homomorphically encrypted and operated upon, as SEAL uses

objects in native C++. As a result, whenever applicable—that is, for the χ2 test

statistic, allelic odds ratio, Hardy-Weinberg equilibrium, minor allele frequency,

and linkage disequilibrium,—computations can occur in parallel. For a given value

MAX THREAD, the tool can execute MAX THREAD threads in parallel. The following
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code shows how multithreading is achieved in the computation of the χ2 test

statistic.

List<Threadˆ>ˆ threads = gcnew List<Threadˆ>() ;

f o r ( i n t c t r = 0 ; c t r < cc . s i z e ( ) && execut ing ; c t r++) {

vector<SnpString> c cpa i r = cc [ c t r ] ;

L i s t<St r ingˆ>ˆ r s i d s = gcnew List<St r ing ˆ>() ;

r s i d s−>Add( gcnew St r ing ( c cpa i r [ 0 ] . getRsid ( ) . c s t r ( ) ) ) ;

r s i d s−>Add( gcnew St r ing ( c cpa i r [ 1 ] . getRsid ( ) . c s t r ( ) ) ) ;

L i s t<St r ingˆ>ˆ genos = gcnew List<St r ing ˆ>() ;

genos−>Add( gcnew St r ing ( c cpa i r [ 0 ] . getGenotypes ( ) . c s t r ( ) ) ) ;

genos−>Add( gcnew St r ing ( c cpa i r [ 1 ] . getGenotypes ( ) . c s t r ( ) ) ) ;

L i s t<int>ˆ s i z e s = gcnew List<int >() ;

s i z e s−>Add( c cpa i r [ 0 ] . g e tS i z e ( ) ) ;

s i z e s−>Add( c cpa i r [ 1 ] . g e tS i z e ( ) ) ;

Tuple<List<St r ing ˆ>ˆ, L i s t<St r ing ˆ>ˆ, L i s t<int>ˆ>ˆ input = gcnew Tuple<List<

St r ing ˆ>ˆ, L i s t<St r ing ˆ>ˆ, L i s t<int>ˆ>( r s i d s , genos , s i z e s ) ;

Parameter izedThreadStart ˆ myThreadDelegate = gcnew Parameter izedThreadStart (

th i s , &GWASGUI: : ch i sq ) ;

Threadˆ thread1 = gcnew Thread (myThreadDelegate ) ;

thread1−>Star t ( input ) ;

threads−>Add( thread1 ) ;

i f ( threads−>Count == MAXTHREAD) {

threads [0]−> Join ( ) ;

threads−>RemoveAt (0 ) ;

}

}

f o r ( i n t c t r 2 = 0 ; c t r 2 < threads−>Count ; c t r 2++) {

threads [ c t r 2 ]−>Join ( ) ;

}

In the above code, each call to GWASGUI::chisq in a thread corresponds to a

parallel execution of the single locus allelic contingency table procedure described

above. A similar mechanism does the same for allelic odds ratio, Hardy-Weinberg

equilibrium, minor allele frequency, and linkage disequilibrium.
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F. Timing

In this subsection, we discuss the execution time of the homomorphic computa-

tions. Table 5 details the metrics used in the discussion.

Metric Description

TTE Total time elapsed from the beginning of the computation to its completion

AET Average encryption time

ADT Average decryption time

ART Average remote time (i.e. time elapsed waiting for the server)

Table 5: Timing metrics

In the computation of the χ2 test statistic, allelic odds ratio, Hardy-Weinberg

equilibrium, minor allele frequency, and linkage disequilibrium, an input corre-

sponds to a sequence of identical transactions to the server. That is, for each SNP

in the file, the same computation occurs and these computations are independent

of each other. Because homomorphic computations can be costly with respect to

execution time, we explore the option of parallel computation, the implementation

of which is discussed in the previous subsection.

Tables 6, 7, and 8 contain the metrics for single-threaded, double-threaded, and

triple-threaded implementations operating upon 25 SNPs. The TTE decreases as

the number of threads increases. In comparison to the single-threaded implemen-

tation, double-threading causes an average of 1.6 speedup while triple-threading

can cause an average of 2.3 speedup. AET, ADT, and ART all increase as the

number of threads increases. This is to be expected as a result of executing com-

putations in parallel.

In light of this observation, the proceeding discussions use the triple-threaded

implementation because while the AET, ADT, and ART increase, the TTE still

is minimum after parallelization of computation.
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Statistic TTE AET ADT ART

χ2 test statistic 233 s 344 ms 446 ms 7974 ms

allelic odds ratio 233 s 344 ms 446 ms 7970 ms

Hardy-Weinberg equilibrium 280 s 343 ms 442 ms 9820 ms

minor allele frequency 174 s 345 ms 376 ms 5676 ms

linkage disequilibrium 564 s 714 ms 671 ms 22704 ms

Table 6: Timings for one thread

Statistic TTE AET ADT ART

χ2 test statistic 146 s 367 ms 482 ms 8004 ms

allelic odds ratio 146 s 364 ms 488 ms 8009 ms

Hardy-Weinberg equilibrium 173 s 376 ms 484 ms 9859 ms

minor allele frequency 118 s 407 ms 420 ms 5712 ms

linkage disequilibrium 306 s 771 ms 746 ms 22790 ms

Table 7: Timings for two threads

Statistic TTE AET ADT ART

χ2 test statistic 101 s 395 ms 501 ms 8056 ms

allelic odds ratio 102 s 402 ms 509 ms 8080 ms

Hardy-Weinberg equilibrium 122 s 449 ms 541 ms 9920 ms

minor allele frequency 181 s 430 ms 450 ms 5761 ms

linkage disequilibrium 210 s 842 ms 751 ms 23223 ms

Table 8: Timings for three threads

Tables 9, 10, 11, 12, 13, and 14 contain the timing metrics for the computa-

tion of each of the statistics for 10, 25, 50, 100, and 500 SNPs, each with three

replications.

In the tabulation of these results, AET, ADT, and ART all remain around

the same range regardless of how many SNPs are being processed in any of the
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computations. The TTE is observed to increase linearly with the number of SNPs,

as expected, because despite the use of three threads, the computation eventually

leads into a sequence of three computations occurring in parallel.

With all timings considered, we observe that the AET, ADT, and ART change

with the number of threads used, increasing as the number of threads do and the

TTE decreases as the number or threads increase and increases as the number of

SNPs increase.

TTE AET ADT ART

10 SNPS

47 s

46 s

46 s

405 ms

386 ms

407 ms

510 ms

517 ms

497 ms

8157 ms

8066 ms

8134 ms

25 SNPS

101 s

101 s

103 s

387 ms

387 ms

458 ms

477 ms

483 ms

540 ms

8030 ms

8038 ms

8161 ms

50 SNPS

195 s

196 s

197 s

409 ms

417 ms

413 ms

498 ms

496 ms

515 ms

8068 ms

8042 ms

8095 ms

100 SNPS

405 s

408 s

407 s

412 ms

426 ms

412 ms

531 ms

512 ms

495 ms

8064 ms

8104 ms

8072 ms

500 SNPS

1907 s

1908 s

1910 s

401 ms

389 ms

395 ms

530 ms

502 ms

510 ms

8050 ms

8023 ms

8022 ms

Table 9: Timings for the computation of χ2 test statistic
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TTE AET ADT ART

10 SNPS

46 s

46 s

46 s

412 ms

423 ms

396 ms

519 ms

503 ms

546 ms

8040 ms

8109 ms

8119 ms

25 SNPS

103 s

102 s

102 s

422 ms

403 ms

409 ms

508 ms

491 ms

508 ms

8098 ms

8047 ms

8089 ms

50 SNPS

195 s

198 s

196 s

382 ms

454 ms

423 ms

506 ms

533 ms

509 ms

8020 ms

8126 ms

8086 ms

100 SNPS

406 s

408 s

405 s

417 ms

409 ms

406 ms

530 ms

515 ms

501 ms

8083 ms

8051 ms

8062 ms

500 SNPS

1908 s

1911 s

1911 s

398 ms

404 ms

413 ms

504 ms

519 ms

527 ms

8000 ms

8029 ms

8073 ms

Table 10: Timings for the computation of allelic odds ratio
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TTE AET ADT ART

10 SNPS

54 s

54 s

54 s

449 ms

449 ms

456 ms

539 ms

500 ms

534 ms

9986 ms

9985 ms

9996 ms

25 SNPS

123 s

121 s

121 s

460 ms

433 ms

444 ms

559 ms

506 ms

508 ms

10009 ms

9866 ms

9920 ms

50 SNPS

228 s

227 s

229 s

424 ms

439 ms

429 ms

506 ms

486 ms

512 ms

9920 ms

9863 ms

9912 ms

100 SNPS

451 s

454 s

451 s

429 ms

424 ms

411 ms

485 ms

502 ms

515 ms

9850 ms

9870 ms

9960 ms

500 SNPS

2283 s

2279 s

2276 s

417 ms

445 ms

440 ms

522 ms

519 ms

530 ms

9876 ms

9868 ms

9855 ms

Table 11: Timings for the computation of Hardy-Weinberg equilibrium
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TTE AET ADT ART

10 SNPS

37 s

36 s

36 s

420 ms

407 ms

401 ms

482 ms

429 ms

428 ms

5748 ms

5715 ms

5729 ms

25 SNPS

81 s

83 s

81 s

415 ms

462 ms

417 ms

427 ms

471 ms

430 ms

5719 ms

5754 ms

5710 ms

50 SNPS

152 s

154 s

153 s

404 ms

444 ms

404 ms

401 ms

434 ms

422 ms

5750 ms

5714 ms

5693 ms

100 SNPS

303 s

302 s

303 s

398 ms

418 ms

438 ms

432 ms

430 ms

428 ms

5731 ms

5707 ms

5716 ms

500 SNPS

1482 s

1484 s

1484 s

406 ms

424 ms

428 ms

395 ms

425 ms

422 ms

5701 ms

5738 ms

5711 ms

Table 12: Timings for the computation of minor allele frequency
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TTE AET ADT ART

10 SNPS

79 s

79 s

79 s

812 ms

803 ms

854 ms

774 ms

762 ms

741 ms

22015 ms

23059 ms

22025 ms

25 SNPS

208 s

207 s

208 s

836 ms

836 ms

841 ms

777 ms

717 ms

729 ms

22493 ms

22842 ms

23031 ms

50 SNPS

433 s

435 s

436 s

810 ms

820 ms

818 ms

744 ms

769 ms

732 ms

22316 ms

22436 ms

23044 ms

100 SNPS

862 s

857 s

862 s

822 ms

808 ms

840 ms

778 ms

732 ms

749 ms

22289 ms

22261 ms

22342 ms

500 SNPS

4262 s

4263 s

4261 s

810 ms

807 ms

812 ms

732 ms

759 ms

752 ms

22868 ms

22871 ms

21913 ms

Table 13: Timings for the computation of linkage disequilibrium
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TTE AET ADT ART

10 SNPS

17 s

17 s

17 s

10 ms

10 ms

10 ms

4 ms

4 ms

4 ms

348 ms

348 ms

348 ms

25 SNPS

42 s

42 s

42 s

19 ms

19 ms

19 ms

4 ms

4 ms

4 ms

851 ms

851 ms

851 ms

50 SNPS

83 s

83 s

83 s

34 ms

34 ms

34 ms

4 ms

4 ms

4 ms

1690 ms

1690 ms

1691 ms

100 SNPS

165 s

165 s

165 s

64 ms

64 ms

64 ms

4 ms

5 ms

4 ms

3369 ms

3370 ms

3369 ms

500 SNPS

822 s

821 s

820 s

314 ms

314 ms

314 ms

4 ms

4 ms

4 ms

16796 ms

16796 ms

16795 ms

Table 14: Timings for the computation of heterozygosity rate
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VII. Conclusions

The tool developed in the completion of this study securely computes the χ2 test

statistic, allelic odds ratio, Hardy-Weinberg equilibrium, minor allele frequency,

linkage disequilibrium, and heterozygosity rate of SNP data used in genome-wide

association studies using fully homomorphic encryption.

It is comprised of a server and a client application which communicate using

Windows Sockets, implements homomorphic encryption and related arithmetic op-

erations using Simple Encrypted Arithmetic Library (SEAL), and can be accessed

by the user through an interface developed using .NET.

As such, GWAS computations can now be outsourced to an external comput-

ing resource such as the cloud to maximize its computing power. The threat to

security posed by uploading the data into a possibly untrusted resource is solved

by homomorphic encryption which ensures the secure computation of the data

by preserving its utility in mathematical operations, thus eliminating the need to

decrypt the data in order for it to be meaningful in computation.
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VIII. Recommendations

The main point of improvement to consider when using fully homomorphic encryp-

tion is its execution time. In doing so, one might look into the use more efficient

encryption schemes that allow for the same or greater computing capabilities.

Other enhancements can include the addition of more statistics that can be

used for GWAS such as genotype-based χ2 test statistics and extension of function-

ality by the handling of non-biallelic SNPs. An approach to the second objective

might begin in representing a SNP with additional polynomials, accounting for

each of the additional heterozygous genotypes and all but one homozygous geno-

types for the alternate allele.
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X. Appendix

A. Source Code

A..1 Server module

Server module: GWASServer.cpp

// GWASServer . cpp : De f ine s the entry po int f o r the conso l e app l i c a t i on .
//

#inc lude ” s tda fx . h”
#inc lude ” snpse rve r . h”

us ing namespace s e a l ;
us ing namespace std ;

WSADATA wsa ;
SOCKET s ;
DWORD threadId ;

bool i n i t i a l i z eW in s o c k ( ) ;
bool c r e a t eL i s t e n e r ( ) ;
bool acceptRequests ( ) ;
DWORD WINAPI doGwas( void ∗ sd ) ;

i n t main ( )
{

bool winsockStatus , l i s t e n e r S t a t u s , acceptStatus ;
// I n i t i a l i z e winsock ]
do {

winsockStatus = i n i t i a l i z eW in s o c k ( ) ;
} whi le ( ! winsockStatus ) ;

//Create l i s t e n e r
do {

l i s t e n e r S t a t u s = c r e a t eL i s t e n e r ( ) ;
} whi le ( ! l i s t e n e r S t a t u s ) ;

//Accept r eque s t s
do {

acceptStatus = acceptRequests ( ) ;
} whi le ( ! acceptStatus ) ;

WSACleanup ( ) ;

// Wait f o r ENTER be fo r e c l o s i n g s c r e en .
cout << ”Press ENTER to e x i t ” << endl ;
char i gno re ;
c in . get ( i gno r e ) ;
r e turn 0 ;

}

bool i n i t i a l i z eW in s o c k ( )
{

cout << ” I n i t i a l i s i n g Winsock . . . ” << endl ;
i f (WSAStartup(MAKEWORD(2 , 2) , &wsa ) != 0) {

cout << ” Fa i l ed . Error Code : ” << WSAGetLastError ( ) << endl ;
r e turn f a l s e ;

}
cout << ” I n i t i a l i s e d . ” << endl ;
r e turn t rue ;

}

bool c r e a t eL i s t e n e r ( ) {
//Get c on f i g
s t r i n g l i n e ;
i f s t r e am conf igInputStream ( ”GWASServer . c on f i g ” , i f s t r e am : : in ) ;
i n t port = 0 ;
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whi le ( g e t l i n e ( conf igInputStream , l i n e ) && port == 0) {
port = s t o i ( l i n e ) ;

}
conf igInputStream . c l o s e ( ) ;

//Create socket
i f ( ( s = socket (AF INET , SOCK STREAM, 0) ) == INVALID SOCKET) {

cout << ”Could not c r e a t e socke t : ” << WSAGetLastError ( ) << endl ;
r e turn f a l s e ;

}

//Create s e r v e r
s t r u c t sockaddr in addr ;
addr . s i n f am i l y = AF INET ;
addr . s i n p o r t = htons ( port ) ;
addr . s i n addr . s addr = hton l (INADDR ANY) ;

//Bind socke t
i f ( : : bind ( s , (LPSOCKADDR)&addr , s i z e o f ( addr ) ) == SOCKETERROR) {

cout << ”Could not bind socket ” << endl ;
r e turn f a l s e ;

}

cout << ”Socket c r ea ted . ” << endl ;
r e turn t rue ;

}

bool acceptRequests ( ) {
t ry {

whi le ( t rue ) {
l i s t e n ( s , SOMAXCONN) ;

//Accept a c l i e n t socket
SOCKET c l i e n t = accept ( s , NULL, NULL) ;
i f ( c l i e n t == INVALID SOCKET) {

p r i n t f ( ” accept f a i l e d with e r r o r : %d\n” , WSAGetLastError ( ) ) ;
}
e l s e {

CloseHandle ( CreateThread (NULL, 0 , doGwas , ( void ∗) c l i e n t , 0 , &threadId ) ) ;
}

}
}
catch ( . . . ) {

r e turn f a l s e ;
}
r e turn f a l s e ;

}

DWORD WINAPI doGwas( void ∗ sd ) {
SOCKET c l i e n t = (SOCKET) sd ;

//Receive t r an sa c t i on header
vector<char> recvbuf (DEFAULT BUFLEN) ;
i n t r e cvbu f l en = DEFAULT BUFLEN;
i n t has new = 0 ;

i f ( c l i e n t == INVALID SOCKET) {
r e turn 1 ;

}
e l s e {

has new = recv ( c l i e n t , recvbuf . data ( ) , r ecvbuf l en , 0) ;
}

vector<s t r i ng> header = s p l i t ( s t r i n g ( recvbuf . data ( ) , has new ) , ’ | ’ ) ;
i f ( header . s i z e ( ) < 2) {

c l o s e s o c k e t ( c l i e n t ) ;
r e turn 1 ;

}

s t r i n g mode = header [ 0 ] ;
i n t s i z e = s t o i ( header [ 1 ] ) ;

//Contingency tab l e only or cont ingency tab l e with HWE
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i f (mode == ”CO” | | mode == ”CH” | | mode == ”CM” ) {
i n t mod = max( ( i n t )pow(2 , c e i l ( l og2 ( s i z e ) ) + 2) , 2048) ;

// Rece iv ing c i ph e r t e x t s t r i n g s
vector<s t r i ng> c i p h e r s t r s = recvNCiphertexts (3 , c l i e n t , ( i n t )pow(2 , c e i l ( l og2
(mod) ) + 4) + 28) ;

i f ( c i p h e r s t r s . s i z e ( ) < 3) {
c l o s e s o c k e t ( c l i e n t ) ;
cout << ”Error in r e c e i v i n g c i ph e r t e x t s ” << endl ;
r e turn 1 ;

}

t ry {
//Loading c i ph e r t e x t ob j e c t s
vector<BigPolyArray> c i ph e r t e x t s = loadCipher t ext s ( c i p h e r s t r s ) ;

i f ( c i ph e r t e x t s . s i z e ( ) < 3) {
c l o s e s o c k e t ( c l i e n t ) ;
r e turn 1 ;

}

// Se t t i ng eva lua to r parameters
EncryptionParameters parms ;
parms . poly modulus ( ) = ”1xˆ” + t o s t r i n g (mod) + ” + 1” ;
parms . coe f f modu lus ( ) = ChooserEvaluator : : d e f au l t pa ramet e r op t i on s ( ) . at (

mod) ;
parms . p la in modulus ( ) = ( i n t )pow(2 , c e i l ( l og2 ( s i z e ) ) + 2) ;

BigPoly onePoly = BigPoly ( kPolyNterms (1 , s i z e ) ) ;

//Performing homomorphic computations
cout << ”Performing a r i thmet i c on encrypted numbers . . . ” << endl ;
Evaluator eva lua to r ( parms ) ;
vector<BigPolyArray> ans ;

BigPolyArray encryptedsum = eva luato r . add ( c i ph e r t e x t s [ 0 ] , c i ph e r t e x t s [ 1 ] ) ;

i f (mode == ”CO” ) {
BigPolyArray encryptedacase = eva lua to r . mul t ip ly ( encryptedsum ,

c i ph e r t e x t s [ 2 ] ) ;
ans . push back ( encryptedacase ) ;

}

BigPolyArray encrypteda = eva lua to r . mu l t i p l y p l a i n ( encryptedsum , onePoly ) ;
ans . push back ( encrypteda ) ;

i f (mode == ”CH” ) {
BigPolyArray encryptedaa = eva lua to r . mu l t i p l y p l a i n ( c i ph e r t e x t s [ 0 ] ,

onePoly ) ;
ans . push back ( encryptedaa ) ;

BigPolyArray encryptedab = eva lua to r . mu l t i p l y p l a i n ( c i ph e r t e x t s [ 1 ] ,
onePoly ) ;

ans . push back ( encryptedab ) ;
}

// Sending c i ph e r t e x t s
sendCiphertexts ( ans , c l i e n t ) ;

}
catch ( . . . ) {

c l o s e s o c k e t ( c l i e n t ) ;
cout << ”Error in homomorphic computation” << endl ;
r e turn 1 ;

}
}
e l s e i f (mode == ”HR” ) {

//Check header
i f ( header . s i z e ( ) < 3) {

c l o s e s o c k e t ( c l i e n t ) ;
r e turn 1 ;

}
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i n t mod = max( ( i n t )pow(2 , c e i l ( l og2 ( s t o i ( header [ 2 ] ) ) ) + 2) , 1024) ;

// Rece iv ing c i ph e r t e x t s t r i n g s
vector<s t r i ng> c i p h e r s t r s = recvNCiphertexts ( s i z e , c l i e n t , ( i n t )pow(2 , c e i l (
l og2 (mod) ) + 4) + 28) ;

i f ( c i p h e r s t r s . s i z e ( ) < s i z e ) {
c l o s e s o c k e t ( c l i e n t ) ;
cout << ”Error in r e c e i v i n g c i ph e r t e x t s ” << endl ;
r e turn 1 ;

}

t ry {
//Loading c i ph e r t e x t ob j e c t s
vector<BigPolyArray> c i ph e r t e x t s = loadCipher t ext s ( c i p h e r s t r s ) ;

i f ( c i ph e r t e x t s . s i z e ( ) < s i z e ) {
c l o s e s o c k e t ( c l i e n t ) ;
r e turn 1 ;

}

// Se t t i ng eva lua to r parameters
EncryptionParameters parms ;
parms . poly modulus ( ) = ”1xˆ” + t o s t r i n g (mod) + ” + 1” ;
parms . coe f f modu lus ( ) = ChooserEvaluator : : d e f au l t pa ramet e r op t i on s ( ) . at (

mod) ;
parms . p la in modulus ( ) = ( i n t )pow(2 , c e i l ( l og2 ( s i z e ) ) + 1) ;

//Performing homomorphic computations
cout << ”Performing a r i thmet i c on encrypted numbers . . . ” << endl ;
Evaluator eva lua to r ( parms ) ;
BigPolyArray sum = c i ph e r t e x t s [ 0 ] ;
c i ph e r t e x t s . e r a s e ( c i ph e r t e x t s . begin ( ) ) ;

f o r ( BigPolyArray c i ph e r t e x t : c i ph e r t e x t s ) {
sum = eva lua to r . add (sum , c i ph e r t e x t ) ;

}

// Sending one c i ph e r t e x t
vector<BigPolyArray> ans = vector<BigPolyArray>() ;
ans . push back (sum) ;
sendCiphertexts ( ans , c l i e n t ) ;

}
catch ( . . . ) {

c l o s e s o c k e t ( c l i e n t ) ;
cout << ”Error in homomorphic computation” << endl ;
r e turn 1 ;

}
}
e l s e i f (mode == ”LD” ) {

i n t mod = max( ( i n t )pow(2 , c e i l ( l og2 ( s i z e ) ) + 3) , 2048) ;

// Rece iv ing c i ph e r t e x t s t r i n g s
vector<s t r i ng> c i p h e r s t r s = recvNCiphertexts (6 , c l i e n t , ( i n t )pow(2 , c e i l ( l og2
(mod) ) + 4) + 28) ;

i f ( c i p h e r s t r s . s i z e ( ) < 6) {
c l o s e s o c k e t ( c l i e n t ) ;
cout << ”Error in r e c e i v i n g c i ph e r t e x t s ” << endl ;
r e turn 1 ;

}

t ry {
//Loading c i ph e r t e x t ob j e c t s
vector<BigPolyArray> c i ph e r t e x t s = loadCipher t ext s ( c i p h e r s t r s ) ;

i f ( c i ph e r t e x t s . s i z e ( ) < 6) {
c l o s e s o c k e t ( c l i e n t ) ;
r e turn 1 ;

}

// Se t t i ng eva lua to r parameters
EncryptionParameters parms ;
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parms . poly modulus ( ) = ”1xˆ” + t o s t r i n g (mod) + ” + 1” ;
parms . coe f f modu lus ( ) = ChooserEvaluator : : d e f au l t pa ramet e r op t i on s ( ) . at (

mod) ;
parms . p la in modulus ( ) = ( i n t )pow(2 , c e i l ( l og2 ( s i z e ) ) + 4) ;

BigPoly onePoly = BigPoly ( kPolyNterms (1 , s i z e ) ) ;

//Performing homomorphic computations
cout << ”Performing a r i thmet i c on encrypted numbers . . . ” << endl ;
Evaluator eva lua to r ( parms ) ;
vector<BigPolyArray> ans ;

ans . push back ( eva lua to r . mul t ip ly ( c i ph e r t e x t s [ 0 ] , c i ph e r t e x t s [ 4 ] ) ) ;
ans . push back ( eva lua to r . mul t ip ly ( c i ph e r t e x t s [ 1 ] , c i ph e r t e x t s [ 4 ] ) ) ;
ans . push back ( eva lua to r . mul t ip ly ( c i ph e r t e x t s [ 0 ] , c i ph e r t e x t s [ 5 ] ) ) ;
ans . push back ( eva lua to r . mul t ip ly ( c i ph e r t e x t s [ 1 ] , c i ph e r t e x t s [ 5 ] ) ) ;

BigPolyArray encryptedsum1 = eva lua to r . add ( c i ph e r t e x t s [ 0 ] , c i ph e r t e x t s [ 1 ] ) ;
ans . push back ( eva lua to r . mu l t i p l y p l a i n ( encryptedsum1 , onePoly ) ) ;

BigPolyArray encryptedsum2 = eva lua to r . add ( c i ph e r t e x t s [ 2 ] , c i ph e r t e x t s [ 3 ] ) ;
ans . push back ( eva lua to r . mu l t i p l y p l a i n ( encryptedsum2 , onePoly ) ) ;

// Sending c i ph e r t e x t s
sendCiphertexts ( ans , c l i e n t ) ;

}
catch ( . . . ) {

c l o s e s o c k e t ( c l i e n t ) ;
cout << ”Error in homomorphic computation” << endl ;
r e turn 1 ;

}
}
c l o s e s o c k e t ( c l i e n t ) ;
r e turn 0 ;

}

A..2 Client module

CaseControlTable.cpp

#inc lude ” s tda fx . h”
#inc lude ” s e a l . h”
#inc lude ”CaseControlTable . h”

us ing namespace std ;
us ing namespace s e a l ;

CaseControlTable : : CaseControlTable (Snp cases , Snp cont ro l s , SnpSocket sock ,
ModeType mode) : snp ( ca s e s ) , s ( sock ) , e r r o r ( f a l s e ) , c a s e s ( ca s e s . g e tS i z e ( ) ) , a
(0 ) , acase (0 ) , naa (0 ) , nab (0 ) {

i f (mode == ModeType : : CHISQ | | mode == ModeType : :AOR) {
snp . add ( c on t r o l s ) ;

}

//Encoding o f SNP
BigPoly homoPolyFw = BigPoly ( th i s−>snp . getHomoPolyFw ( ) ) ;
BigPoly heteroPolyFw = BigPoly ( th i s−>snp . getHeteroPolyFw ( ) ) ;
BigPoly phenoPolyBw = BigPoly ( th i s−>snp . getPhenotypePolyBw ( ) ) ;

// Se t t i ng encrypt ion parameters
i n t poly mod = max( ( i n t )pow(2 , c e i l ( l og2 ( th i s−>snp . g e tS i z e ( ) ) ) + 2) ,2048) ;
i n t plain mod = ( i n t )pow(2 , c e i l ( l og2 ( th i s−>snp . g e tS i z e ( ) ) ) + 2) ;
// cout << ”Modulus : ” << poly mod << ” ,” << plain mod << endl ;

EncryptionParameters parms ;
parms . poly modulus ( ) = ”1xˆ” + t o s t r i n g ( poly mod ) + ” + 1” ;
parms . coe f f modu lus ( ) = 1 << 10 ;
parms . coe f f modu lus ( ) = ChooserEvaluator : : d e f au l t pa ramet e r op t i on s ( ) . at (

poly mod ) ;
parms . p la in modulus ( ) = plain mod ;
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//Generating keys
// cout << ”Generating keys . . . ” << endl ;
KeyGenerator generato r ( parms ) ;
genera to r . generate ( ) ;
BigPolyArray pub l i c key = generato r . pub l i c key ( ) ;
BigPoly s e c r e t k e y = genera tor . s e c r e t k e y ( ) ;

//Timestamp 1
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

//Encrypting va lue s
// cout << ”Encrypting va lue s . . . ” << endl ;
Encryptor encryptor ( parms , pub l i c key ) ;

//Timestamp 2
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

vector<BigPolyArray> c i ph e r t e x t s ;
c i ph e r t e x t s . push back ( encryptor . encrypt (homoPolyFw) ) ;
c i ph e r t e x t s . push back ( encryptor . encrypt ( heteroPolyFw ) ) ;
c i ph e r t e x t s . push back ( encryptor . encrypt ( phenoPolyBw) ) ;

//Connect remotely
boolean i s S t a r t e d = f a l s e ;
i n t attempts = 0 ;
do {

i s S t a r t e d = th i s−>s . s t a r t ( ) ;
attempts++;

} whi le ( ! i s S t a r t e d && attempts < MAXATTEMPT) ;

i f ( ! i s S t a r t e d ) {
e r r o r = true ;
r e turn ;

}

// Sending computation type to s e r v e r
i n t n = 0 ;
i f (mode == ModeType : : CHISQ | | mode == ModeType : :AOR) {

th i s−>s . sendMessage ( ”CO| ” + t o s t r i n g ( th i s−>snp . g e tS i z e ( ) ) ) ;
n = 2 ;

}
e l s e i f (mode == ModeType : :HWE) {

th i s−>s . sendMessage ( ”CH| ” + t o s t r i n g ( th i s−>snp . g e tS i z e ( ) ) ) ;
n = 3 ;

}
e l s e i f (mode == ModeType : :MAF) {

th i s−>s . sendMessage ( ”CM| ” + t o s t r i n g ( th i s−>snp . g e tS i z e ( ) ) ) ;
n = 1 ;

}

//Timestamp 3
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

// Sending data c i ph e r t e x t s and r e c e i v i n g answer c i ph e r t e x t s
vector<s t r i ng> ans = vector<s t r i ng >() ;
i f ( th i s−>s . s endCiphertexts ( c i ph e r t e x t s ) ) {

ans = th i s−>s . recvNCiphertexts (n) ;

//Timestamp 4
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

// Clos ing socke t
th i s−>s . c l o s e ( ) ;

i f ( ans . s i z e ( ) == n) {
//Timestamp 5
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

//Decrypting c i ph e r t ex t
// cout << ”Decrypting r e s u l t s . . . ” << endl ;
vector<double> compute ;
Decryptor decryptor ( parms , s e c r e t k e y ) ;
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f o r ( s t r i n g s t r : ans ) {
BigPolyArray po lya r r ;
s t r i ng s t r eam in = st r ing s t r eam ( s t r ) ;
po lya r r . load ( in ) ;

BigPoly decrypted = decryptor . decrypt ( po lya r r ) ;
compute . push back ( decrypted [ th i s−>snp . g e tS i z e ( ) ] . to doub le ( ) ) ;

}

//Timestamp 6
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

// Saving r e s u l t s
i f (mode == ModeType : : CHISQ | | mode == ModeType : :AOR) {

th i s−>acase = compute [ 0 ] ;
th i s−>a = compute [ 1 ] ;

}
e l s e i f (mode == ModeType : :HWE) {

th i s−>a = compute [ 0 ] ;
th i s−>naa = compute [ 1 ] / 2 ;
th i s−>nab = compute [ 2 ] ;

}
e l s e i f (mode == ModeType : :MAF) {

th i s−>a = compute [ 0 ] ;
}

}
e l s e {

e r r o r = true ;
// cout << ” I n s u f f i c i e n t number o f c i ph e r t e x t s r e c e i v ed from se r v e r .

Terminating . . . ” << endl ;
th i s−>s . c l o s e ( ) ;

}
}
e l s e {

e r r o r = true ;

// Clos ing socke t
// cout << ”Send e r r o r . Terminating . . . ” << endl ;
th i s−>s . c l o s e ( ) ;

}
}

CaseControlTable : : ˜ CaseControlTable ( ) {}

double CaseControlTable : : ch i sq ( ) {
double m = snp . g e tS i z e ( ) ;
double bcase = 2 ∗ ca s e s − acase ;
double a con t r o l = a − acase ;
double b = 2 ∗ m − a ;
double c on t r o l s = m − ca s e s ;
double bcont ro l = b − bcase ;

r e turn 2 ∗ m ∗ pow( ( bcase ∗( a con t r o l + bcont ro l ) ) − ( bcont ro l ∗( acase + bcase ) ) ,
2) / ( ca s e s ∗ c on t r o l s ∗a∗b) ;

}

double CaseControlTable : : aor ( ) {
double bcase = 2 ∗ ca s e s − acase ;
double a con t r o l = a − acase ;
double b = 2 ∗ snp . g e tS i z e ( ) − a ;
double bcont ro l = b − bcase ;

r e turn ( acase ∗ bcont ro l ) / ( a con t r o l ∗bcase ) ;
}

double CaseControlTable : : maf ( ) {
r e turn min (a , 2 ∗ snp . g e tS i z e ( ) − a ) / (2 ∗ snp . g e tS i z e ( ) ) ;

}

double CaseControlTable : : hwe ( ) {
double eaa = ( a∗a ) / (4 ∗ snp . g e tS i z e ( ) ) ;
double eab = (2 ∗ a ∗(2 ∗ snp . g e tS i z e ( ) − a ) ) / (4 ∗ snp . g e tS i z e ( ) ) ;
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double ebb = ((2 ∗ snp . g e tS i z e ( ) − a ) ∗(2 ∗ snp . g e tS i z e ( ) − a ) ) / (4 ∗ snp .
g e tS i z e ( ) ) ;

double nbb = snp . g e tS i z e ( ) − naa − nab ;

re turn pow( naa − eaa , 2) / eaa + pow(nab − eab , 2) / eab + pow(nbb − ebb , 2) /
ebb ;

}

chrono : : m i l l i s e c ond s CaseControlTable : : encryptionTime ( ) {
i f ( ! e r r o r ) re turn chrono : : dura t i on ca s t<chrono : : m i l l i s e c ond s >(timestamps [ 1 ] −

timestamps [ 0 ] ) ;
r e turn ( chrono : : seconds ) 0 ;

}

chrono : : m i l l i s e c ond s CaseControlTable : : remoteTime ( ) {
i f ( ! e r r o r ) re turn chrono : : dura t i on ca s t<chrono : : m i l l i s e c ond s >(timestamps [ 3 ] −

timestamps [ 2 ] ) ;
r e turn ( chrono : : seconds ) 0 ;

}

chrono : : m i l l i s e c ond s CaseControlTable : : decryptionTime ( ) {
i f ( ! e r r o r ) re turn chrono : : dura t i on ca s t<chrono : : m i l l i s e c ond s >(timestamps [ 5 ] −

timestamps [ 4 ] ) ;
r e turn ( chrono : : seconds ) 0 ;

}

boolean CaseControlTable : : i sE r r o r ( ) {
r e turn e r r o r ;

}

LinkageDisequilibrium.cpp

#inc lude ” s tda fx . h”
#inc lude ” s e a l . h”
#inc lude ” L inkageDisequ i l ib r ium . h”

us ing namespace std ;
us ing namespace s e a l ;

L inkageDisequ i l ib r ium : : L inkageDisequ i l ib r ium (Snp f i r s tSnp , Snp secondSnp ,
SnpSocket sock ) : snp1 ( f i r s t Snp ) , snp2 ( secondSnp ) , s ( sock ) , e r r o r ( f a l s e ) {

//Encoding o f SNPs
vector<BigPoly> po lys ;
po lys . push back ( BigPoly ( snp1 . getHomoPolyFw ( ) ) ) ;
po lys . push back ( BigPoly ( snp1 . getHeteroPolyFw ( ) ) ) ;
po lys . push back ( BigPoly ( snp2 . getHomoPolyFw ( ) ) ) ;
po lys . push back ( BigPoly ( snp2 . getHeteroPolyFw ( ) ) ) ;
po lys . push back ( BigPoly ( snp2 . getHomoPolyBw ( ) ) ) ;
po lys . push back ( BigPoly ( snp2 . getHeteroPolyBw ( ) ) ) ;

// Se t t i ng encrypt ion parameters
i n t poly mod = max( ( i n t )pow(2 , c e i l ( l og2 ( th i s−>snp1 . g e tS i z e ( ) ) ) + 3) ,2048) ;
i n t plain mod = ( i n t )pow(2 , c e i l ( l og2 ( th i s−>snp1 . g e tS i z e ( ) ) ) + 4) ;
// cout<< ”Modulus : ” << poly mod << ” ,” << plain mod << endl ;

EncryptionParameters parms ;
parms . poly modulus ( ) = ”1xˆ” + t o s t r i n g ( poly mod ) + ” + 1” ;
parms . coe f f modu lus ( ) = ChooserEvaluator : : d e f au l t pa ramet e r op t i on s ( ) . at (

poly mod ) ;
parms . p la in modulus ( ) = plain mod ;

//Generating keys
// cout<< ”Generating keys . . . ” << endl ;
KeyGenerator generato r ( parms ) ;
genera to r . generate ( ) ;
BigPolyArray pub l i c key = generato r . pub l i c key ( ) ;
BigPoly s e c r e t k e y = genera tor . s e c r e t k e y ( ) ;

//Timestamp 1
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

//Encrypting va lue s
// cout<< ”Encrypting va lue s . . . ” << endl ;
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Encryptor encryptor ( parms , pub l i c key ) ;
vector<BigPolyArray> c i ph e r t e x t s ;

f o r ( BigPoly poly : po lys ) {
c i ph e r t e x t s . push back ( encryptor . encrypt ( poly ) ) ;

}

//Timestamp 2
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

//Connect remotely
boolean i s S t a r t e d = f a l s e ;
i n t attempts = 0 ;
do {

i s S t a r t e d = th i s−>s . s t a r t ( ) ;
attempts++;

} whi le ( ! i s S t a r t e d && attempts < MAXATTEMPT) ;

i f ( ! i s S t a r t e d ) {
e r r o r = true ;
r e turn ;

}

// Sending computation type to s e r v e r
th i s−>s . sendMessage ( ”LD | ” + t o s t r i n g ( th i s−>snp1 . g e tS i z e ( ) ) ) ;

//Timestamp 3
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

// Sending data c i ph e r t e x t s and r e c e i v i n g answer c i ph e r t e x t s
vector<s t r i ng> ans = vector<s t r i ng >() ;
i f ( th i s−>s . s endCiphertexts ( c i ph e r t e x t s ) ) {

ans = th i s−>s . recvNCiphertexts (6 ) ;

//Timestamp 4
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

// Clos ing socke t
th i s−>s . c l o s e ( ) ;

i f ( ans . s i z e ( ) == 6) {
//Timestamp 5
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

//Decrypting c i ph e r t ex t
// cout<< ”Decrypting r e s u l t s . . . ” << endl ;
vector<double> compute ;
Decryptor decryptor ( parms , s e c r e t k e y ) ;

f o r ( s t r i n g s t r : ans ) {
BigPolyArray po lya r r ;
s t r i ng s t r eam in = st r ing s t r eam ( s t r ) ;
po lya r r . load ( in ) ;

BigPoly decrypted = decryptor . decrypt ( po lya r r ) ;
compute . push back ( decrypted [ snp1 . g e tS i z e ( ) − 1 ] . to doub le ( ) ) ;
compute . push back ( decrypted [ snp1 . g e tS i z e ( ) ] . to doub le ( ) ) ;

}

//Timestamp 6
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

homohomo = compute [ 0 ] / 4 ;
heterohomo = compute [ 2 ] / 2 ;
homohetero = compute [ 4 ] / 2 ;
he t e rohe t e ro = compute [ 6 ] ;
r e f A l l e l e 1 = compute [ 9 ] ;
r e f A l l e l e 2 = compute [ 1 1 ] ;

}
e l s e {

e r r o r = true ;
// cout<< ” I n s u f f i c i e n t number o f c i ph e r t e x t s r e c e i v ed from se r v e r .

Terminating . . . ” << endl ;
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}
}
e l s e {

e r r o r = true ;

// Clos ing socke t
// cout<< ”Send e r r o r . Terminating . . . ” << endl ;
th i s−>s . c l o s e ( ) ;

}
}

LinkageDisequ i l ib r ium : : ˜ L inkageDisequ i l ib r ium ( ) {}

double L inkageDisequ i l ib r ium : : ld ( ) {
double pab = (2 ∗ homohomo + heterohomo + homohetero ) / (2 ∗ snp1 . g e tS i z e ( ) ) ;
double pa = ( r e f A l l e l e 1 − he t e rohe t e ro ) / (2 ∗ snp1 . g e tS i z e ( ) ) ;
double pb = ( r e f A l l e l e 2 − he t e rohe t e ro ) / (2 ∗ snp1 . g e tS i z e ( ) ) ;

double d = pab − pa ∗ pb ;
double dmax = d > 0 ? min ( pa ∗(1 − pb) , (1 − pa ) ∗pb) : min ( pa∗pb , (1 − pa ) ∗(1 −

pb) ) ;

r e turn d / dmax ;
}

chrono : : m i l l i s e c ond s L inkageDisequ i l ib r ium : : encryptionTime ( ) {
i f ( ! e r r o r ) re turn chrono : : dura t i on ca s t<chrono : : m i l l i s e c ond s >(timestamps [ 1 ] −

timestamps [ 0 ] ) ;
r e turn ( chrono : : seconds ) 0 ;

}

chrono : : m i l l i s e c ond s L inkageDisequ i l ib r ium : : remoteTime ( ) {
i f ( ! e r r o r ) re turn chrono : : dura t i on ca s t<chrono : : m i l l i s e c ond s >(timestamps [ 3 ] −

timestamps [ 2 ] ) ;
r e turn ( chrono : : seconds ) 0 ;

}

chrono : : m i l l i s e c ond s L inkageDisequ i l ib r ium : : decryptionTime ( ) {
i f ( ! e r r o r ) re turn chrono : : dura t i on ca s t<chrono : : m i l l i s e c ond s >(timestamps [ 5 ] −

timestamps [ 4 ] ) ;
r e turn ( chrono : : seconds ) 0 ;

}

boolean LinkageDisequ i l ib r ium : : i sE r r o r ( ) {
r e turn e r r o r ;

}

Heterozygosity.cpp

#inc lude ” s tda fx . h”
#inc lude ” s e a l . h”
#inc lude ”Hete rozygos i ty . h”

us ing namespace std ;
us ing namespace s e a l ;

Hete rozygos i ty : : Hete rozygos i ty ( vector<Snp> snparr , SnpSocket sock ) : snps ( snparr )
, s ( sock ) , e r r o r ( f a l s e ) {

// Se t t i ng encrypt ion parameters
i n t poly mod = max( ( i n t )pow(2 , c e i l ( l og2 ( th i s−>snps [ 0 ] . g e tS i z e ( ) ) ) + 2) ,1024) ;
i n t plain mod = ( i n t )pow(2 , c e i l ( l og2 ( th i s−>snps . s i z e ( ) ) ) + 1) ;
// cout << ”Modulus : ” << poly mod << ” ,” << plain mod << endl ;

EncryptionParameters parms ;
parms . poly modulus ( ) = ”1xˆ” + t o s t r i n g ( poly mod ) + ” + 1” ;
parms . coe f f modu lus ( ) = ChooserEvaluator : : d e f au l t pa ramet e r op t i on s ( ) . at (

poly mod ) ;
parms . p la in modulus ( ) = plain mod ;

//Generating keys
// cout << ”Generating keys . . . ” << endl ;
KeyGenerator generato r ( parms ) ;
genera to r . generate ( ) ;
BigPolyArray pub l i c key = generato r . pub l i c key ( ) ;
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BigPoly s e c r e t k e y = genera tor . s e c r e t k e y ( ) ;

//Timestamp 1
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

//Encrypting va lue s
// cout << ”Encrypting and sending va lue s . . . ” << endl ;
Encryptor encryptor ( parms , pub l i c key ) ;

vector<BigPolyArray> c i ph e r t e x t s ;
f o r (Snp snp : snps ) {

c i ph e r t e x t s . push back ( encryptor . encrypt ( snp . getHeteroPolyFw ( ) ) ) ;
}

//Timestamp 2
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

//Connect remotely
boolean i s S t a r t e d = f a l s e ;
i n t attempts = 0 ;
do {

i s S t a r t e d = th i s−>s . s t a r t ( ) ;
attempts++;

} whi le ( ! i s S t a r t e d && attempts < MAXATTEMPT) ;

i f ( ! i s S t a r t e d ) {
e r r o r = true ;
r e turn ;

}

// Sending computation type to s e r v e r
th i s−>s . sendMessage ( ”HR| ” + t o s t r i n g ( th i s−>snps . s i z e ( ) ) + ” | ” + t o s t r i n g ( th i s
−>snps [ 0 ] . g e tS i z e ( ) ) ) ;

//Timestamp 3
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

// Rece iv ing one c i ph e r t e x t
i f ( th i s−>s . s endCiphertexts ( c i ph e r t e x t s ) ) {

vector<s t r i ng> ans = th i s−>s . recvNCiphertexts (1 ) ;

//Timestamp 4
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

// Clos ing socke t
th i s−>s . c l o s e ( ) ;

i f ( ans . s i z e ( ) == 1) {
//Timestamp 5
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

//Loading c i ph e r t e x t
BigPolyArray po lya r r ;
s t r i ng s t r eam in = st r ing s t r eam ( ans [ 0 ] ) ;
po lya r r . load ( in ) ;

//Decrypting c i ph e r t ex t
Decryptor decryptor ( parms , s e c r e t k e y ) ;
// cout << ”Decrypting r e s u l t s . . . ” << endl ;
BigPoly decrypted = decryptor . decrypt ( po lya r r ) ;

//Timestamp 6
timestamps . push back ( std : : chrono : : s t e ady c l o ck : : now( ) ) ;

f o r ( i n t c t r = 0 ; c t r < snps [ 0 ] . g e tS i z e ( ) ; c t r++) {
h e t e r o z y g o s i t i e s . push back ( decrypted [ c t r ] . to doub le ( ) ) ;

}
}
e l s e {

e r r o r = true ;
// cout << ” I n s u f f i c i e n t number o f c i ph e r t e x t s r e c e i v ed from se r v e r .

Terminating . . . ” << endl ;
}

76



}
e l s e {

e r r o r = true ;

// Clos ing socke t
// cout << ”Send e r r o r . Terminating . . . ” << endl ;
th i s−>s . c l o s e ( ) ;

}
}

Heterozygos i ty : : ˜ Hete rozygos i ty ( ) {}

double Hete rozygos i ty : : hr ( i n t index ) {
r e turn h e t e r o z y g o s i t i e s [ index ] / snps . s i z e ( ) ;

}

chrono : : m i l l i s e c ond s Hete rozygos i ty : : encryptionTime ( ) {
i f ( ! e r r o r ) re turn chrono : : dura t i on ca s t<chrono : : m i l l i s e c ond s >(timestamps [ 1 ] −

timestamps [ 0 ] ) ;
r e turn ( chrono : : seconds ) 0 ;

}

chrono : : m i l l i s e c ond s Hete rozygos i ty : : remoteTime ( ) {
i f ( ! e r r o r ) re turn chrono : : dura t i on ca s t<chrono : : m i l l i s e c ond s >(timestamps [ 3 ] −

timestamps [ 2 ] ) ;
r e turn ( chrono : : seconds ) 0 ;

}

chrono : : m i l l i s e c ond s Hete rozygos i ty : : decryptionTime ( ) {
i f ( ! e r r o r ) re turn chrono : : dura t i on ca s t<chrono : : m i l l i s e c ond s >(timestamps [ 5 ] −

timestamps [ 4 ] ) ;
r e turn ( chrono : : seconds ) 0 ;

}

boolean Hete rozygos i ty : : i sE r r o r ( ) {
r e turn e r r o r ;

}
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