
i

ABSTRACT

Systems mature. Like people, they grow bigger, gain more mass, and learn new skills.

However, as systems mature, the complexity and its size tend to grow too. The system suddenly

becomes a tangled mess, full of duplicate and redundant code and prone to bugs. This is where

refactoring can help.

Refactoring is a process that involves altering the internal structure of the program or

system to make it cleaner and more intuitive. It is a change made to the structure of the system

to make it easier to understand and cheaper to modify. However it is important to note that

refactoring does not aim to modify the observable behaviour of a system; in fact it is the opposite

as it makes changes to the internal structure while making sure that the functionalities of the

system stay the same. In addition, refactoring is also helpful in finding bugs because bugs in the

code can easily be spotted by clarifying the structure of the program.

One candidate of such process is the Virus Host Interaction Lexicon system. Composed

of seven modules, it has interlocking components whose code base has become so large that bugs

and duplication of code become inevitable. Two of these modules, in particular the Virho

References and Virho Hotspots, contain several bugs that prevent it from being useful. The

refactoring of the Virho References module and Virho Hotspots module addressed these

problems, while giving it the opportunity to be expanded and modified in the future versions

because of its more modular and more manageable code.

keywords: virholex, virho references, virho hotspots, refactoring

ii

Table of Contents

INTRODUCTION..1

Background of the Study ..1

Statement of the Study ...3

Objectives ...4

Significance of the Study ...8

Scope and Limitations ..9

REVIEW OF RELATED LITERATURE ..11

THEORETICAL FRAMEWORK ...17

DESIGN AND IMPLEMENTATION ...28

Entity Relationship Diagram ..28

Data Dictionary ..30

Use Case ...31

Technical Architecture ...40

RESULTS ...41

DISCUSSION ...72

CONCLUSION ..73

RECOMMENDATION ...74

REFERENCES ...75

APPENDIX ...77

ACKNOWLEDGEMENTS ..117

1

I. INTRODUCTION

Background of the Study

There are many different ways to write a program. Like an artwork or an essay, each

program reflects the style and abilities of its creator. Every programmer uses his or her own

approach in dealing with problems that his or her program intends to solve. In fact, different

programmers can employ different techniques, patterns or methodologies to solve a similar

puzzle. While there may exist guidelines in how programmers are supposed to write their codes,

the uniqueness of each program can be seen in the way the programmer wrote the program’s

source code. Because of this, it is believed that no two programs are entirely similar.

However, as a program or a system matures, there can also be a corresponding increase in

the size of its code base. As more functions are added or revised, codes tend to become

unwieldy and too complex, to the point that there is a “code smell”, a symptom of deep problem

in the source code [1]. Thus, the need for refactoring arises.

Refactoring can be defined as “a change made to the internal structure of software to

make it easier to understand and cheaper to modify without changing its observable behavior”

[1]. It usually involves altering the internal structure of the program or system to make it

cleaner and more intuitive. In addition, refactoring is also helpful in finding bugs because bugs

in the code can easily be spotted by clarifying the structure of the program. Moreover, since

source code will be read and modified more frequently than it will be written, refactoring can be

used to keep code readable and modifiable [1].

2

VirHoLex (Virus-Host Interaction Lexicon) is a system formulated by a research/study

group composed of three academic institutions in the Philippines (University of the Philippines

Manila, De La Salle University, Mapua Institute of Technology) to set up a Community

Oriented Information (CORI) platform for virologists around the world. This initiative was born

from the perspective of U. Reichl (Director, Max-Planck-Institute for the Dynamics of the

Complex Technical Systems, Magdeburg, Germany), J. Haas (LMU & Edinburgh University

Medical Schools), J. Rädler (LMU Faculty of Physics) and the author for the postdoctoral

research of J. Bantang (on leave from the UPD National Institute of Physics). The project was

inspired by EUCLIS (EUCLOCK Information System), another CORI system developed for the

global community of chronobiologists. VirHoLEx will provide information about three

prevalent viruses in the country: Dengue, Influenza A, and Herpes Viruses [2].

Seven modules comprise the VirHoLex system, according to the specification of the

system [3]. The User Interface Module handles ways of accessing information about the system

(e.g. per module, per virus). It also provides the general layout of menus and links to the other

six components of VirHoLex. Interfaces such as hotspot features are also managed in this

module. The Registered User Services Module grants and delimits access for varying types of

users in the different modules of VirHoLex. The Information Services Module considers

information affiliated with other system modules (i.e. Images, Hotspot User Interface feature). It

also manages queries performed in the databases internal to VirHoLex and from selected

external databases. The Experiments Module stores and manages laboratory experiments,

experiments descriptions, metadata and data files. It also includes tools for visualization of some

data types. The Images Module serves as repository for images with their associated metadata

3

for and from the users of VirHoLex. In this module, the users may upload/download/search

images that may be closely coupled with other modules in VirHoLex such as Virho Experiments,

Virho Models, etc. The Models Module is a repository of summary descriptions of relevant

models/modelling studies. Lastly, the References Module stores bibliographic entries or

references of virologists, particularly from Endnote files, which they can easily share among

themselves [2].

However, Virholex still has bugs in some of its modules, including the images module,

the references module, the hotspots module and the experiments module. Bugs in the other

modules that have not yet been identified can also exist. More so, the references module and the

experiments module are either lacking in features or is not consistent with the original

specifications of the system.

These shortcomings can be obstructions in the deployment of the Virholex system. Thus,

refactoring and rewriting of the said modules are needed.

Statement of the Problem

General

Software bugs exist in the different modules of the first version of the Virus-Host

Interaction Lexicon system. These modules include, but are not limited to, the hotspots module,

images module, references module, and the experiments module.

Specific

4

 Different software bugs in the modules of the first version of the Virus-Host Interaction

Lexicon exist. These modules are the hotspots module, images module, references module, and

the experiments module. However, bugs from the other modules can also exist. These bugs can

be an obstacle in the use of the system by virologists. More so, the experiments and the

references module lack the proper documentation to facilitate possible further developments to

the system.

Objectives of the Study

 The aim of this study is to be able to refactor and rewrite some of the modules of the

Virus-Host Interaction Lexicon system without introducing new bugs, as well as complete the

proper documentations.

The References Module’s original objectives are as follows:

1. Allow collection coordinator to:

a. view/browse/search bibliographic entries

b. download documents

c. export entries to EndNoteXML files

d. add/edit bibliographic entries

e. delete bibliographic entries

f. manage references collection user

2. Allow collection contributor to:

a. view/browse/search bibliographic entries

b. download documents

5

c. export entries to EndNoteXML files

d. add/edit bibliographic entries

3. Allow restricted user to:

a. view/browse/search bibliographic entries

b. download documents

c. export entries to EndNoteXML files

4. Allow registered user to:

a. view/browse/search bibliographic entries

Below is the tabular form of the capabilities of each user level per functionalities in the

Virho Reference Module.

REFERENCE

ACCESS LEVEL
PRIVILEGES

View/Browse/Search

Bibliographic Entries

Download

Documents

Export Entries

To

EndNoteXML

Files

Add/Edit

Bibliographic

Entries

Delete

Bibliographic

Entries

Manage

References

Collection

User

4
Collection

coordinator

3
Collection

Contributor

2
Restricted

User

1
Registered

User

Table 1 Summarized capabilities of each user level for Reference Module

The Image Hotspots feature’s original objectives are as follows:

1. Allow hotspot manager to:

a. view hotspot diagram and basic virus information

b. upload new Virho Hotspot diagram

c. add/edit/delete hotspots and basic information

d. manage references collection user

2. Allow other users to:

6

a. view hotspot diagram and basic virus information

Below is the tabular form of the capabilities of each user level per functionalities in the

Virho Hotspots Module.

HOTSPOT INFO

ACCESS LEVEL
PRIVILEGES

View Hotspot Diagram

and Basic Virus

Information

Upload new Virho

Hotspot Diagram

Add/Edit/Delete Hotspot

and Basic Information

Manage

References

Collection User

4
Hotspot

Manager

0-

3

Table 2 Summarized capabilities of each user level for Hotspots Module

On top of the system’s original objectives, this study has the following additional objectives:

1. Identify the bugs in the system

a. References Module

b. Image Hotspots feature

2. Refactor the source code of the system

a. Identify the code smells

i. Duplicated code

ii. Long method

iii. Large class

iv. Long parameter list

v. Divergent change

vi. Shotgun surgery

vii. Feature envy

viii. Data clumps

ix. Primitive obsession

x. Switch statements

7

xi. Parallel inheritance hierarchy

xii. Lazy class

xiii. Speculative generality

xiv. Temporary field

xv. Message chains

xvi. Middle man

xvii. Inappropriate intimacy

xviii. Alternative classes with different interfaces

xix. Incomplete library class

xx. Data class

xxi. Refuse bequest

xxii. Comments

b. Refactor the code using refactoring techniques

i. Collapse hierarchy

ii. Encapsulate field

iii. Extract method

iv. Extract class

v. Extract subclass

vi. Replace parameter with method

vii. Pull up method

viii. Pull up field

ix. Push down method

x. Push down field

8

xi. Move method

xii. Move field

xiii. Rename method

xiv. Rename field

xv. Replace temp with query

c. Perform tests

i. Unit testing

ii. Integration testing

iii. System testing

d. Document the refactorings done

3. Complete the documentation of the images and references modules

Significance of the Study

Refactoring

 Elimination of bugs in the system and improvement of the modules in line with its

original design can help in the faster adoption and wider use of the Virus-Host Interaction

Lexicon system for virologists. More so, the completion of the proper documentations for the

system can lead to the evolution of the VirHoLex system.

Image Hotspots

 Information about almost everything constantly updates. Even the information about

virus is regularly restructured. Since such trend is observable, using the Image Hotspot feature

9

can help virologists to regularly update the information in the virus diagram as well as the basic

virus information [2].

References Module

 Reference citation and bibliographies are integral parts of an academic work. Not only

do they give credence to a theory or claim, they also provide a way for readers to verify the

information presented. More so, reference citation gives courtesy and credit to original authors

of different academic works. With this, the References module of the Virus-Host Interaction

Lexicon system will provide a way for the users to record, organize and share their reference

lists.

Scope and Limitations

This study is only concerned with the refactoring of the images and references modules.

It will also cover the refactoring of the other modules of the system related to the previously

mentioned two modules. It will not add new modules to the system nor will it add new

functionalities not in line with the original design of the system.

The References module will only act as a reference manager for the users of the

VirHoLex system. It will allow the users to share, add and organize their reference lists.

However, it will not be responsible for providing other users the referenced material unless

uploaded by the original uploader.

10

For the Image Hotspot feature, its functionalities can only be used by the Hotspot

Manager. Furthermore, the Image Hotspot feature does not directly modify the location of the

hotspots on the diagram; it merely manages the information contained on these stages. In order

to revise the location or title of the stages, a third party software that edits SVG files is needed.

The system will not provide any direct download of such software but can provide a link to a

website [2].

In addition, the browsers of the users are expected to be able to handle SVG files in order

to properly display the diagram. Hotspot managers are assumed to be knowledgeable of any

software that handles SVGs in order for them to upload revised diagrams.

11

II. REVIEW OF RELATED LITERATURE

Refactoring

Programmers know that software code is read and modified more frequently than it is

written; thus there is a need to keep the code readable and modifiable. One way to ensure the

readability and modifiability of software code is through refactoring [1]. This technique has

gained wide acceptance that Brant and Roberts, in their plenary talk, presented the idea of

refactoring as an “essential tool for handling software evolution” [4]. However, one of the major

obstacles in refactoring is discerning where and when to refactor. In his book, Fowler stated that

refactorings are based on human intuition and that “no set of metrics rivals informed human

intuition” [1].

However, in the paper Metrics Based Refactorings, the researchers showed that metrics

can help to identify particular anomalies for certain types of refactorings. They believed that

tool support is necessary to assist the human intuition in a very efficient and effective way. More

so, they argued that software visualisation based on static structure analysis and metrics is a key

issue for this task. Thus, they presented a generic approach to generate visualisations supporting

the developer to identify candidates for refactoring [5]. However, due to the premise that the

developer has to be the last authority in identifying and applying refactorings, their work

focused on providing decision support.

An alternative way to help in the identification of anomalies is the use of program

invariants. The paper Automated Support for Program Refactoring using Invariants used an

invariant detection tool and an invariant pattern matcher to automatically detect candidate

12

refactorings. A particular pattern of invariants at a program point indicates the applicability of a

specific refactoring [6]. The paper showed that the use of program invariants can be a

complementary approach to tools that help to automate refactoring itself.

Another point that Brant and Roberts mentioned in their plenary talk is the problem of

integrating refactoring in software lifecycles. They argued that development methods do not

necessarily support software evolution and by extension refactoring. It thus created a need for

integration of refactoring into these different methodologies and techniques [4].

 UML or the Unified Modelling Language is a design language used to model system

behaviour and structure. Its syntax is precisely defined by a metamodel, and various structural

and dynamic views exist. However, one of the problems faced by designers is that it is often

hard to measure the actual impact of modifications on the various design views, as well as on the

implementation code. In the paper Refactoring UML Models, the researchers showed that

“refactorings can be defined in such a way that their behaviour-preserving properties are

guaranteed, based on the OCL constraints at the meta-model level” [7].

 Extreme Programming (XP) is a lightweight development process which focuses on unit

testing. “If there is a technique at the heart of extreme programming (XP), it is unit

testing.” [8] As part of their programming activity, XP developers write and maintain unit tests

continually. These tests are automated, written in the same programming language as the

production code, considered an explicit part of the code, and put under revision control. The

downside of having many tests, however, is that changes in functionality will typically involve

13

changes in the test code as well. Thus, ensuring readability and modifiability is important in the

test code. In the paper Refactoring Test Code, the researchers identified different test smells to

help developers identify weak spots in their test code, provide a solution to these problems, and

give a “set of specific test refactorings to help developers make improvements to their codes in a

systematic way” [9].

 Aspect-orientation is a new programming paradigm that increases the modularity of

software. It provides means to encapsulate concerns which cannot be modularized using

traditional programming techniques. These concerns are called crosscutting concerns and

examples of such are tracing, concurrency control or transaction management. However, since

this a different programming paradigm, refactoring tools for object-oriented base system cannot

be used. The tool needed should be aspect aware. Thus, an Eclipse plug in tool that supports

AspectJ (an aspect-oriented extension for Java) aware refactorings in that IDE was developed. It

consists of three collaborating parts: coding wizard, transformation and code generation, and

condition checking [10].

References

References and citations are standard parts in a scientific paper or book. It is a form of

intellectually honesty, and gives courtesy and credit to original authors of different academic

works. More so, these acts as source for theories or claims that are used in the text, giving

credence to the work. Many reference management software exist today, from web-based

systems with online storage space, to plugs ins for desktop tools programs or web browsers and

to stand alone desktop programs.

14

BibTex is a tool for automating list of references for a particular work. It takes care of

automating tedious tasks such as sorting bibliography entries either alphabetically or as they

appear in the text. Each entry is formatted according to the bibliography style chosen by the

user. In addition, citations in the continuous text are also formatted automatically [11]. This is

done by inserting commands in the said text.

One feature of BibTex is the ability to incorporate user styles into the program. A style is

basically a file that tells BibTex how to format the entries that will go in the reference list. The

language used for these files has ten commands that manipulate the language’s objects:

constants, variables, functions, the stack and the entry list [12].

While BibTex is a useful tool, it has a simple and bare format that does not allow

complex queries and manipulations. This can be a problem for online collections that contain

huge amounts of references. Thus, BibTeXML was developed. BibTeXML is an XML

environment for representing and structuring BibTex bibliographies, which make management of

bibliographical data easier, and to build an online database which allows upload and download of

bibliographic entries [13]. This database will provide complex queries and data navigation

which help the user to fetch the required references.

MLBibTex is another implementation of BibTex. It stands for Multilingual BibTex, and

was initiated because of the interest in multilingual processors nowadays. It allows its users to

specify language changes, which is a string of characters that expresses conformity to other

15

typographical conventions and can be used to hyphenate foreign language; and language

switches, which are used for information about what must be put, possibly in another language,

and for details that can be given in a particular language but can be omitted if no translation is

available [14].

Another type of reference manager is Connotea. It is a free online reference management

and social bookmarking service for scientists created by Nature Publishing Group. Its main

feature is the auto-discovery and the ability to import bibliographic information for any article or

book that is added in the system. It has an online storage of references and bookmarks, with the

capability to share to friends and colleagues as well as to other users of the service. This allows

Connotea to make recommendations to the users using sophisticated collaborative filtering

algorithms. It uses a simple, non-hierarchal flat file system where data can be viewed from the

perspective of tags, or users, or links [15].

EndNote is another popular reference management software program among biomedical

and healthcare professionals [16]. It is used to manage references, insert citations into

manuscripts, and format bibliographies. EndNote uses a library that is essentially an electronic

database containing various types of references, such as journal articles, books, magazine

articles, figures and tables. It consists of various reference fields such as Author, Title, Year

URL and Publication Date. A library can include files such as images, PDFs or Excel

spreadsheet associated with references.

Image Hotspots

16

 SVG is a language that was developed by the World Wide Consortium. SVG is defined

to be a two-dimensional vector graphics for both strong information and distribution of

information on the Web [2].

 SVG formats do not reduce quality even when scaled; this is because SVG files are

stored as a collection of instruction rather than a set of dots as compared to raster formats like

JPEG, GIF or PNG. Besides the resolution advantage, SVG files are commonly small in size

and web pages can easily load them. SVG files are also easily integrated with other scripting

languages that further enhance the quality and the flexibility of the vector graphic. SVG files are

also used in animations and interactive effects [2].

 Since SVG is a two-dimensional graphics format, a Cartesian plane coordinate system is

implemented. This allows developers to use SVG formats for mapping purposes with both static

and interactive features [2].

 SVG behaves like a normal image but with more features. Such feature makes it more

flexible compared to traditional image formats. “SVG allows translations, rotations, scaling,

skewing and matrix transformations. All transformations may be combined and nested. SVG

allows the definition or creation of viewpoints either per link or per script.” [2] SVG can also

handle scripting. Such scripting adds interactivity within the SVG file. These interactivities

include events, hyperlinks, animations, and other special interactivity elements [2].

17

III. THEORETICAL FRAMEWORK

Refactoring

Refactoring is defined as a “change made to the internal structure of software to make it

easier to understand and cheaper to modify without changing its observable behaviour” [1]. It a

technique used to clean up code in an efficient and controlled manner. While it is usually just a

small change to the software, one refactoring can also involve others; thus it becomes a series of

refactoring. This is done to improve the structure of software. It is like tidying up the code,

ensuring that the code retains its shape. With this, refactoring helps in the preservation of the

structure of the software, and slows down the possible decays in its source code.

The refactoring process is done as a series of activities. The list is as follows [17]:

1. Identify where the software should be refactored (code smells) .

2. Determine which refactoring(s) should be applied to the identified places.

3. Guarantee that the applied refactoring preserves behavior.

4. Apply the refactoring.

5. Assess the effect of the refactoring on quality characteristics of the software (e.g.,

complexity, understandability, maintainability) or the process (e.g., productivity, cost,

effort).

6. Maintain the consistency between the refactored program code and other software

artifacts (such as documentation, design documents, requirements specifications,

tests, etc.).

A. Code Smells

18

 Code smells is a term coined by Kent Beck and Martin Fowler to describe “certain

structures in the code that suggest the possibility of refactoring.” [1] These are the common

symptoms in software programs that possibly indicate a deeper problem. Programmers use code

smells as heuristics to indicate when to refactor, and what specific refactoring techniques to use.

Thus, a code smell is a driver for refactoring.

However, it is important to note that determining whether a specific part of a program is a

code smell or not is often a subjective judgement. It is up to the programmer to develop his own

sense of “how many instance variables are too many instance variables and how many lines of

code in a method are too many lines.” [1]

Below is a list of some of the code smells and their definitions, taken from Fowler’s book [1]:

 Duplicated code – same code structure in more than one place

 Long method – long procedures; methods with lots of parameters and temporary

variables

 Large class – class is trying to do too much; class has too many instance variables

 Long parameter list – lots of parameters to be passed

 Divergent change – one class is commonly changed in different ways for different

reasons

 Shotgun surgery – a change in the class results to a lot of little changes to a lot of

different classes

 Feature envy – a method that seems more interested in a class other than the one it

actually is in

19

 Data clumps – bunches of data that hang around together

 Primitive obsession – storing more information on primitives rather than making a

class

 Switch statements – same switch statement scattered about a program in different

places

 Parallel inheritance hierarchy – for every subclass of one class, there is also subclass

for another

 Lazy class – class that isn't doing enough that may be remnants of refactoring

processes

 Speculative generality – only users of a method or class are test cases

 Temporary field – an object in which an instance variable is set only in certain

circumstances

 Message chains – a client asks one object for another object, which the client then

asks for yet another object, which the client then asks for yet another object, and so

on

 Middle man – most of the methods of a class are delegated to another class

 Inappropriate intimacy – classes become far too intimate and spend too much time

delving in each other’s' private parts

 Alternative classes with different interfaces – methods that do the same thing but

have different signatures for what they do

 Incomplete library class – libraries lacking methods

 Data class – classes that have fields, getting and setting methods for the fields, and

nothing else; dumb data holders

20

 Refuse bequest – most data inherited by subclasses are not wanted or needed

 Comments – comments are only there because code is bad

B. Refactoring Techniques

Refactoring technique is a term to describe the series of refactoring steps that needs to be

done given a specific set of circumstances. There are many refactoring techniques available,

currently indexed by Martin Fowler in his book [1] and in his website [18]. Some of these can

be used to allow for more abstraction, others for breaking code apart into more logical pieces, or

for improving names and location of code.

Below are some examples of refactoring techniques taken from Fowler’s book [1]:

COLLAPSE HIERARCHY

Problem: A superclass and subclass are not very different.

Solution: Merge them together.

Before and after for collapse hierarchy technique

ENCAPSULATE FIELD

Problem: There is a public field.

Solution: Make it private and provide accessors.

21

Before and after for encapsulate field technique

EXTRACT CLASS

Problem: You have one class doing work that should be done by two.

Solution: Create a new class and move the relevant fields and methods from the old class

into the new class.

Before and after for extract class technique

EXTRACT METHOD

Problem: You have a code fragment that can be grouped together.

Solution: Turn the fragment into a method whose name explains the purpose of the

method.

public String _name

private String _name;

public String getName() {return _name;}

public void setName(String arg) {_name =

arg;}

22

Before and after for extract method technique

REPLACE PARAMETER WITH METHOD

Problem: An object invokes a method, and then passes the result as a parameter for a

method. The receiver can also invoke this method.

Solution: Remove the parameter and let the receiver invoke the method.

Before and after for replace parameter with method technique

PULL UP METHOD

Problem: You have methods with identical results on subclasses.

Solution: Move them to the superclass.

void printOwing() {

 Enumeration e = _orders.elements();

 double outstanding = 0.0;

 printBanner();

 // calculate outstanding

 while (e.hasMoreElements()) {

 Order each = (Order)

e.nextElement();

 outstanding += each.getAmount();

 }

 //print details

 System.out.println ("name:" +

_name);

 System.out.println ("amount" +

outstanding);

}

void printOwing() {

 Enumeration e = _orders.elements();

 double outstanding = 0.0;

 printBanner();

 // calculate outstanding

 while (e.hasMoreElements()) {

 Order each = (Order)

e.nextElement();

 outstanding += each.getAmount();

 }

 printDetails(outstanding);

}

void printDetails (double outstanding) {

 System.out.println ("name:" + _name);

 System.out.println ("amount" +

outstanding);

}

int basePrice = _quantity * _itemPrice;

discountLevel = getDiscountLevel();

double finalPrice =

discountedPrice(basePrice,

discountLevel);

int basePrice = _quantity * _itemPrice;

double finalPrice =

discountedPrice(basePrice);

23

Before and after for push down technique

MOVE METHOD

Problem: A method is, or will be, using or used by more features of another class than

the class on which it is defined.

Solution: Create a new method with a similar body in the class it uses most. Either turn

the old method into a simple delegation, or remove it altogether.

Before and after for move method technique

RENAME METHOD

Problem: The name of a method does not reveal its purpose.

Solution: Change the name of the method.

 public class SuperClass{

 void methodA() {

 //do something

 }

 void methodB() {

 //do something else

 }

 }

 public class SubClass extends

SuperClass {

 void methodC() {

 //do something

 }

 }

 public class SuperClass{

 void methodA() {

 //do something

 }

 }

 public class SubClass extends

SuperClass{

 void methodB() {

 //do something

 }

 void methodC() {

 //do something else

 }

 }

24

Before and after for rename method technique

REPLACE TEMP WITH QUERY

Problem: You are using a temporary variable to hold the result of an expression.

Solution: Extract the expression into a method. Replace all references to the temp with

the expression. The new method can then be used in other methods.

Before and after for replace temp with query technique

The given examples are usually used in the refactoring of object-oriented programming such

as the Java.

C. Unit Testing

 Unit testing is a method for “modular testing of a programs’ functional behavior” [19]. A

program is decomposed into units which are collections of functions, and the units are

independently tested. The test is done by generating inputs for a single entry function. This is a

practical approach to increasing the correctness and quality of software.

D. Performance Optimization vs. Refactoring

The purpose of refactoring is to make the software easier to understand and modify. A

programmer can introduce many changes in software that make little or no change in the

double basePrice = _quantity *

_itemPrice;

if (basePrice > 1000)

 return basePrice * 0.95;

else

 return basePrice * 0.98;

if (basePrice() > 1000)

 return basePrice() * 0.95;

else

 return basePrice() * 0.98;

...

double basePrice() {

 return _quantity * _itemPrice;

}

25

observable behavior, but only changes made to make the software easier to understand are

refactorings.

Performance optimization, on the other hand, is the “process of modifying a software

system to make some aspect of it work more efficiently or use fewer resources” [20]. Software

may be optimized so that it executes more rapidly, or is capable of operating with less memory

needs or other resources, or draw less power. Like refactoring, performance optimization does

not usually change the behavior of a component; it only alters the internal structure [1].

However, optimization often makes the code harder to read and understand as well as and add

code that is used only to improve the performance. This usually complicates software, making it

harder to maintain and debug.

References

A. EndNote

EndNote is one of the most popular reference management software program among

biomedical and healthcare professionals. Used to manage references, insert citations into

manuscripts, and format bibliographies, EndNote uses a library that is an electronic database

containing various types of references, such as journal articles, books, magazine articles, figures

and tables. In addition library can include files such as images, PDFs or Excel spreadsheet

associated with references [16].

B. References vs. Reference List/Bibliography vs. Citation

26

 A reference is a short description or note that contains information about the source.

Simply put, a reference is the "address" of the source. References enable the reader to access and

verify the original source of information. A citation or in-text citation meanwhile is a link to the

reference in the body of the manuscript in a short form [16].

A reference list is a numbered or alphabetically sorted list of references that are actually

cited in the text of the manuscript as endnotes or footnotes. Bibliography is a term typically used

to indicate a comprehensive list of all the resources the author has consulted during the course of

the research. It may include resources in addition to those cited in the text. Note that the terms

bibliography and reference list are often used interchangeable in common practice [16].

Image Hotspots

A. Raster Graphics vs. Vector Graphics

Today, there are two kinds of computer graphics available. One is called the raster

graphics that are composed of pixels while the other is called vector that is composed of paths.

Raster uses a grid of pixels that has varying color and shade. Vector graphics, on the other hand,

use mathematical relationships between points and paths [2].

Raster graphics tend to be pixelated when scaled and produces rough edges. Raster

graphics are just plain images that can only be embedded on a webpage. Creating hotspots over

raster graphics is easy to do but produces less interactivity and less effects. Moreover, these

hotspots will be written within the HTML file and thus can be seen when the source is looked at.

27

Vector graphics also support scripting that can create hotspots. Hotspots can then be

more flexible as to either a text or a region within the vector image. Since it uses scripting, the

underlying code will not be shown when the source is looked at [2].

B. Scalable Vector Graphics

Scalable Vector Graphics is a platform for describing two dimensional vector graphics,

both static and dynamic. The SGV specification is an open standard developed by the World

Wide Web Consortium (W3C). It is composed of an XML-based file format and a programming

API for graphical applications. Key features include shapes, text and embedded raster graphics,

with many different painting styles [21]. It supports scripting through languages such as

ECMAScript and has comprehensive support for animation.

SVG images can interact with users in many ways. One is through linking, where SVG

images can contain hyperlink to other documents. More so, any part of an SVG image can be

made to trigger events using scripting. These events can either be changes in focus, mouse

clicks, scrolling or zooming the image and other pointer, keyboard and document events. Event

handlers may start, stop or alter animations and trigger any other scripts in response to these

events.

Animation with SVG documents can be done using the built-in animation elements, or by

manipulating the Document Object Model (DOM) using ECMAScript. Animations in SVG can

be continuous, they can loop and repeat and they can respond to user events, as mentioned

above.

28

IV. DESIGN AND IMPLEMENTATION

An integral part of the study is the documentation of the refactorings done the different

parts of the system. The format will be as follows:

Problem The problem identified based on the code smell found. This may include a

short description as well as other related information.

Method The refactoring technique used to fix the problem.

Code The lines of code wherein the problem is identified. Note that these lines

may have been altered by previous refactorings, and thus are not necessarily

the original lines of code found in the first version of the system.

Modified Code The new code after the refactoring technique is applied.

Entity Relationship Diagram

The Entity Relationship Diagram (ERD) for the Virho References module is shown

below. From the diagram, it can be seen that the database tables relevant to the module are

document, reference and user_prev. The tables that are the primary scope of Virho

References module are the document and the reference tables.

The relationships of the tables are as follows: A particular reference, stored in the

reference table, can have zero or one supporting document. Conversely, a particular

document can only be included in one reference. The relationship of the two entities is noted

through the reference_id in the document table. A user, whose privileges for a particular

module of a particular project are stored in the user_prev table, can create many reference

29

entries. On the other hand, a reference entry can only have a particular user as its creator. Their

relationship is noted through the prev_id in the reference table.

document

PK name
PK,FK1 reference_id
PK,FK1 prev_id

 content

reference

PK reference_id
PK,FK1 prev_id

 title
 author
 collection
 year_published
 reference_type
 journal\book_ttile
 volume_issue
 pages
 contributor
 link

user_prev

PK prev_id

 role_id
 project_set_id
 project_id
 user_id
 date_added
 date_last_modified

has uploads

Figure 1 Entity Relationship Diagram

The Entity Relationship Diagram (ERD) for the Virho Image Hotspots is shown below.

From the diagram, it can be seen that the database tables relevant to the feature are virus and

virhohotspot. The table that is the primary scope of Virho Image Hotspots is the

virhohotspot table.

The relationships of the tables are as follows: A particular virus, stored in the virus table,

has exactly one hotspot diagram. Conversely, a particular hotspot diagram can only have one

kind of virus assigned to it. The relationship of the two entities is noted through the virus

entry in the virhohotspot table.

30

virus

PK virus

 description
 date_added
 date_modified

virhohotspot

PK stage
PK,FK1 virus

 information
 date_added
 date_modified

has

Figure 2 Entity Relationship Diagram

Data Dictionary

The tables below are the detailed description of the tables that are the primary scope of

the Virho References module. The reference table contains information about each reference

entry, while the document table contains information about the document file associated with

each entry.

Attribute Attribute type Description

reference_id integer primary key of the reference item cited

title varchar(50) title of the reference item cited

author varchar(50) author of the reference item cited

collection varchar(30) collection where the entry is included

year_published varchar(4) year the reference item cited was published

reference_type varchar(20) type of reference item

journal\book_title varchar(50) title of the journal or book where the reference item
was lifted

volume_issue varchar(5) volume issue of the journal or book where the
reference item was lifted

pages varchar(5) pages of the journal or book where the reference
item was lifted

contributor varchar(50) contributor of the journal or book where the
reference item was lifted

link varchar(50) hyperlink of the reference item cited

prev_id integer foreign key from the user_prev table
Table 3 Detailed description of the reference table

Attribute Attribute type Description

name varchar(50) name of the document file of the reference
item/primary key

content text content of the document file of the reference item

31

reference_id integer foreign key from the document table
Table 4 Detailed description of the document table

The tables below are the detailed description of the table that is the primary scope of the

Virho Hotspots. The virhohotspot table contains information about each virus image

diagram.

Attribute Attribute type Description

stage varchar(100) name of the infection stage/primary key

virus varchar(100) foreign key from the virus table

information text information displayed for that stage

date_added timestamp date when the information was added

date_modified timestamp date when the information was modified
Table 5 Detailed description of the virhohotspot table

Use Case Diagrams

Virho References Module

The use case diagrams below illustrate the functionalities of the Virho References

Module available to each user level. Only registered Virholex users have access to images.

Level 1 (Registered user), level 2 (Restricted user), level 3 (Collection contributor) and level 4

(Collection coordinator) users as defined by the Registered Users Services are those considered

as registered Virholex users. Unregistered users (level 0), thus, will not be able to access the

references.

 Level 2 (Restricted user) to level 4 (Collection coordinator) users can download the

document file of the reference entry, but only level 3 (Collection coordinator) and level 4 users

can edit and add bibliographic entries.

32

 The figures below are the use case diagrams together with its corresponding use case

descriptions and sequence diagrams of the Virho Reference module taken from the VirHoLex

Functional Specification for Release 1.0 [3].

Figure 3 Virho References Use Case Diagram

Figure 4 Browse References Use Case Diagram

33

Figure 5 Manage References Use Case Diagram

USE CASE

NAME:

Browse References

SCENARIO: View references list

TRIGGERING

EVENT:

Registered Virholex user clicks the Virho References link

BRIEF

DESCRIPTION:

Registered Virholex user goes to the Virho References module. The system

then displays a list of stored references.

ACTORS: Registered User, Restricted User, Collection Contributor, Collection

Coordinator

RELATED USE

CASES:

None

PRECONDITIONS: User must be a registered Virholex user

POST

CONDITIONS:

A list of references is displayed

FLOW OF

EVENTS:

Actor System

1. Registered Virholex user clicks on

the Virho References link

1.1. Redirect to the Virholex

References page

1.2. Display list of available

references grouped by

34

collection

EXCEPTION

CONDITIONS:

1.1 If the user is not a registered Virholex user, then the system pauses this use-

case
Table 6 Detailed description of Browse References Use Case

USE CASE

NAME:

View Bibliographic Entry

SCENARIO: View bibliographic entry of a reference

TRIGGERING

EVENT:

Registered Virholex user clicks the link of a reference entry

BRIEF

DESCRIPTION:

Registered Virholex user clicks the link of a reference entry. The system then

displays the bibliographical details of that particular reference entry.

ACTORS: Registered User, Restricted User, Collection Contributor, Collection

Coordinator

RELATED USE

CASES:

Includes: Browse References

PRECONDITIONS: User must be a registered Virholex user

POST

CONDITIONS:

The bibliographic entries of the reference are displayed

FLOW OF

EVENTS:

Actor System

1. Registered Virholex user goes to the

page of a particular reference (see

Browse References)

1.1. Display the bibliographic

entries of the reference

EXCEPTION

CONDITIONS:

None

Table 7 Detailed description of View Bibliographic Entry Use Case

35

USE CASE

NAME:

Download reference document

SCENARIO: Download the actual document of a reference

TRIGGERING

EVENT:

Registered Virholex user clicks the Download link of a reference entry

BRIEF

DESCRIPTION:

Registered Virholex user clicks the download link of a reference entry. The

system then sends to the user the appropriate document file.

ACTORS: Restricted User, Collection Contributor, Collection Coordinator

RELATED USE

CASES:

Includes: View Bibliographic Entry

PRECONDITIONS: User must be at least a level 2 Virholex user

POST

CONDITIONS:

The document file of the reference entry is provided

FLOW OF

EVENTS:

Actor System

1. Registered Virholex user clicks the

download link in the page of the

reference entry (see View

Bibliographic Entry)

1.1. The system provides a link

for the user to download the

file from

 2. Registered Virholex user accepts the

file transfer

2.1. The system sends the

appropriate document file

and copies the file to the

local drive of the user

EXCEPTION

CONDITIONS:

1.1 If the user is a Registered user, the download link will be inactive

2.1 If the download fails, the user will be notified
Table 8 Detailed description of Download Reference Document Use Case

36

USE CASE

NAME:

Export EndNoteXML/BibTex

SCENARIO: Export the EndNoteXML/BibTex file

TRIGGERING

EVENT:

Registered Virholex user marks the checkbox of the reference entry and clicks

the Export link

BRIEF

DESCRIPTION:

Registered Virholex user clicks the export link of a reference entry. The

system then sends to the user the appropriate XML file.

ACTORS: Restricted User, Collection Contributor, Collection Coordinator

RELATED USE

CASES:

Includes: View Bibliographic Entry

PRECONDITIONS: User must be at least a level 2 Virholex user

POST

CONDITIONS:

The document file of the reference entry is provided

FLOW OF

EVENTS:

Actor System

1. Registered Virholex user clicks the

export link in the page of the

reference entry (see View

Bibliographic Entry)

1.1. The system provides a link

for the user to download the

XML file from

 2. Registered Virholex user accepts the

file transfer

2.1. The system sends the

appropriate XML file and

copies the file to the local

drive of the user

EXCEPTION

CONDITIONS:

1.1 If the user is a Registered user, the export link will be inactive

2.1 If the download fails, the user will be notified
Table 9 Detailed description of Export EndNoteXML/BibTex Use Case

37

Virho Hotspots

The use case diagrams below illustrate the functionalities of the Virho Hotspots feature

available to each user level. Registered and unregistered Virholex users both have access to the

image hotspots. However, only level 4 (Collection coordinator) users as defined by the

Registered Users Services can upload new hotspot diagrams, and add, delete, and edit hotspot

information.

 The figure below is the use case diagram together with the use case description and

sequence diagrams of the Virho Image Hotspots feature taken from the VirHoLex Functional

Specification for Release 1.0 [3].

38

Figure 6 Virho Hotspots Use Case Diagram

USE CASE

NAME:

Manage Hotspot

SCENARIO: Manage hotspot information of the Virus-Host Interaction model

TRIGGERING

EVENT:

User clicks on the Edit Hotspot button

BRIEF

DESCRIPTION:

When the user clicks on the Update Hotspot Button, he/she will be redirected

to the Virho Hotspot Manager Tool page and will be able to Add, Edit or

Delete hotspot and related information for each infection step.

ACTORS: Hotspot Manager

RELATED USE

CASES:

None

PRECONDITIONS: User must be a Hotspot Manager

POST

CONDITIONS:

Update hotspot database

Update Virus Host model display

FLOW OF

EVENTS:

Actor System

1. Registered Virholex Hotspot

Manager logs on to the system

1.1. Redirect to the Virholex

home page

2. Registered Virholex Hotspot

Manager chooses the desired virus

2.1. Display the model of the

virus host together with the

corresponding information

39

 3. Registered Virholex Hotspot

Manager clicks on the edit hotspot

button

3.1. Redirect to a page displaying

the hotspot model details in

editable mode

 4. Registered Virholex Hotspot

Manager performs desired operations

4.1. Update the hotspot database

4.2. Updates Virus-Host

Interaction Main Page

EXCEPTION

CONDITIONS:

1.1 If the user is not a Hotspot Manager, then the system pauses this use-case

2.2 If the model of the virus host is not available, ask the user to upload the

model instead.
Table 10 Detailed description of Manage Hotspot Use Case

40

Technical Architecture

The following will be used in the development of VirHolex:

 Database: MySQL

 Web server: Apache Tomcat

 Programming language: Java Servlet and Java Server Pages (JSP)

 IDE: Web Tools Project (WTP) by the Eclipse Foundation

41

V. RESULTS

Upon testing, several bugs were found in the initial version of the Virus-Host Interaction

Lexicon system. While there were several modules that have errors, this study will focus on two

modules – the Hotspots and References modules. The References module has a few minor bugs,

though several major errors also exist. These bugs hamper the usability of the said module.

The Hotspot module meanwhile contains some of the biggest bug. A major bug is the

inability to add and delete hotspots for a virus diagram. This severely limits the functionality of

the module. Another shortcoming of the system is in its use of a generic image for all virus

diagrams. This results in an inaccurate illustration of the viruses stored in the system database.

Aside from refactoring the code, fixing these bugs is one of the main focus of this study.

Below is the complete listing of the bugs and errors found in the Virho References and

Virho Hotspots module together with their descriptions.

Virho References

1. Missing file for reference entry/File Not Found error

A user cannot download the file related to reference entry that is supposed to be

stored in the server. This can be attributed to the fact that the system fails to save the

said file when it is uploaded by a user.

42

2. Wrong hyperlink address for a reference entry

If a reference entry has a hyperlink for an external webpage, the system prepends its

own web address to the link address. This results in a wrong hyperlink address which,

when clicked, would give a Page Not Found error.

3. Membership approval

This bug is specifically for Collection Coordinator accounts. When a Collection

Coordinator (Level 4) attempts to approve a membership request to a particular

collection, the system throws an Exception. This bug appears randomly even during

normal usage of the system.

43

4. Internal Search for Virho Reference

When a user searches a key word that is contained in any collection or reference

detail, the system throws an Exception. This does not happen when the key word is

not found in any collection information or reference entry stored.

44

5. Registered User can perform actions reserved for Restricted User and higher level users

A Registered User (Level 1) can download the file related to the reference and can

export bibliographic entries to EndNoteXML format or Bibtext format. These actions

are reserved for Restricted User (Level 2), Collection Contributor (Level 3), and

Collection Coordinator (Level 4) accounts only.

6. Collection Contributor can delete reference entries

A Collection Contributor (Level 3) can delete an entry even though this privilege is

reserved for the Collection Coordinator (Level 4).

45

7. No Restricted User

The module does not recognize the Restricted User (Level 2) role. As a result, a

Collection Coordinator cannot assign the said role to a member user.

46

8. Navigation errors

The Back, Ok, and Cancel buttons in the collection listing page, reference details page

and edit membership pages bring the user back and forth between two pages instead

of going back to the previous pages. This is a minor issue.

Virho Hotspots

1. Virus diagrams cannot be changed

47

The system uses the same diagram for all viruses, regardless whether it is accurate or

not. More so, the hotspots in the diagram are hard coded into the diagram.

2. Can’t upload a new diagram for a virus

Since the system uses the same diagram for all viruses, the user cannot upload a new

diagram for a particular virus. While the system does not throw errors upon

completion of upload, the system still displays the old diagram instead of the new

one.

48

3. Add hotspot, edit hotspot and delete hotspot are not functional

While the user can edit virus hotspot information, he/she cannot add, edit or delete a

hotspot in the said diagram.

4. Membership approval

49

This bug is specifically for Hotspot Manager accounts. When a Hotspot Manager

(Level 4) attempts to approve a membership request to a particular virus set, the

system throws an Exception. This bug appears randomly even during normal usage

of the system.

 To help compare the original code from the refactored code, a simple web application

was created. It shows the two codes side by side in a page and loads these in a visual diff

algorithm similar to the diff program used in UNIX systems.

50

The resulting table shows the comparison of the two codes, with those colored pink as the

lines removed from the original code, and those colored green as the lines of code added to the

refactored code.

The refactoring technique, code smell found and the reason for refactoring is also added

beside lines where the said technique was applied.

51

 The refactorings done were able to fix the bugs in Virho References and Virho Hotspots

module. However, for the Virho Hotspots module, the accepted image type for the virus diagram

was changed from an SVG file to any of the more common image file type (jpeg, gif, png, bmp,

and the like).

The following tables show the refactorings done for each functionality as well as their

corresponding code smell.

Add Reference
while (itr.hasNext()) {

FileItem item = (FileItem) itr.next();

if (item.isFormField()){

String name = item.getFieldName();

String value = item.getString();

if(name.equals("collection"))

collection = value;

else if(name.equals("down"))

download = value;

else if(name.equals("filename")) {

if (pathname.equals(""))

filename = value;

}

else if(name.equals("type"))

type = value;

else if(name.equals("author"))

author = value;

…

…

…

else if(name.equals("year"))

year = value;

HashMap<String, String> formContents = new

HashMap<String, String>();

while (itr.hasNext()) {

FileItem item = itr.next();

if (item.isFormField()) {

String name = item.getFieldName();

String value = item.getString();

if (!name.equalsIgnoreCase("submit"))

formContents.put(name, value);

if(name.equalsIgnoreCase("collection"))

collection = value;

}else { //image upload

if(item.getSize() > 0) {

String imageRoot = File.separator +

"Virho_References" + File.separator + "repository";

int extension = item.getName().lastIndexOf(".");

String filename = item.getName().substring(0,

extension) + "_"

+ Math.abs(Math.random()) +

item.getName().substring(extension);

String pathname =

request.getSession().getServletContext().getRealPath(

imageRoot)

+ File.separator + filename;

formContents.put("path", filename);

File uploadedFile = new File(pathname);

item.write(uploadedFile);

Decompose

Conditional

Switch

Statement,

Long Method

52

String no = "no";

address="Virho_References/ViewReferenceDetails.jsp?ref="

+ title + "&coll=" + collection + "&down=" + download +

"&back=" + no;

}

}

}

return ReferencesDB.updateDB(formContents,

ReferencesDB.REFERENCE_ADD);

conn = general.DBConnect.getInstance().setConnection();

s = conn.createStatement ();

s.execute ("INSERT into coll_reference (collection, path,

title, type, author, editor, publisher, year, chapter, pages,

booktitle, school, institution, note, volume, series, address,

edition, " + "month, subtype, organization, number,

howpublished, link,journal, date_added, date_modified) VALUES "

+ "('"+ collection +"', '" + filename + "','" + title +

"','"+type +"', '"+author +"', '"+editor+"', '"+publisher+"' ,

'"+year+"', '"+chapter+"', '"+pages+"', '"+booktitle+"', '"

+school+"', '"+institution+"', '"+note+ "','" +volume+ "','"

+series+ "','" +addres+ "','" +edition+"','" +month+ "','"

+stype+ "','" +org+ "','" +number+ "','"+howpublished+ "','"

+link+ "','" +journal+ "', NOW(), NOW())");

result =

ReferencesDB.viewDB(request.getParameter("coll"),

request.getParameter("ref")

…

…

…

protected static String updateDB(HashMap<String,

String> form, int action) throws SQLException,

FileNotFoundException {

switch(action) {

case REFERENCE_ADD: return addToDB(form);

case REFERENCE_EDIT: return editDB(form);

default: return null;

}

}

Hide

Delegate
Message Chain

filename = "";

pathname = item.getName();

Random generator = new Random();

int randnum = Math.abs(generator.nextInt());

String reg = "[.*]";

String replacingtext = "";

Pattern pattern = Pattern.compile(reg);

Matcher matcher = pattern.matcher(pathname);

StringBuffer buffer = new StringBuffer();

while (matcher.find()) {

matcher.appendReplacement(buffer, replacingtext);

}

int IndexOf = pathname.indexOf(".");

String domainname = pathname.substring(IndexOf);

pathname = buffer.toString();

int LastIndexOf = pathname.lastIndexOf("\\");

filename = pathname.substring(LastIndexOf+1);

filename = filename + "_" + randnum + domainname;

pathname =

request.getSession().getServletContext().getRealPath(imageRoot)

+File.separator + filename;

File savedfile = new File(pathname);

item.write(savedfile);

String imageRoot = File.separator +

"Virho_References" + File.separator + "repository";

int extension = item.getName().lastIndexOf(".");

String filename = item.getName().substring(0,

extension) + "_"

+ Math.abs(Math.random()) +

item.getName().substring(extension);

String pathname =

request.getSession().getServletContext().getRealPath(

imageRoot)

+ File.separator + filename;

formContents.put("path", filename);

File uploadedFile = new File(pathname);

item.write(uploadedFile);
Extract

Method
Long Method

Add Collection
String title = values.get(0);

…

…

…

String downloadable = values.get(1);

String description = values.get(2);

String user = values.get(3);

public class Collection {

private String title;

private String id;

private String description;

private String downloadable;

private String user;

//Parameter for edit action

private String oldTitle;

…

…

…

}

Replace

Array With

Object

Primitive

Obsession

PreparedStatement ps = conn.prepareStatement("SELECT * from

collections

WHERE " + "title=? OR title LIKE ? order by title");

ps.setString(1, title);

ps.setString(2, title+"(%)");

ResultSet rs = ps.executeQuery();

int ctr=0;

String sametitle = "";

while(rs.next()) {

sametitle = rs.getString("title");

int start = sametitle.lastIndexOf("(");

int end = sametitle.lastIndexOf(")");

try{

if(sametitle.equals(title)){

ctr++;

}

else if(Integer.valueOf(sametitle.substring(start+1, end))>0){

ctr = Math.max(ctr,Integer.valueOf(sametitle.substring(start+1,

end))+1);

}

private static String generateTitle(String title,

String collection) throws SQLException {

PreparedStatement ps = conn.prepareStatement("SELECT

title FROM " +

"(SELECT title, collection FROM coll_reference coll

WHERE title LIKE ? OR title=? ORDER BY title) " +

"AS result WHERE collection =?");

ps.setString(1, title + "(%)");

ps.setString(2, title);

ps.setString(3, collection);

ResultSet rs = ps.executeQuery();

int ctr = 0;

while(rs.next()) {

String fromDatabase = rs.getString("title");

int start = fromDatabase.lastIndexOf("(");

int end = fromDatabase.lastIndexOf(")");

…

…

…

rs.close();

ps.close();

return (ctr > 0) ? title + "(" + ctr + ")" : title;

}

Extract

Method

Long Method,

Duplicate

Code

ps = conn.prepareStatement("INSERT INTO project (project_name,

description, author, date_added, date_modified)

VALUES(?,?,?,NOW(),NOW()) ");

CollectionDB.updateDB(collection,

CollectionDB.COLLECTION_ADD)

Hide

Delegate
Message Chain

53

ps.setString (1, title + " VirhoReference");

ps.setString (2, description);

ps.setString (3, user);

ps.executeUpdate ();

ps.close ();

…

…

…

…

…

…

protected static String updateDB(Collection

collection, int action) throws SQLException {

switch(action) {

case COLLECTION_ADD: return addToDB(collection);

case COLLECTION_DELETE: return

deleteFromDB(collection);

case COLLECTION_EDIT: return editDB(collection);

default: return "failed";

//TODO Default case

}

}

Delete Collection
Connection conn =

general.DBConnect.getInstance().setConnection();

PreparedStatement ps = conn.prepareStatement ("DELETE FROM

coll_reference WHERE collection=?");

ps.setString(1, title);

ps.executeUpdate ();

ps.close();

ps = conn.prepareStatement ("DELETE FROM collections WHERE

title=?");

ps.setString(1, title);

ps.executeUpdate ();

ps.close();

…

…

…

CollectionDB.updateDB(collection,

CollectionDB.COLLECTION_DELETE)

…

…

…

protected static String updateDB(Collection

collection, int action) throws SQLException {

switch(action) {

case COLLECTION_ADD: return addToDB(collection);

case COLLECTION_DELETE: return

deleteFromDB(collection);

case COLLECTION_EDIT: return editDB(collection);

default: return "failed";

//TODO Default case

}

}

Hide

Delegate
Message Chain

Delete Reference
conn = general.DBConnect.getInstance().setConnection();

File file = new File(path);

file.delete();

Statement s = conn.createStatement ();

s.execute ("DELETE FROM coll_reference WHERE id='" + id + "'");

Statement st = conn.createStatement ();

st.execute ("UPDATE models SET evidence='' WHERE

evidence='"+id+"' ");

PreparedStatement ps = conn.prepareStatement ("UPDATE image SET

reference_id=0 WHERE reference_id=?");

ps.setInt(1, id);

ps.executeUpdate();

ps.close ();

s.close();

st.close();

conn.close();

ReferencesDB.updateDB(ref, coll,

ReferencesDB.REFERENCE_DELETE)

…

…

…

protected static String updateDB(String reference,

String collection, int action) throws SQLException,

FileNotFoundException {

if (action == REFERENCE_DELETE)

return deleteFromDB(reference, collection);

return null;

}

Hide

Delegate
Message Chain

Edit Collection
 String downloadable = values.get(1);

 String description = values.get(2);

 String oldtitle = values.get(4);

Collection collection = new

Collection.Builder(title).oldTitle(oldTitle).download

able(downloadable).description(description).build();

Replace

Array With

Object

Primitive

Obsession

PreparedStatement ps;

if(!oldtitle.equals(newtitle)){

ps = conn.prepareStatement("SELECT * from collections WHERE " +

"title=? OR title LIKE ? order by title");

ps.setString(1, newtitle);

ps.setString(2, newtitle+"(%)");

ResultSet rs = ps.executeQuery();

int ctr=0;

String sametitle = "";

while(rs.next()) {

sametitle = rs.getString("title");

int start = sametitle.lastIndexOf("(");

int end = sametitle.lastIndexOf(")");

try {

if(sametitle.equals(newtitle)){

ctr++;

}

private static String generateTitle(String title,

String collection) throws SQLException {

PreparedStatement ps = conn.prepareStatement("SELECT

title FROM " +

"(SELECT title, collection FROM coll_reference coll

WHERE title LIKE ? OR title=? ORDER BY title) " +

"AS result WHERE collection =?");

ps.setString(1, title + "(%)");

ps.setString(2, title);

ps.setString(3, collection);

ResultSet rs = ps.executeQuery();

int ctr = 0;

while(rs.next()) {

String fromDatabase = rs.getString("title");

int start = fromDatabase.lastIndexOf("(");

int end = fromDatabase.lastIndexOf(")");

…

…

…

rs.close();

ps.close();

return (ctr > 0) ? title + "(" + ctr + ")" : title;

}

Extract

Method

Long Method,

Duplicate

Code

ps = conn.prepareStatement ("UPDATE collections SET title=?,

description=?, downloadable=?" + " WHERE title=?");

ps.setString(1, newtitle);

CollectionDB.updateDB(collection,CollectionDB.COLLECT

ION_EDIT)

…

Hide

Delegate

Inappropriate

Intimacy

54

ps.setString(2, description);

ps.setString(3, downloadable);

ps.setString(4, oldtitle);

ps.executeUpdate();

ps.close ();

…

…

…

…

…

protected static String updateDB(Collection

collection, int action) throws SQLException {

switch(action) {

case COLLECTION_ADD: return addToDB(collection);

case COLLECTION_DELETE: return

deleteFromDB(collection);

case COLLECTION_EDIT: return editDB(collection);

default: return "failed";

//TODO Default case

}

}

Edit Reference
String collection="", download="", filename="", title="",

type="", author="", editor="", publisher="", year="",

chapter="", pages="";

String booktitle="", school="", institution="", note="",

volume="", series="", addres="", edition="", month="";

String stype="", org="", number="", howpublished="", link="",

old_id="", journal="";

while (itr.hasNext()) {

FileItem item = itr.next();

String name = item.getFieldName();

String value = item.getString();

if (item.isFormField()) {

if (!name.equalsIgnoreCase("submit"))

formContents.put(name, value);

if(name.equalsIgnoreCase("collection"))

collection = value;

Extract

Method
Long Method

while (itr.hasNext()) {

FileItem item = (FileItem) itr.next();

if (item.isFormField()){

String name = item.getFieldName();

String value = item.getString();

if(name.equals("collection"))

collection = value;

else if(name.equals("down"))

download = value;

else if(name.equals("filename")) {

if (pathname.equals(""))

filename = value;

}

else if(name.equals("type"))

type = value;

else if(name.equals("author"))

author = value;

…

…

…

else if(name.equals("year"))

year = value;

String no = "no";

address="Virho_References/ViewReferenceDetails.jsp?ref="

+ title + "&coll=" + collection + "&down=" + download +

"&back=" + no;

HashMap<String, String> formContents = new

HashMap<String, String>();

while (itr.hasNext()) {

FileItem item = itr.next();

if (item.isFormField()) {

String name = item.getFieldName();

String value = item.getString();

if (!name.equalsIgnoreCase("submit"))

formContents.put(name, value);

if(name.equalsIgnoreCase("collection"))

collection = value;

}else { //image upload

if(item.getSize() > 0) {

String imageRoot = File.separator +

"Virho_References" + File.separator + "repository";

int extension = item.getName().lastIndexOf(".");

String filename = item.getName().substring(0,

extension) + "_"

+ Math.abs(Math.random()) +

item.getName().substring(extension);

String pathname =

request.getSession().getServletContext().getRealPath(

imageRoot)

+ File.separator + filename;

formContents.put("path", filename);

File uploadedFile = new File(pathname);

item.write(uploadedFile);

}

}

}

return ReferencesDB.updateDB(formContents,

ReferencesDB.REFERENCE_ADD);

Decompose

Conditional

Switch

Statement,

Long Method

filename = "";

pathname = item.getName();

Random generator = new Random();

int randnum = Math.abs(generator.nextInt());

String reg = "[.*]";

String replacingtext = "";

Pattern pattern = Pattern.compile(reg);

Matcher matcher = pattern.matcher(pathname);

StringBuffer buffer = new StringBuffer();

while (matcher.find()) {

matcher.appendReplacement(buffer, replacingtext);

}

int IndexOf = pathname.indexOf(".");

String domainname = pathname.substring(IndexOf);

pathname = buffer.toString();

int LastIndexOf = pathname.lastIndexOf("\\");

filename = pathname.substring(LastIndexOf+1);

filename = filename + "_" + randnum + domainname;

pathname =

request.getSession().getServletContext().getRealPath(imageRoot)

+File.separator + filename;

File savedfile = new File(pathname);

item.write(savedfile);

String imageRoot = File.separator +

"Virho_References" + File.separator + "repository";

int extension = item.getName().lastIndexOf(".");

String filename = item.getName().substring(0,

extension) + "_"

+ Math.abs(Math.random()) +

item.getName().substring(extension);

String pathname =

request.getSession().getServletContext().getRealPath(

imageRoot)

+ File.separator + filename;

formContents.put("path", filename);

File uploadedFile = new File(pathname);

item.write(uploadedFile);
Extract

Method
Long Method

if (item.isFormField()){

String name = item.getFieldName();

String value = item.getString();

HashMap<String, String> formContents = new

HashMap<String, String>();

while (itr.hasNext()) {

Decompose

Conditional

Switch

Statement,

Long Method

55

if(name.equals("old_id"))

old_id = value;

else if(name.equals("title"))

title = value;

else if(name.equals("collection"))

collection = value;

else if(name.equals("down"))

download = value;

else if(name.equals("filename")) {

if (pathname.equals(""))

filename = value;

}

else if(name.equals("type"))

type = value;

else if(name.equals("author"))

author = value;

else if(name.equals("editor"))

editor = value;

else if(name.equals("publisher"))

publisher = value;

else if(name.equals("year"))

year = value;

else if(name.equals("chapter"))

chapter = value;

else if(name.equals("pages"))

pages = value;

else if(name.equals("booktitle"))

booktitle = value;

else if(name.equals("school"))

school = value;

else if(name.equals("institution"))

institution = value;

else if(name.equals("note"))

note = value;

else if(name.equals("volume"))

volume = value;

else if(name.equals("series"))

series = value;

else if(name.equals("addres"))

addres = value;

else if(name.equals("edition"))

edition = value;

else if(name.equals("month"))

month = value;

else if(name.equals("stype"))

stype = value;

else if(name.equals("org"))

org = value;

else if(name.equals("number"))

number = value;

else if(name.equals("howpublished"))

howpublished = value;

else if(name.equals("link"))

link = value;

else if(name.equals("journal"))

journal = value;

}

FileItem item = itr.next();

String name = item.getFieldName();

String value = item.getString();

if (item.isFormField()) {

if (!name.equalsIgnoreCase("submit"))

formContents.put(name, value);

if(name.equalsIgnoreCase("collection"))

collection = value;

}

Privilege Process
Connection conn =

general.DBConnect.getInstance().setConnection();

Statement s = conn.createStatement ();

s.execute ("UPDATE user_prev SET username='" + username + "',

role_name='"+ role +"', involvement='" + project +"' WHERE

prev_id='" + id + "'");

s.close();

conn.close();

if(request.getParameter("submit").equalsIgnoreCase("R

emove Privilege")) {

return UserListDB.updateUserPrivileges(user, title,

privilege, UserListDB.USER_PRIV_DELETE);

} else {

return UserListDB.updateUserPrivileges(user, title,

privilege, UserListDB.USER_PRIV_EDIT);

}

Inappropria

te Intimacy
Message Chain

View Collections
Connection conn =

general.DBConnect.getInstance().setConnection();

Statement s = conn.createStatement ();

s.executeQuery ("SELECT * from collections");

ResultSet rs = s.getResultSet ();

while(rs.next()) {

values.add(rs.getString("title"));

values.add(rs.getString("description"));

values.add(rs.getString("downloadable"));

master.add(values);

values = new ArrayList();

}

conn.close();

if((request.getParameter("index").trim().equalsIgnore

Case("null")) ||

request.getParameter("index").trim().isEmpty())

result = CollectionDB.viewDB();

else

result =

CollectionDB.viewDB(request.getParameter("index").tri

m().charAt(0));

…

…

…

protected static ArrayList<Collection> viewDB(char

index) throws SQLException {

Statement s = conn.createStatement ();

s.executeQuery ("SELECT * from collections WHERE

title LIKE '" + index + "%'");

return (formatRS(s.getResultSet ()));

56

}

protected static ArrayList<Collection> viewDB(String

title) throws SQLException {

Statement s = conn.createStatement ();

s.executeQuery ("SELECT * from collections WHERE

title='" + title + "'");

return (formatRS(s.getResultSet ()));

}

String title = values.get(0);

…

…

…

String downloadable = values.get(1);

String description = values.get(2);

String user = values.get(3);

public class Collection {

private String title;

private String id;

private String description;

private String downloadable;

private String user;

//Parameter for edit action

private String oldTitle;

…

…

…

}

Replace

Array With

Object

Primitive

Obsession

View Collection Users
Connection conn =

general.DBConnect.getInstance().setConnection();

Statement s = conn.createStatement ();

s.executeQuery ("SELECT DISTINCT username from user_prev where

involvement= '"+collection+"'");

ResultSet rs = s.getResultSet ();

while(rs.next()) {

values.add(rs.getString("username"));

}

s.close();

conn.close();

…

…

…

UserListDB.getUserList(title)

…

…

…

protected static ArrayList<HashMap<String, String>>

getUserList(String title) throws SQLException {

ArrayList<HashMap<String, String>> users =

getUserNames(title);

return getCompleteNames(users);

}

Hide

Delegate
Message Chain

View References
Connection conn =

general.DBConnect.getInstance().setConnection();

Statement s = conn.createStatement ();

s.executeQuery ("SELECT * from coll_reference where

title='"+ref+"'AND collection='"+coll+"' ");

ResultSet rs = s.getResultSet ();

if((request.getParameter("ref") == null) ||

request.getParameter("ref").trim().isEmpty()) {

result =

ReferencesDB.viewDB(request.getParameter("coll").trim

(), null);

} else {

result =

ReferencesDB.viewDB(request.getParameter("coll").trim

(), request.getParameter("ref").trim());

Hide

Delegate

Inappropriate

Intimacy

values.add(rs.getString("author"));

values.add(rs.getString("year"));

values.add(rs.getString("type"));

values.add(rs.getString("volume"));

values.add(rs.getString("issue"));

values.add(rs.getString("pages"));

values.add(rs.getString("jb_title"));

values.add(rs.getString("short_t"));

values.add(rs.getString("keyword"));

values.add(rs.getString("link"));

values.add(rs.getString("path"));

values.add(rs.getInt("id"));

ResultSet rs = s.getResultSet ();

ResultSetMetaData rsmd = rs.getMetaData();

while(rs.next()) {

HashMap<String, String> current = new HashMap<String,

String>();

for(int i = 1; i <= rsmd.getColumnCount(); i++) {

String columnName = rsmd.getColumnName(i);

current.put(columnName, rs.getString(columnName));

}

references.add(current);

Replace

Array With

Object

Primitive

Obsession

Several new classes were also created to complement the refactorings done. These added

classes helped in ensuring that the functionalities of the system remained the same even after the

refactoring process. These new classes include the collection object, the database access for

collections and references, and the add, edit and delete hotspots classes, to name a few.

57

 Currently, the Virho References and Virho Hotspots module are completely functional

and are faithful to their original specifications. The following screenshots show some of these

functionalities.

 For the Virho References module, the image below shows the listing of the collections in

the module. It can be accessed by clicking the Virho References link in the left hand side

of the page. Note that the image is for Registered Users to Collection Contributors.

This is the listing for a Collection Contributor.

58

Below is the view collection contents functionality for Register Users until Collection

Contributors. It can be accessed by clicking the name of the collection.

59

The image below shows the same functionality but for a Collection Coordinator.

 If a user wants to view the reference entry, the user will need to click on the name of the

desired entry and the system will then display the appropriate details. Below is the view for a

Registered User.

60

 This view is for a Collection Contributor, while the next image is for the Collection

Coordinator.

61

 To add a reference to the collection, the user must click on the Add Reference button

found at the bottom of the page. Note that this functionality is for Collection Coordinator and

Collection Contributor account types only.

62

 A Collection Contributor or Collection Coordinator can edit the reference entry by

clicking the Edit Reference button.

63

 To delete an entry, the user must click the Delete Reference button. Note that this is

for Collection Coordinators only. Upon clicking, the following page will appear.

 A user can also export the reference entries and collection entries to BibTex format or to

EndNoteXML format. Below are example outputs of the said functionality.

64

 A Collection Coordinator can also view the users of a particular collection and edit their

privileges accordingly.

65

 For the Virho Hotspots module, the image below shows the virus diagram with

the mouse pointer hovering atop one hotspot. Note that this is for a non-Hotspot Manager user.

66

 Meanwhile, this is the view for a Hotspot Manager account.

67

 A hotspot is added by clicking Enable Create button and drawing a rectangle in the

desired hotspot through click and drag. When the mouse click is released, an alert box asking for

the Stage name will be shown like the one below.

68

 To delete a hotspot, the user must enable the delete functionality by clicking the Enable

Delete button and double clicking the hotspot to be deleted. An alert would then appear

asking for confirmation, like the one below.

69

 A Hotspot Manager can also edit certain hotspot information by placing the mouse

pointer atop the desired hotspot and clicking the Edit This Information button on the

right hand side of the screen. The user would then be taken to a page with a form to be filled out.

70

 A Hotspot Manager can also edit the virus basic information. This can be done by

clicking the Edit link in the right hand side of the screen as soon as the page and the virus

diagram are loaded. The user would then be taken to a page with a form to be filled out.

71

72

VI. DISCUSSION

VirHoLex References module is responsible for collecting and classifying the reference

entries based on their type as well as the project it belongs to. It gives users an avenue to view

pertinent information about a particular entry and possibly download a file related to the

reference provided by the uploader. It also allows users to view hyperlinks leading to other

websites that can be useful in their current research. More so, the module allows users to easily

export bibliographic entries in EndNoteXML or BibTeX for easier storage of reference details.

 VirHoLex Hotspots module allow users to create hotspots in a given virus diagram and

attach pertinent information about that particular part of the image. Through this tagging system,

user can easily share information regarding a particular stage of a virus which might help them

and other researchers in their research.

 However, in order to be fully useful, both modules had to be rid of all errors first. More

so, with the refactorings done, the modules can be easily modified and extended in the future by

a new development team. While no immediate benefits will be felt by the end user, the ability to

add new functionalities without development taking too long would surely be welcomed by these

users.

73

VII. CONCLUSION

Refactoring is a process whose results are not really geared towards the user. Instead,

refactoring is actually a process undertaken by developers for other developers. Its aim is to

make code as readable and as easy to understand as possible. While it is a seemingly

insurmountable task if the system in question is large, the process has matured enough

throughout the years that it is able to cope up with these challenges. Listings of the most

common refactoring techniques as well as code smells are available not only through books but

also through the Internet.

 The Virus Host Interaction Lexicon system is an example of this. VirHoLex is a complex

system composed of interlocking parts and business logic, whose code base became so large that

bugs and duplication of code became inevitable. The refactoring of the Virho References

module and Virho Hotspots module addressed these problems, while giving it the opportunity to

be expanded and modified in the future versions because of its more modular and more

manageable code.

 While it is only limited to two modules, it is a great step towards making the system a

useful tool in helping virologists around the world with their researches.

74

VIII. RECOMMENDATION

To further ensure the successful use of the system by researchers, it is recommended that

the other modules be refactored as well. While there are no bugs currently known in these other

modules, refactoring the code would make it easier to extend and add functionalities in the

future.

More so, it is also recommended that a framework be used for the next iteration of the

system. A framework would greatly reduce the number of redundant and duplicate code in the

system, and help make sure that the system is in tip-top shape. It would also help cut the

development time shorter because it will help developers focus on more pressing issues in the

development rather spend valuable resources solving problems that can be taken cared by the

frameworks instead.

75

IX. REFERENCES

[1] M. Fowler and K. Beck, Refactoring: improving the design of existing code. Addison-

Wesley, 1999.

[2] B. Elepano, “ViRUS: Virho Registered Users Services and Image Hotspots,” University of

the Philippines, Manila, 2008.

[3] Virholex Team, “Virus-Host Interaction Lexicon Functional Specifications for Release

1.0,” 19-Feb-2009.

[4] J. Brant and D. Roberts, “Refactoring techniques and tools,” Mar-1999.

[5] F. Simon, F. Steinbr\ückner, and C. Lewerentz, “Metrics based refactoring,” in csmr, p. 30,

2001.

[6] Y. Kataoka, D. Notkin, M. D. Ernst, and W. G. Griswold, “Automated support for program

refactoring using invariants,” in icsm, p. 736, 2001.

[7] G. Sunyé, D. Pollet, Y. Le Traon, and J. M. Jézéquel, “Refactoring UML models,” «UML»

2001—The Unified Modeling Language. Modeling Languages, Concepts, and Tools, pp.

134–148, 2001.

[8] K. Beck, “Embracing Change with Extreme Programming,” Computer, vol. 32, no. 10, pp.

70-77, 1999.

[9] A. Van Deursen, L. Moonen, A. van den Bergh, and G. Kok, “Refactoring test code,” in

Proceedings of the 2nd International Conference on Extreme Programming and Flexible

Processes in Software Engineering (XP2001), pp. 92–95, 2001.

[10] S. Hanenberg, C. Oberschulte, and R. Unland, “Refactoring of aspect-oriented software,” in

4th Annual International Conference on Object-Oriented and Internet-based Technologies,

Concepts, and Applications for a Networked World (Net. ObjectDays), 2004.

76

[11] J. Fenn, “Managing citations and your bibliography with bibtex,” The PracTEX Journal,(4),

2006.

[12] O. Patashnik, Designing BIBTEX styles. February, 1988.

[13] L. Previtali, B. Lurati, and E. Wilde, “BibTEXML: An XML representation of BibTEX,” in

Poster Proceedings of the Tenth International World Wide Web Conference, pp. 1090–

1091, 2001.

[14] J. Hufflen, “mlbibtex: a New Implementation of bibtex.”

[15] B. Lund, T. Hammond, M. Flack, and T. Hannay, “Social Bookmarking Tools (II),” D-Lib

Magazine, vol. 11, no. 04, 2005.

[16] A. Agrawal, Endnote 1 - 2 - 3 Easy!: Reference Management for the Professional. Springer,

2009.

[17] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE Transactions on

software engineering, vol. 30, no. 2, pp. 126–139, 2004.

[18] M. Fowler, “Refactoring Home.” [Online]. Available: http://www.refactoring.com/.

[Accessed: 19-Oct-2010].

[19] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing engine for C,” in

Proceedings of the 10th European software engineering conference held jointly with 13th

ACM SIGSOFT international symposium on Foundations of software engineering, pp. 263–

272, 2005.

[20] R. Sedgewick, Algorithms. 1984.

[21] “Scalable Vector Graphics (SVG) 1.1 (Second Edition).” [Online]. Available:

http://www.w3.org/TR/SVG11/. [Accessed: 10-Oct-2010].

